-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain.py
70 lines (52 loc) · 2.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import tensorflow as tf
from net.network import SemanticRegenerationNet, HRSemanticRegenerationNet
from data.data import DataLoader
from options.train_options import TrainOptions
config = TrainOptions().parse()
if config.model == 'srn':
model = SemanticRegenerationNet()
else:
model = HRSemanticRegenerationNet()
# training data
dataLoader = DataLoader(filename=config.dataset_path, batch_size=config.batch_size,
im_size=config.img_shapes)
images = dataLoader.next()[:, :, :, ::-1] # input BRG images
g_vars, d_vars, losses = model.build_net(images, config=config)
lr = tf.get_variable(
'lr', shape=[], trainable=False,
initializer=tf.constant_initializer(config.lr))
g_optimizer = tf.train.AdamOptimizer(lr, beta1=0.5, beta2=0.9)
d_optimizer = g_optimizer
g_train_op = g_optimizer.minimize(losses['g_loss'], var_list=g_vars)
d_train_op = d_optimizer.minimize(losses['d_loss'], var_list=d_vars)
saver = tf.train.Saver(max_to_keep=10, keep_checkpoint_every_n_hours=1)
summary_op = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
if config.load_model_dir != '':
print('[-] Loading the pretrained model from: {}'.format(config.load_model_dir))
ckpt = tf.train.get_checkpoint_state(config.load_model_dir)
if ckpt:
assign_ops = list(
map(lambda x: tf.assign(x, tf.contrib.framework.load_variable(config.load_model_dir, x.name)),
g_vars))
sess.run(assign_ops)
print("[*] Loading SUCCESS.")
else:
print("[x] Loading ERROR.")
summary_writer = tf.summary.FileWriter(config.model_folder, sess.graph, flush_secs=30)
coord = tf.train.Coordinator()
thread = tf.train.start_queue_runners(sess=sess, coord=coord)
for step in range(1, config.max_iters+1):
if config.pretrain_network is False:
for _ in range(5):
_, d_loss = sess.run([d_train_op, losses['d_loss']])
_, g_loss = sess.run([g_train_op, losses['g_loss']])
if step % config.viz_steps == 0:
print('[{:04d}, {:04d}] G_loss > {}'.format(step // config.train_spe, step % config.train_spe, g_loss))
summary_writer.add_summary(sess.run(summary_op), global_step=step)
if step % config.train_spe == 0:
saver.save(sess, os.path.join(config.model_folder, config.model_prefix), step)
coord.request_stop()
coord.join(thread)