-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathgpu_spmv.cu
741 lines (632 loc) · 25 KB
/
gpu_spmv.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
/******************************************************************************
* Copyright (c) 2011-2016, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIAeBILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
//---------------------------------------------------------------------
// SpMV comparison tool
//---------------------------------------------------------------------
#include <stdio.h>
#include <map>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <fstream>
#include <cusparse.h>
// Ensure printing of CUDA runtime errors to console
#define CUB_STDERR
#include <cub/device/device_spmv.cuh>
#include <cub/util_allocator.cuh>
#include <cub/iterator/tex_ref_input_iterator.cuh>
#include "sparse_matrix.h"
#include <utils.h>
using namespace cub;
//---------------------------------------------------------------------
// Globals, constants, and type declarations
//---------------------------------------------------------------------
bool g_quiet = false; // Whether to display stats in CSV format
bool g_verbose = false; // Whether to display output to console
bool g_verbose2 = false; // Whether to display input to console
CachingDeviceAllocator g_allocator(true); // Caching allocator for device memory
//---------------------------------------------------------------------
// SpMV verification
//---------------------------------------------------------------------
// Compute reference SpMV y = Ax
template <
typename ValueT,
typename OffsetT>
void SpmvGold(
CsrMatrix<ValueT, OffsetT>& a,
ValueT* vector_x,
ValueT* vector_y_in,
ValueT* vector_y_out,
ValueT alpha,
ValueT beta)
{
for (OffsetT row = 0; row < a.num_rows; ++row)
{
ValueT partial = beta * vector_y_in[row];
for (
OffsetT offset = a.row_offsets[row];
offset < a.row_offsets[row + 1];
++offset)
{
partial += alpha * a.values[offset] * vector_x[a.column_indices[offset]];
}
vector_y_out[row] = partial;
}
}
//---------------------------------------------------------------------
// cuSparse HybMV
//---------------------------------------------------------------------
/**
* Run cuSparse HYB SpMV (specialized for fp32)
*/
template <
typename OffsetT>
float TestCusparseHybmv(
float* vector_y_in,
float* reference_vector_y_out,
SpmvParams<float, OffsetT>& params,
int timing_iterations,
float &setup_ms,
cusparseHandle_t cusparse)
{
CpuTimer cpu_timer;
cpu_timer.Start();
// Construct Hyb matrix
cusparseMatDescr_t mat_desc;
cusparseHybMat_t hyb_desc;
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseCreateMatDescr(&mat_desc));
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseCreateHybMat(&hyb_desc));
cusparseStatus_t status = cusparseScsr2hyb(
cusparse,
params.num_rows, params.num_cols,
mat_desc,
params.d_values, params.d_row_end_offsets, params.d_column_indices,
hyb_desc,
0,
CUSPARSE_HYB_PARTITION_AUTO);
AssertEquals(CUSPARSE_STATUS_SUCCESS, status);
cudaDeviceSynchronize();
cpu_timer.Stop();
setup_ms = cpu_timer.ElapsedMillis();
// Reset input/output vector y
CubDebugExit(cudaMemcpy(params.d_vector_y, vector_y_in, sizeof(float) * params.num_rows, cudaMemcpyHostToDevice));
// Warmup
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseShybmv(
cusparse,
CUSPARSE_OPERATION_NON_TRANSPOSE,
¶ms.alpha, mat_desc,
hyb_desc,
params.d_vector_x, ¶ms.beta, params.d_vector_y));
if (!g_quiet)
{
int compare = CompareDeviceResults(reference_vector_y_out, params.d_vector_y, params.num_rows, true, g_verbose);
printf("\t%s\n", compare ? "FAIL" : "PASS"); fflush(stdout);
}
// Timing
float elapsed_ms = 0.0;
GpuTimer timer;
timer.Start();
for(int it = 0; it < timing_iterations; ++it)
{
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseShybmv(
cusparse,
CUSPARSE_OPERATION_NON_TRANSPOSE,
¶ms.alpha, mat_desc,
hyb_desc,
params.d_vector_x, ¶ms.beta, params.d_vector_y));
}
timer.Stop();
elapsed_ms += timer.ElapsedMillis();
// Cleanup
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseDestroyHybMat(hyb_desc));
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseDestroyMatDescr(mat_desc));
return elapsed_ms / timing_iterations;
}
/**
* Run cuSparse HYB SpMV (specialized for fp64)
*/
template <
typename OffsetT>
float TestCusparseHybmv(
double* vector_y_in,
double* reference_vector_y_out,
SpmvParams<double, OffsetT>& params,
int timing_iterations,
float &setup_ms,
cusparseHandle_t cusparse)
{
CpuTimer cpu_timer;
cpu_timer.Start();
// Construct Hyb matrix
cusparseMatDescr_t mat_desc;
cusparseHybMat_t hyb_desc;
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseCreateMatDescr(&mat_desc));
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseCreateHybMat(&hyb_desc));
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseDcsr2hyb(
cusparse,
params.num_rows, params.num_cols,
mat_desc,
params.d_values, params.d_row_end_offsets, params.d_column_indices,
hyb_desc,
0,
CUSPARSE_HYB_PARTITION_AUTO));
cudaDeviceSynchronize();
cpu_timer.Stop();
setup_ms = cpu_timer.ElapsedMillis();
// Reset input/output vector y
CubDebugExit(cudaMemcpy(params.d_vector_y, vector_y_in, sizeof(float) * params.num_rows, cudaMemcpyHostToDevice));
// Warmup
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseDhybmv(
cusparse,
CUSPARSE_OPERATION_NON_TRANSPOSE,
¶ms.alpha, mat_desc,
hyb_desc,
params.d_vector_x, ¶ms.beta, params.d_vector_y));
if (!g_quiet)
{
int compare = CompareDeviceResults(reference_vector_y_out, params.d_vector_y, params.num_rows, true, g_verbose);
printf("\t%s\n", compare ? "FAIL" : "PASS"); fflush(stdout);
}
// Timing
float elapsed_ms = 0.0;
GpuTimer timer;
timer.Start();
for(int it = 0; it < timing_iterations; ++it)
{
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseDhybmv(
cusparse,
CUSPARSE_OPERATION_NON_TRANSPOSE,
¶ms.alpha, mat_desc,
hyb_desc,
params.d_vector_x, ¶ms.beta, params.d_vector_y));
}
timer.Stop();
elapsed_ms += timer.ElapsedMillis();
// Cleanup
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseDestroyHybMat(hyb_desc));
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseDestroyMatDescr(mat_desc));
return elapsed_ms / timing_iterations;
}
//---------------------------------------------------------------------
// cuSparse CsrMV
//---------------------------------------------------------------------
/**
* Run cuSparse SpMV (specialized for fp32)
*/
template <
typename OffsetT>
float TestCusparseCsrmv(
float* vector_y_in,
float* reference_vector_y_out,
SpmvParams<float, OffsetT>& params,
int timing_iterations,
float &setup_ms,
cusparseHandle_t cusparse)
{
setup_ms = 0.0;
cusparseMatDescr_t desc;
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseCreateMatDescr(&desc));
// Reset input/output vector y
CubDebugExit(cudaMemcpy(params.d_vector_y, vector_y_in, sizeof(float) * params.num_rows, cudaMemcpyHostToDevice));
// Warmup
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseScsrmv(
cusparse, CUSPARSE_OPERATION_NON_TRANSPOSE,
params.num_rows, params.num_cols, params.num_nonzeros, ¶ms.alpha, desc,
params.d_values, params.d_row_end_offsets, params.d_column_indices,
params.d_vector_x, ¶ms.beta, params.d_vector_y));
if (!g_quiet)
{
int compare = CompareDeviceResults(reference_vector_y_out, params.d_vector_y, params.num_rows, true, g_verbose);
printf("\t%s\n", compare ? "FAIL" : "PASS"); fflush(stdout);
}
// Timing
float elapsed_ms = 0.0;
GpuTimer timer;
timer.Start();
for(int it = 0; it < timing_iterations; ++it)
{
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseScsrmv(
cusparse, CUSPARSE_OPERATION_NON_TRANSPOSE,
params.num_rows, params.num_cols, params.num_nonzeros, ¶ms.alpha, desc,
params.d_values, params.d_row_end_offsets, params.d_column_indices,
params.d_vector_x, ¶ms.beta, params.d_vector_y));
}
timer.Stop();
elapsed_ms += timer.ElapsedMillis();
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseDestroyMatDescr(desc));
return elapsed_ms / timing_iterations;
}
/**
* Run cuSparse SpMV (specialized for fp64)
*/
template <
typename OffsetT>
float TestCusparseCsrmv(
double* vector_y_in,
double* reference_vector_y_out,
SpmvParams<double, OffsetT>& params,
int timing_iterations,
float &setup_ms,
cusparseHandle_t cusparse)
{
cusparseMatDescr_t desc;
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseCreateMatDescr(&desc));
// Reset input/output vector y
CubDebugExit(cudaMemcpy(params.d_vector_y, vector_y_in, sizeof(float) * params.num_rows, cudaMemcpyHostToDevice));
// Warmup
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseDcsrmv(
cusparse, CUSPARSE_OPERATION_NON_TRANSPOSE,
params.num_rows, params.num_cols, params.num_nonzeros, ¶ms.alpha, desc,
params.d_values, params.d_row_end_offsets, params.d_column_indices,
params.d_vector_x, ¶ms.beta, params.d_vector_y));
if (!g_quiet)
{
int compare = CompareDeviceResults(reference_vector_y_out, params.d_vector_y, params.num_rows, true, g_verbose);
printf("\t%s\n", compare ? "FAIL" : "PASS"); fflush(stdout);
}
// Timing
float elapsed_ms = 0.0;
GpuTimer timer;
timer.Start();
for(int it = 0; it < timing_iterations; ++it)
{
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseDcsrmv(
cusparse, CUSPARSE_OPERATION_NON_TRANSPOSE,
params.num_rows, params.num_cols, params.num_nonzeros, ¶ms.alpha, desc,
params.d_values, params.d_row_end_offsets, params.d_column_indices,
params.d_vector_x, ¶ms.beta, params.d_vector_y));
}
timer.Stop();
elapsed_ms += timer.ElapsedMillis();
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseDestroyMatDescr(desc));
return elapsed_ms / timing_iterations;
}
//---------------------------------------------------------------------
// GPU Merge-based SpMV
//---------------------------------------------------------------------
/**
* Run CUB SpMV
*/
template <
typename ValueT,
typename OffsetT>
float TestGpuMergeCsrmv(
ValueT* vector_y_in,
ValueT* reference_vector_y_out,
SpmvParams<ValueT, OffsetT>& params,
int timing_iterations,
float &setup_ms)
{
setup_ms = 0.0;
// Allocate temporary storage
size_t temp_storage_bytes = 0;
void *d_temp_storage = NULL;
// Get amount of temporary storage needed
CubDebugExit(DeviceSpmv::CsrMV(
d_temp_storage, temp_storage_bytes,
params.d_values, params.d_row_end_offsets, params.d_column_indices,
params.d_vector_x, params.d_vector_y,
params.num_rows, params.num_cols, params.num_nonzeros,
(cudaStream_t) 0, false));
// Allocate
CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));
// Reset input/output vector y
CubDebugExit(cudaMemcpy(params.d_vector_y, vector_y_in, sizeof(ValueT) * params.num_rows, cudaMemcpyHostToDevice));
// Warmup
CubDebugExit(DeviceSpmv::CsrMV(
d_temp_storage, temp_storage_bytes,
params.d_values, params.d_row_end_offsets, params.d_column_indices,
params.d_vector_x, params.d_vector_y,
params.num_rows, params.num_cols, params.num_nonzeros,
(cudaStream_t) 0, !g_quiet));
if (!g_quiet)
{
int compare = CompareDeviceResults(reference_vector_y_out, params.d_vector_y, params.num_rows, true, g_verbose);
printf("\t%s\n", compare ? "FAIL" : "PASS"); fflush(stdout);
}
// Timing
GpuTimer timer;
float elapsed_ms = 0.0;
timer.Start();
for(int it = 0; it < timing_iterations; ++it)
{
CubDebugExit(DeviceSpmv::CsrMV(
d_temp_storage, temp_storage_bytes,
params.d_values, params.d_row_end_offsets, params.d_column_indices,
params.d_vector_x, params.d_vector_y,
params.num_rows, params.num_cols, params.num_nonzeros,
(cudaStream_t) 0, false));
}
timer.Stop();
elapsed_ms += timer.ElapsedMillis();
return elapsed_ms / timing_iterations;
}
//---------------------------------------------------------------------
// Test generation
//---------------------------------------------------------------------
/**
* Display perf
*/
template <typename ValueT, typename OffsetT>
void DisplayPerf(
float device_giga_bandwidth,
double setup_ms,
double avg_ms,
CsrMatrix<ValueT, OffsetT>& csr_matrix)
{
double nz_throughput, effective_bandwidth;
size_t total_bytes = (csr_matrix.num_nonzeros * (sizeof(ValueT) * 2 + sizeof(OffsetT))) +
(csr_matrix.num_rows) * (sizeof(OffsetT) + sizeof(ValueT));
nz_throughput = double(csr_matrix.num_nonzeros) / avg_ms / 1.0e6;
effective_bandwidth = double(total_bytes) / avg_ms / 1.0e6;
if (!g_quiet)
printf("fp%d: %.4f setup ms, %.4f avg ms, %.5f gflops, %.3lf effective GB/s (%.2f%% peak)\n",
sizeof(ValueT) * 8,
setup_ms,
avg_ms,
2 * nz_throughput,
effective_bandwidth,
effective_bandwidth / device_giga_bandwidth * 100);
else
printf("%.5f, %.5f, %.6f, %.3lf, ",
setup_ms,
avg_ms,
2 * nz_throughput,
effective_bandwidth);
fflush(stdout);
}
/**
* Run tests
*/
template <
typename ValueT,
typename OffsetT>
void RunTest(
ValueT alpha,
ValueT beta,
CooMatrix<ValueT, OffsetT>& coo_matrix,
int timing_iterations,
CommandLineArgs& args)
{
// Adaptive timing iterations: run 16 billion nonzeros through
if (timing_iterations == -1)
timing_iterations = std::min(50000ull, std::max(100ull, ((16ull << 30) / coo_matrix.num_nonzeros)));
if (!g_quiet)
printf("\t%d timing iterations\n", timing_iterations);
// Convert to CSR
CsrMatrix<ValueT, OffsetT> csr_matrix(coo_matrix);
if (!args.CheckCmdLineFlag("csrmv"))
coo_matrix.Clear();
// Display matrix info
csr_matrix.Stats().Display(!g_quiet);
if (!g_quiet)
{
printf("\n");
csr_matrix.DisplayHistogram();
printf("\n");
if (g_verbose2)
csr_matrix.Display();
printf("\n");
}
fflush(stdout);
// Allocate input and output vectors
ValueT* vector_x = new ValueT[csr_matrix.num_cols];
ValueT* vector_y_in = new ValueT[csr_matrix.num_rows];
ValueT* vector_y_out = new ValueT[csr_matrix.num_rows];
for (int col = 0; col < csr_matrix.num_cols; ++col)
vector_x[col] = 1.0;
for (int row = 0; row < csr_matrix.num_rows; ++row)
vector_y_in[row] = 1.0;
// Compute reference answer
SpmvGold(csr_matrix, vector_x, vector_y_in, vector_y_out, alpha, beta);
float avg_ms, setup_ms;
if (g_quiet) {
printf("%s, %s, ", args.deviceProp.name, (sizeof(ValueT) > 4) ? "fp64" : "fp32"); fflush(stdout);
}
// Get GPU device bandwidth (GB/s)
float device_giga_bandwidth = args.device_giga_bandwidth;
// Allocate and initialize GPU problem
SpmvParams<ValueT, OffsetT> params;
CubDebugExit(g_allocator.DeviceAllocate((void **) ¶ms.d_values, sizeof(ValueT) * csr_matrix.num_nonzeros));
CubDebugExit(g_allocator.DeviceAllocate((void **) ¶ms.d_row_end_offsets, sizeof(OffsetT) * (csr_matrix.num_rows + 1)));
CubDebugExit(g_allocator.DeviceAllocate((void **) ¶ms.d_column_indices, sizeof(OffsetT) * csr_matrix.num_nonzeros));
CubDebugExit(g_allocator.DeviceAllocate((void **) ¶ms.d_vector_x, sizeof(ValueT) * csr_matrix.num_cols));
CubDebugExit(g_allocator.DeviceAllocate((void **) ¶ms.d_vector_y, sizeof(ValueT) * csr_matrix.num_rows));
params.num_rows = csr_matrix.num_rows;
params.num_cols = csr_matrix.num_cols;
params.num_nonzeros = csr_matrix.num_nonzeros;
params.alpha = alpha;
params.beta = beta;
CubDebugExit(cudaMemcpy(params.d_values, csr_matrix.values, sizeof(ValueT) * csr_matrix.num_nonzeros, cudaMemcpyHostToDevice));
CubDebugExit(cudaMemcpy(params.d_row_end_offsets, csr_matrix.row_offsets, sizeof(OffsetT) * (csr_matrix.num_rows + 1), cudaMemcpyHostToDevice));
CubDebugExit(cudaMemcpy(params.d_column_indices, csr_matrix.column_indices, sizeof(OffsetT) * csr_matrix.num_nonzeros, cudaMemcpyHostToDevice));
CubDebugExit(cudaMemcpy(params.d_vector_x, vector_x, sizeof(ValueT) * csr_matrix.num_cols, cudaMemcpyHostToDevice));
// Merge-based
if (!g_quiet) printf("\n\n");
printf("Merge-based CsrMV, "); fflush(stdout);
avg_ms = TestGpuMergeCsrmv(vector_y_in, vector_y_out, params, timing_iterations, setup_ms);
DisplayPerf(device_giga_bandwidth, setup_ms, avg_ms, csr_matrix);
// Initialize cuSparse
cusparseHandle_t cusparse;
AssertEquals(CUSPARSE_STATUS_SUCCESS, cusparseCreate(&cusparse));
// cuSPARSE CsrMV
if (!g_quiet) printf("\n\n");
printf("cuSPARSE CsrMV, "); fflush(stdout);
avg_ms = TestCusparseCsrmv(vector_y_in, vector_y_out, params, timing_iterations, setup_ms, cusparse);
DisplayPerf(device_giga_bandwidth, setup_ms, avg_ms, csr_matrix);
// cuSPARSE HybMV
if (!g_quiet) printf("\n\n");
printf("cuSPARSE HybMV, "); fflush(stdout);
avg_ms = TestCusparseHybmv(vector_y_in, vector_y_out, params, timing_iterations, setup_ms, cusparse);
DisplayPerf(device_giga_bandwidth, setup_ms, avg_ms, csr_matrix);
// Cleanup
if (params.d_values) CubDebugExit(g_allocator.DeviceFree(params.d_values));
if (params.d_row_end_offsets) CubDebugExit(g_allocator.DeviceFree(params.d_row_end_offsets));
if (params.d_column_indices) CubDebugExit(g_allocator.DeviceFree(params.d_column_indices));
if (params.d_vector_x) CubDebugExit(g_allocator.DeviceFree(params.d_vector_x));
if (params.d_vector_y) CubDebugExit(g_allocator.DeviceFree(params.d_vector_y));
if (vector_x) delete[] vector_x;
if (vector_y_in) delete[] vector_y_in;
if (vector_y_out) delete[] vector_y_out;
}
/**
* Run tests
*/
template <
typename ValueT,
typename OffsetT>
void RunTests(
ValueT alpha,
ValueT beta,
const std::string& mtx_filename,
int grid2d,
int grid3d,
int wheel,
int dense,
int timing_iterations,
CommandLineArgs& args)
{
// Initialize matrix in COO form
CooMatrix<ValueT, OffsetT> coo_matrix;
if (!mtx_filename.empty())
{
// Parse matrix market file
coo_matrix.InitMarket(mtx_filename, 1.0, !g_quiet);
if ((coo_matrix.num_rows == 1) || (coo_matrix.num_cols == 1) || (coo_matrix.num_nonzeros == 1))
{
if (!g_quiet) printf("Trivial dataset\n");
exit(0);
}
printf("%s, ", mtx_filename.c_str()); fflush(stdout);
}
else if (grid2d > 0)
{
// Generate 2D lattice
printf("grid2d_%d, ", grid2d); fflush(stdout);
coo_matrix.InitGrid2d(grid2d, false);
}
else if (grid3d > 0)
{
// Generate 3D lattice
printf("grid3d_%d, ", grid3d); fflush(stdout);
coo_matrix.InitGrid3d(grid3d, false);
}
else if (wheel > 0)
{
// Generate wheel graph
printf("wheel_%d, ", grid2d); fflush(stdout);
coo_matrix.InitWheel(wheel);
}
else if (dense > 0)
{
// Generate dense graph
OffsetT size = 1 << 24; // 16M nnz
args.GetCmdLineArgument("size", size);
OffsetT rows = size / dense;
printf("dense_%d_x_%d, ", rows, dense); fflush(stdout);
coo_matrix.InitDense(rows, dense);
}
else
{
fprintf(stderr, "No graph type specified.\n");
exit(1);
}
RunTest(
alpha,
beta,
coo_matrix,
timing_iterations,
args);
}
/**
* Main
*/
int main(int argc, char **argv)
{
// Initialize command line
CommandLineArgs args(argc, argv);
if (args.CheckCmdLineFlag("help"))
{
printf(
"%s "
"[--csrmv | --hybmv | --bsrmv ] "
"[--device=<device-id>] "
"[--quiet] "
"[--v] "
"[--i=<timing iterations>] "
"[--fp32] "
"[--alpha=<alpha scalar (default: 1.0)>] "
"[--beta=<beta scalar (default: 0.0)>] "
"\n\t"
"--mtx=<matrix market file> "
"\n\t"
"--dense=<cols>"
"\n\t"
"--grid2d=<width>"
"\n\t"
"--grid3d=<width>"
"\n\t"
"--wheel=<spokes>"
"\n", argv[0]);
exit(0);
}
bool fp32;
std::string mtx_filename;
int grid2d = -1;
int grid3d = -1;
int wheel = -1;
int dense = -1;
int timing_iterations = -1;
float alpha = 1.0;
float beta = 0.0;
g_verbose = args.CheckCmdLineFlag("v");
g_verbose2 = args.CheckCmdLineFlag("v2");
g_quiet = args.CheckCmdLineFlag("quiet");
fp32 = args.CheckCmdLineFlag("fp32");
args.GetCmdLineArgument("i", timing_iterations);
args.GetCmdLineArgument("mtx", mtx_filename);
args.GetCmdLineArgument("grid2d", grid2d);
args.GetCmdLineArgument("grid3d", grid3d);
args.GetCmdLineArgument("wheel", wheel);
args.GetCmdLineArgument("dense", dense);
args.GetCmdLineArgument("alpha", alpha);
args.GetCmdLineArgument("beta", beta);
// Initialize device
CubDebugExit(args.DeviceInit());
// Run test(s)
if (fp32)
{
RunTests<float, int>(alpha, beta, mtx_filename, grid2d, grid3d, wheel, dense, timing_iterations, args);
}
else
{
RunTests<double, int>(alpha, beta, mtx_filename, grid2d, grid3d, wheel, dense, timing_iterations, args);
}
CubDebugExit(cudaDeviceSynchronize());
printf("\n");
return 0;
}