-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspectral_analysis.py
456 lines (407 loc) · 16.4 KB
/
spectral_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
"""
spectral_analysis.py
Author
------
Daniel Schonhaut
Computational Memory Lab
University of Pennsylvania
Description
-----------
Spectral decomposition methods.
Last Edited
-----------
2/3/22
"""
import sys
import os
import os.path as op
from glob import glob
import mkl
mkl.set_num_threads(1)
import numpy as np
import pandas as pd
import xarray
import mne
from scipy import stats
from scipy import signal
from fooof import FOOOF, FOOOFGroup
from fooof.objs.utils import combine_fooofs
sys.path.append('/home1/dscho/code/general')
import data_io as dio
from helper_funcs import Timer
sys.path.append('/home1/dscho/code/projects')
from time_cells import spike_preproc
def timefreq_wavelet(eeg,
freqs,
sr=None,
buffer=None,
clip_buffer=True,
n_cycles=5,
zero_mean=True,
log_power=False,
subj_sess=None,
roi=None,
output='both',
output_dir='/home1/dscho/projects/unit_activity_and_hpc_theta/data2/spectral',
save_output=False,
overwrite=False,
verbose=False):
"""Use wavelets to estimate power and phase at each timepoint.
Parameters
----------
eeg : array, shape=(event, channel, time)
EEG in the time domain. Wavelet convolution is done
over the last dimension.
sr : float
The sampling rate, in Hz.
buffer : int | None
The number of buffer samples to be clipped from
either side of the time domain after wavelet convolution.
freqs : array
The frequencies of interest, in Hz.
n_cycles : int
The wavelet length, in cycles at a given frequency.
zero_mean : bool
If True, ensures that the wavelets have a mean of zero.
output : str
'both' returns power and phase, in that order.
'power' returns only power
'phase' returns only phase
Returns
-------
power, phase : tuple of arrays, shape=(event, chan, frequency, time)
> Phase goes from 0 to 2π.
> Buffer is clipped out of the time domain.
> If input EEG is a DataArray, then DataArrays are returned.
Otherwise numpy arrays are returned.
"""
assert output in ('both', 'power', 'phase')
is_xarray = False
if isinstance(eeg, xarray.core.dataarray.DataArray):
is_xarray = True
# Get metadata parameters that weren't explicitly passed.
if is_xarray:
if subj_sess is None:
subj_sess = eeg.name[0]
if roi is None:
roi = eeg.name[1]
if sr is None:
sr = eeg.sr
if buffer is None:
if 'buffer' in eeg.attrs:
buffer = eeg.buffer
else:
buffer = 0
# Get the output filenames.
basename = '{}-{}.pkl'.format(subj_sess, roi)
power_f = op.join(output_dir, 'power', basename)
phase_f = op.join(output_dir, 'phase', basename)
# Return the processed data if it already exists.
if output == 'both':
if np.all((op.exists(power_f), op.exists(phase_f))) and not overwrite:
power = dio.open_pickle(power_f)
phase = dio.open_pickle(phase_f)
return power, phase
elif output == 'power':
if op.exists(power_f) and not overwrite:
power = dio.open_pickle(power_f)
return power
elif output == 'phase':
if op.exists(phase_f) and not overwrite:
phase = dio.open_pickle(phase_f)
return phase
# Run wavelet convolution.
tfr = mne.time_frequency.tfr_array_morlet(eeg,
sr,
freqs,
n_cycles=n_cycles,
zero_mean=zero_mean,
output='complex')
# Clip out the buffer.
if clip_buffer:
tfr = tfr[..., buffer:eeg.shape[-1]-buffer]
# Get power and phase from the complex values.
power = (tfr * tfr.conj()).real
if log_power:
power = np.log10(power)
phase = (np.angle(tfr) + np.pi) % (2 * np.pi) # 0 to 2π
power = power.astype(np.float32)
phase = phase.astype(np.float32)
# Format the outputs as DataArrays if the inputs were DataArrays.
if is_xarray:
dims = list(eeg.dims[:-1]) + ['freq', 'time']
coords = {x: eeg.coords[x] for x in eeg.dims[:-1]}
coords['freq'] = freqs
coords['time'] = np.arange(power.shape[-1])
attrs = {'sr': sr,
'buffer': buffer,
'clip_buffer': clip_buffer,
'n_cycles': n_cycles,
'zero_mean': zero_mean,
'log_power': log_power}
power = xarray.DataArray(power,
name=eeg.name,
dims=dims,
coords=coords,
attrs=attrs.copy())
del attrs['log_power']
phase = xarray.DataArray(phase,
name=eeg.name,
dims=dims,
coords=coords,
attrs=attrs)
# Save the data.
if save_output:
if output == 'both':
dio.save_pickle(power, power_f, verbose)
dio.save_pickle(phase, phase_f, verbose)
elif output == 'power':
dio.save_pickle(power, power_f, verbose)
elif output == 'phase':
dio.save_pickle(phase, phase_f, verbose)
# Return the data.
if output == 'both':
return power, phase
elif output == 'power':
return power
elif output == 'phase':
return phase
def timefreq_welch(eeg,
sr,
fmin=1,
fmax=80,
n_fft=None,
n_overlap=None,
log_transform=True,
verbose=False):
"""Uses Welch's method to convert signal from time to frequency domain.
Parameters
----------
eeg : array, shape=(..., n_times)
Decomposition is done over the last dimension.
sr : float
The sampling rate, in Hz.
fmin : float
The lower frequency of interest.
fmax : float
The upper frequency of interest.
n_fft : int
The length of FFT used.
n_overlap : int
The number of overlapping points between segments.
log_transform: bool
If true, power values are log10-transformed; otherwise
the raw powers are returned.
Returns
-------
freqs : array
frequency vector.
powers : array
channel x frequency power values.
"""
if n_fft is None:
n_fft = int(sr)
if n_overlap is None:
n_overlap = int(n_fft / 8)
powers, freqs = mne.time_frequency.psd_array_welch(eeg,
sr,
fmin=fmin,
fmax=fmax,
n_fft=n_fft,
n_overlap=n_overlap,
verbose=verbose)
if log_transform:
powers = np.log10(powers)
return freqs, powers
def run_fooof(subj_sess,
roi,
power=None,
freqs=np.arange(1, 31),
peak_width_limits=(1, 8),
min_peak_height=0.2,
max_n_peaks=4,
peak_threshold=2,
aperiodic_mode='fixed',
data_dir=None,
output_dir='/home1/dscho/projects/unit_activity_and_hpc_theta/data2/fooof',
save_output=False,
overwrite=False,
verbose=False):
"""Use FOOOF to fit the aperiodic power spectrum and peaks."""
# Load and return the output file, if it exists.
basename = '{}-{}.json'.format(subj_sess, roi)
output_f = op.join(output_dir, basename)
if op.exists(output_f) and not overwrite:
fg = FOOOFGroup()
fg.load(basename, output_dir)
return fg
# Load inputs.
if power is None:
if data_dir is None:
data_dir = op.abspath(op.join(output_dir, os.pardir))
power = dio.open_pickle(op.join(data_dir, 'spectral', 'power',
basename.replace('.json', '.pkl')))
# Get the average power at each frequency over time, for each channel and event.
if power.clip_buffer:
mean_power = power.mean(dim='time') # event x chan x freq
else:
mean_power = power[:, :, :, power.buffer:power.time.size-power.buffer].mean(dim='time')
# Run FOOOF.
foofs = []
for iChan in range(len(mean_power.chan)):
for iEvent in range(len(mean_power.event)):
fm = FOOOF(peak_width_limits=peak_width_limits,
max_n_peaks=max_n_peaks,
min_peak_height=min_peak_height,
peak_threshold=peak_threshold,
aperiodic_mode=aperiodic_mode,
verbose=verbose)
fm.fit(freqs, mean_power.values[iEvent, iChan, :freqs.size])
foofs.append(fm)
fg = combine_fooofs(foofs)
# Save output.
if save_output:
fg.save(basename, output_dir, save_results=True, save_settings=True, save_data=True)
return fg
def run_p_episode(subj_sess,
roi,
power=None,
phase=None,
fooof_group=None,
freqs=np.arange(1, 31),
cycle_thresh=3,
thresh_req='all',
chi2_pctl=0.95,
# buffer=None,
return_ap_thresh=False,
data_dir=None,
output_dir='/home1/dscho/projects/unit_activity_and_hpc_theta/data2/p_episode',
save_output=True,
overwrite=False,
verbose=True):
"""Run P-episode and return the oscillation mask."""
assert thresh_req in ('mean', 'all')
# Load the output file if it exists.
basename = '{}-{}.pkl'.format(subj_sess, roi)
output_f = op.join(output_dir, basename)
if op.exists(output_f) and not overwrite:
return dio.open_pickle(output_f)
# Load inputs.
if data_dir is None:
data_dir = op.abspath(op.join(output_dir, os.pardir))
if power is None:
power = dio.open_pickle(op.join(data_dir, 'spectral', 'power', basename))
if phase is None:
phase = dio.open_pickle(op.join(data_dir, 'spectral', 'phase', basename))
if fooof_group is None:
fooof_group = FOOOFGroup()
fooof_group.load(basename.replace('.pkl', '.json'),
op.join(data_dir, 'fooof'))
# if buffer is None:
# try:
# if power.clip_buffer:
# buffer = 0
# else:
# buffer = power.buffer
# except AttributeError:
# buffer = 0
# mean_power = power[:, :, :, buffer:len(power.time)-buffer].mean(dim='time')
# Get aperiodic line fits for each channel and event.
ii = 0
ap_fits = []
for iChan in range(len(power.chan)):
ap_fits.append([])
for iEvent in range(len(power.event)):
ap_fits[iChan].append(10**fooof_group.get_fooof(ii)._ap_fit)
ii += 1
ap_fits = np.array(ap_fits) # chan x event x freq
# Find the 95th percentile of the chi2 distribution centered
# on the aperiodic fit for each channel, event, and frequency.
dof = 2
chi2_thresh = stats.chi2.ppf(chi2_pctl, dof)
ap_thresh = np.array([[[chi2_thresh * (ap_fits[iChan, iEvent, iFreq]/2)
for iFreq in range(ap_fits.shape[2])]
for iEvent in range(ap_fits.shape[1])]
for iChan in range(ap_fits.shape[0])])
# ap_thresh = np.array([[[stats.chi2.ppf(chi2_pctl, dof, loc=ap_fits[iChan, iEvent, iFreq])
# for iFreq in range(ap_fits.shape[2])]
# for iEvent in range(ap_fits.shape[1])]
# for iChan in range(ap_fits.shape[0])])
# Match ap_thresh and power dimensions.
ap_thresh = np.swapaxes(ap_thresh, 0, 1) # event x chan x freq
# Restrict P-episode analysis to frequencies of interest.
power = power.sel(freq=power.freq<=freqs.max())
phase = phase.sel(freq=phase.freq<=freqs.max())
ap_thresh = ap_thresh[:, :, :freqs.size]
# For each event, channel, and frequency, construct a cycle-by-cycle
# mask of mean power values above the P-episode threshold.
pep_vec = np.ones(cycle_thresh)
osc_win = int((cycle_thresh - 1) / 2)
osc_mask = np.zeros(power.shape, dtype=bool)
for iEvent in range(len(power.event)):
for iChan in range(len(power.chan)):
for iFreq in range(len(power.freq)):
trough_idx = np.where(np.abs(np.diff(phase.values[iEvent, iChan, iFreq, :])) > 1)[0]
_power = np.split(power.values[iEvent, iChan, iFreq, :], trough_idx)
_cycle_dur = [len(x) for x in _power]
_thresh = ap_thresh[iEvent, iChan, iFreq]
if thresh_req == 'mean':
_power_above_thresh = np.array([(np.mean(x) > _thresh) for x in _power])
elif thresh_req == 'all':
_power_above_thresh = np.array([np.all(x > _thresh) for x in _power])
osc_idx = np.where(signal.convolve(_power_above_thresh.astype(float), pep_vec, mode='same') > (cycle_thresh - 0.5))[0]
osc_idx_full = np.unique(np.concatenate([osc_idx+ii for ii in range(-osc_win, osc_win+1)]))
_osc_bout = np.zeros(len(_power_above_thresh), dtype=bool)
_osc_bout[osc_idx_full] = True
osc_mask[iEvent, iChan, iFreq, :] = np.concatenate([np.repeat(_osc_bout[ii], _cycle_dur[ii])
for ii in range(len(_cycle_dur))])
# Format the outputs as DataArrays if the inputs were DataArrays.
if isinstance(power, xarray.core.dataarray.DataArray):
osc_mask = power.copy(data=osc_mask)
osc_mask.attrs.update(cycle_thresh=cycle_thresh,
thresh_req=thresh_req,
chi2_pctl=chi2_pctl)
# Save outputs.
if save_output:
dio.save_pickle(osc_mask, output_f, verbose)
if return_ap_thresh:
return osc_mask, ap_thresh
else:
return osc_mask
def load_p_episode_pct(n_rois=5,
data_dir='/home1/dscho/projects/unit_activity_and_hpc_theta/data2',
save_output=True,
overwrite=False,
verbose=True):
"""Return the mean percent oscillatory time at each frequency, for each session."""
if verbose:
timer = Timer()
# Load outputs if they exist.
output_file = op.join(data_dir, 'p_episode', 'pep_pct.pkl')
if op.exists(output_file) and not overwrite:
pep_pct = dio.open_pickle(output_file)
return pep_pct
pep_files = glob(op.join(data_dir, 'p_episode', 'U*.pkl'))
roi_map = spike_preproc.roi_mapping(n=n_rois)
pep_pct = []
for fname in pep_files:
basename = op.basename(fname).replace('.pkl', '')
subj_sess, roi = basename.split('-')
subj = subj_sess.split('_')[0]
osc_mask = dio.open_pickle(fname)
if (osc_mask.buffer > 0) & (not osc_mask.clip_buffer):
means = np.mean(osc_mask.values[:, :, :, osc_mask.buffer:osc_mask.time.size-osc_mask.buffer],
axis=(0, 1, 3)).tolist()
else:
means = np.mean(osc_mask.values, axis=(0, 1, 3)).tolist()
pep_pct.append(([subj, subj_sess, roi, roi_map[roi[1:]]] + means))
cols = ['subj', 'subj_sess', 'roi', 'roi_gen'] + osc_mask.freq.values.tolist()
pep_pct = pd.DataFrame(pep_pct, columns=cols)
# Save output.
if save_output:
dio.save_pickle(pep_pct, output_file, verbose)
if verbose:
print('pep_pct: {}'.format(pep_pct.shape))
print(timer)
return pep_pct