-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheeg_preproc.py
386 lines (338 loc) · 14 KB
/
eeg_preproc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
"""
eeg_preproc.py
Author
------
Daniel Schonhaut
Computational Memory Lab
University of Pennsylvania
Description
-----------
Functions for reading and processing time domain EEG.
Last Edited
-----------
1/26/22
"""
import sys
import os
import os.path as op
from collections import OrderedDict as od
import mkl
mkl.set_num_threads(1)
import numpy as np
import pandas as pd
import xarray
import mne
from scipy import stats
from scipy import signal
from scipy.io import loadmat
import h5py
sys.path.append('/home1/dscho/code/general')
import data_io as dio
from helper_funcs import Timer
sys.path.append('/home1/dscho/code/projects')
from time_cells import spike_preproc, events_proc, spectral_analysis
def process_eeg(subj_sess,
chan,
eeg=None,
sr=None,
convert_v_to_muv=False,
downsample_to=None,
l_freq=None,
h_freq=None,
notch_freqs=None,
save_output=False,
overwrite=False,
data_dir='/data7/goldmine/data',
output_dir=None,
verbose=False):
"""Load, process, and save EEG data for a single channel.
Will (1) load the input EEG; (2) convert volts to microvolts;
(3) downsample the signal, (4) high-pass/low-pass/band-pass filter,
and (5) notch filter, in that order.
Parameters
----------
subj_sess : str
e.g. 'U518_ses0'
chan : int | str
The number of the EEG channel to load.
eeg : array | None
Input EEG; if None it will be imported from the presumed
input filepath (see data_dir).
sr : float | None
Sampling rate of the input EEG.
convert_v_to_muv : bool
If True, multiplies EEG values by 1e6 to convert volts to
microvolts.
downsample_to : float | None
The rate, in Hz, to downsample the data to.
l_freq, h_freq : floats
The frequencies below and above which to filter out of the
data, respectively.
* l_freq < h_freq: band-pass filter
* l_freq > h_freq: band-stop filter
* l_freq is not None and h_freq is None: high-pass filter
* l_freq is None and h_freq is not None: low-pass filter
notch_freqs : float | array of float | None
Frequencies to notch filter.
data_dir : str
Directory where the input data are stored (expected file
structure is: [data_dir]/subj/sess/micro_lfps/CSC[chan].mat).
output_dir : str
Directory where the processed data are saved. If None, the
output file will be saved in a new directory like:
[data_dir]/subj/sess/micro_lfps/[output_tag]/CSC[chan].pkl,
where output_tag contains information about the preprocessing
parameters that were used.
Returns
-------
eeg : array
A vector over time.
sr : float
The sampling rate, as returned.
"""
subj, sess = subj_sess.split('_')
# Get the output filename.
if output_dir is None:
output_tag = ''
if convert_v_to_muv:
output_tag += '_V-to-muV'
if downsample_to is not None:
output_tag += '_sr{}'.format(downsample_to)
if (l_freq is not None) and (h_freq is None):
output_tag += '_highpass{}'.format(l_freq)
elif (l_freq is None) and (h_freq is not None):
output_tag += '_lowpass{}'.format(h_freq)
elif (l_freq is not None) and (h_freq is not None):
output_tag += '_bandpass{}-{}'.format(l_freq, h_freq)
if notch_freqs is not None:
try:
output_tag += '_notch' + '-'.join([str(x) for x in notch_freqs])
except TypeError:
output_tag += '_notch' + str(notch_freqs)
output_tag = output_tag[1:]
output_dir = op.join(data_dir, subj, sess, 'micro_lfps', output_tag)
if save_output:
os.makedirs(output_dir, exist_ok=True)
output_f = op.join(output_dir, 'CSC{}.pkl'.format(chan))
# Return the processed EEG data if it already exists.
if op.exists(output_f) and not overwrite:
eeg, sr = dio.open_pickle(output_f)
return eeg, sr
# Load the raw EEG channel file.
if (eeg is None) or (sr is None):
if verbose:
print('Loading {} chan{} raw EEG'.format(subj_sess, chan))
chan_f = op.join(data_dir, subj, sess, 'micro_lfps',
'CSC{}.mat'.format(chan))
try:
dat = loadmat(chan_f)
eeg = np.squeeze(dat['data'])
sr = (1 / dat['samplingInterval'][0][0]) * 1e3
except NotImplementedError:
with h5py.File(chan_f, 'r') as dat:
eeg = np.squeeze(dat['data'])
sr = (1 / dat['samplingInterval'][0][0]) * 1e3
eeg = eeg.astype(np.float64)
# Convert values to microvolts.
if convert_v_to_muv:
eeg *= 1e6
# Downsample the signal.
if downsample_to is not None:
if verbose:
print('Downsampling from {} to {} Hz'.format(sr, downsample_to))
downsample_by = sr / downsample_to
eeg = signal.resample(eeg, num=int(eeg.size / downsample_by))
sr /= downsample_by
# Lowpass/highpass/bandpass filter.
if (l_freq is not None) or (h_freq is not None):
if verbose:
if (l_freq is not None) & (h_freq is None):
print('High-pass filtering above {} Hz'.format(l_freq))
elif (l_freq is None) & (h_freq is not None):
print('Low-pass filtering below {} Hz'.format(h_freq))
else:
print('Band-pass filtering from {}-{} Hz'.format(l_freq, h_freq))
eeg = mne.filter.filter_data(eeg, sr, l_freq=l_freq, h_freq=h_freq,
copy=False, verbose=verbose)
# Notch filter.
if notch_freqs is not None:
if verbose:
print('Notch filtering at {} Hz'.format(notch_freqs))
eeg = mne.filter.notch_filter(eeg, sr, notch_freqs,
copy=False, verbose=verbose)
# Save the data.
if save_output:
dio.save_pickle((eeg, sr), output_f, verbose)
return eeg, sr
def load_time_eeg(subj_sess,
mont=None,
regions=None,
sr=1000,
l_freq=0.1,
h_freq=80,
notch_freqs=[60],
chan_exclusion_thresh=0,
verbose=False,
**kws):
"""Return a channel x time DataFrame grouped by region, for the whole session.
Loads processed EEG traces according to the inputs provided. If regions
is None, all regions are returned.
Channels are excluded that deviate by more than <chan_exclusion_thresh>
from the mean, Z-scored power across channels and frequencies, calculated
separately within each region.
kws are passed to process_eeg()
Returns
-------
time_eeg : OrderedDict of DataFrames shaped channel x time
Each dict entry corresponds to all channels from one
microwire bundle.
"""
if verbose:
timer = Timer()
print(subj_sess, '-' * len(subj_sess), sep='\n')
# Load the electrode montage.
if mont is None:
mont = spike_preproc.get_montage(subj_sess)
if regions is None:
regions = np.sort(list(mont.keys()))
else:
regions = np.sort([x for x in mont.keys()
if x in np.atleast_1d(regions)])
n_chans = 0
n_chans_kept = 0
time_eeg = od([])
for roi in regions:
chans = mont[roi]
# Load processed channels.
eeg = []
for chan in chans:
_eeg, _ = process_eeg(subj_sess,
chan=chan,
downsample_to=sr,
l_freq=l_freq,
h_freq=h_freq,
notch_freqs=notch_freqs,
**kws)
eeg.append(_eeg.tolist())
eeg = np.array(eeg)
n_chans += len(chans)
# Exclude bad channels.
if chan_exclusion_thresh > 0:
freqs, powers = spectral_analysis.timefreq_welch(eeg, sr, fmin=1, fmax=30)
zpowers = stats.zscore(powers, axis=0)
keep_iChans = np.where(np.abs(np.mean(zpowers, axis=1)) <= chan_exclusion_thresh)[0]
keep_chans = chans[keep_iChans]
eeg = eeg[keep_iChans, :]
if verbose and (len(chans) != len(keep_chans)):
exclude_chans = [x for x in chans if x not in keep_chans]
exclude_iChans = [x for x in np.arange(len(chans)) if x not in keep_iChans]
print('Excluded {} channel {} (index {})'
.format(roi,
', '.join([str(x) for x in exclude_chans]),
', '.join([str(x) for x in exclude_iChans])))
else:
keep_chans = chans
n_chans_kept += len(keep_chans)
# Make the output dataframe.
time_eeg[roi] = pd.DataFrame(eeg, index=keep_chans, columns=np.arange(eeg.shape[1]))
if verbose:
print('Kept {}/{} ({:.0%}) channels across {} regions'
.format(n_chans_kept, n_chans, n_chans_kept/n_chans, len(time_eeg)))
print(timer, end='\n'*2)
return time_eeg
def load_event_eeg(subj_sess,
regions=None,
game_states=['Encoding', 'Retrieval'],
buffer=0,
l_freq=0.1,
h_freq=80,
notch_freqs=[60],
chan_exclusion_thresh=0,
verbose=False,
**kws):
"""Return event-epoched EEG for all channels in each region indicated.
Loads processed EEG traces according to the inputs provided. Note:
currently only supports epoching EEG that was saved at 1000 Hz.
kws are passed to process_eeg()
Parameters
----------
subj_sess : str
E.g. 'U518_ses0'
regions : str | list | None
One or more regions to load EEG for. If None,
all regions from the montage are returned.
Returns
-------
event_eeg : OrderedDict of DataArrays, shape=(gameState, trial, channel, time)
"""
if verbose:
timer = Timer()
print(subj_sess, '-' * len(subj_sess), sep='\n')
sr = 1000
game_states = np.atleast_1d(game_states)
# Load events.
event_times = events_proc.load_events(subj_sess, verbose=False).event_times
gs_durs = events_proc.get_game_state_durs()
# Get start and stop times for each event.
event_idx = od([])
for game_state in game_states:
_event_times = event_times.query("(gameState=='{}')".format(game_state))
event_idx[game_state] = _event_times.apply(lambda x: [x['time'][0], x['time'][0] +
gs_durs[game_state]], axis=1).tolist()
# Get the channel x time EEG for the whole session.
time_eeg = load_time_eeg(subj_sess,
regions=regions,
sr=sr,
l_freq=l_freq,
h_freq=h_freq,
notch_freqs=notch_freqs,
**kws)
# Epoch the EEG data.
n_chans = 0
n_chans_kept = 0
event_eeg = od([])
for roi, _time_eeg in time_eeg.items():
chans = _time_eeg.index.values
n_chans += len(chans)
# game_state x trial x channel x time
eeg = np.array([[_time_eeg.values[:, (start-buffer):(stop+buffer)]
for start, stop in event_idx[game_state]]
for game_state in game_states])
# Exclude bad channels.
if chan_exclusion_thresh > 0:
# Get power at each frequency.
freqs, powers = spectral_analysis.timefreq_welch(
eeg[..., buffer:eeg.shape[-1]-buffer], sr, fmin=1, fmax=30)
# Z-score power across all dimensions except frequency.
zpowers = stats.zscore(powers, axis=(0, 1, 2))
# Remove channels with mean, absolute Z-power above thresh.
keep_iChans = np.where(np.abs(np.mean(zpowers, axis=(0, 1, 3))) <= chan_exclusion_thresh)[0]
keep_chans = chans[keep_iChans]
eeg = eeg[:, :, keep_iChans, :]
if verbose and (len(chans) != len(keep_chans)):
exclude_chans = [x for x in chans if x not in keep_chans]
exclude_iChans = [x for x in np.arange(len(chans)) if x not in keep_iChans]
print('Excluded {} channel {} (index {})'
.format(roi,
', '.join([str(x) for x in exclude_chans]),
', '.join([str(x) for x in exclude_iChans])))
else:
keep_chans = chans
n_chans_kept += len(keep_chans)
# Convert to xarray.
event_eeg[roi] = xarray.DataArray(eeg,
name=(subj_sess, roi),
coords=[('gameState', game_states),
('trial', _event_times['trial'].tolist()),
('chan', keep_chans),
('time', np.arange(eeg.shape[-1]))],
dims=['gameState', 'trial', 'chan', 'time'],
attrs={'sr': sr,
'buffer': buffer,
'chan_exclusion_thresh': chan_exclusion_thresh})
if verbose:
print('Kept {}/{} ({:.0%}) channels across {} regions'
.format(n_chans_kept, n_chans, n_chans_kept/n_chans, len(time_eeg)))
print(timer, end='\n'*2)
return event_eeg