-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbiasPlot-methods.Rd
42 lines (33 loc) · 1.97 KB
/
biasPlot-methods.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
\name{biasPlot-methods}
\docType{methods}
\alias{biasPlot}
\alias{biasPlot-methods}
\alias{biasPlot,matrix,numeric-method}
\alias{biasPlot,SeqExpressionSet,character-method}
\title{ Methods for Function \code{biasPlot} in Package \pkg{EDASeq} }
\description{
\code{biasPlot} produces a plot of the \code{\link{lowess}} regression of the counts on a covariate of interest, tipically the GC-content or the length of the genes.
}
\section{Methods}{
\describe{
\item{\code{signature(x = "matrix", y = "numeric")}}{
It plots a line representing the regression of every column of the matrix \code{x} on the numeric covariate \code{y}. One can pass the usual graphical parameters as additional arguments (see \code{\link{par}}).
}
\item{\code{signature(x = "SeqExpressionSet", y = "character")}}{
It plots a line representing the regression of every lane in \code{x} on the covariate specified by \code{y}. \code{y} must be one of the column of the \code{featureData} slot of the \code{x} object. One can pass the usual graphical parameters as additional arguments (see \code{\link{par}}). The parameter \code{color_code} (optional) must be a number specifying the column of \code{phenoData} to be used for color-coding. By default it is color-coded according to the first column of \code{phenoData}. If \code{legend=TRUE} and \code{col} is not specified a legend with the information stored in \code{phenoData} is added.
}
}}
\keyword{methods}
\examples{
library(yeastRNASeq)
data(geneLevelData)
data(yeastGC)
sub <- intersect(rownames(geneLevelData), names(yeastGC))
mat <- as.matrix(geneLevelData[sub,])
data <- newSeqExpressionSet(mat,
phenoData=AnnotatedDataFrame(
data.frame(conditions=factor(c("mut", "mut", "wt", "wt")),
row.names=colnames(geneLevelData))),
featureData=AnnotatedDataFrame(data.frame(gc=yeastGC[sub])))
biasPlot(data,"gc",ylim=c(0,5),log=TRUE)
}