-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwhispernote.py
executable file
·396 lines (352 loc) · 13.5 KB
/
whispernote.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
#!/usr/bin/env python
"""
Runner script for WhisperNote.
"""
from rich.console import Console
from rich.logging import RichHandler
console = Console()
with console.status("[green]Loading...") as status:
import sys
from pathlib import Path
file = Path(__file__).resolve()
parent = file.parent
ROOT = None
for parent in file.parents:
if parent.name == "WhisperNote":
ROOT = parent
sys.path.append(str(ROOT))
# remove current directory from path
try:
sys.path.remove(str(parent))
except ValueError:
pass
status.update("[bold green]Importing modules...")
import argparse
import concurrent.futures
import logging
import os
import subprocess
import tempfile
from typing import Dict, List, Optional
import pyfiglet
import whispernote.helpers.utils as utils
from whispernote import diarize, subtitle, transcribe
MODULE_NAME = "whispernote"
logger = logging.getLogger(MODULE_NAME)
logargs = {
"level": logging.INFO,
# "format": "%(asctime)s - %(process)d - %(name)s - %(levelname)s - %(message)s",
"format": "%(message)s",
"handlers": [RichHandler(rich_tracebacks=True, level=logging.INFO)],
}
logging.basicConfig(**logargs)
def run_parallel(args, log_file: str) -> Dict[str, concurrent.futures.Future]:
"""
Runs transcription and diarization jobs in parallel using ThreadPoolExecutor.
Args:
args: An object containing the command line arguments.
Returns:
A dictionary containing the futures of the transcription and diarization tasks.
"""
futures: Dict[str, concurrent.futures.Future] = {}
with concurrent.futures.ThreadPoolExecutor(
max_workers=4, thread_name_prefix="whispernote"
) as executor:
if args.transcript_output:
logger.info(f"Submitting transcription job for {args.input}")
command_array = [
"python",
os.path.join(utils.get_repo_root(), "WhisperNote", "whispernote", "transcribe.py"),
"--input",
args.input,
"--output",
args.transcript_output,
"--model",
args.transcript_model,
"--log-file",
log_file,
"--condition-on-previous-text",
str(args.condition_on_previous_text),
"--beam-size",
str(args.beam_size),
]
if args.language:
command_array.extend(["--language", args.language])
transcription_task = executor.submit(
utils.execute_commands,
command_array,
shell=False,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
futures["transcription"] = transcription_task
if args.diarization_output:
logger.info(f"Submitting diarization job for {args.input}")
command_array = [
"python",
os.path.join(utils.get_repo_root(), "WhisperNote", "whispernote", "diarize.py"),
"--input",
args.input,
"--output",
args.diarization_output,
"--log-file",
log_file,
]
if args.speaker_count:
command_array.extend(["--speaker-count", str(args.speaker_count)])
if args.min_speakers:
command_array.extend(["--min-speakers", str(args.min_speakers)])
if args.max_speakers:
command_array.extend(["--max-speakers", str(args.max_speakers)])
diarization_task = executor.submit(
utils.execute_commands,
command_array,
shell=False,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
futures["diarization"] = diarization_task
# Run the processes
tasks_completed = 0
for task in concurrent.futures.as_completed(futures.values()):
tasks_completed += 1
task_name = [k for k, v in futures.items() if v == task][0]
logger.info(
f"Completed {tasks_completed} of {len(futures)} tasks: {task_name}"
)
return futures
def run_whispernote(
audio_input: str,
transcript_output: str,
diarization_output: str,
srt_output: str,
transcript_model: str,
language: Optional[str] = None,
speaker_count: Optional[int] = None,
min_speakers: Optional[int] = None,
max_speakers: Optional[int] = None,
) -> None:
"""
Runs Transcription, Diarization, and SRT generation in sequence.
Args:
audio_input: Path to the input audio file.
transcript_output: Path to the output transcript file.
diarization_output: Path to the output diarization file.
srt_output: Path to the output SRT file.
transcript_model: Model to use for transcription.
language: Language of the audio file.
speaker_count: Number of speakers, if known.
min_speakers: Minimum number of speakers, if known.
max_speakers: Maximum number of speakers, if known.
Returns:
None
"""
if transcript_output:
logger.info(f"Running transcription for {audio_input}")
transcript = transcribe.transcribe(
input_audio_file_path=audio_input,
model=transcript_model,
language=language,
)
transcribe.write_output(transcript_output, transcript)
logger.info(f"Generated transcript output at {transcript_output}")
if diarization_output:
logger.info(f"Running diarization for {audio_input}")
hugging_face_key = diarize.get_huggingface_key()
diarization = diarize.diarize(
audio_path=audio_input,
hugging_face_key=hugging_face_key,
speaker_count=speaker_count,
min_speakers=min_speakers,
max_speakers=max_speakers,
)
diarize.write_output(diarization_output, diarization)
logger.info(f"Generated Diarization output at {diarization_output}")
if srt_output:
logger.info(f"Generating Diarized SRT file for {audio_input}")
subtitle_params = utils.config(utils.get_config_file(), "subtitles")
max_words_per_line = int(subtitle_params["max_words_per_line"])
subtitle.generate_diarized_subtitles(
whisper_json=transcript_output,
diarization_path=diarization_output,
srt_path=srt_output,
max_words_per_line=max_words_per_line,
)
logger.info(f"Generated Diarized SRT at {srt_output}")
logger.info("WhisperNote run complete")
return
def main():
"""
Main function for WhisperNote.
Returns:
None
"""
log_params = utils.config(utils.get_config_file(), "logging")
log_file = log_params[MODULE_NAME]
file_handler = logging.FileHandler(log_file, mode="a")
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(
logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
)
logging.getLogger().addHandler(file_handler)
parser = argparse.ArgumentParser(description="WhisperNote")
parser.add_argument("--input", type=str, help="input audio file", required=True)
parser.add_argument(
"--parallel",
type=bool,
help="run processes in parallel",
required=False,
default=False,
)
parser.add_argument(
"--transcript-output",
type=str,
help="output file with transcript from Whisper (JSON)",
required=False,
)
parser.add_argument(
"--diarization-output",
type=str,
help="output file with speaker diarization from pyannote.audio (CSV)",
required=False,
)
parser.add_argument(
"--srt-output",
type=str,
help="output file with SRT(subtitle) file generated from transcript, and diarization (SRT)",
required=False,
)
parser.add_argument(
"--transcribeme-output",
type=str,
help="output file with transcribeMe style file generated from transcript,\
and diarization (TXT)",
required=False,
)
parser.add_argument(
"--transcript-model",
type=str,
help="model to use for transcription",
choices=["tiny", "base", "small", "medium", "large"],
default="large",
)
parser.add_argument(
"--speaker-count", type=int, help="number of speakers, if known", required=False
)
parser.add_argument(
"--min-speakers",
type=int,
help="minimum number of speakers, if known",
required=False,
)
parser.add_argument(
"--max-speakers",
type=int,
help="maximum number of speakers, if known",
required=False,
)
parser.add_argument(
"--language",
type=str,
help="language of the audio file, if known",
required=False,
)
args = parser.parse_args()
params = utils.config(utils.get_config_file(), "whispernote")
args.condition_on_previous_text = params["condition_on_previous_text"]
if (
args.condition_on_previous_text == "True"
or args.condition_on_previous_text == "true"
):
args.condition_on_previous_text = True
else:
args.condition_on_previous_text = False
args.beam_size = int(params["beam_size"])
# Check what outputs are requested
transcript_output = args.transcript_output
diarization_output = args.diarization_output
srt_output = args.srt_output
# If no outputs are requested, then exit
if not transcript_output and not diarization_output and not srt_output:
logger.error("No outputs requested. Exiting.")
logger.info("Provide at least one of the following:")
logger.info("\t--transcript-output")
logger.info("\t--diarization-output")
logger.info("\t--srt-output")
logger.info("Use --help for more information.")
sys.exit(0)
logger.info(f"Arguments: {args}")
title = pyfiglet.figlet_format("WhisperNote", font="slant")
console.print(f"[bold red]{title}")
temp_files: List[tempfile._TemporaryFileWrapper] = []
if srt_output:
if not transcript_output:
logger.info(
"SRT output requested, but transcript output not requested. Using temp file"
)
temp_file = tempfile.NamedTemporaryFile(suffix=".json")
transcript_output = temp_file.name
logger.debug(f"Using temp file {transcript_output}")
temp_files.append(temp_file)
if not diarization_output:
logger.info(
"SRT output requested, but diarization output not requested. Using temp file"
)
temp_file = tempfile.NamedTemporaryFile(suffix=".csv")
diarization_output = temp_file.name
logger.debug(f"Using temp file {diarization_output}")
temp_files.append(temp_file)
if args.parallel:
logger.info("Running transcription and diarization in parallel")
run_parallel(args, log_file=log_file)
else:
if transcript_output:
logger.info(f"Running transcription for {args.input}")
transcript = transcribe.transcribe(
input_audio_file_path=args.input,
model=args.transcript_model,
language=args.language,
condition_on_previous_text=args.condition_on_previous_text,
beam_size=args.beam_size,
)
transcribe.write_output(transcript_output, transcript)
logger.info(f"Generated transcript output at {transcript_output}")
if diarization_output:
logger.info(f"Running diarization for {args.input}")
hugging_face_key = diarize.get_huggingface_key()
diarization = diarize.diarize(
audio_path=args.input,
hugging_face_key=hugging_face_key,
speaker_count=args.speaker_count,
min_speakers=args.min_speakers,
max_speakers=args.max_speakers,
)
diarize.write_output(diarization_output, diarization)
logger.info(f"Generated Diarization output at {diarization_output}")
if srt_output:
logger.info(f"Generating Diarized SRT file for {args.input}")
transcribeme_output = args.transcribeme_output
subtitle_max_words_per_line = int(params["subtitle_max_words_per_line"])
logger.info(f"Max words per subtitle line: {subtitle_max_words_per_line}")
if not transcribeme_output:
logger.info(
"SRT output requested, but transcribeMe output not requested. Using temp file"
)
temp_file = tempfile.NamedTemporaryFile(suffix=".txt")
transcribeme_output = temp_file.name
logger.debug(f"Using temp file {transcribeme_output}")
temp_files.append(temp_file)
subtitle.generate_diarized_subtitles(
whisper_json=transcript_output,
diarization_path=diarization_output,
srt_path=srt_output,
transcribeMe_path=transcribeme_output,
max_words_per_line=subtitle_max_words_per_line,
)
logger.info(f"Generated Diarized SRT at {srt_output}")
logger.info(f"Generated Diarized TranscribeMe at {transcribeme_output}")
for temp_file in temp_files:
logger.debug(f"Deleting temp file {temp_file.name}")
temp_file.close()
if __name__ == "__main__":
main()