-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathOptimize_Functions.py
340 lines (289 loc) · 16.5 KB
/
Optimize_Functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
'''
-------------------------
Written for Python 2.7 and 3.7
Python modules required:
-Numpy
-Scipy
-dadi
-------------------------
Daniel Portik
https://github.com/dportik
Updated September 2019
'''
import sys
import os
import numpy
import dadi
from datetime import datetime
def parse_params(param_number, in_params=None, in_upper=None, in_lower=None):
"""
Function to correctly deal with parameters and bounds, and if none were provided,
to generate them automatically.
Arguments
param_number: number of parameters in the model selected (can count in params line for the model)
in_params: a list of parameter values
in_upper: a list of upper bound values
in_lower: a list of lower bound values
"""
param_number = int(param_number)
#param set
if in_params is None:
params = [1] * param_number
elif len(in_params) != param_number:
raise ValueError("Set of input parameters does not contain the correct number of values: {}".format(param_number))
else:
params = in_params
#upper bound
if in_upper is None:
upper_bound = [30] * param_number
elif len(in_upper) != param_number:
raise ValueError("Upper bound set for parameters does not contain the correct number of values: {}".format(param_number))
else:
upper_bound = in_upper
#lower bounds
if in_lower is None:
lower_bound = [0.01] * param_number
elif len(in_lower) != param_number:
raise ValueError("Lower bound set for parameters does not contain the correct number of values: {}".format(param_number))
else:
lower_bound = in_lower
return params, upper_bound, lower_bound
def parse_opt_settings(rounds, reps=None, maxiters=None, folds=None):
"""
Function to correctly deal with replicate numbers, maxiter and fold args.
Arguments
rounds: number of optimization rounds to perform
reps: a list of integers controlling the number of replicates in each of three optimization rounds
maxiters: a list of integers controlling the maxiter argument in each of three optimization rounds
folds: a list of integers controlling the fold argument when perturbing input parameter values
"""
rounds = int(rounds)
#rep set
#create scheme where final replicates will be 20, and all previous 10
if reps is None:
if rounds >= 2:
reps_list = [10] * (rounds-1)
reps_list.insert(len(reps_list),20)
else:
reps_list = [10] * rounds
elif len(reps) != rounds:
raise ValueError("List length of replicate values does match the number of rounds: {}".format(rounds))
else:
reps_list = reps
#maxiters
if maxiters is None:
maxiters_list = [5] * rounds
elif len(maxiters) != rounds:
raise ValueError("List length of maxiter values does match the number of rounds: {}".format(rounds))
else:
maxiters_list = maxiters
#folds
#create scheme so if rounds is greater than three, will always end with two fold and then one fold
if folds is None:
if rounds >= 3:
folds_list = [3] * (rounds-2)
folds_list.insert(len(folds_list),2)
folds_list.insert(len(folds_list),1)
elif rounds == 2:
folds_list = [2] * (rounds-1)
folds_list.insert(len(folds_list),1)
else:
folds_list = [2] * rounds
elif len(folds) != rounds:
raise ValueError("List length of fold values does match the number of rounds: {}".format(rounds))
else:
folds_list = folds
return reps_list, maxiters_list, folds_list
def collect_results(fs, sim_model, params_opt, roundrep, fs_folded):
"""
Gather up a bunch of results, return a list with following elements:
[roundnum_repnum, log-likelihood, AIC, chi^2 test stat, theta, parameter values]
Arguments
fs: spectrum object name
sim_model: model fit with optimized parameters
params_opt: list of the optimized parameters
fs_folded: a Boolean (True, False) for whether empirical spectrum is folded or not
"""
#calculate theta
theta = dadi.Inference.optimal_sfs_scaling(sim_model, fs)
theta = numpy.around(theta, 2)
print("\t\t\tTheta = {:,}".format(theta))
#calculate likelihood
ll = dadi.Inference.ll_multinom(sim_model, fs)
ll = numpy.around(ll, 2)
print("\t\t\tLikelihood = {:,}".format(ll))
#calculate AIC
aic = ( -2*( float(ll))) + (2*len(params_opt))
print("\t\t\tAIC = {:,}".format(aic))
#get Chi^2
scaled_sim_model = sim_model*theta
if fs_folded is True:
#calculate Chi^2 statistic for folded
folded_sim_model = scaled_sim_model.fold()
chi2 = numpy.sum((folded_sim_model - fs)**2/folded_sim_model)
chi2 = numpy.around(chi2, 2)
elif fs_folded is False:
#calculate Chi^2 statistic for unfolded
chi2 = numpy.sum((scaled_sim_model - fs)**2/scaled_sim_model)
chi2 = numpy.around(chi2, 2)
print("\t\t\tChi-Squared = {:,}".format(chi2))
#store key results in temporary sublist, append to larger results list
temp_results = [roundrep, ll, aic, chi2, theta, params_opt]
return temp_results
def write_log(outfile, model_name, rep_results, roundrep):
"""
Reproduce replicate log to bigger log file, because constantly re-written.
Arguments
outfile: prefix for output naming
model_name: a label to slap on the output files; ex. "no_mig"
rep_results: the list returned by collect_results function:
[roundnum_repnum, log-likelihood, AIC, chi^2 test stat, theta, parameter values]
roundrep: name of replicate (ex, "Round_1_Replicate_10")
"""
fh_log = open("{0}.{1}.log.txt".format(outfile, model_name), 'a')
fh_log.write("\n{}\n".format(roundrep))
templogname = "{}.log.txt".format(model_name)
try:
fh_templog = open(templogname, 'r')
for line in fh_templog:
fh_log.write(line)
fh_templog.close()
except IOError:
print("Nothing written to log file this replicate...")
fh_log.write("likelihood = {}\n".format(rep_results[1]))
fh_log.write("theta = {}\n".format(rep_results[4]))
fh_log.write("Optimized parameters = {}\n".format(rep_results[5]))
fh_log.close()
def Optimize_Routine(fs, pts, outfile, model_name, func, rounds, param_number, fs_folded=True,
reps=None, maxiters=None, folds=None, in_params=None,
in_upper=None, in_lower=None, param_labels=None, optimizer="log_fmin"):
"""
Main function for running dadi routine.
Mandatory/Positional Arguments
(1) fs: spectrum object name
(2) pts: grid size for extrapolation, list of three values
(3) outfile: prefix for output naming
(4) model_name: a label to slap on the output files; ex. "no_mig"
(5) func: access the model function from within 'moments_optimize.py' or from a separate python model script, ex. Models_2D.no_mig
(6) rounds: number of optimization rounds to perform
(7) param_number: number of parameters in the model selected (can count in params line for the model)
(8) fs_folded: A Boolean value (True or False) indicating whether the empirical fs is folded (True) or not (False). Default is True.
Optional Arguments
(9) reps: a list of integers controlling the number of replicates in each of three optimization rounds
(10) maxiters: a list of integers controlling the maxiter argument in each of three optimization rounds
(11) folds: a list of integers controlling the fold argument when perturbing input parameter values
(12) in_params: a list of parameter values
(13) in_upper: a list of upper bound values
(14) in_lower: a list of lower bound values
(15) param_labels: a string, labels for parameters that will be written to the output file to keep track of their order
(16) optimizer: a string, to select the optimizer. Choices include: log (BFGS method),
log_lbfgsb (L-BFGS-B method), log_fmin (Nelder-Mead method, DEFAULT), and log_powell (Powell's method).
"""
#call function that determines if our params and bounds have been set or need to be generated for us
params, upper_bound, lower_bound = parse_params(param_number, in_params, in_upper, in_lower)
#call function that determines if our replicates, maxiter, and fold have been set or need to be generated for us
reps_list, maxiters_list, folds_list = parse_opt_settings(rounds, reps, maxiters, folds)
print("\n\n============================================================================"
"\nModel {}\n============================================================================\n\n".format(model_name))
#start keeping track of time it takes to complete optimizations for this model
tbr = datetime.now()
#optimizer dict
optdict = {"log":"BFGS method", "log_lbfgsb":"L-BFGS-B method", "log_fmin":"Nelder-Mead method", "log_powell":"Powell's method"}
# We need an output file that will store all summary info for each replicate, across rounds
outname = "{0}.{1}.optimized.txt".format(outfile, model_name)
with open(outname, 'a') as fh_out:
if param_labels:
fh_out.write("Model\tReplicate\tlog-likelihood\tAIC\tchi-squared\ttheta\toptimized_params({})\n".format(param_labels))
else:
fh_out.write("Model\tReplicate\tlog-likelihood\tAIC\tchi-squared\ttheta\toptimized_params\n")
#Create list to store sublists of [roundnum_repnum, log-likelihood, AIC, chi^2 test stat, theta, parameter values] for every replicate
results_list = []
#for every round, execute the assigned number of replicates with other round-defined args (maxiter, fold, best_params)
rounds = int(rounds)
for r in range(rounds):
print("\tBeginning Optimizations for Round {}:".format(r+1))
#make sure first round params are assigned (either user input or auto generated)
if r == int(0):
best_params = params
#and that all subsequent rounds use the params from a previous best scoring replicate
else:
best_params = results_list[0][5]
#perform an optimization routine for each rep number in this round number
for rep in range(1, (reps_list[r]+1) ):
print("\n\t\tRound {0} Replicate {1} of {2}:".format(r+1, rep, (reps_list[r])))
#keep track of start time for rep
tb_rep = datetime.now()
#create an extrapolating function
func_exec = dadi.Numerics.make_extrap_log_func(func)
#perturb starting parameters
params_perturbed = dadi.Misc.perturb_params(best_params, fold=folds_list[r],
upper_bound=upper_bound, lower_bound=lower_bound)
if param_labels:
print("\n\t\t\tModel parameters = {}".format(param_labels))
print("\t\t\tStarting parameters = [{}]".format(", ".join([str(numpy.around(x, 6)) for x in params_perturbed])))
else:
print("\n\t\t\tStarting parameters = [{}]".format(", ".join([str(numpy.around(x, 6)) for x in params_perturbed])))
#optimize from perturbed parameters
if optimizer == "log_fmin":
params_opt = dadi.Inference.optimize_log_fmin(params_perturbed, fs, func_exec, pts,
lower_bound=lower_bound, upper_bound=upper_bound,
verbose=1, maxiter=maxiters_list[r],
output_file = "{}.log.txt".format(model_name))
elif optimizer == "log":
params_opt = dadi.Inference.optimize_log(params_perturbed, fs, func_exec, pts,
lower_bound=lower_bound, upper_bound=upper_bound,
verbose=1, maxiter=maxiters_list[r],
output_file = "{}.log.txt".format(model_name))
elif optimizer == "log_lbfgsb":
params_opt = dadi.Inference.optimize_log_lbfgsb(params_perturbed, fs, func_exec, pts,
lower_bound=lower_bound, upper_bound=upper_bound,
verbose=1, maxiter=maxiters_list[r],
output_file = "{}.log.txt".format(model_name))
elif optimizer == "log_powell":
params_opt = dadi.Inference.optimize_log_powell(params_perturbed, fs, func_exec, pts,
lower_bound=lower_bound, upper_bound=upper_bound,
verbose=1, maxiter=maxiters_list[r],
output_file = "{}.log.txt".format(model_name))
else:
raise ValueError("\n\nERROR: Unrecognized optimizer option: {}\nPlease select from: log, log_lbfgsb, log_fmin, or log_powell.\n\n".format(optimizer))
print("\t\t\tOptimized parameters =[{}]".format(", ".join([str(numpy.around(x, 6)) for x in params_opt])))
print("\t\t\tOptimized using: {0} ({1})\n".format(optimizer, optdict[optimizer]))
#simulate the model with the optimized parameters
sim_model = func_exec(params_opt, fs.sample_sizes, pts)
#collect results into a list using function above - [roundnum_repnum, log-likelihood, AIC, chi^2 test stat, theta, parameter values]
roundrep = "Round_{0}_Replicate_{1}".format(r+1, rep)
rep_results = collect_results(fs, sim_model, params_opt, roundrep, fs_folded)
#reproduce replicate log to bigger log file, because constantly re-written
write_log(outfile, model_name, rep_results, roundrep)
#append results from this sim to larger list
results_list.append(rep_results)
#write all this info to our main results file
with open(outname, 'a') as fh_out:
#join the param values together with commas
easy_p = ",".join([str(numpy.around(x, 4)) for x in rep_results[5]])
fh_out.write("{0}\t{1}\t{2}\t{3}\t{4}\t{5}\t{6}\n".format(model_name, rep_results[0],
rep_results[1], rep_results[2],
rep_results[3], rep_results[4],
easy_p))
#calculate elapsed time for replicate
tf_rep = datetime.now()
print("\n\t\t\tReplicate time: {0} (H:M:S)\n".format(tf_rep - tb_rep))
#Now that this round is over, sort results in order of likelihood score
#we'll use the parameters from the best rep to start the next round as the loop continues
results_list.sort(key=lambda x: float(x[1]), reverse=True)
print("\n\t----------------------------------------------\n"
"\tBest replicate: {0}\n"
"\t\tLikelihood = {1:,}\n\t\tAIC = {2:,}\n"
"\t\tChi-Squared = {3:,}\n\t\tParams = [{4}]\n"
"\t----------------------------------------------\n\n".format(results_list[0][0],
results_list[0][1],
results_list[0][2],
results_list[0][3],
", ".join([str(numpy.around(x, 4)) for x in results_list[0][5]])))
#Now that all rounds are over, calculate elapsed time for the whole model
tfr = datetime.now()
print("\nAnalysis Time for Model '{0}': {1} (H:M:S)\n\n"
"============================================================================".format(model_name, tfr - tbr))
#cleanup file
os.remove("{}.log.txt".format(model_name))