forked from cics-nd/cnn-surrogate
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_det.py
134 lines (115 loc) · 4.86 KB
/
train_det.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""
Train deterministic convolutional encoder-decoder networks
"""
import torch
import numpy as np
import torch.optim as optim
import torch.nn.functional as F
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import Dataset, DataLoader
from args_det import args, device
from models.dense_ed import DenseED
from utils.load_data import load_data
from utils.misc import mkdirs
from utils.plot import plot_prediction_det, save_stats
import json
from time import time
args.train_dir = args.run_dir + "/training"
args.pred_dir = args.train_dir + "/predictions"
mkdirs([args.train_dir, args.pred_dir])
# initialize model
model = DenseED(in_channels=1, out_channels=3,
blocks=args.blocks,
growth_rate=args.growth_rate,
init_features=args.init_features,
drop_rate=args.drop_rate,
bn_size=args.bn_size,
bottleneck=args.bottleneck,
out_activation=None).to(device)
print(model)
# load checkpoint if in post mode
if args.post:
if args.ckpt_epoch is not None:
checkpoint = args.ckpt_dir + '/model_epoch{}.pth'.format(args.ckpt_epoch)
else:
checkpoint = args.ckpt_dir + '/model_epoch{}.pth'.format(args.epochs)
model.load_state_dict(torch.load(checkpoint))
print('Loaded pre-trained model: {}'.format(checkpoint))
# load data
train_data_dir = args.data_dir + '/kle{}_lhs{}.hdf5'.format(args.kle, args.ntrain)
test_data_dir = args.data_dir + '/kle{}_mc{}.hdf5'.format(args.kle, args.ntest)
train_loader, train_stats = load_data(train_data_dir, args.batch_size)
test_loader, test_stats = load_data(test_data_dir, args.test_batch_size)
print('Loaded data!')
optimizer = optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10,
verbose=True, threshold=0.0001, threshold_mode='rel',
cooldown=0, min_lr=0, eps=1e-8)
n_out_pixels_train = args.ntrain * train_loader.dataset[0][1].numel()
n_out_pixels_test = args.ntest * test_loader.dataset[0][1].numel()
logger = {}
logger['rmse_train'] = []
logger['rmse_test'] = []
logger['r2_train'] = []
logger['r2_test'] = []
def test(epoch):
model.eval()
mse = 0.
for batch_idx, (input, target) in enumerate(test_loader):
input, target = input.to(device), target.to(device)
output = model(input)
mse += F.mse_loss(output, target, size_average=False).item()
# plot predictions
if epoch % args.plot_freq == 0 and batch_idx == 0:
n_samples = 6 if epoch == args.epochs else 2
idx = torch.randperm(input.size(0))[:n_samples]
samples_output = output.data.cpu()[idx].numpy()
samples_target = target.data.cpu()[idx].numpy()
for i in range(n_samples):
print('epoch {}: plotting prediction {}'.format(epoch, i))
plot_prediction_det(args.pred_dir, samples_target[i],
samples_output[i], epoch, i, plot_fn=args.plot_fn)
rmse_test = np.sqrt(mse / n_out_pixels_test)
r2_score = 1 - mse / test_stats['y_var']
print("epoch: {}, test r2-score: {:.6f}".format(epoch, r2_score))
if epoch % args.log_freq == 0:
logger['r2_test'].append(r2_score)
logger['rmse_test'].append(rmse_test)
def train(epoch):
model.train()
mse = 0.
for _, (input, target) in enumerate(train_loader):
input, target = input.to(device), target.to(device)
model.zero_grad()
output = model(input)
loss = F.mse_loss(output, target, size_average=False)
loss.backward()
optimizer.step()
mse += loss.item()
rmse = np.sqrt(mse / n_out_pixels_train)
scheduler.step(rmse)
r2_score = 1 - mse / train_stats['y_var']
print("epoch: {}, training r2-score: {:.6f}".format(epoch, r2_score))
if epoch % args.log_freq == 0:
logger['r2_train'].append(r2_score)
logger['rmse_train'].append(rmse)
# save model
if epoch % args.ckpt_freq == 0:
torch.save(model.state_dict(), args.ckpt_dir + "/model_epoch{}.pth".format(epoch))
print('Start training........................................................')
tic = time()
for epoch in range(1, args.epochs + 1):
train(epoch)
with torch.no_grad():
test(epoch)
tic2 = time()
print("Finished training {} epochs with {} data using {} seconds (including long... plotting time)"
.format(args.epochs, args.ntrain, tic2 - tic))
x_axis = np.arange(args.log_freq, args.epochs + args.log_freq, args.log_freq)
# plot the rmse, r2-score curve and save them in txt
save_stats(args.train_dir, logger, x_axis)
args.training_time = tic2 - tic
args.n_params, args.n_layers = model._num_parameters_convlayers()
with open(args.run_dir + "/args.txt", 'w') as args_file:
json.dump(vars(args), args_file, indent=4)