forked from cics-nd/cnn-surrogate
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpost_proc.py
52 lines (44 loc) · 1.65 KB
/
post_proc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""
Post processing, mainly for uncertainty quantification tasks using pre-trained
Bayesian NNs.
"""
import torch
from args import args
from models.dense_ed import DenseED
from models.bayes_nn import BayesNN
from models.uq import UQ
from utils.load_data import load_data
assert args.post, 'Add --post flag in command line for post-proc UQ tasks'
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize model
# deterministic NN
dense_ed = DenseED(in_channels=args.nic,
out_channels=args.noc,
blocks=args.blocks,
growth_rate=args.growth_rate,
init_features=args.init_features,
drop_rate=args.drop_rate,
bn_size=args.bn_size,
bottleneck=args.bottleneck,
out_activation=None)
# print(dense_ed)
# Bayesian NN
bayes_nn = BayesNN(dense_ed, n_samples=args.n_samples).to(device)
# load the pre-trained model
if args.ckpt_epoch is not None:
checkpoint = args.ckpt_dir + '/model_epoch{}.pth'.format(args.ckpt_epoch)
else:
checkpoint = args.ckpt_dir + '/model_epoch{}.pth'.format(args.epochs)
bayes_nn.load_state_dict(torch.load(checkpoint))
print('Loaded pre-trained model: {}'.format(checkpoint))
# load Monte Carlo data
mc_data_dir = args.data_dir + '/kle{}_mc{}.hdf5'.format(args.kle, args.nmc)
mc_loader, _ = load_data(mc_data_dir, args.mc_batch_size)
print('Loaded Monte Carlo data!')
# Now performs UQ tasks
uq = UQ(bayes_nn, mc_loader)
with torch.no_grad():
uq.plot_prediction_at_x(n_pred=10)
uq.propagate_uncertainty()
uq.plot_dist(num_loc=20)
uq.plot_reliability_diagram()