-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFlyCaImAn_imaging_only_demo.m
130 lines (103 loc) · 3.46 KB
/
FlyCaImAn_imaging_only_demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
%% demo for imaging only data (two volumes sequentially imaged)
%% 1) add paths
% it assumes you have already add the repository folders to your path
addpath(genpath(pwd))
% add paths of all dependencies
% CaImAn, NoRMCorre, CMTK_matlab_wrapper
%% 2) Move to folder and Download demo data
tDir = strrep(which('FlyCaImAn_demo'), 'FlyCaImAn_demo.m', '');
cd(tDir)
url = 'https://www.dropbox.com/s/1s2h6yigfmdhodf/20161129.zip?dl=1';
filename = '20161129.zip';
if ~exist('demodata', 'dir')
mkdir('demodata')
end
cd demodata
outfilename = websave(filename, url);
unzip(outfilename);
clear url outfilename
%% 3) process imaging videos
%% 3.1) Test batch_tiff2mat
FolderName = {'20161129'}; FileName = [];
m2vpar = [];
m2vpar.SpMode = '3DxT_song_prv';
m2vpar.ch2save = [1 2];
m2vpar.Zres = 2; % Z resolution in um
m2vpar.ch2plot = [];
batch_tiff2mat(FolderName, FileName, m2vpar)
%% 3.2) Test batch_collectmetada
FolderName = {'20161129'}; FileName = [];
cmpar = [];
cmpar.pgate = 1;
cmpar.pgates = 1;
cmpar.mode = 1;
batch_collectmetada(FolderName, FileName, cmpar)
%% 3.3) Test batch_NoRMCorre
FolderName = {'20161129'}; FileName = [];
mcpar = [];
mcpar.debug = 0;
mcpar.rigidg = 1;
mcpar.nrigidg = 0;
mcpar.stack2del = [1:3 98:100];
mcpar.sgate = 1; %(1 = smooth and zero, 2 = smooth, 3 = zeroing, 0 = raw)
%mcpar.withinplane_flag = 1; % within plane motion correction
mcpar.withinplane_flag = 0; % 3D motion correction
batch_NoRMCorre(FolderName, FileName, mcpar)
%% 3.4) Test batch_SpaTemp_ResFilt
FolderName = {'20161129'}; FileName = [];
stpar = [];
stpar.sigma = [];
stpar.size = [];
stpar.newtimeres = 0.5;
stpar.time = [];
stpar.debug = 1;
stpar.direction = 'invert';
stpar.fshift = [6 6];
stpar.idp_run_flag = 1;
batch_SpaTemp_ResFilt(FolderName, FileName, stpar)
%% 3.5) Test batch_stitch_format_stacks_a
% stitch serially imaged stacks, part 1, it stitchs mean image
FolderName = {'20161129'}; FileName = [];
cspfpars = [];
cspfpars.refcha = 2;
cspfpars.fshift = [6 6];
batch_stitch_format_stacks_a(FolderName, FileName, cspfpars)
% to just plot/re-plot stitching results
Filename = '20161129_1';
oDir = [];
metpars.refcha = 2;
metpars.dir_depth = 1;
metpars.axisratio = 0;
batch_plot_stitch_results(Filename, oDir, metpars)
%% 3.6) generate brain mask based on F threshold + manual editing
FolderName = {'20161129'}; FileName = [];
bmpar = [];
batch_brainmaskgen(FolderName, FileName, bmpar)
iparams.dir_depth = 1;
batch_plot_brainside_MIP(...
[], [], iparams)
%% 3.7) Test batch_stitch_format_stacks_b
% stitch serially imaged stacks, part 2
% it stitchs whole 3DxT volume (it formats Data to be ready for ROI segmentation)
FolderName = {'20161129'}; FileName = [];
cstpar = [];
cstpar.oDir = [];
batch_stitch_format_stacks_b(FolderName, FileName, cstpar)
%% 4) ROI segment imaging videos
% run ROI segmentation of large 3DxT videos in patches of smaller 3D videos
% which are then compiled to get results for the whole 3DxT video.
cd('20161129')
% run patches independently
segmentation_type = 1;
roi_parameter2use = 'roiseg_3D_dense_fr_2Hz_z2';
roi_n_init = 100;
batch_CaROISegSer(FileName, roi_parameter2use, ...
'int', segmentation_type, [], [], [], roi_n_init, 1)
% parse patches
segmentation_type = 2;
batch_CaROISegSer(FileName, roi_parameter2use, ...
'int', segmentation_type, [], [], [], roi_n_init, 1)
% batch_CaROISegSer(fname, inputparams, ...
% serverid, jobpart, memreq, patchtype, ...
% corenum, roi_n_init, stitch_flag, jobtime, ...
% oDir, jobsperbatch)