-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_mask_V3.m
92 lines (84 loc) · 3.14 KB
/
get_mask_V3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
function [mask_matrix,mask_indices]=get_mask_V3(subject,grayfilename,outputdir,l_r,varargin)
% function [mask_matrix,mask_indices]=get_mask(FWHM for smoothing, brain_cutoff)
% default FWHM for smoothing = 6
% default brain_cutoff = 0.1 (of smoothed images)
%
% this function extracts a surface map of the brain from the gray matter
% input (in the structure "data"), thresholding at value "threshold"
% make sure that data has the fields designated in the
%
% Copyright (C) 2009 D. Hermes & K.J. Miller, Dept of Neurology and Neurosurgery, University Medical Center Utrecht
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% use spm_select to get image file
data.grayfilename=grayfilename;
% data.grayfilename=spm_select(1,'image','select gray matter image','');
% data.whitefilename=spm_select(1,'image','select white matter image','');
brain_info=spm_vol([data.grayfilename]); [g]=spm_read_vols(brain_info);
if isequal(l_r,'r')
% select right brain:
g(g==2)=0;
g(g==3)=0;
elseif isequal(l_r,'l') % select left brain:
g(g==41)=0;
g(g==42)=0;
end
g(g>0)=1;
if length(varargin)==0
sm_lvl=6; %smoothing parameter for rendering gray
br_cutoff=.1; %cutoff for thresholding
elseif length(varargin)==1
sm_lvl=varargin{1};
br_cutoff=.1; %cutoff for thresholding
elseif length(varargin)==2
sm_lvl=varargin{1};
br_cutoff=varargin{2};
end
%lightly smooth gray matter
a=g;
a=smooth3(a,'gaussian',[sm_lvl sm_lvl sm_lvl]);
a=smooth3(a,'box',[sm_lvl sm_lvl sm_lvl]);
%identifies "enclosed points" for later removal
a=a>br_cutoff; %clear g w %combination of grey and white matter
a=hollow_brain(a);
bwa=bwlabeln(a);
% [x,y,z]=ind2sub(size(bwa),...
% find(bwa==2));
brainsize=length(a(:));
size4surface=[brainsize/10 brainsize/500]; %set required size for surface
for k=1:max(max(max(bwa)))
if length(find(bwa==k))<size4surface(1) && length(find(bwa==k))>size4surface(2)
a=bwa==k;
disp('nice surface found');
break;
end
end
if max(max(max(a)))>1
disp('no good surface representation found, change size of surface in get_mask');
end
%%%%
% outputdir= spm_select(1,'dir','select directory to save surface');
a=double(a);
dataOut=brain_info;
for k=1:100
br_cutoff_str=num2str(br_cutoff);
outputnaam=strcat([outputdir subject '_surface' int2str(k) '_'...
int2str(sm_lvl) '_' br_cutoff_str([1 3]) '.img']);
if ~exist(outputnaam,'file')
dataOut.fname=outputnaam;
disp(strcat(['saving ' outputnaam]));
spm_write_vol(dataOut,a);
break;
end
end