-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_eval.py
48 lines (36 loc) · 1.17 KB
/
run_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import torch.nn as nn
import numpy as np
import os
from models.seg_model import DilateResUNetCLMem
from evaluate import evaluate_ct, evaluate_mr
########################
##### UDA on mr2ct #####
########################
def uda_on_ct():
model = DilateResUNetCLMem(n_channels=1, n_classes=5, norm="InstanceNorm")
model.load_state_dict(torch.load(args.model_path))
model = model.cuda()
model.eval()
with torch.no_grad():
evaluate_ct(model, use_assd=True)
########################
##### UDA on ct2mr #####
########################
def uda_on_mr():
model = DilateResUNetCLMem(n_channels=1, n_classes=5, norm="InstanceNorm")
model.load_state_dict(torch.load(args.model_path))
model = model.cuda()
model.eval()
with torch.no_grad():
evaluate_mr(model, use_assd=True)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--target", type=str, default="ct")
parser.add_argument("--model_path", type=str, default="xxx.pt")
args = parser.parse_args()
if args.target == "ct":
uda_on_ct()
elif args.target == "mr":
uda_on_mr()