forked from SAMMiCA/SectorGSnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sector.py
209 lines (185 loc) · 9.16 KB
/
train_sector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2" # assigned GPU #2, other 3 gpus are not available.
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.nn as nn
import yaml
import time
import argparse
import os
import shutil
# import wandb
from utils.metrics import AverageMeter
from data_loader import kitti_loader
from network.points_partition import points_to_sector_fixed_ops, points_to_sector_dynamic_ops
from network.model import This_Net
from network.loss_function import Lovasz_softmax
from network.dice_score import dice_loss
#######
## 0 is ground point, 1 is non-ground , -1 is background
######
# ---------------------------------------------------------------------------- #
# Load config ; declare Meter class, checkpoint, etc.
# ---------------------------------------------------------------------------- #
parser = argparse.ArgumentParser()
parser.add_argument('-conf', '--configs', default='./configs/sector_conf.yaml',
help="Choose configs: ./configs/pillar_conf.yaml, ./configs/sector_conf.yaml")
args = parser.parse_args()
try:
with open(args.configs) as f:
config_dict = yaml.load(f, Loader=yaml.FullLoader)
print('\n'.join('%s:%s' % item for item in config_dict.items()))
class ConfigToClass:
def __init__(self, **entries):
self.__dict__.update(entries)
cfg = ConfigToClass(**config_dict)
except:
print("No config file found at workspace.")
if not os.path.exists(cfg.checkpoints_path):
os.mkdir(cfg.checkpoints_path)
if not os.path.exists(cfg.evaluation_path):
os.mkdir(cfg.evaluation_path)
def save_checkpoint(epoch_num, state, is_best, path, network):
timenow = time.strftime('_%m%d%H%M', time.localtime(time.time()))
filename = path + network + '_epoch_' + str(epoch_num) + '_'+timenow + '_sector.pth.tar'
torch.save(state, filename)
if is_best:
best_filename = filename[:-8] + '_best_sector.pth.tar'
shutil.copyfile(filename, best_filename)
# ---------------------------------------------------------------------------- #
# Setup dataloader, logging, model, loss, optimizer, scheduler, etc
# ---------------------------------------------------------------------------- #
# 1. create data loaders
train_dataset = kitti_loader(data_dir=cfg.data_path,pc_folder=cfg.pc_folder,lb_folder=cfg.lb_folder,
train=True, skip_frames=1)
train_dataloader = DataLoader(train_dataset, batch_size=cfg.batch_size * cfg.num_gpus, shuffle=False,
num_workers=cfg.num_workers, pin_memory=True, drop_last=True)
val_dataset = kitti_loader(data_dir=cfg.data_path, pc_folder=cfg.pc_folder,lb_folder=cfg.lb_folder,
train=False, skip_frames=1)
val_dataloader = DataLoader(val_dataset, batch_size=cfg.batch_size * cfg.num_gpus, shuffle=False,
num_workers=cfg.num_workers, pin_memory=True, drop_last=True)
# 2. Initialize logging
# experiment = wandb.init(project='SectorNet')
model = This_Net(cfg)
print("Entire Model has {} paramerters in total".format(sum(x.numel() for x in model.parameters())))
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model.cuda()
# loss_ft = Focal_tversky().cuda()
# loss_ls = Lovasz_softmax().cuda()
# loss_comb= Lovasz_softmax().cuda()
loss_ce = nn.CrossEntropyLoss(ignore_index=-1).cuda()
# loss_crs = Focal_tversky().cuda()
# optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=1.0e-8)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=1.0e-8)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min',
factor=0.1, patience=2, verbose=True, eps=1e-08)
# ---------------------------------------------------------------------------- #
# Train
# ---------------------------------------------------------------------------- #
def train(epoch):
print("Training Sector Model...")
model.train()
losses = AverageMeter()
for batch_idx, (data, labels) in enumerate(train_dataloader):
batch_size = data.shape[0]
point_feature_in_sector = []
coors_sectors = []
num_sectors = []
data = data.numpy()
for i in range(batch_size):
p, c, n = points_to_sector_dynamic_ops(data[i],
sector_shape=[64, 256, 1],
max_points_in_sector = 100,
max_sector = 10000)
# p.shape, c.shape, n.shape - p,n,6; p,3, p,1
point_feature_in_sector.append(torch.from_numpy(p))
c = torch.from_numpy(c)
c = F.pad(c, (1, 0), 'constant', i) # (p,batch_index + 3 )
coors_sectors.append(c)
num_sectors.append(torch.from_numpy(n))
point_feature_in_sector = torch.cat(point_feature_in_sector).float().cuda() # bs,p,n,6
coors_sectors = torch.cat(coors_sectors).float().cuda() # bs, p, batch_index +3
num_sectors = torch.cat(num_sectors).float().cuda() # bs, p,1
labels = labels.long().cuda()
optimizer.zero_grad()
output = model(point_feature_in_sector, coors_sectors, num_sectors)
loss = loss_ce(output, labels)
# loss= loss_comb(output, labels)
# loss = loss_ce(output, labels)\
# + dice_loss(F.softmax(output,dim=1).float(),
# F.one_hot(labels,3).permute(0,3,1,2).float(),
# multiclass=True).cuda()
loss.backward()
optimizer.step()
losses.update(loss.item(), batch_size)
# experiment.log({
# 'train loss': loss.item(),
# 'epoch': epoch
# })
if batch_idx % cfg.print_freq == 0:
print('Train : [Epoch-{0}][{1}/{2}]\t'
'Loss: {loss.val:.4f} Avg Loss: {loss.avg:.4f})'.format(
epoch, batch_idx, len(train_dataloader), loss=losses))
# ---------------------------------------------------------------------------- #
# Validation
# ---------------------------------------------------------------------------- #
def validate():
print("Validating Sector Model...")
model.eval()
losses= AverageMeter()
with torch.no_grad():
for batch_idx, (data, labels) in enumerate(val_dataloader):
batch_size = data.shape[0]
point_feature_in_sector = []
coors_sectors = []
num_sectors = []
data = data.numpy()
for i in range(batch_size):
p, c, n = points_to_sector_dynamic_ops(data[i],
sector_shape=[64, 256, 1],
max_points_in_sector = 100,
max_sector = 10000)
# print(time.time()-time_start)
# v.shape, c.shape, n.shape - p,n,6 ; p,3, p,1
point_feature_in_sector.append(torch.from_numpy(p))
c = torch.from_numpy(c)
c = F.pad(c, (1, 0), 'constant', i) # (p x (batch + x,y,z))
coors_sectors.append(c)
num_sectors.append(torch.from_numpy(n))
point_feature_in_sector = torch.cat(point_feature_in_sector).float().cuda() # p,n,6
coors_sectors = torch.cat(coors_sectors).float().cuda() # p,3
num_sectors = torch.cat(num_sectors).float().cuda() # p,1
labels = labels.long().cuda()
output = model(point_feature_in_sector, coors_sectors, num_sectors)
# loss = loss_comb(output, labels)
loss = loss_ce(output, labels)
# loss = loss_ce(output, labels) + dice_loss(F.softmax(output, dim=1).float(),
# F.one_hot(labels,3).permute(0, 3, 1, 2).float(),
# multiclass=True).cuda()
losses.update(loss.item(), batch_size)
if batch_idx % cfg.print_freq == 0:
print('Validate : [{0}/{1}]\t'
'Loss : {loss.val:.4f} Average Loss : {loss.avg:.4f}'.format(
batch_idx, len(val_dataloader), loss=losses))
return losses.avg
lowest_loss = 1
def main():
global lowest_loss
for epoch in range(cfg.epochs):
train(epoch)
loss_val = validate()
scheduler.step(metrics=0) # adjust_learning_rate
if (cfg.save_checkpoints):
# remember best prec@1 and save checkpoint
is_best = loss_val < lowest_loss
lowest_loss = min(loss_val, lowest_loss)
save_checkpoint(epoch, {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'lowest_loss': lowest_loss,
'optimizer': optimizer.state_dict(),
}, is_best, cfg.checkpoints_path, cfg.exp_name)
if __name__ == '__main__':
main()