forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathL1HingeEmbeddingCriterion.lua
41 lines (36 loc) · 1.13 KB
/
L1HingeEmbeddingCriterion.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
local L1HingeEmbeddingCriterion, parent = torch.class('nn.L1HingeEmbeddingCriterion', 'nn.Criterion')
function L1HingeEmbeddingCriterion:__init(margin)
parent.__init(self)
margin=margin or 1
self.margin = margin
self.gradInput = {torch.Tensor(), torch.Tensor()}
end
function L1HingeEmbeddingCriterion:updateOutput(input,y)
self.output=input[1]:dist(input[2],1);
if y==-1 then
self.output = math.max(0,self.margin - self.output);
end
return self.output
end
local function mathsign(t)
if t>0 then return 1; end
if t<0 then return -1; end
return 2*torch.random(2)-3;
end
function L1HingeEmbeddingCriterion:updateGradInput(input, y)
self.gradInput[1]:resizeAs(input[1])
self.gradInput[2]:resizeAs(input[2])
self.gradInput[1]:copy(input[1])
self.gradInput[1]:add(-1, input[2])
local dist = self.gradInput[1]:norm(1);
self.gradInput[1]:apply(mathsign) -- L1 gradient
if y == -1 then -- just to avoid a mul by 1
if dist > self.margin then
self.gradInput[1]:zero()
else
self.gradInput[1]:mul(-1)
end
end
self.gradInput[2]:zero():add(-1, self.gradInput[1])
return self.gradInput
end