forked from torch/cunn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpatialUpSamplingNearest.cu
209 lines (177 loc) · 5.75 KB
/
SpatialUpSamplingNearest.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#include "luaT.h"
#include "THC.h"
#include <thrust/transform.h>
#include <thrust/reduce.h>
#include <thrust/transform_reduce.h>
#include <thrust/functional.h>
/*
* Description:
*/
__device__ int translate_idx(int ii, int d1, int d2, int d3, int scale_factor)
{
int x, y, z, w;
w = ii % d3;
ii = ii/d3;
z = ii % d2;
ii = ii/d2;
y = ii % d1;
ii = ii/d1;
x = ii;
w = w/scale_factor;
z = z/scale_factor;
d2 /= scale_factor;
d3 /= scale_factor;
return (((x*d1+y)*d2)+z)*d3+w;
}
__device__ int translate_idx_inv(int ii, int d1, int d2, int d3, int scale_factor, int off_x, int off_y)
{
int x, y, z, w;
w = ii % d3;
ii = ii/d3;
z = ii % d2;
ii = ii/d2;
y = ii % d1;
ii = ii/d1;
x = ii;
w = w*scale_factor+off_x;
z = z*scale_factor+off_y;
d2 *= scale_factor;
d3 *= scale_factor;
return (((x*d1+y)*d2)+z)*d3+w;
}
__global__ void upscale(float *input, float *output, long no_elements,
int scale_factor, int d1, int d2, int d3)
{
// output offset:
long ii = threadIdx.x + blockDim.x * blockIdx.x;
ii += threadIdx.y + blockDim.y * (blockDim.x * gridDim.x) * blockIdx.y;
if (ii >= no_elements) return;
int ipidx = translate_idx(ii, d1, d2, d3, scale_factor);
output[ii]=input[ipidx];
}
static int cunn_SpatialUpSamplingNearest_updateOutput(lua_State *L)
{
THCudaTensor *input = (THCudaTensor *)luaT_checkudata(L, 2, "torch.CudaTensor");
THCudaTensor *output = (THCudaTensor *)luaT_getfieldcheckudata(L, 1, "output", "torch.CudaTensor");
THCudaTensor_zero(output);
int scale_factor = luaT_getfieldcheckint(L, 1, "scale_factor");
input = THCudaTensor_newContiguous(input);
// This is for allocating output Tensor
long no_elements = 1;
for(int i = 0; i < input->nDimension; i++){
no_elements *= input->size[i];
}
no_elements *= scale_factor * scale_factor;
int d1;
int d2;
int d3;
if (input->nDimension == 3) {
d1 = output->size[0];
d2 = output->size[1];
d3 = output->size[2];
} else {
d1 = output->size[1];
d2 = output->size[2];
d3 = output->size[3];
}
float *input_data = THCudaTensor_data(input);
float *output_data = THCudaTensor_data(output);
// cuda blocks & threads:
long nthreads = 256;
// Max number of blocks: http://en.wikipedia.org/wiki/CUDA
// 65535 for SM 2.x, 2^32 -1 for >= 3.0
// TODO: When we move to SM 3.5 we should update this
long n_xblocks = min(max((int)ceil((float)no_elements / nthreads), 1), 65535);
long n_yblocks = (long)ceil((float)no_elements / (float)(n_xblocks * nthreads));
if (n_yblocks > 65535) {
THError("Input size is too large! aborting");
}
dim3 blocks(n_xblocks, n_yblocks);
dim3 threads(nthreads);
// kernel:
upscale<<<blocks, threads>>> (input_data, output_data, no_elements, scale_factor, d1, d2, d3);
// check for errors
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in SpatialUpSamplingNearest.updateOutput: %s\n", cudaGetErrorString(err));
THError("aborting");
}
// final cut:
THCudaTensor_free(input);
return 1;
}
/*
* Description:
*/
__global__ void downscale(float *gradInput_data, float *gradOutput_data, long no_elements,
int scale_factor, int d1, int d2, int d3)
{
// output offset:
long ii = threadIdx.x + blockDim.x * blockIdx.x;
ii += threadIdx.y + blockDim.y * (blockDim.x * gridDim.x) * blockIdx.y;
if (ii >= no_elements) return;
for (int i=0; i < scale_factor; i++){
for(int j=0; j < scale_factor; j++){
int ipidx = translate_idx_inv(ii, d1, d2, d3, scale_factor, i, j);
gradInput_data[ii] += gradOutput_data[ipidx];
}
}
}
static int cunn_SpatialUpSamplingNearest_updateGradInput(lua_State *L)
{
THCudaTensor *gradOutput = (THCudaTensor *)luaT_checkudata(L, 3, "torch.CudaTensor");
THCudaTensor *gradInput = (THCudaTensor *)luaT_getfieldcheckudata(L, 1, "gradInput", "torch.CudaTensor");
int scale_factor = luaT_getfieldcheckint(L, 1, "scale_factor");
THCudaTensor_zero(gradInput);
float *gradInput_data = THCudaTensor_data(gradInput);
float *gradOutput_data = THCudaTensor_data(gradOutput);
long no_elements = 1;
for(int i = 0; i < gradInput->nDimension; i++){
no_elements *= gradInput->size[i];
}
int d1;
int d2;
int d3;
if (gradInput->nDimension == 3) {
d1 = gradInput->size[0];
d2 = gradInput->size[1];
d3 = gradInput->size[2];
} else {
d1 = gradInput->size[1];
d2 = gradInput->size[2];
d3 = gradInput->size[3];
}
// cuda blocks & threads:
long nthreads = 256;
// Max number of blocks: http://en.wikipedia.org/wiki/CUDA
// 65535 for SM 2.x, 2^32 -1 for >= 3.0
// TODO: When we move to SM 3.5 we should update this
long n_xblocks = min(max((int)ceil((float)no_elements / nthreads), 1), 65535);
long n_yblocks = (long)ceil((float)no_elements / (float)(n_xblocks * nthreads));
if (n_yblocks > 65535) {
THError("Input size is too large! aborting");
}
dim3 blocks(n_xblocks, n_yblocks);
dim3 threads(nthreads);
// kernel:
downscale<<<blocks, threads>>> (gradInput_data, gradOutput_data, no_elements,
scale_factor, d1, d2, d3);
// check for errors
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in SpatialUpSamplingNearest.updateOutput: %s\n", cudaGetErrorString(err));
THError("aborting");
}
return 1;
}
static const struct luaL_Reg cunn_SpatialUpSamplingNearest__ [] = {
{"SpatialUpSamplingNearest_updateOutput", cunn_SpatialUpSamplingNearest_updateOutput},
{"SpatialUpSamplingNearest_updateGradInput", cunn_SpatialUpSamplingNearest_updateGradInput},
{NULL, NULL}
};
void cunn_SpatialUpSamplingNearest_init(lua_State *L)
{
luaT_pushmetatable(L, "torch.CudaTensor");
luaT_registeratname(L, cunn_SpatialUpSamplingNearest__, "nn");
lua_pop(L,1);
}