forked from torch/cunn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiMarginCriterion.cu
199 lines (166 loc) · 6.37 KB
/
MultiMarginCriterion.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#define MULTIMARGIN_THREADS 128
__global__ void cunn_MultiMarginCriterion_updateOutput_kernel(float *output, float *input, float *target, int nframe, int dim, int sizeaverage)
{
__shared__ float buffer[MULTIMARGIN_THREADS];
int k = blockIdx.x;
float *input_k = input + k*dim;
float *output_k = output + k;
int target_k = ((int)target[k])-1;
float input_target_k = input_k[target_k];
int i_start = threadIdx.x;
int i_end = dim;
int i_step = blockDim.x;
buffer[threadIdx.x] = 0;
for(int i = i_start; i < i_end; i += i_step)
{
float z = 1 - input_target_k + input_k[i];
if(i == target_k)
continue;
if(z > 0)
buffer[threadIdx.x] += z;
}
__syncthreads();
// reduce
if (threadIdx.x == 0)
{
float sum = 0;
for (int i=0; i<blockDim.x; i++)
sum += buffer[i];
if(sizeaverage)
*output_k = sum/dim;
else
*output_k = sum;
}
}
__global__ void cunn_MultiMarginCriterion_updateGradInput_kernel(float *gradInput, float *input, float *target, int nframe, int dim, int sizeaverage)
{
__shared__ float buffer[MULTIMARGIN_THREADS];
int k = blockIdx.x;
float *input_k = input + k*dim;
float *gradInput_k = gradInput + k*dim;
int target_k = ((int)target[k])-1;
float input_target_k = input_k[target_k];
float g = (sizeaverage ? 1./((float)dim) : 1.);
int i_start = threadIdx.x;
int i_end = dim;
int i_step = blockDim.x;
buffer[threadIdx.x] = 0;
for (int i=i_start; i<i_end; i+=i_step)
{
float z = 1 - input_target_k + input_k[i];
if(i == target_k)
continue;
if(z > 0)
{
buffer[threadIdx.x] -= g;
gradInput_k[i] = g;
}
else
gradInput_k[i] = 0;
}
__syncthreads();
// reduce
if (threadIdx.x == 0)
{
float gradInput_target_k = 0;
for (int i=0; i<blockDim.x; i++)
gradInput_target_k += buffer[i];
gradInput_k[target_k] = gradInput_target_k;
}
}
static int cunn_MultiMarginCriterion_updateOutput(lua_State *L)
{
THCudaTensor *input = (THCudaTensor*)luaT_checkudata(L, 2, "torch.CudaTensor");
int sizeaverage = luaT_getfieldcheckboolean(L, 1, "sizeAverage");
input = THCudaTensor_newContiguous(input);
if(input->nDimension == 1)
{
float target_ = luaL_checknumber(L, 3);
THCudaStorage *target = THCudaStorage_newWithSize(1);
THCudaStorage *output = THCudaStorage_newWithSize(1);
dim3 blocks(1);
dim3 threads(MULTIMARGIN_THREADS);
THCudaStorage_fill(target, target_);
cunn_MultiMarginCriterion_updateOutput_kernel<<<blocks,threads>>>(output->data,
THCudaTensor_data(input),
target->data,
1, input->size[0],
sizeaverage);
lua_pushnumber(L, THCudaStorage_get(output, 0));
THCudaStorage_free(output);
THCudaStorage_free(target);
}
else if(input->nDimension == 2)
{
THCudaTensor *target = (THCudaTensor*)luaT_checkudata(L, 3, "torch.CudaTensor");
THCudaTensor *output = THCudaTensor_newWithSize1d(input->size[0]);
dim3 blocks(input->size[0]);
dim3 threads(MULTIMARGIN_THREADS);
cunn_MultiMarginCriterion_updateOutput_kernel<<<blocks,threads>>>(THCudaTensor_data(output),
THCudaTensor_data(input),
THCudaTensor_data(target),
input->size[0], input->size[1],
sizeaverage);
lua_pushnumber(L, THCudaTensor_sumall(output));
THCudaTensor_free(output);
}
else
THError("vector or matrix expected");
cudaError errcode = cudaGetLastError();
if(errcode != cudaSuccess)
THError(cudaGetErrorString(errcode));
lua_pushstring(L, "output");
lua_pushvalue(L, -2);
lua_rawset(L, 1);
THCudaTensor_free(input);
return 1;
}
static int cunn_MultiMarginCriterion_updateGradInput(lua_State *L)
{
THCudaTensor *input = (THCudaTensor*)luaT_checkudata(L, 2, "torch.CudaTensor");
int sizeaverage = luaT_getfieldcheckboolean(L, 1, "sizeAverage");
THCudaTensor *gradInput = (THCudaTensor*)luaT_getfieldcheckudata(L, 1, "gradInput", "torch.CudaTensor");
THCudaTensor_resizeAs(gradInput, input);
if(gradInput->nDimension == 1)
{
float target_ = luaL_checknumber(L, 3);
THCudaTensor *target = THCudaTensor_newWithSize1d(1);
dim3 blocks(1);
dim3 threads(LOGSOFTMAX_THREADS);
THCudaTensor_fill(target, target_);
cunn_MultiMarginCriterion_updateGradInput_kernel<<<blocks,threads>>>(THCudaTensor_data(gradInput),
THCudaTensor_data(input),
THCudaTensor_data(target),
1, gradInput->size[0],
sizeaverage);
THCudaTensor_free(target);
}
else if(gradInput->nDimension == 2)
{
THCudaTensor *target = (THCudaTensor*)luaT_checkudata(L, 3, "torch.CudaTensor");
dim3 blocks(gradInput->size[0]);
dim3 threads(LOGSOFTMAX_THREADS);
cunn_MultiMarginCriterion_updateGradInput_kernel<<<blocks,threads>>>(THCudaTensor_data(gradInput),
THCudaTensor_data(input),
THCudaTensor_data(target),
gradInput->size[0], gradInput->size[1],
sizeaverage);
}
else
THError("vector or matrix expected");
cudaError errcode = cudaGetLastError();
if(errcode != cudaSuccess)
THError(cudaGetErrorString(errcode));
return 1;
}
static const struct luaL_Reg cunn_MultiMarginCriterion__ [] = {
{"MultiMarginCriterion_updateOutput", cunn_MultiMarginCriterion_updateOutput},
{"MultiMarginCriterion_updateGradInput", cunn_MultiMarginCriterion_updateGradInput},
{NULL, NULL}
};
static void cunn_MultiMarginCriterion_init(lua_State *L)
{
luaT_pushmetatable(L, "torch.CudaTensor");
luaT_registeratname(L, cunn_MultiMarginCriterion__, "nn");
lua_pop(L,1);
}