-
-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathgraph.go
391 lines (350 loc) · 14.3 KB
/
graph.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Package graph is a library for creating generic graph data structures and
// modifying, analyzing, and visualizing them.
//
// # Hashes
//
// A graph consists of vertices of type T, which are identified by a hash value
// of type K. The hash value for a given vertex is obtained using the hashing
// function passed to [New]. A hashing function takes a T and returns a K.
//
// For primitive types like integers, you may use a predefined hashing function
// such as [IntHash] – a function that takes an integer and uses that integer as
// the hash value at the same time:
//
// g := graph.New(graph.IntHash)
//
// For storing custom data types, you need to provide your own hashing function.
// This example takes a City instance and returns its name as the hash value:
//
// cityHash := func(c City) string {
// return c.Name
// }
//
// Creating a graph using this hashing function will yield a graph of vertices
// of type City identified by hash values of type string.
//
// g := graph.New(cityHash)
//
// # Operations
//
// Adding vertices to a graph of integers is simple. [graph.Graph.AddVertex]
// takes a vertex and adds it to the graph.
//
// g := graph.New(graph.IntHash)
//
// _ = g.AddVertex(1)
// _ = g.AddVertex(2)
//
// Most functions accept and return only hash values instead of entire instances
// of the vertex type T. For example, [graph.Graph.AddEdge] creates an edge
// between two vertices and accepts the hash values of those vertices. Because
// this graph uses the [IntHash] hashing function, the vertex values and hash
// values are the same.
//
// _ = g.AddEdge(1, 2)
//
// All operations that modify the graph itself are methods of [Graph]. All other
// operations are top-level functions of by this library.
//
// For detailed usage examples, take a look at the README.
package graph
import "errors"
var (
ErrVertexNotFound = errors.New("vertex not found")
ErrVertexAlreadyExists = errors.New("vertex already exists")
ErrEdgeNotFound = errors.New("edge not found")
ErrEdgeAlreadyExists = errors.New("edge already exists")
ErrEdgeCreatesCycle = errors.New("edge would create a cycle")
ErrVertexHasEdges = errors.New("vertex has edges")
)
// Graph represents a generic graph data structure consisting of vertices of
// type T identified by a hash of type K.
type Graph[K comparable, T any] interface {
// Traits returns the graph's traits. Those traits must be set when creating
// a graph using New.
Traits() *Traits
// AddVertex creates a new vertex in the graph. If the vertex already exists
// in the graph, ErrVertexAlreadyExists will be returned.
//
// AddVertex accepts a variety of functional options to set further edge
// details such as the weight or an attribute:
//
// _ = graph.AddVertex("A", "B", graph.VertexWeight(4), graph.VertexAttribute("label", "my-label"))
//
AddVertex(value T, options ...func(*VertexProperties)) error
// AddVerticesFrom adds all vertices along with their properties from the
// given graph to the receiving graph.
//
// All vertices will be added until an error occurs. If one of the vertices
// already exists, ErrVertexAlreadyExists will be returned.
AddVerticesFrom(g Graph[K, T]) error
// Vertex returns the vertex with the given hash or ErrVertexNotFound if it
// doesn't exist.
Vertex(hash K) (T, error)
// VertexWithProperties returns the vertex with the given hash along with
// its properties or ErrVertexNotFound if it doesn't exist.
VertexWithProperties(hash K) (T, VertexProperties, error)
// RemoveVertex removes the vertex with the given hash value from the graph.
//
// The vertex is not allowed to have edges and thus must be disconnected.
// Potential edges must be removed first. Otherwise, ErrVertexHasEdges will
// be returned. If the vertex doesn't exist, ErrVertexNotFound is returned.
RemoveVertex(hash K) error
// AddEdge creates an edge between the source and the target vertex.
//
// If either vertex cannot be found, ErrVertexNotFound will be returned. If
// the edge already exists, ErrEdgeAlreadyExists will be returned. If cycle
// prevention has been activated using PreventCycles and if adding the edge
// would create a cycle, ErrEdgeCreatesCycle will be returned.
//
// AddEdge accepts functional options to set further edge properties such as
// the weight or an attribute:
//
// _ = g.AddEdge("A", "B", graph.EdgeWeight(4), graph.EdgeAttribute("label", "my-label"))
//
AddEdge(sourceHash, targetHash K, options ...func(*EdgeProperties)) error
// AddEdgesFrom adds all edges along with their properties from the given
// graph to the receiving graph.
//
// All vertices that the edges are joining have to exist already. If needed,
// these vertices can be added using AddVerticesFrom first. Depending on the
// situation, it also might make sense to clone the entire original graph.
AddEdgesFrom(g Graph[K, T]) error
// Edge returns the edge joining two given vertices or ErrEdgeNotFound if
// the edge doesn't exist. In an undirected graph, an edge with swapped
// source and target vertices does match.
Edge(sourceHash, targetHash K) (Edge[T], error)
// Edges returns a slice of all edges in the graph. These edges are of type
// Edge[K] and hence will contain the vertex hashes, not the vertex values.
Edges() ([]Edge[K], error)
// UpdateEdge updates the edge joining the two given vertices with the data
// provided in the given functional options. Valid functional options are:
// - EdgeWeight: Sets a new weight for the edge properties.
// - EdgeAttribute: Adds a new attribute to the edge properties.
// - EdgeAttributes: Sets a new attributes map for the edge properties.
// - EdgeData: Sets a new Data field for the edge properties.
//
// UpdateEdge accepts the same functional options as AddEdge. For example,
// setting the weight of an edge (A,B) to 10 would look as follows:
//
// _ = g.UpdateEdge("A", "B", graph.EdgeWeight(10))
//
// Removing a particular edge attribute is not possible at the moment. A
// workaround is to create a new map without the respective element and
// overwrite the existing attributes using the EdgeAttributes option.
UpdateEdge(source, target K, options ...func(properties *EdgeProperties)) error
// RemoveEdge removes the edge between the given source and target vertices.
// If the edge cannot be found, ErrEdgeNotFound will be returned.
RemoveEdge(source, target K) error
// AdjacencyMap computes an adjacency map with all vertices in the graph.
//
// There is an entry for each vertex. Each of those entries is another map
// whose keys are the hash values of the adjacent vertices. The value is an
// Edge instance that stores the source and target hash values along with
// the edge metadata.
//
// For a directed graph with two edges AB and AC, AdjacencyMap would return
// the following map:
//
// map[string]map[string]Edge[string]{
// "A": map[string]Edge[string]{
// "B": {Source: "A", Target: "B"},
// "C": {Source: "A", Target: "C"},
// },
// "B": map[string]Edge[string]{},
// "C": map[string]Edge[string]{},
// }
//
// This design makes AdjacencyMap suitable for a wide variety of algorithms.
AdjacencyMap() (map[K]map[K]Edge[K], error)
// PredecessorMap computes a predecessor map with all vertices in the graph.
//
// It has the same map layout and does the same thing as AdjacencyMap, but
// for ingoing instead of outgoing edges of each vertex.
//
// For a directed graph with two edges AB and AC, PredecessorMap would
// return the following map:
//
// map[string]map[string]Edge[string]{
// "A": map[string]Edge[string]{},
// "B": map[string]Edge[string]{
// "A": {Source: "A", Target: "B"},
// },
// "C": map[string]Edge[string]{
// "A": {Source: "A", Target: "C"},
// },
// }
//
// For an undirected graph, PredecessorMap is the same as AdjacencyMap. This
// is because there is no distinction between "outgoing" and "ingoing" edges
// in an undirected graph.
PredecessorMap() (map[K]map[K]Edge[K], error)
// Clone creates a deep copy of the graph and returns that cloned graph.
//
// The cloned graph will use the default in-memory store for storing the
// vertices and edges. If you want to utilize a custom store instead, create
// a new graph using NewWithStore and use AddVerticesFrom and AddEdgesFrom.
Clone() (Graph[K, T], error)
// Order returns the number of vertices in the graph.
Order() (int, error)
// Size returns the number of edges in the graph.
Size() (int, error)
}
// Edge represents an edge that joins two vertices. Even though these edges are
// always referred to as source and target, whether the graph is directed or not
// is determined by its traits.
type Edge[T any] struct {
Source T
Target T
Properties EdgeProperties
}
// EdgeProperties represents a set of properties that each edge possesses. They
// can be set when adding a new edge using the corresponding functional options:
//
// g.AddEdge("A", "B", graph.EdgeWeight(2), graph.EdgeAttribute("color", "red"))
//
// The example above will create an edge with a weight of 2 and an attribute
// "color" with value "red".
type EdgeProperties struct {
Attributes map[string]string
Weight int
Data any
}
// Hash is a hashing function that takes a vertex of type T and returns a hash
// value of type K.
//
// Every graph has a hashing function and uses that function to retrieve the
// hash values of its vertices. You can either use one of the predefined hashing
// functions or provide your own one for custom data types:
//
// cityHash := func(c City) string {
// return c.Name
// }
//
// The cityHash function returns the city name as a hash value. The types of T
// and K, in this case City and string, also define the types of the graph.
type Hash[K comparable, T any] func(T) K
// New creates a new graph with vertices of type T, identified by hash values of
// type K. These hash values will be obtained using the provided hash function.
//
// The graph will use the default in-memory store for persisting vertices and
// edges. To use a different [Store], use [NewWithStore].
func New[K comparable, T any](hash Hash[K, T], options ...func(*Traits)) Graph[K, T] {
return NewWithStore(hash, newMemoryStore[K, T](), options...)
}
// NewWithStore creates a new graph same as [New] but uses the provided store
// instead of the default memory store.
func NewWithStore[K comparable, T any](hash Hash[K, T], store Store[K, T], options ...func(*Traits)) Graph[K, T] {
var p Traits
for _, option := range options {
option(&p)
}
if p.IsDirected {
return newDirected(hash, &p, store)
}
return newUndirected(hash, &p, store)
}
// NewLike creates a graph that is "like" the given graph: It has the same type,
// the same hashing function, and the same traits. The new graph is independent
// of the original graph and uses the default in-memory storage.
//
// g := graph.New(graph.IntHash, graph.Directed())
// h := graph.NewLike(g)
//
// In the example above, h is a new directed graph of integers derived from g.
func NewLike[K comparable, T any](g Graph[K, T]) Graph[K, T] {
copyTraits := func(t *Traits) {
t.IsDirected = g.Traits().IsDirected
t.IsAcyclic = g.Traits().IsAcyclic
t.IsWeighted = g.Traits().IsWeighted
t.IsRooted = g.Traits().IsRooted
t.PreventCycles = g.Traits().PreventCycles
}
var hash Hash[K, T]
if g.Traits().IsDirected {
hash = g.(*directed[K, T]).hash
} else {
hash = g.(*undirected[K, T]).hash
}
return New(hash, copyTraits)
}
// StringHash is a hashing function that accepts a string and uses that exact
// string as a hash value. Using it as Hash will yield a Graph[string, string].
func StringHash(v string) string {
return v
}
// IntHash is a hashing function that accepts an integer and uses that exact
// integer as a hash value. Using it as Hash will yield a Graph[int, int].
func IntHash(v int) int {
return v
}
// EdgeWeight returns a function that sets the weight of an edge to the given
// weight. This is a functional option for the [graph.Graph.Edge] and
// [graph.Graph.AddEdge] methods.
func EdgeWeight(weight int) func(*EdgeProperties) {
return func(e *EdgeProperties) {
e.Weight = weight
}
}
// EdgeAttribute returns a function that adds the given key-value pair to the
// attributes of an edge. This is a functional option for the [graph.Graph.Edge]
// and [graph.Graph.AddEdge] methods.
func EdgeAttribute(key, value string) func(*EdgeProperties) {
return func(e *EdgeProperties) {
e.Attributes[key] = value
}
}
// EdgeAttributes returns a function that sets the given map as the attributes
// of an edge. This is a functional option for the [graph.Graph.AddEdge] and
// [graph.Graph.UpdateEdge] methods.
func EdgeAttributes(attributes map[string]string) func(*EdgeProperties) {
return func(e *EdgeProperties) {
for k, v := range attributes {
e.Attributes[k] = v
}
}
}
// EdgeData returns a function that sets the data of an edge to the given value.
// This is a functional option for the [graph.Graph.Edge] and
// [graph.Graph.AddEdge] methods.
func EdgeData(data any) func(*EdgeProperties) {
return func(e *EdgeProperties) {
e.Data = data
}
}
// VertexProperties represents a set of properties that each vertex has. They
// can be set when adding a vertex using the corresponding functional options:
//
// _ = g.AddVertex("A", "B", graph.VertexWeight(2), graph.VertexAttribute("color", "red"))
//
// The example above will create a vertex with a weight of 2 and an attribute
// "color" with value "red".
type VertexProperties struct {
Attributes map[string]string
Weight int
}
// VertexWeight returns a function that sets the weight of a vertex to the given
// weight. This is a functional option for the [graph.Graph.Vertex] and
// [graph.Graph.AddVertex] methods.
func VertexWeight(weight int) func(*VertexProperties) {
return func(e *VertexProperties) {
e.Weight = weight
}
}
// VertexAttribute returns a function that adds the given key-value pair to the
// vertex attributes. This is a functional option for the [graph.Graph.Vertex]
// and [graph.Graph.AddVertex] methods.
func VertexAttribute(key, value string) func(*VertexProperties) {
return func(e *VertexProperties) {
e.Attributes[key] = value
}
}
// VertexAttributes returns a function that sets the given map as the attributes
// of a vertex. This is a functional option for the [graph.Graph.AddVertex] methods.
func VertexAttributes(attributes map[string]string) func(*VertexProperties) {
return func(e *VertexProperties) {
for k, v := range attributes {
e.Attributes[k] = v
}
}
}