We utilize the original released codes of DGCNN, which is implemented with PyTorch.
- RSMix is implemented in
rsmix_provider.py
.
- You can get sampled point clouds of ModelNet40 (XYZ and normal from mesh, 10k points per shape) here (1.6GB).
Move the uncompressed data folder or create symbolic link to data/modelnet40_normal_resampled
.
- You can also get sampled point clouds of ModelNet40 (XYZ and normal from mesh, 10k points per shape) as hdf5 format here (435MB).
Move the uncompressed data folder or create symbolic link to data/modelnet40_ply_hdf5_2048
.
Follow the environment setting of original DGCNN
code.
- 1024 points
python main.py --exp_name=rsmix_dgcnn_1024 --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --beta 1.0 --epochs 500
- 2048 points
python main.py --exp_name=rsmix_dgcnn_2048 --model=dgcnn --num_points=2048 --k=40 --use_sgd=True --beta 1.0 --epochs 500
Note: if you want to test the combinations of augmentations with RSMix,
you can selectively input the augmentation-related arguments from one of the follow arguments.
- conventional data agumentation arguments:
--shuffle
: Random shuffle augmentation
--jitter
: Jitter augmentation
--rot
: Random Rotation augmentation
--rdscale
: Random Scaling augmentation
--shift
: Random Shif augmentation
- RandDrop augmentation argument:
--rddrop
: RandDrop augmentation
Additionally, if you want to test with ModelNet10, please input the argument --modelnet10
.
Default dataset is ModelNet40.
- 1024 points
python main.py --exp_name=rsmix_dgcnn_1024_eval --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --eval=True --model_path=checkpoints/rsmix_dgcnn_1024/models/model.t7
- 2048 points
python main.py --exp_name=rsmix_dgcnn_2048_eval --model=dgcnn --num_points=2048 --k=40 --use_sgd=True --eval=True --model_path=checkpoints/rsmix_dgcnn_2048/models/model.t7
- 1024 points
python main.py --exp_name=rsmix_dgcnn_1024_eval --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --eval=True --model_path=pretrained/model.1024.t7
- 2048 points
python main.py --exp_name=rsmix_dgcnn_2048_eval --model=dgcnn --num_points=2048 --k=40 --use_sgd=True --eval=True --model_path=pretrained/model.2048.t7