-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset_generator.py
executable file
·85 lines (66 loc) · 2.71 KB
/
dataset_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import os
from typing import Dict, Tuple
import click
import numpy as np
import yaml
from mapper import get_mapper, TerrainMapper
from simulator.load_simulators import get_simulator
from utils.logger import Logger
def read_config_files(config_file_path: str) -> Tuple[Dict, Dict]:
if not os.path.isfile(config_file_path):
raise FileNotFoundError(f"Cannot find config file '{config_file_path}'!")
if not config_file_path.endswith((".yaml", ".yml")):
raise ValueError(f"Config file is not a yaml-file! Only '.yaml' or '.yaml' file endings allowed!")
with open(config_file_path, "r") as file:
cfg = yaml.safe_load(file)
with open(cfg["network"]["path_to_config"], "r") as config_file:
model_cfg = yaml.safe_load(config_file)
return cfg, model_cfg
def sample_random_pose(altitude: float, mapper: TerrainMapper) -> np.array:
boundary_space = altitude * np.tan(np.deg2rad(mapper.sensor_angle))
max_y = mapper.map_boundary[1] * mapper.ground_resolution[1] - boundary_space[1]
max_x = mapper.map_boundary[0] * mapper.ground_resolution[0] - boundary_space[0]
sampled_y = np.random.uniform(low=boundary_space[1], high=max_y)
sampled_x = np.random.uniform(low=boundary_space[0], high=max_x)
return np.array([sampled_x, sampled_y, altitude], dtype=np.float32)
@click.command()
@click.option(
"--config_file",
"-c",
type=str,
help="path to the config file (.yaml)",
default=os.path.join(os.path.dirname(os.path.abspath(__file__)), "config", "config.yaml"),
)
@click.option(
"--dataset_folder",
"-d",
type=str,
help="dataset folder name, either 'training_set', 'validation_set' or 'test_set'",
default="training_set",
)
@click.option(
"--num_data_samples",
"-n",
type=int,
help="number of to-be-generated image-annotation data points",
default=1000,
)
def main(config_file: str, dataset_folder: str, num_data_samples: int):
cfg, model_cfg = read_config_files(config_file)
experiment_name = f"{cfg['simulator']['name']}_{cfg['planner']['type']}"
logger = Logger(experiment_name, cfg, model_cfg)
simulator = get_simulator(cfg)
mapper = get_mapper(cfg, model_cfg)
simulator.start_mission(np.array([0, 0, 1], dtype=np.float32))
for _ in range(num_data_samples):
random_pose = sample_random_pose(cfg["planner"]["altitude"], mapper)
simulator.move_to_next_waypoint(random_pose)
measurement = simulator.get_measurement(random_pose, True, 0)
logger.save_train_data_to_disk(
measurement["image"],
measurement["anno"],
model_cfg["data"]["path_to_dataset"],
dataset_folder=dataset_folder,
)
if __name__ == "__main__":
main()