diff --git a/.github/workflows/build-notebooks.yaml b/.github/workflows/build-notebooks.yaml new file mode 100644 index 0000000..c68235e --- /dev/null +++ b/.github/workflows/build-notebooks.yaml @@ -0,0 +1,32 @@ +name: Build Notebooks +on: + push: + +jobs: + run: + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v2 + + - name: Set up Python + uses: actions/setup-python@v4 + with: + python-version: "3.10" + + - name: Install dependencies + run: | + python -m pip install -U pip + python -m pip install jupytext nbconvert + + + - name: Build notebooks + run: | + jupytext --to ipynb --update-metadata '{"jupytext":{"cell_metadata_filter":"all"}}' solution.py + + jupyter nbconvert solution.ipynb --TagRemovePreprocessor.enabled=True --TagRemovePreprocessor.remove_cell_tags solution --to notebook --output exercise.ipynb + jupyter nbconvert solution.ipynb --TagRemovePreprocessor.enabled=True --TagRemovePreprocessor.remove_cell_tags task --to notebook --output solution.ipynb + + - uses: EndBug/add-and-commit@v9 + with: + add: solution.ipynb exercise.ipynb \ No newline at end of file diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..1403331 --- /dev/null +++ b/.gitignore @@ -0,0 +1,2 @@ +mnist/ +fashion_mnist/ \ No newline at end of file diff --git a/README.md b/README.md index 11e1791..b70ca89 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,71 @@ # Exercise 7: Failure Modes & Limits of Deep Learning +## Getting this repo + +If you are working from the super repository https://github.com/dlmbl/DL-MBL-2024, don't forget to update this submodule: +``` +git submodule update --init --recursive 07_failure_modes +``` + +## Goal +In Exercise 7: Failure Modes and Limits of Deep Learning, we delve into understanding the limits and failure modes of neural networks in the context of image classification. By tampering with image datasets and introducing extra visual information, the exercise mimics real-world scenarios where data collection inconsistencies can corrupt datasets. + +The exercise examines how neural networks handle local and global data corruptions. We will reason about a classification network's performance through confusion matrices, and use tools like Integrated Gradients to identify areas of an image that influence classification decisions. Additionally, the exercise explores how denoising networks cope with domain changes by training a UNet model on noisy MNIST data and testing it on both similar and different datasets like FashionMNIST. + +Through these activities, participants are encouraged to think deeply about neural network behavior, discuss their findings in groups, and reflect on the impact of dataset inconsistencies on model performance and robustness. By exploring failure modes, participants gain insights into the internal workings of neural networks and learn how to diagnose and mitigate issues that are common in real-world scendarios. + + +## Methodology +1. **Data Preparation**: + - **Load Data**: Load the MNIST dataset for training and testing. + - **Create Tainted Dataset**: Make copies of the original datasets to create tainted versions. + - **Local Corruption**: Add a white pixel to images of the digit '7' in the tainted dataset. + - **Global Corruption**: Add a grid texture to images of the digit '4' in the tainted dataset. + +2. **Visualization**: + - Visualize examples of corrupted images to understand the modifications made. + +3. **Train Neural Networks**: + - **Define Models**: Create a dense neural network model for classification. + - **Initialize Models**: Set up clean and tainted models with identical initial weights for comparison. + - **Load Data**: Initialize data loaders for clean and tainted datasets. + - **Train Models**: Train both models on their respective datasets (clean and tainted). + +4. **Evaluate Performance**: + - **Loss Visualization**: Plot training loss for both clean and tainted models to compare performance. + - **Confusion Matrix**: Generate confusion matrices to analyze model performance on clean and tainted test sets. + +5. **Interpret Results**: + - **Integrated Gradients**: Use the Integrated Gradients method to visualize the important regions of the images that influence the model's decisions. + - **Visualize Attention**: Compare the attention maps for clean and tainted models on specific images. + +6. **Denoising Task**: + - **Add Noise**: Introduce noise to MNIST images to create a dataset for training a denoising model. + - **Define UNet Model**: Use a UNet model architecture for denoising. + - **Train Denoising Model**: Train the UNet model on the noisy MNIST dataset. + - **Evaluate on FashionMNIST**: Apply the trained denoising model to FashionMNIST data to see how it performs on unseen data. + +### Technology Used + +1. **Programming Language**: + - Python + +2. **Libraries and Tools**: + - **PyTorch**: For building and training neural networks. + - `torchvision`: For loading and transforming datasets. + - `torch.nn`: For defining neural network models. + - `torch.optim`: For optimization algorithms. + - **Matplotlib**: For visualizing images and plotting graphs. + - **Scipy**: For image manipulation (e.g., adding textures). + - **Numpy**: For numerical operations. + - **TQDM**: For displaying progress bars during training. + - **Captum**: For implementing Integrated Gradients and other interpretability methods. + - **Seaborn**: For creating confusion matrices. + +3. **Datasets**: + - **MNIST**: Handwritten digit dataset for training and testing classification models. + - **FashionMNIST**: Fashion item dataset for evaluating the denoising model on different data. + ## Setup Please run the setup script to create the environment for this exercise and download data. @@ -7,8 +73,5 @@ Please run the setup script to create the environment for this exercise and down source setup.sh ``` -When you are ready to start the exercise, make sure you are in your base environment and then run jupyter lab. -```bash -mamba activate base -jupyter lab -``` +When you are ready to start the exercise, open the `exercise.ipynb` file in VSCode +and select the `07-failure-modes` kernel diff --git a/exercise.ipynb b/exercise.ipynb index c3e9020..e5cda35 100644 --- a/exercise.ipynb +++ b/exercise.ipynb @@ -1,29 +1,29 @@ { "cells": [ { - "attachments": {}, "cell_type": "markdown", + "id": "ad68ff94", "metadata": {}, "source": [ "# Exercise 7: Failure Modes And Limits of Deep Learning" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "c0f0735a", "metadata": {}, "source": [ - "In the following exercise, we explore the failure modes and limits of neural networks. \n", - "Neural networks are powerful, but it is important to understand their limits and the predictable reasons that they fail. \n", + "In the following exercise, we explore the failure modes and limits of neural networks.\n", + "Neural networks are powerful, but it is important to understand their limits and the predictable reasons that they fail.\n", "These exercises illustrate how the content of datasets, especially differences between the training and inference/test datasets, can affect the network's output in unexpected ways.\n", "

\n", - "While neural networks are generally less interpretable than other types of machine learning, it is still important to investigate the \"internal reasoning\" of the network as much as possible to discover failure modes, or situations in which the network does not perform well. \n", - "This exercise introduces a tool called Integrated Gradients that helps us makes sense of the network \"attention\". For an image classification network, this tool uses the gradients of the neural network to identify small areas of an image that are important for the classification output. " + "While neural networks are generally less interpretable than other types of machine learning, it is still important to investigate the \"internal reasoning\" of the network as much as possible to discover failure modes, or situations in which the network does not perform well.\n", + "This exercise introduces a tool called Integrated Gradients that helps us makes sense of the network \"attention\". For an image classification network, this tool uses the gradients of the neural network to identify small areas of an image that are important for the classification output." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "5619f37d", "metadata": {}, "source": [ "\n", @@ -43,17 +43,17 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "aba193c5", "metadata": {}, "source": [ "### Acknowledgements\n", - "This notebook was created by Steffen Wolf, Jordao Bragantini, Jan Funke, and Loic Royer. Modified by Tri Nguyen, Igor Zubarev, and Morgan Schwartz for DL@MBL 2022, and Caroline Malin-Mayor for DL@MBL 2023." + "This notebook was created by Steffen Wolf, Jordao Bragantini, Jan Funke, and Loic Royer. Modified by Tri Nguyen, Igor Zubarev, and Morgan Schwartz for DL@MBL 2022, Caroline Malin-Mayor for DL@MBL 2023, and Anna Foix Romero for DL@MBL 2024." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "c1cf118b", "metadata": {}, "source": [ "### Data Loading\n", @@ -61,12 +61,13 @@ "The following will load the MNIST dataset, which already comes split into a training and testing dataset.\n", "The MNIST dataset contains images of handwritten digits 0-9.\n", "This data was already downloaded in the setup script.\n", - "Documentation for this pytorch dataset is available at https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html " + "Documentation for this pytorch dataset is available at https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html" ] }, { "cell_type": "code", "execution_count": null, + "id": "c29ae4dc", "metadata": {}, "outputs": [], "source": [ @@ -88,8 +89,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "1bb942ea", "metadata": {}, "source": [ "### Part 1: Preparation of a Tainted Dataset\n", @@ -100,10 +101,11 @@ { "cell_type": "code", "execution_count": null, + "id": "32077360", "metadata": {}, "outputs": [], "source": [ - "#Imports:\n", + "# Imports:\n", "import torch\n", "import numpy\n", "from scipy.ndimage import convolve\n", @@ -113,6 +115,7 @@ { "cell_type": "code", "execution_count": null, + "id": "1adbc5ee", "metadata": {}, "outputs": [], "source": [ @@ -122,21 +125,20 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "dd092467", "metadata": {}, "source": [ "## Part 1.1: Local Corruption of Data\n", "\n", - "First we will add a white pixel in the bottom right of all images of 7's, and visualize the results. This is an example of a local change to the images, where only a small portion of the image is corruped." + "First we will add a white pixel in the bottom right of all images of 7's, and visualize the results. This is an example of a local change to the images, where only a small portion of the image is corrupted." ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "tags": [] - }, + "id": "5d779046", + "metadata": {}, "outputs": [], "source": [ "# Add a white pixel in the bottom right of all images of 7's\n", @@ -147,45 +149,41 @@ { "cell_type": "code", "execution_count": null, + "id": "9eae44bc", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", "plt.subplot(1,4,1)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[3][0][0], cmap=plt.get_cmap('gray'))\n", "plt.subplot(1,4,2)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[23][0][0], cmap=plt.get_cmap('gray'))\n", "plt.subplot(1,4,3)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[15][0][0], cmap=plt.get_cmap('gray'))\n", "plt.subplot(1,4,4)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[29][0][0], cmap=plt.get_cmap('gray'))\n", "plt.show()" ] }, { "cell_type": "markdown", + "id": "1242b7da", "metadata": {}, "source": [ "

\n", "Task 1.1:

\n", - "We have locally changed images of 7s artificially for this exercise. What are some examples of ways that images can be corrupted or tainted during real-life data colleciton, for example in a hospital imaging environment or microscopy lab?\n", + "We have locally changed images of 7s artificially for this exercise. What are some examples of ways that images can be corrupted or tainted during real-life data collection, for example in a hospital imaging environment or microscopy lab?\n", "
" ] }, { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**1.1 Answer:**\n", - "\n", - "Your answer here!" - ] - }, - { - "attachments": {}, "cell_type": "markdown", + "id": "586be487", "metadata": {}, "source": [ "

\n", @@ -195,27 +193,18 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "2ad4f801", "metadata": {}, "source": [ - "**1.2 Answer**\n", + "## Part 1.2: Global Corruption of data\n", "\n", - "Your answer here!" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Part 1.2: Global Corrution of data\n", - "\n", - "Some data corruption or domain differences cover the whole image, rather than being localized to a specific location. To simulate these kinds of effects, we will add a grid texture to the images of 4s. " + "Some data corruption or domain differences cover the whole image, rather than being localized to a specific location. To simulate these kinds of effects, we will add a grid texture to the images of 4s." ] }, { "cell_type": "markdown", + "id": "0749a9f6", "metadata": {}, "source": [ "You may have noticed that the images are stored as arrays of integers. First we cast them to float to be able to add textures easily without integer wrapping issues." @@ -224,6 +213,7 @@ { "cell_type": "code", "execution_count": null, + "id": "19c5869e", "metadata": {}, "outputs": [], "source": [ @@ -233,8 +223,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "46e255ca", "metadata": {}, "source": [ "Then we create the grid texture and visualize it." @@ -243,6 +233,7 @@ { "cell_type": "code", "execution_count": null, + "id": "823060ce", "metadata": {}, "outputs": [], "source": [ @@ -252,12 +243,13 @@ "texture = convolve(texture, weights=[[0.5,1,0.5],[1,0.1,0.5],[1,0.5,0]])\n", "texture = torch.from_numpy(texture)\n", "\n", + "plt.axis('off')\n", "plt.imshow(texture, cmap=plt.get_cmap('gray'))" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "c09f310e", "metadata": {}, "source": [ "Next we add the texture to all 4s in the train and test set." @@ -266,9 +258,8 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "tags": [] - }, + "id": "5264fb24", + "metadata": {}, "outputs": [], "source": [ "# Adding the texture to all images of 4's:\n", @@ -277,17 +268,18 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "d0235c57", "metadata": {}, "source": [ - "After adding the texture, we have to make sure the values are between 0 and 255 and then cast back to uint8. \n", + "After adding the texture, we have to make sure the values are between 0 and 255 and then cast back to uint8.\n", "Then we visualize a couple 4s from the dataset to see if the grid texture has been added properly." ] }, { "cell_type": "code", "execution_count": null, + "id": "bf580bd0", "metadata": {}, "outputs": [], "source": [ @@ -297,72 +289,61 @@ "\n", "# Cast back to byte:\n", "tainted_train_dataset.data = tainted_train_dataset.data.type(torch.uint8) \n", - "tainted_test_dataset.data = tainted_test_dataset.data.type(torch.uint8) \n" + "tainted_test_dataset.data = tainted_test_dataset.data.type(torch.uint8) " ] }, { "cell_type": "code", "execution_count": null, + "id": "dc053eb0", "metadata": {}, "outputs": [], "source": [ "# visualize example 4s\n", "plt.subplot(1,4,1)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[9][0][0], cmap=plt.get_cmap('gray'))\n", "plt.subplot(1,4,2)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[26][0][0], cmap=plt.get_cmap('gray'))\n", "plt.subplot(1,4,3)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[20][0][0], cmap=plt.get_cmap('gray'))\n", "plt.subplot(1,4,4)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[53][0][0], cmap=plt.get_cmap('gray'))\n", "plt.show()" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "66a4eb68", "metadata": {}, "source": [ "

\n", - "Task 1.4:

\n", + "Task 1.3:

\n", "Think of a realistic example of such a corruption that would affect only some classes of data. If you notice the differences between classes, could you remove it? How?\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "ea13603f", "metadata": {}, "source": [ - "**1.4 Answer**\n", "\n", - "Your answer here!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ "

\n", - "Task 1.5:

\n", + "Task 1.4:\n", "Given the changes we made to generate the tainted dataset, do you think a digit classification network trained on the tainted data will converge? Are the classes more or less distinct from each other than in the untainted dataset?\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "5a17ff4d", "metadata": {}, "source": [ - "**1.5 Answer:**\n", "\n", - "Your answer here!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ "

\n", " Checkpoint 1

\n", "\n", @@ -372,23 +353,25 @@ }, { "cell_type": "markdown", + "id": "e6cb618a", "metadata": {}, "source": [ + "\n", "

\n", " Bonus Questions:

\n", " Note that we only added the white dot to the images of 7s and the grid to images of 4s, not all classes.\n", "
    \n", "
  1. Consider a dataset with white dots on images of all digits: let's call it the all-dots data. How different is this from the original dataset? Are the classes more or less distinct from each other?
  2. \n", "
  3. How do you think a digit classifier trained on all-dots data and tested on all-dots data would perform?
  4. \n", - "
  5. Now consider the analagous all-grid data with the grid pattern added to all images. Are the classes more or less distinct from each other? Would a digit classifier trained on all-grid converge?
  6. \n", + "
  7. Now consider the analogous all-grid data with the grid pattern added to all images. Are the classes more or less distinct from each other? Would a digit classifier trained on all-grid converge?
  8. \n", "
\n", "If you want to test your hypotheses, you can create these all-dots and all-grid train and test datasets and use them for training in bonus questions of the following section.\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "8cb597ed", "metadata": {}, "source": [ "### Part 2: Create and Train an Image Classification Neural Network on Clean and Tainted Data\n", @@ -399,35 +382,21 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "tags": [] - }, + "id": "0a677906", + "metadata": {}, "outputs": [], "source": [ - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - " \n", - "# Dense model:\n", - "class DenseModel(nn.Module):\n", - " def __init__(self):\n", - " super().__init__()\n", - " self.fc0 = nn.Linear(784, 256)\n", - " self.fc1 = nn.Linear(256, 120)\n", - " self.fc2 = nn.Linear(120, 84)\n", - " self.fc3 = nn.Linear(84, 10)\n", + "import torch\n", + "from classifier.model import DenseModel\n", "\n", - " def forward(self, x):\n", - " x = torch.flatten(x, 1) # flatten all dimensions except batch\n", - " x = F.relu(self.fc0(x))\n", - " x = F.relu(self.fc1(x))\n", - " x = F.relu(self.fc2(x))\n", - " x = self.fc3(x)\n", - " return x" + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "print(f'selected torch device: {device}')" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "d76c4b98", "metadata": {}, "source": [ "Now we will train the neural network. A training function is provided below - this should be familiar, but make sure you look it over and understand what is happening in the training loop." @@ -436,10 +405,11 @@ { "cell_type": "code", "execution_count": null, + "id": "7d448ce4", "metadata": {}, "outputs": [], "source": [ - "from tqdm.notebook import tqdm\n", + "from tqdm import tqdm\n", "\n", "# Training function:\n", "def train_mnist(model, train_loader, batch_size, criterion, optimizer, history):\n", @@ -447,8 +417,8 @@ " pbar = tqdm(total=len(tainted_train_dataset)//batch_size)\n", " for batch_idx, (raw, target) in enumerate(train_loader):\n", " optimizer.zero_grad()\n", - " raw = raw.cuda()\n", - " target = target.cuda()\n", + " raw = raw.to(device)\n", + " target = target.to(device)\n", " output = model(raw)\n", " loss = criterion(output, target)\n", " loss.backward()\n", @@ -459,8 +429,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "855c4b61", "metadata": {}, "source": [ "We have to choose hyperparameters for our model. We have selected to train for two epochs, with a batch size of 64 for training and 1000 for testing. We are using the cross entropy loss, a standard multi-class classification loss." @@ -469,11 +439,13 @@ { "cell_type": "code", "execution_count": null, + "id": "8a2d97a2", "metadata": {}, "outputs": [], "source": [ "import torch.optim as optim\n", "import torch\n", + "import torch.nn as nn\n", "\n", "# Let's set some hyperparameters:\n", "n_epochs = 2\n", @@ -485,8 +457,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "441c4d04", "metadata": {}, "source": [ "Next we initialize a clean model, and a tainted model. We want to have reproducible results, so we set the initial weights with a specific random seed. The seed number does not matter, just that it is the same!" @@ -495,19 +467,23 @@ { "cell_type": "code", "execution_count": null, + "id": "28d546e4", "metadata": {}, "outputs": [], "source": [ "# Initialize the clean and tainted models\n", - "model_clean = DenseModel().cuda()\n", - "model_tainted = DenseModel().cuda()\n", + "model_clean = DenseModel(input_shape=(28, 28), num_classes=10)\n", + "model_clean = model_clean.to(device)\n", + "\n", + "model_tainted = DenseModel(input_shape=(28, 28), num_classes=10)\n", + "model_tainted = model_tainted.to(device)\n", "\n", "# Weight initialisation:\n", "def init_weights(m):\n", " if isinstance(m, (nn.Linear, nn.Conv2d)):\n", " torch.nn.init.xavier_uniform_(m.weight, )\n", " m.bias.data.fill_(0.01)\n", - " \n", + "\n", "# Fixing seed with magical number and setting weights:\n", "torch.random.manual_seed(42)\n", "model_clean.apply(init_weights)\n", @@ -518,8 +494,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "9eb196cd", "metadata": {}, "source": [ "Next we initialize the clean and tainted dataloaders, again with a specific random seed for reproducibility." @@ -528,6 +504,7 @@ { "cell_type": "code", "execution_count": null, + "id": "133a85ba", "metadata": {}, "outputs": [], "source": [ @@ -540,8 +517,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "90762c28", "metadata": {}, "source": [ "Now it is time to train the neural networks! We are storing the training loss history for each model so we can visualize it later." @@ -550,9 +527,8 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "tags": [] - }, + "id": "a949ffda", + "metadata": {}, "outputs": [], "source": [ "# We store history here:\n", @@ -567,7 +543,9 @@ " criterion,\n", " optim.Adam(model_clean.parameters(), lr=0.001),\n", " history[\"loss_clean\"])\n", - " \n", + "\n", + "print('model_clean trained')\n", + "\n", "# Training loop for tainted model:\n", "for epoch in range(n_epochs):\n", " train_mnist(model_tainted,\n", @@ -575,12 +553,14 @@ " batch_size_train,\n", " criterion,\n", " optim.Adam(model_tainted.parameters(), lr=0.001),\n", - " history[\"loss_tainted\"])" + " history[\"loss_tainted\"])\n", + "\n", + "print('model_tainted trained')" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "96bc28fd", "metadata": {}, "source": [ "Now we visualize the loss history for the clean and tainted models." @@ -589,6 +569,7 @@ { "cell_type": "code", "execution_count": null, + "id": "29093a14", "metadata": {}, "outputs": [], "source": [ @@ -603,6 +584,7 @@ }, { "cell_type": "markdown", + "id": "c7dddc4b", "metadata": {}, "source": [ "

\n", @@ -611,16 +593,9 @@ "

" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**2.1 Answer:**\n" - ] - }, { "cell_type": "markdown", + "id": "b20df043", "metadata": {}, "source": [ "

\n", @@ -629,18 +604,9 @@ "

" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**2.2 Answer:**\n", - "\n", - "Your answer here!" - ] - }, { "cell_type": "markdown", + "id": "94551ca6", "metadata": {}, "source": [ "

\n", @@ -650,18 +616,8 @@ ] }, { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**2.3 Answer:**\n", - "\n", - "Your answer here!" - ] - }, - { - "attachments": {}, "cell_type": "markdown", + "id": "edcc38e3", "metadata": {}, "source": [ "

\n", @@ -673,6 +629,7 @@ }, { "cell_type": "markdown", + "id": "ba7ae77b", "metadata": {}, "source": [ "

\n", @@ -686,20 +643,21 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "e0afcf03", "metadata": {}, "source": [ "### Part 3: Examining the Results of the Clean and Tainted Networks\n", "\n", "Now that we have initialized our clean and tainted datasets and trained our models on them, it is time to examine how these models perform on the clean and tainted test sets!\n", "\n", - "We provide a `predict` function below that will return the prediction and ground truth labels given a particualr model and dataset." + "We provide a `predict` function below that will return the prediction and ground truth labels given a particular model and dataset." ] }, { "cell_type": "code", "execution_count": null, + "id": "2c8432f0", "metadata": {}, "outputs": [], "source": [ @@ -711,17 +669,17 @@ " dataset_groundtruth = []\n", " with torch.no_grad():\n", " for x, y_true in dataset:\n", - " inp = x[None].cuda()\n", + " inp = x[None].to(device)\n", " y_pred = model(inp)\n", " dataset_prediction.append(y_pred.argmax().cpu().numpy())\n", " dataset_groundtruth.append(y_true)\n", - " \n", + "\n", " return np.array(dataset_prediction), np.array(dataset_groundtruth)" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "dac0d3bd", "metadata": {}, "source": [ "Now we call the predict method with the clean and tainted models on the clean and tainted datasets." @@ -730,9 +688,8 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "tags": [] - }, + "id": "c6438d2e", + "metadata": {}, "outputs": [], "source": [ "pred_clean_clean, true_labels = predict(model_clean, test_dataset)\n", @@ -742,24 +699,27 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "f6ec7c0d", "metadata": {}, "source": [ - "We can investivate the results using the confusion matrix, which you should recall from the Introduction to Machine Learning exercise. The function in the cell below will create a nicely annotated confusion matrix." + "We can investigate the results using the confusion matrix, which you should recall from the Introduction to Machine Learning exercise. The function in the cell below will create a nicely annotated confusion matrix." ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "id": "ada1daff", + "metadata": { + "lines_to_next_cell": 1 + }, "outputs": [], "source": [ "from sklearn.metrics import confusion_matrix\n", "import seaborn as sns\n", "import pandas as pd\n", - "# Plot confusion matrix \n", - "# orginally from Runqi Yang; \n", + "# Plot confusion matrix\n", + "# originally from Runqi Yang;\n", "# see https://gist.github.com/hitvoice/36cf44689065ca9b927431546381a3f7\n", "def cm_analysis(y_true, y_pred, title, figsize=(10,10)):\n", " \"\"\"\n", @@ -794,17 +754,17 @@ " annot[i, j] = ''\n", " else:\n", " annot[i, j] = '%.1f%%\\n%d' % (p, c)\n", - " cm = pd.DataFrame(cm, index=labels, columns=labels)\n", + " cm = pd.DataFrame(cm_perc, index=labels, columns=labels)\n", " cm.index.name = 'Actual'\n", " cm.columns.name = 'Predicted'\n", " fig, ax = plt.subplots(figsize=figsize)\n", - " ax=sns.heatmap(cm, annot=annot, fmt='', vmax=30)\n", - " ax.set_title(title)\n" + " ax = sns.heatmap(cm, annot=annot, fmt=\"\", vmax=100)\n", + " ax.set_title(title)" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "1c841eaa", "metadata": {}, "source": [ "Now we will generate confusion matrices for each model/data combination. Take your time and try and interpret these, and then try and answer the questions below." @@ -813,6 +773,7 @@ { "cell_type": "code", "execution_count": null, + "id": "073a89a2", "metadata": {}, "outputs": [], "source": [ @@ -824,6 +785,7 @@ }, { "cell_type": "markdown", + "id": "267208ff", "metadata": {}, "source": [ "

\n", @@ -832,18 +794,9 @@ "

" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**3.1 Answer:**\n", - "\n", - "Your answer here!" - ] - }, { "cell_type": "markdown", + "id": "82d1cba3", "metadata": {}, "source": [ "

\n", @@ -852,18 +805,9 @@ "

" ] }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**3.2 Answer**\n", - "\n", - "Your answer here!" - ] - }, { "cell_type": "markdown", + "id": "dd6ca1dd", "metadata": {}, "source": [ "

\n", @@ -873,18 +817,8 @@ ] }, { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**3.3 Answer:**\n", - "\n", - "Your answer here!" - ] - }, - { - "attachments": {}, "cell_type": "markdown", + "id": "c231d586", "metadata": {}, "source": [ "

\n", @@ -894,18 +828,8 @@ ] }, { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**3.4 Answer:**\n", - "\n", - "Your answer here!" - ] - }, - { - "attachments": {}, "cell_type": "markdown", + "id": "a676ba72", "metadata": {}, "source": [ "

\n", @@ -917,6 +841,7 @@ }, { "cell_type": "markdown", + "id": "e9a5583c", "metadata": {}, "source": [ "

\n", @@ -930,8 +855,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "c30d4df6", "metadata": {}, "source": [ "### Part 4: Interpretation with Integrated Gradients\n", @@ -939,8 +864,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "2784e751", "metadata": {}, "source": [ "\n", @@ -950,9 +875,8 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "tags": [] - }, + "id": "7403b38f", + "metadata": {}, "outputs": [], "source": [ "from captum.attr import IntegratedGradients\n", @@ -983,8 +907,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "3f1881d0", "metadata": {}, "source": [ "Next we provide a function to visualize the output of integrated gradients, using the function above to actually run the algorithm." @@ -993,6 +917,7 @@ { "cell_type": "code", "execution_count": null, + "id": "1ef66e49", "metadata": {}, "outputs": [], "source": [ @@ -1003,11 +928,11 @@ "\n", " # Transpose integrated gradients output\n", " attr_ig = np.transpose(attr_ig[0].cpu().detach().numpy(), (1, 2, 0))\n", - " \n", + "\n", " # Transpose and normalize original image:\n", " original_image = np.transpose((test_input[0].detach().numpy() * 0.5) + 0.5, (1, 2, 0))\n", "\n", - " # This visualises the attribution of labels to pixels\n", + " # This visualises the attribution of labels to pixels\n", " figure, axis = plt.subplots(nrows=1, ncols=2, figsize=(4, 2.5), width_ratios=[1, 1])\n", " viz.visualize_image_attr(attr_ig, \n", " original_image, \n", @@ -1030,11 +955,11 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "3587e26e", "metadata": {}, "source": [ - "To start examining the results, we will call the `visualize_integrated_gradients` with the tainted and clean models on the tainted and clean sevens. \n", + "To start examining the results, we will call the `visualize_integrated_gradients` with the tainted and clean models on the tainted and clean sevens.\n", "\n", "The visualization will show the original image plus an overlaid attribution map that generally signifies the importance of each pixel, plus the attribution map only. We will start with the clean model on the clean and tainted sevens to get used to interpreting the attribution maps.\n" ] @@ -1042,6 +967,7 @@ { "cell_type": "code", "execution_count": null, + "id": "3a141027", "metadata": {}, "outputs": [], "source": [ @@ -1050,29 +976,19 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "09f0b17b", "metadata": {}, "source": [ "

\n", - " Task 4.1: Interpereting the Clean Model's Attention on 7s

\n", + " Task 4.1: Interpreting the Clean Model's Attention on 7s

\n", "Where did the clean model focus its attention for the clean and tainted 7s? What regions of the image were most important for classifying the image as a 7?\n", "
" ] }, { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**4.1 Answer:**\n", - "\n", - "Your answer here!" - ] - }, - { - "attachments": {}, "cell_type": "markdown", + "id": "e886ceb9", "metadata": {}, "source": [ "Now let's look at the attention of the tainted model!" @@ -1081,9 +997,8 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "tags": [] - }, + "id": "5d8fe87c", + "metadata": {}, "outputs": [], "source": [ "visualize_integrated_gradients(tainted_test_dataset[0], model_tainted, \"Tainted Model on Tainted 7\")\n", @@ -1091,29 +1006,19 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "63f51d95", "metadata": {}, "source": [ "

\n", - " Task 4.2: Interpereting the Tainted Model's Attention on 7s

\n", + " Task 4.2: Interpreting the Tainted Model's Attention on 7s

\n", "Where did the tainted model focus its attention for the clean and tainted 7s? How was this different than the clean model? Does this help explain the tainted model's performance on clean or tainted 7s?\n", "
" ] }, { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**4.2 Answer:**\n", - "\n", - "Your answer here!" - ] - }, - { - "attachments": {}, "cell_type": "markdown", + "id": "d84b50f2", "metadata": {}, "source": [ "Now let's look at the regions of the image that Integrated Gradients highlights as important for classifying fours in the clean and tainted models." @@ -1122,6 +1027,7 @@ { "cell_type": "code", "execution_count": null, + "id": "1f2524bc", "metadata": {}, "outputs": [], "source": [ @@ -1132,29 +1038,19 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "162b2791", "metadata": {}, "source": [ "

\n", - " Task 4.3: Interpereting the focus on 4s

\n", + " Task 4.3: Interpreting the focus on 4s

\n", "Where did the tainted model focus its attention for the tainted and clean 4s? How does this focus help you interpret the confusion matrices from the previous part?\n", "
" ] }, { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**4.3 Answer:**\n", - "\n", - "Your answer here!" - ] - }, - { - "attachments": {}, "cell_type": "markdown", + "id": "693673e7", "metadata": {}, "source": [ "

\n", @@ -1164,31 +1060,21 @@ ] }, { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**4.4 Answer:**\n", - "\n", - "Your answer here!" - ] - }, - { - "attachments": {}, "cell_type": "markdown", + "id": "07ffa5c9", "metadata": {}, "source": [ "

\n", " Checkpoint 4

\n", "
    \n", - " Congrats on finishing the intergrated gradients task! Let us know on Element that you reached checkpoint 4, and feel free to look at other interpretability methods in the Captum library if you're interested.\n", + " Congrats on finishing the integrated gradients task! Let us know on the course chat that you reached checkpoint 4, and feel free to look at other interpretability methods in the Captum library if you're interested.\n", "
\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "e2b3e006", "metadata": {}, "source": [ "

\n", @@ -1201,8 +1087,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "d9c75351", "metadata": {}, "source": [ "## Part 5: Importance of using the right training data\n", @@ -1213,8 +1099,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "3c96a7d4", "metadata": {}, "source": [ "First, we will write a function to add noise to the MNIST dataset, so that we can train a model to denoise it." @@ -1223,6 +1109,7 @@ { "cell_type": "code", "execution_count": null, + "id": "7eb143be", "metadata": {}, "outputs": [], "source": [ @@ -1230,20 +1117,21 @@ "\n", "# A simple function to add noise to tensors:\n", "def add_noise(tensor, power=1.5):\n", - " return tensor * torch.rand(tensor.size()).to(tensor.device) ** power + 0.75*torch.randn(tensor.size()).to(tensor.device)\n" + " return tensor * torch.rand(tensor.size()).to(tensor.device) ** power + 0.75*torch.randn(tensor.size()).to(tensor.device)" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "420f2eb7", "metadata": {}, "source": [ - "Next we will visualize a couple MNIST examples with and without noise.\n" + "Next we will visualize a couple MNIST examples with and without noise." ] }, { "cell_type": "code", "execution_count": null, + "id": "0c9ba2bc", "metadata": {}, "outputs": [], "source": [ @@ -1252,12 +1140,16 @@ "# Let's visualise MNIST images with noise:\n", "def show(index):\n", " plt.subplot(1,4,1)\n", + " plt.axis('off')\n", " plt.imshow(train_dataset[index][0][0], cmap=plt.get_cmap('gray'))\n", " plt.subplot(1,4,2)\n", + " plt.axis('off')\n", " plt.imshow(add_noise(train_dataset[index][0][0]), cmap=plt.get_cmap('gray'))\n", " plt.subplot(1,4,3)\n", + " plt.axis('off')\n", " plt.imshow(train_dataset[index+1][0][0], cmap=plt.get_cmap('gray'))\n", " plt.subplot(1,4,4)\n", + " plt.axis('off')\n", " plt.imshow(add_noise(train_dataset[index+1][0][0]), cmap=plt.get_cmap('gray'))\n", " plt.show()\n", "\n", @@ -1267,151 +1159,18 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "3aa422bb", "metadata": {}, "source": [ "### UNet model\n", "\n", - "Let's try denoising with a UNet, \"CARE-style\". As UNets and denoising implementations are not the focus of this exercise, we provide the model for you in the following cell. " + "Let's try denoising with a UNet, \"CARE-style\". As UNets and denoising implementations are not the focus of this exercise, we provide the model for you in the following cell." ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Adapted from https://discuss.pytorch.org/t/unet-implementation/426\n", - "\n", - "import torch\n", - "from torch import nn\n", - "import torch.nn.functional as F\n", - "\n", - "\n", - "class UNet(nn.Module):\n", - " def __init__(\n", - " self,\n", - " in_channels=1,\n", - " n_classes=1,\n", - " depth=3,\n", - " wf=4,\n", - " padding=True,\n", - " batch_norm=False,\n", - " up_mode='upsample',\n", - " ):\n", - " \"\"\"\n", - " Implementation of\n", - " U-Net: Convolutional Networks for Biomedical Image Segmentation\n", - " (Ronneberger et al., 2015)\n", - " https://arxiv.org/abs/1505.04597\n", - " Using the default arguments will yield the exact version used\n", - " in the original paper\n", - " Args:\n", - " in_channels (int): number of input channels\n", - " n_classes (int): number of output channels\n", - " depth (int): depth of the network\n", - " wf (int): number of filters in the first layer is 2**wf\n", - " padding (bool): if True, apply padding such that the input shape\n", - " is the same as the output.\n", - " This may introduce artifacts\n", - " batch_norm (bool): Use BatchNorm after layers with an\n", - " activation function\n", - " up_mode (str): one of 'upconv' or 'upsample'.\n", - " 'upconv' will use transposed convolutions for\n", - " learned upsampling.\n", - " 'upsample' will use bilinear upsampling.\n", - " \"\"\"\n", - " super(UNet, self).__init__()\n", - " assert up_mode in ('upconv', 'upsample')\n", - " self.padding = padding\n", - " self.depth = depth\n", - " prev_channels = in_channels\n", - " self.down_path = nn.ModuleList()\n", - " for i in range(depth):\n", - " self.down_path.append(\n", - " UNetConvBlock(prev_channels, 2 ** (wf + i), padding, batch_norm)\n", - " )\n", - " prev_channels = 2 ** (wf + i)\n", - "\n", - " self.up_path = nn.ModuleList()\n", - " for i in reversed(range(depth - 1)):\n", - " self.up_path.append(\n", - " UNetUpBlock(prev_channels, 2 ** (wf + i), up_mode, padding, batch_norm)\n", - " )\n", - " prev_channels = 2 ** (wf + i)\n", - "\n", - " self.last = nn.Conv2d(prev_channels, n_classes, kernel_size=1)\n", - "\n", - " def forward(self, x):\n", - " blocks = []\n", - " for i, down in enumerate(self.down_path):\n", - " x = down(x)\n", - " if i != len(self.down_path) - 1:\n", - " blocks.append(x)\n", - " x = F.max_pool2d(x, 2)\n", - "\n", - " for i, up in enumerate(self.up_path):\n", - " x = up(x, blocks[-i - 1])\n", - "\n", - " return self.last(x)\n", - "\n", - "\n", - "class UNetConvBlock(nn.Module):\n", - " def __init__(self, in_size, out_size, padding, batch_norm):\n", - " super(UNetConvBlock, self).__init__()\n", - " block = []\n", - "\n", - " block.append(nn.Conv2d(in_size, out_size, kernel_size=3, padding=int(padding)))\n", - " block.append(nn.ReLU())\n", - " if batch_norm:\n", - " block.append(nn.BatchNorm2d(out_size))\n", - "\n", - " block.append(nn.Conv2d(out_size, out_size, kernel_size=3, padding=int(padding)))\n", - " block.append(nn.ReLU())\n", - " if batch_norm:\n", - " block.append(nn.BatchNorm2d(out_size))\n", - "\n", - " self.block = nn.Sequential(*block)\n", - "\n", - " def forward(self, x):\n", - " out = self.block(x)\n", - " return out\n", - "\n", - "\n", - "class UNetUpBlock(nn.Module):\n", - " def __init__(self, in_size, out_size, up_mode, padding, batch_norm):\n", - " super(UNetUpBlock, self).__init__()\n", - " if up_mode == 'upconv':\n", - " self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2)\n", - " elif up_mode == 'upsample':\n", - " self.up = nn.Sequential(\n", - " nn.Upsample(mode='bilinear', scale_factor=2),\n", - " nn.Conv2d(in_size, out_size, kernel_size=1),\n", - " )\n", - "\n", - " self.conv_block = UNetConvBlock(in_size, out_size, padding, batch_norm)\n", - "\n", - " def center_crop(self, layer, target_size):\n", - " _, _, layer_height, layer_width = layer.size()\n", - " diff_y = (layer_height - target_size[0]) // 2\n", - " diff_x = (layer_width - target_size[1]) // 2\n", - " return layer[\n", - " :, :, diff_y : (diff_y + target_size[0]), diff_x : (diff_x + target_size[1])\n", - " ]\n", - "\n", - " def forward(self, x, bridge):\n", - " up = self.up(x)\n", - " crop1 = self.center_crop(bridge, up.shape[2:])\n", - " out = torch.cat([up, crop1], 1)\n", - " out = self.conv_block(out)\n", - "\n", - " return out" - ] - }, - { - "attachments": {}, "cell_type": "markdown", + "id": "ce6e4ffe", "metadata": {}, "source": [ "The training loop code is also provided here. It is similar to the code used to train the image classification model previously, but look it over to make sure there are no surprises." @@ -1420,54 +1179,55 @@ { "cell_type": "code", "execution_count": null, + "id": "22e3196a", "metadata": {}, "outputs": [], "source": [ - "from tqdm.notebook import tqdm\n", + "from tqdm import tqdm\n", "\n", "def train_denoising_model(train_loader, model, criterion, optimizer, history):\n", - " \n", + "\n", " # Puts model in 'training' mode:\n", " model.train()\n", - " \n", + "\n", " # Initialises progress bar:\n", " pbar = tqdm(total=len(train_loader.dataset)//batch_size_train)\n", " for batch_idx, (image, target) in enumerate(train_loader):\n", "\n", " # add line here during Task 2.2\n", - " \n", + "\n", " # Zeroing gradients:\n", " optimizer.zero_grad()\n", - " \n", + "\n", " # Moves image to GPU memory:\n", - " image = image.cuda()\n", - " \n", + " image = image.to(device)\n", + "\n", " # Adds noise to make the noisy image:\n", " noisy = add_noise(image)\n", - " \n", + "\n", " # Runs model on noisy image:\n", " output = model(noisy)\n", - " \n", + "\n", " # Computes loss:\n", " loss = criterion(output, image)\n", - " \n", + "\n", " # Backpropagates gradients:\n", " loss.backward()\n", - " \n", + "\n", " # Optimises model parameters given the current gradients:\n", " optimizer.step()\n", - " \n", + "\n", " # appends loss history:\n", " history[\"loss\"].append(loss.item())\n", - " \n", + "\n", " # updates progress bar:\n", " pbar.update(1)\n", " return history" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "afdc53ce", "metadata": {}, "source": [ "Here we choose hyperparameters and initialize the model and data loaders." @@ -1476,11 +1236,14 @@ { "cell_type": "code", "execution_count": null, + "id": "98818e5f", "metadata": {}, "outputs": [], "source": [ + "from dlmbl_unet import UNet\n", "import torch.optim as optim\n", "import torch\n", + "import torch.nn.functional as F\n", "\n", "# Some hyper-parameters:\n", "n_epochs = 5\n", @@ -1491,7 +1254,8 @@ "history = {\"loss\": []}\n", "\n", "# Model:\n", - "unet_model = UNet().cuda()\n", + "unet_model = UNet(depth=3, in_channels=1, upsample_mode='bilinear')\n", + "unet_model = unet_model.to(device)\n", "\n", "# Loss function:\n", "criterion = F.mse_loss #mse_loss\n", @@ -1509,8 +1273,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "851ee8bc", "metadata": {}, "source": [ "Finally, we run the training loop!" @@ -1519,6 +1283,7 @@ { "cell_type": "code", "execution_count": null, + "id": "e75e5250", "metadata": {}, "outputs": [], "source": [ @@ -1528,8 +1293,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "3b123c83", "metadata": {}, "source": [ "As before, we will visualize the training loss. If all went correctly, it should decrease from around 1.0 to less than 0.2." @@ -1538,7 +1303,10 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "id": "649578f4", + "metadata": { + "lines_to_next_cell": 1 + }, "outputs": [], "source": [ "# Loss Visualization\n", @@ -1550,8 +1318,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "31ee6225", "metadata": {}, "source": [ "### Check denoising performance\n", @@ -1562,21 +1330,27 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "id": "aeada78c", + "metadata": { + "lines_to_next_cell": 1 + }, "outputs": [], "source": [ "def apply_denoising(image, model):\n", " # add batch and channel dimensions\n", " image = torch.unsqueeze(torch.unsqueeze(image, 0), 0)\n", - " prediction = model(image.cuda())\n", + " prediction = model(image.to(device))\n", " # remove batch and channel dimensions before returning\n", - " return prediction.detach().cpu()[0,0]\n" + " return prediction.detach().cpu()[0,0]" ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "id": "04b85210", + "metadata": { + "lines_to_next_cell": 1 + }, "outputs": [], "source": [ "# Displays: ground truth, noisy, and denoised images\n", @@ -1585,52 +1359,61 @@ " noisy_image = add_noise(orig_image)\n", " denoised_image = apply_denoising(noisy_image, model)\n", " plt.subplot(1,4,1)\n", + " plt.axis('off')\n", " plt.imshow(orig_image, cmap=plt.get_cmap('gray'))\n", " plt.subplot(1,4,2)\n", + " plt.axis('off')\n", " plt.imshow(noisy_image, cmap=plt.get_cmap('gray'))\n", " plt.subplot(1,4,3)\n", + " plt.axis('off')\n", " plt.imshow(denoised_image, cmap=plt.get_cmap('gray'))\n", " \n", - " plt.show()\n", - "\n", - "# We pick 8 images to show:\n", - "for i in range(8):\n", - " visualize_denoising(unet_model, test_dataset, 123*i)\n", - " " + " plt.show()" ] }, { "cell_type": "markdown", + "id": "999110e1", "metadata": {}, "source": [ - "

\n", - " Task 5.1:

\n", - "Did the denoising net trained on MNIST work well on unseen test data? What do you think will happen when we apply it to the Fashion-MNIST data?\n", - "
" + "We pick 8 images to show:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "48932965", + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(8):\n", + " visualize_denoising(unet_model, test_dataset, 123*i)" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "a88faa07", "metadata": {}, "source": [ - "**5.1 Answer:**\n", - "\n", - "Your answer here!" + "

\n", + " Task 5.1:

\n", + "Did the denoising net trained on MNIST work well on unseen test data? What do you think will happen when we apply it to the Fashion-MNIST data?\n", + "
" ] }, { "cell_type": "markdown", + "id": "933c7ac9", "metadata": {}, "source": [ - "### Apply trained model on 'wrong' data \n", + "### Apply trained model on 'wrong' data\n", "\n", "Apply the denoising model trained above to some example _noisy_ images derived from the Fashion-MNIST dataset.\n" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "5b4369e0", "metadata": {}, "source": [ "### Load the Fashion MNIST dataset\n", @@ -1641,6 +1424,7 @@ { "cell_type": "code", "execution_count": null, + "id": "5e57d385", "metadata": {}, "outputs": [], "source": [ @@ -1660,19 +1444,18 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "b36c6e41", "metadata": {}, "source": [ - "Next we apply the denoising model we trained on the MNIST data to FashionMNIST, and visualize the results.\n" + "Next we apply the denoising model we trained on the MNIST data to FashionMNIST, and visualize the results." ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "tags": [] - }, + "id": "6744e360", + "metadata": {}, "outputs": [], "source": [ "for i in range(8):\n", @@ -1681,6 +1464,7 @@ }, { "cell_type": "markdown", + "id": "971da0c3", "metadata": {}, "source": [ "

\n", @@ -1690,57 +1474,199 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "1df30b46", "metadata": {}, "source": [ - "**5.2 Answer:**\n", + "

\n", + " Task 5.3:

\n", + "Can you imagine any real-world scenarios where a denoising model would change the content of an image?\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "835030fd", + "metadata": {}, + "source": [ + "### Train the denoiser on both MNIST and FashionMNIST\n", "\n", - "Your answer here!" + "In this section, we will perform the denoiser training once again, but this time on both MNIST and FashionMNIST datasets, and then try to apply the newly trained denoiser to a set of noisy test images." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c7cc9bb3", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.optim as optim\n", + "import torch\n", + "\n", + "# Some hyper-parameters:\n", + "n_epochs = 5\n", + "batch_size_train = 64\n", + "batch_size_test = 1000\n", + "\n", + "# Dictionary to store loss history:\n", + "history = {\"loss\": []}\n", + "\n", + "# Model:\n", + "unet_model = UNet(depth=3, in_channels=1, upsample_mode='bilinear')\n", + "unet_model = unet_model.to(device)\n", + "\n", + "# Loss function:\n", + "criterion = F.mse_loss #mse_loss\n", + "\n", + "# Optimiser:\n", + "optimizer = optim.Adam(unet_model.parameters(), lr=0.0005)\n", + "\n", + "# Train loader:\n", + "train_loader = torch.utils.data.DataLoader(torch.utils.data.ConcatDataset([train_dataset, fm_train_dataset]),\n", + " batch_size=batch_size_train, shuffle=False)\n", + "\n", + "# Training loop:\n", + "for epoch in range(n_epochs):\n", + " train_denoising_model(train_loader, unet_model, criterion, optimizer, history)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "46edff16", + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(8):\n", + " visualize_denoising(unet_model, test_dataset, 123*i)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2dac72fa", + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(8):\n", + " visualize_denoising(unet_model, fm_train_dataset, 123*i)" ] }, { "cell_type": "markdown", + "id": "288c6764", "metadata": {}, "source": [ "

\n", - " Task 5.3:

\n", - "Can you imagine any real-world scenarios where a denoising model would change the content of an image?\n", + " Task 5.4:

\n", + "How does the new denoiser perform compared to the one from the previous section? Why?\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "a9694e46", "metadata": {}, "source": [ - "**5.2 Answer:**\n", + "### Train the denoiser on both MNIST and FashionMNIST, shuffling the training data\n", + "\n", + "We previously performed the training sequentially on the MNIST data first then followed by the FashionMNIST data. Now, we ask for the training data to be shuffled and observe the impact on performance. (noe the `shuffle=True` in the lines below)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ae52c3d0", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.optim as optim\n", + "import torch\n", + "\n", + "# Some hyper-parameters:\n", + "n_epochs = 5\n", + "batch_size_train = 64\n", + "batch_size_test = 1000\n", + "\n", + "# Dictionary to store loss history:\n", + "history = {\"loss\": []}\n", + "\n", + "# Model:\n", + "unet_model = UNet(depth=3, in_channels=1, upsample_mode='bilinear')\n", + "unet_model = unet_model.to(device)\n", + "\n", + "# Loss function:\n", + "criterion = F.mse_loss #mse_loss\n", + "\n", + "# Optimiser:\n", + "optimizer = optim.Adam(unet_model.parameters(), lr=0.0005)\n", + "\n", + "# Train loader:\n", + "train_loader = torch.utils.data.DataLoader(torch.utils.data.ConcatDataset([train_dataset, fm_train_dataset]),\n", + " batch_size=batch_size_train, shuffle=True) # here we set shuffle = True\n", "\n", - "Your answer here!" + "# Training loop:\n", + "for epoch in range(n_epochs):\n", + " train_denoising_model(train_loader, unet_model, criterion, optimizer, history)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f71a710b", + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(8):\n", + " visualize_denoising(unet_model, test_dataset, 123*i)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "52a67bf2", + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(8):\n", + " visualize_denoising(unet_model, fm_train_dataset, 123*i)" + ] + }, + { + "cell_type": "markdown", + "id": "b8fe50cf", + "metadata": {}, + "source": [ + "

\n", + " Task 5.5:

\n", + "How does the denoiser trained on shuffled data perform compared to the one trained sequentially on one dataset and then on the other?\n", + "
" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "ec448985", "metadata": {}, "source": [ + "\n", "

\n", " Checkpoint 5

\n", "
    \n", - " Congrats on reaching the final checkpoint! Let us know on Element, and we'll discuss the questions once reaching critical mass.\n", + " Congrats on reaching the final checkpoint! Let us know on the course chat, and we'll discuss the questions once reaching critical mass.\n", "
\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "33838105", "metadata": {}, "source": [ + "\n", "

\n", " Bonus Questions

\n", "
    \n", - "
  1. Try training a FashionMNIST denoising network and applying it to MNIST. Or, try training a denoising network on both datasets and see how it works on each.
  2. \n", "
  3. Go back to Part 4 and try another attribution method, such as Saliency, and see how the results differ.
  4. \n", "
\n", "
" @@ -1748,29 +1674,22 @@ }, { "cell_type": "markdown", + "id": "eee21f1e", "metadata": {}, "source": [] } ], "metadata": { + "jupytext": { + "cell_metadata_filter": "all", + "custom_cell_magics": "kql" + }, "kernelspec": { - "display_name": "07_failure_modes", + "display_name": "Python [conda env:07-failure-modes]", "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" + "name": "conda-env-07-failure-modes-py" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 5 } diff --git a/setup.sh b/setup.sh index 780d608..a1cbf31 100644 --- a/setup.sh +++ b/setup.sh @@ -1,17 +1,21 @@ # create mamba environment and activate it -mamba create -n 07-failure-modes python +conda create -n 07-failure-modes -y python eval "$(conda shell.bash hook)" conda activate 07-failure-modes # install the ipython kernel for running jupyterlab -mamba install -y ipykernel ipywidgets +conda install -y ipykernel ipywidgets # for TAs to format the notebooks -# mamba install jupytext black nbconvert +# conda install jupytext black nbconvert # install libraries needed for the exercise # model interpretability pip install git+https://github.com/pytorch/captum.git +# classification package +pip install git+https://github.com/adjavon/classification.git +# UNET package from dlmbl +pip install git+https://github.com/dlmbl/dlmbl-unet.git # computer vision deep learning pip install torchvision # progress bars @@ -28,4 +32,4 @@ pip install seaborn # download data needed for the exercise python download_mnist.py -conda deactivate \ No newline at end of file +conda deactivate diff --git a/solution.ipynb b/solution.ipynb index df4cbd2..fa15474 100644 --- a/solution.ipynb +++ b/solution.ipynb @@ -1,29 +1,29 @@ { "cells": [ { - "attachments": {}, "cell_type": "markdown", + "id": "ad68ff94", "metadata": {}, "source": [ "# Exercise 7: Failure Modes And Limits of Deep Learning" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "c0f0735a", "metadata": {}, "source": [ - "In the following exercise, we explore the failure modes and limits of neural networks. \n", - "Neural networks are powerful, but it is important to understand their limits and the predictable reasons that they fail. \n", + "In the following exercise, we explore the failure modes and limits of neural networks.\n", + "Neural networks are powerful, but it is important to understand their limits and the predictable reasons that they fail.\n", "These exercises illustrate how the content of datasets, especially differences between the training and inference/test datasets, can affect the network's output in unexpected ways.\n", "

\n", - "While neural networks are generally less interpretable than other types of machine learning, it is still important to investigate the \"internal reasoning\" of the network as much as possible to discover failure modes, or situations in which the network does not perform well. \n", - "This exercise introduces a tool called Integrated Gradients that helps us makes sense of the network \"attention\". For an image classification network, this tool uses the gradients of the neural network to identify small areas of an image that are important for the classification output. " + "While neural networks are generally less interpretable than other types of machine learning, it is still important to investigate the \"internal reasoning\" of the network as much as possible to discover failure modes, or situations in which the network does not perform well.\n", + "This exercise introduces a tool called Integrated Gradients that helps us makes sense of the network \"attention\". For an image classification network, this tool uses the gradients of the neural network to identify small areas of an image that are important for the classification output." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "5619f37d", "metadata": {}, "source": [ "\n", @@ -43,17 +43,17 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "aba193c5", "metadata": {}, "source": [ "### Acknowledgements\n", - "This notebook was created by Steffen Wolf, Jordao Bragantini, Jan Funke, and Loic Royer. Modified by Tri Nguyen, Igor Zubarev, and Morgan Schwartz for DL@MBL 2022, and Caroline Malin-Mayor for DL@MBL 2023." + "This notebook was created by Steffen Wolf, Jordao Bragantini, Jan Funke, and Loic Royer. Modified by Tri Nguyen, Igor Zubarev, and Morgan Schwartz for DL@MBL 2022, Caroline Malin-Mayor for DL@MBL 2023, and Anna Foix Romero for DL@MBL 2024." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "c1cf118b", "metadata": {}, "source": [ "### Data Loading\n", @@ -61,12 +61,13 @@ "The following will load the MNIST dataset, which already comes split into a training and testing dataset.\n", "The MNIST dataset contains images of handwritten digits 0-9.\n", "This data was already downloaded in the setup script.\n", - "Documentation for this pytorch dataset is available at https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html " + "Documentation for this pytorch dataset is available at https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, + "id": "c29ae4dc", "metadata": {}, "outputs": [], "source": [ @@ -88,8 +89,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "1bb942ea", "metadata": {}, "source": [ "### Part 1: Preparation of a Tainted Dataset\n", @@ -99,11 +100,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, + "id": "32077360", "metadata": {}, "outputs": [], "source": [ - "#Imports:\n", + "# Imports:\n", "import torch\n", "import numpy\n", "from scipy.ndimage import convolve\n", @@ -112,7 +114,8 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, + "id": "1adbc5ee", "metadata": {}, "outputs": [], "source": [ @@ -122,21 +125,20 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "dd092467", "metadata": {}, "source": [ "## Part 1.1: Local Corruption of Data\n", "\n", - "First we will add a white pixel in the bottom right of all images of 7's, and visualize the results. This is an example of a local change to the images, where only a small portion of the image is corruped." + "First we will add a white pixel in the bottom right of all images of 7's, and visualize the results. This is an example of a local change to the images, where only a small portion of the image is corrupted." ] }, { "cell_type": "code", - "execution_count": 4, - "metadata": { - "tags": [] - }, + "execution_count": null, + "id": "5d779046", + "metadata": {}, "outputs": [], "source": [ "# Add a white pixel in the bottom right of all images of 7's\n", @@ -146,57 +148,58 @@ }, { "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACbCAYAAADC4/k2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAWbUlEQVR4nO3df2zU9R3H8XeLvQOkd+VH+ks46aITgagbobQTkc2qc1MDY3GLTnGaEdjBrHSTkUw2FO3ikqkwhGiwzRIVQybqzMIkRWrQVkMXdIh2bmO2C9wxlvUOGLTY++wP43f3+UCvd+33vvf93j0fyTf5vnvf7/XT66vHm+/3c99vkVJKCQAAgEOKcz0AAABQWGg+AACAo2g+AACAo2g+AACAo2g+AACAo2g+AACAo2g+AACAo2g+AACAo2g+AACAo2g+AACAo7LWfGzevFmmT58uY8eOlXnz5sm7776brW8FlyIDECEHIAM4V1E27u3y4osvyl133SVbt26VefPmyRNPPCE7duyQ7u5uKS8vT7lvIpGQI0eOSGlpqRQVFdk9NNhMKSUnTpyQ6upqKS7+fy87mgyIkAOvyUYOyIC38F6AoTIw1Ma2q62tVeFw2KoHBwdVdXW1am5uHnbf3t5eJSIsHlt6e3ttywA58O5iZw7IgDcX3gtYzAycj+2nXQYGBqSrq0saGhqsrxUXF0tDQ4N0dHScs31/f7/E43FrUdxk15NKS0ut9UwzIEIO8sVockAG8gPvBUjOwFBsbz6OHz8ug4ODUlFRoX29oqJCIpHIOds3NzdLMBi0llAoZPeQ4IDkw6GZZkCEHOSL0eSADOQH3guQzumxnH/aZe3atRKLxaylt7c310NCDpADkAGIkINCcYHdTzhlyhQZM2aMRKNR7evRaFQqKyvP2d7v94vf77d7GMihTDMgQg7yEe8F4L0AQ7H9yIfP55M5c+ZIW1ub9bVEIiFtbW1SX19v97eDC5EBiJADkAGkkNZ04wxt375d+f1+1draqg4dOqSWLVumysrKVCQSGXbfWCyW85m6LJkvsVjMtgyQA+8uduaADHhz4b2AxczA+WSl+VBKqU2bNqlQKKR8Pp+qra1VnZ2dae1H0Ly5nC9sI80AOfDuYmcOyIA3F94LWNJpPrJykbHRiMfjEgwGcz0MZCgWi0kgELDt+ciBN9mZAzLgTbwXIJ0M5PzTLgAAoLDQfAAAAEfRfAAAAEfRfAAAAEfRfAAAAEfRfAAAAEfRfAAAAEfRfAAAAEfRfAAAAEfRfAAAAEddkOsBID0/+9nPtHr9+vVaXVys95ELFy7U6vb29qyMC85au3atVj/yyCNa/dhjj2n1T3/606yPCQAyxZEPAADgKJoPAADgKJoPAADgKOZ8uNjdd99tra9Zs0Z7LJFIpNxXKZWNISEHSktLrfVVq1Zpj5m/58bGRq3++OOPtXrbtm32Dg4ARoAjHwAAwFE0HwAAwFE0HwAAwFHM+XCxiy++2FofO3ZsDkcCJ11wgf5nuWLFCmu9oqIi5b7RaFSrOzo67BsYsqapqUmrfT6fVl9++eXW+h133JHyuT766COtnjVr1ihHB9iPIx8AAMBRNB8AAMBRNB8AAMBRzPlwkYaGBq02r+mQzDyve/PNN2u1ee4f3lFXV6fVzc3Nae+7fPlyrT506JAtY0Jmrr32Wq2ePXt2yscXL16s1UVFRUM+93DX8Ln00ku12szAzJkzU+4P9xgzZoxW19TUpL1vb2+vVvf399syJrtw5AMAADiK5gMAADiK5gMAADiKOR85NH/+fK1uaWnR6mAwOOS+v/rVr7T6k08+sW9gcNT06dO1euPGjWnv29bWptV79+61YUQQEamqqtLqF154Qau/8IUvDLmv+bd74YUXarU5p6Orq0urv/zlL6c9TlNxsf5/SvN754Nbb71Vq1999dUcjSS1QCCg1TfccINW33PPPVptXt+lpKREq6+55pq0v/e6deu0esOGDWnv6wSOfAAAAEdl3Hy8+eabcsstt0h1dbUUFRXJyy+/rD2ulJJ169ZJVVWVjBs3ThoaGs65sybyGxkAGYAIOcDQMm4+Tp06JVdeeaVs3rz5vI8/9thjsnHjRtm6dau88847cuGFF8qNN94oZ86cGfVg4Q1kAGQAIuQAQytSw31oPNXORUWyc+dOWbRokYh81uVWV1dLU1OT/PjHPxYRkVgsJhUVFdLa2irf/e53h33OeDyecq5DPnnmmWe02jz/l8w8l3/ddddlY0gjFovFJBAI2JIBkcLKwZ///GetTnUdhng8rtW33XabVu/evdu+gY1ALBaT0tJST2bAvM6O+fc5bdo0276Xeb+V48ePa/WUKVO0urq62lo354ZNnTo15fcyM3HTTTelPc6RcOK9YNy4cVp9+vRpewafhvLycq2+/vrrrfXLLrtMe8y8nstwczb+9Kc/afUrr7yi1cnXc5o7d27K5zIbvPHjx6fc3k6fZyAVW+d8HD58WCKRiPZHHAwGZd68eUPe4Kq/v1/i8bi2wLtGkgERcpBPyABEyAFSs7X5iEQiInLunTcrKiqsx0zNzc0SDAatxc7/XcB5I8mACDnIJ2QAIuQAqeX8o7Zr166V1atXW3U8Hs/bsJmHUs3TLIlEQqv7+vqsdbd9TMpuhZQDk3kIPtWZ0Keeekqrc32axU65zsADDzyg1Zl8b/PS1WvWrNHqzs5Ore7u7k75fP/+97+1+r777rPWhzvN8o9//EOr77zzzpTbu006OXDyNIvJPAU+Y8YMa938CLX5t2w+/tJLL2n1ihUrtPrYsWNa/c9//tNaN0+7mM/929/+1hy6q9h65KOyslJEzr2vSDQatR4z+f1+CQQC2gLvGkkGRMhBPiEDECEHSM3W5qOmpkYqKyu1Cx/F43F55513pL6+3s5vBZciAyADECEHSC3j0y4nT56Uv/71r1Z9+PBhOXDggEyaNElCoZA0NjbKhg0b5NJLL5Wamhp58MEHpbq62vpEDPLT+++/L6FQiAwUuN7eXpk1axYZKGC8FyAdGTcf+/fvl69+9atW/fm5uaVLl0pra6s88MADcurUKVm2bJn09fXJ/PnzZdeuXTJ27Fj7Ru0R5mWzf/e732W0/6ZNm6z1N954w44hZc0111xDBtL061//WquHO0+c/D/Hhx9+OHsDs8Gjjz4qzz33nCcyYF7quq6uLqP9e3p6rHVzXsVbb7018oGdx3DzPJKZH880P8abbfn+XmD+fSbPP3nvvfe0xx555BGtPnjwoFabt7035/395Cc/0epf/OIXQ47r73//u1avX79+yG3dIOPmY+HChSknxBUVFclDDz0kDz300KgGBm9J/lw3GShcW7ZsEREyUMh4L0A6uLcLAABwFM0HAABwVM6v85HPvv71r2v1FVdckXJ78/boTz75pO1jgvPM+yCZk+3M05jvv/++Vt9xxx3WOvfEsE9TU5NWD3f56bffflurk8+pj3aOx8SJE7XafO9YsGBB2uP6wx/+MKqxIDUzN8kfwEheH4lbb71Vq815G8lzZczruZi33Dh69OioxpJtHPkAAACOovkAAACOovkAAACOYs6Hjcxz+b/85S9Tbr9v3z6tXrp0qVbHYjFbxgVn1dbWarWZi1SXlhYRefrpp7X6X//6ly3jgs58nc17L5l/f7fffrtWp7o5WqaWL1+u1amu5/LBBx9o9W233Za1ceFcu3btsu25zOt4rFu3TqvN66EkXxfEvE6NOQfE7TjyAQAAHEXzAQAAHEXzAQAAHMWcj1EY7b1bzGvxm7eehjfdc889Wl1VVZVy+w8//FCrzXtzIDvMv9dM/35H45ZbbtFq81y/6dNPP7XWt27dqj3GHA/vMH/vGzZs0OqSkhKtNv+NWLVqlbU+2muK5BpHPgAAgKNoPgAAgKNoPgAAgKOY8zEKa9as0epEIpHR/sNdBwTe0NjYqNX33nuvVpv3bjFdf/31Wn3kyBFbxgX3evnll7V6uIz86Ec/stbN65PAvb75zW9q9XPPPafV5hyPnp4erTbv8eP1eR7JOPIBAAAcRfMBAAAcRfMBAAAcxZyPDF111VXWunlt/eGY12/o7u62Y0jIgWnTplnr5hyP4mK9px8cHNTqZ555RquZ45H/Hn30Ua02MzLcfLH29nbbxwT7mXM8zLk9Y8aM0eq//e1vWm3O//La/VoywZEPAADgKJoPAADgKE67ZOj111+31idOnJhy287OTq2+++67szEkOOCSSy7R6ldffdVav+yyy1Lu+/jjj2u1+RFt5B+fz6fVX/rSl7TaPM1iftT2vvvu0+qPP/7YxtHBTsmXTDc/SmueZkm1r0h+n2YxceQDAAA4iuYDAAA4iuYDAAA4ijkfGZo8ebK1PtzH45566imtPnnyZFbGhOwz53UMN88jWfL8EOSn8ePHa/X3vvc9rTY/Qml64YUXtNqcO5DprRuQPckfsxcR2bBhg7U+YcIE7bFjx45pdTgc1upCvtwCRz4AAICjMmo+mpubZe7cuVJaWirl5eWyaNGiczq3M2fOSDgclsmTJ8uECRNkyZIlEo1GbR003MecjU8OQAZABjCUjJqP9vZ2CYfD0tnZKbt375azZ8/KDTfcIKdOnbK2uf/+++X3v/+97NixQ9rb2+XIkSPyrW99y/aBw10WL15MDkAGQAaQlozmfOzatUurW1tbpby8XLq6umTBggUSi8Vk27Zt8vzzz8vXvvY1ERFpaWmRyy+/XDo7O6Wurs6+kTukpaVFq83LIqfy9ttv2z0c1+rt7c3rHEyaNCntbffu3avVhw4dsnk07nXgwAGpqqrKywyYSktLrXXzkvnf/va3U+57//33a/VvfvMbrfbyHI98y8CUKVO0+q233tLqqVOnWus9PT3aY0uXLtVqLpP/f6Oa8xGLxUTk/2/MXV1dcvbsWWloaLC2mTFjhoRCIeno6Djvc/T390s8HtcWeBM5wOcX3iMDhWs0GRAhB4VixM1HIpGQxsZGufrqq2X27NkiIhKJRMTn80lZWZm2bUVFhUQikfM+T3NzswSDQWsxZxLDG+rq6sgBZObMmSJCBgrZaDIgQg4KxYibj3A4LAcPHpTt27ePagBr166VWCxmLb29vaN6PuTGs88+O6r9yQHIAETIQaEY0XU+Vq5cKa+99pq8+eab2vmuyspKGRgYkL6+Pq3bjUajUllZed7n8vv94vf7RzKMrLjqqqu0OvmQoYh+LnZgYEB7bPPmzVpdSLO6L7roIms9H3Jgevjhh9PedsuWLVr9n//8x+7huF4+ZsCUnPnh5niYt07fuHFjVsbkJiPJgIj7cjBr1iytTv43T0Tk008/tdZvv/127bFCmveXqYyOfCilZOXKlbJz507Zs2eP1NTUaI/PmTNHSkpKpK2tzfpad3e39PT0SH19vT0jhuuRA5ABkAGkktGRj3A4LM8//7y88sorUlpaap23CwaDMm7cOAkGg3LvvffK6tWrZdKkSRIIBGTVqlVSX1/vmZnNGJloNColJSXkoMCdPn1aAoEAGShgZADpyOjIx5YtWyQWi8nChQulqqrKWl588UVrm8cff1xuvvlmWbJkiSxYsEAqKyvlpZdesn3gcJcvfvGL5ADa75gMFCYygHQUKaVUrgeRLB6PSzAYzNn3X7hwoVbv3r1bq5Ov83H48GHtsUsuuSRr43K7WCwmgUDAtufLdQ7M87zmtTuSr/uxfv167TFzfojL/sSyys4c5DoDphkzZmh1U1OTtf79739fe+wvf/mLVt90001a/cknn9g8OvfIt/eCK6+8Uqv37dun1cn/RnABtc+kkwHu7QIAABxF8wEAABxF8wEAABw1out8APnOnI2ffB8PU39/v1YX0hyPQvLggw9q9Xe+850ht920aZNW5/Mcj3z33nvvabU5H6yvr8/B0eQPjnwAAABH0XwAAABH0XwAAABHMefD8NFHH2m1eW3++fPnOzkc5Mi2bdu0et26dVo9fvx4a/2Pf/yjI2OCs8xz+6muW/D0009r9Z49e7IyJuReT09ProeQFzjyAQAAHEXzAQAAHMVpF8PnN8v73LXXXpujkcBNLr744lwPAQ676667tDrVJdKffPJJ7bHu7u7sDcxB5sfGi4qKcjQS5FI2csCRDwAA4CiaDwAA4CiaDwAA4CjmfADAebz++uta3dTUpNWrV6+21vNljoeJOR4QyU4OOPIBAAAcRfMBAAAcRfMBAAAcxZwPADiPtrY2rb7gAt4uAbtw5AMAADiK5gMAADjKdc2HeRlXeIPdvzdy4E12/t7IgDfxXoB0fmeuaz5OnDiR6yFgBOz+vZEDb7Lz90YGvIn3AqTzOytSLmsrE4mEHDlyRJRSEgqFpLe3VwKBQK6H5QnxeFymTZvm6GumlJITJ05IdXW1FBfb18uSg5HLlxyQgZHLlwyIfJaD7u5umTlzJhnIgNsz4Lrp28XFxTJ16lSJx+MiIhIIBAhbhpx+zYLBoO3PSQ5Gz+s5IAOj5/UMiHyWg4suukhEyMBIuDUDrjvtAgAA8hvNBwAAcJRrmw+/3y8///nPxe/353oonpGPr1k+/kzZlm+vWb79PE7It9cs334eJ7j9NXPdhFMAAJDfXHvkAwAA5CeaDwAA4CiaDwAA4CiaDwAA4CjXNh+bN2+W6dOny9ixY2XevHny7rvv5npIrtHc3Cxz586V0tJSKS8vl0WLFkl3d7e2zZkzZyQcDsvkyZNlwoQJsmTJEolGozka8ciQgaEVSgZEyMFQyABEPJwD5ULbt29XPp9PPfvss+qDDz5QP/jBD1RZWZmKRqO5Hpor3HjjjaqlpUUdPHhQHThwQH3jG99QoVBInTx50tpm+fLlatq0aaqtrU3t379f1dXVqa985Ss5HHVmyEBqhZABpchBKmSADCjl3Ry4svmora1V4XDYqgcHB1V1dbVqbm7O4ajc69ixY0pEVHt7u1JKqb6+PlVSUqJ27NhhbfPhhx8qEVEdHR25GmZGyEBm8jEDSpGDTJABKOWdHLjutMvAwIB0dXVJQ0OD9bXi4mJpaGiQjo6OHI7MvWKxmIiITJo0SUREurq65OzZs9prOGPGDAmFQp54DclA5vItAyLkIFNkACLeyYHrmo/jx4/L4OCgVFRUaF+vqKiQSCSSo1G5VyKRkMbGRrn66qtl9uzZIiISiUTE5/NJWVmZtq1XXkMykJl8zIAIOcgEGYCIt3LgurvaIjPhcFgOHjwo+/bty/VQkCNkAGQAIt7KgeuOfEyZMkXGjBlzzkzcaDQqlZWVORqVO61cuVJee+01eeONN2Tq1KnW1ysrK2VgYED6+vq07b3yGpKB9OVrBkTIQbrIAES8lwPXNR8+n0/mzJkjbW1t1tcSiYS0tbVJfX19DkfmHkopWblypezcuVP27NkjNTU12uNz5syRkpIS7TXs7u6Wnp4eT7yGZGB4+Z4BEXIwHDLgjZ8h2zybg5xNdU1h+/btyu/3q9bWVnXo0CG1bNkyVVZWpiKRSK6H5gorVqxQwWBQ7d27Vx09etRa/vvf/1rbLF++XIVCIbVnzx61f/9+VV9fr+rr63M46syQgdQKIQNKkYNUyAAZUMq7OXBl86GUUps2bVKhUEj5fD5VW1urOjs7cz0k1xCR8y4tLS3WNqdPn1Y//OEP1cSJE9X48ePV4sWL1dGjR3M36BEgA0MrlAwoRQ6GQgaglHdzUKSUUs4dZwEAAIXOdXM+AABAfqP5AAAAjqL5AAAAjqL5AAAAjqL5AAAAjqL5AAAAjqL5AAAAjqL5AAAAjqL5AAAAjqL5AAAAjqL5AAAAjqL5AAAAjvofFL+F8lBZLZ4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "9eae44bc", + "metadata": {}, + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", "plt.subplot(1,4,1)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[3][0][0], cmap=plt.get_cmap('gray'))\n", "plt.subplot(1,4,2)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[23][0][0], cmap=plt.get_cmap('gray'))\n", "plt.subplot(1,4,3)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[15][0][0], cmap=plt.get_cmap('gray'))\n", "plt.subplot(1,4,4)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[29][0][0], cmap=plt.get_cmap('gray'))\n", "plt.show()" ] }, { "cell_type": "markdown", + "id": "1242b7da", "metadata": {}, "source": [ "

\n", "Task 1.1:

\n", - "We have locally changed images of 7s artificially for this exercise. What are some examples of ways that images can be corrupted or tainted during real-life data colleciton, for example in a hospital imaging environment or microscopy lab?\n", + "We have locally changed images of 7s artificially for this exercise. What are some examples of ways that images can be corrupted or tainted during real-life data collection, for example in a hospital imaging environment or microscopy lab?\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "73add44b", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**1.1 Answer:**\n", "\n", - "Your answer here!" + "In a microscopy lab, sample preparation error such as improper staining or sample contamination or other technical issues such as optical aberrations and focus drift can cause image corruption. Environmental factors such as vibrations or lighting variations may also contribute to image corruption. Digital artifacts like compression artifacts or noise, and other issues like operator error (improper manipulation, incorrect magnification...) will also lead to corrupted images.\n", + "\n", + "In a hospital imaging environment, motion artifacts (patient movement), technical issue (equipment malfunction, machine calibration errors), environmental factors (electromagnetic interference, temperature fluctuations), operator errors (improper positioning, incorrect settings), biological factors (metal implant, body motion from bodily functions) are all sources of corrupted data." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "35e8819c", "metadata": { "tags": [ "solution" @@ -211,8 +214,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "586be487", "metadata": {}, "source": [ "

\n", @@ -222,18 +225,22 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "5b6c8072", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**1.2 Answer**\n", "\n", - "Your answer here!" + "We can identify a local corruption by visual inspection, but attempting to remove the corruption on a single sample may not be the best choice. Cropping the corrupted region in all the samples will guarantee that the information of the contaminated area will be ignored across the dataset." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "d55321f4", "metadata": { "tags": [ "solution" @@ -253,17 +260,18 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "2ad4f801", "metadata": {}, "source": [ - "## Part 1.2: Global Corrution of data\n", + "## Part 1.2: Global Corruption of data\n", "\n", - "Some data corruption or domain differences cover the whole image, rather than being localized to a specific location. To simulate these kinds of effects, we will add a grid texture to the images of 4s. " + "Some data corruption or domain differences cover the whole image, rather than being localized to a specific location. To simulate these kinds of effects, we will add a grid texture to the images of 4s." ] }, { "cell_type": "markdown", + "id": "0749a9f6", "metadata": {}, "source": [ "You may have noticed that the images are stored as arrays of integers. First we cast them to float to be able to add textures easily without integer wrapping issues." @@ -271,7 +279,8 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, + "id": "19c5869e", "metadata": {}, "outputs": [], "source": [ @@ -281,8 +290,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "46e255ca", "metadata": {}, "source": [ "Then we create the grid texture and visualize it." @@ -290,30 +299,10 @@ }, { "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAePklEQVR4nO3de2zV9f3H8Veh9IiensMq0ssorOCFTi7LzqQSlZ+OhtIlRpQs3tKAMRBdMeMwp+2iotuSOkysmWGYJhvMRLwlAtEsLIqeEjdg4egJI9saIN2AQMsk4Rwocsnp5/cH8Yyj1HLqOd/3t+X5SL4JPefz7ev9+e7E1770cFrknHMCAMBjo6wHAABcniggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmCi2HuDL+vv7dfjwYZWWlqqoqMh6HABAjpxzOnHihKqqqjRq1MD3Ob4roMOHD6u6utp6DADAN3Tw4EFNnDhxwOd9V0ClpaWSpIcfflglJSWXfN7zzz+fc1ZDQ0PO50jSn//8Z0+y/JzjZRZ78jbHyyw/53iZ5fc9nT59Oqf16XRaf//73zP/PR9IwQpozZo1euGFF9TT06NZs2bp5Zdf1uzZswc974u/dispKVEgELjkvFAolPOMxcVD275XWX7O8TKLPXmb42WWn3O8zPL7nkaPHj2krMF+jFKQNyG8+eabWrlypVatWqVPPvlEs2bNUkNDg44ePVqIOADAMFSQAnrxxRe1dOlSPfTQQ/rud7+rV155RVdeeaX+8Ic/FCIOADAM5b2Azp49q3g8rvr6+v+FjBql+vp6bd++/Svrz5w5o1QqlXUAAEa+vBfQZ599pnQ6rfLy8qzHy8vL1dPT85X1bW1tCofDmYN3wAHA5cH8H6K2trYqmUxmjoMHD1qPBADwQN7fBTd+/HiNHj1avb29WY/39vaqoqLiK+sDgUBO73YDAIwMeb8DKikpUSQS0datWzOP9ff3a+vWrZozZ06+4wAAw1RB/h3QypUrtXjxYv3gBz/Q7Nmz9dJLL6mvr08PPfRQIeIAAMNQQQro3nvv1X//+18988wz6unp0fe+9z1t2bLlK29MAABcvoqcc856iAulUimFw2HFYjEFg8GCZsXj8SGdF4lEPMnyc46XWezJ2xwvs/yc42WW3/fU0dGR0/p0Oq1EIqFkMvm1n9hg/i44AMDliQICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgImCfBp2PrS0tKi4+NLHa2pqyjkjGo3mfI4ktbe3e5Ll5xwvs9iTtzleZvk5x8ssv++ptrZ2SFmD4Q4IAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCiyDnnrIe4UCqVUjgcViwWUzAYLGhWPB4f0nmRSMSTLD/neJnFnrzN8TLLzzleZvl9Tx0dHTmtT6fTSiQSSiaTCoVCA67jDggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAICJYusBBtLS0qLi4ksfr6mpKeeMaDSa8zmS1N7e7kmWn3O8zGJP3uZ4meXnHC+z/L6n2traIWUNhjsgAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJoqcc856iAulUimFw2HFYjEFg8GCZsXj8SGdF4lEPMnyc46XWezJ2xwvs/yc42WW3/fU0dGR0/p0Oq1EIqFkMqlQKDTgOu6AAAAmKCAAgIm8F9Czzz6roqKirGPatGn5jgEADHMF+YV0N954oz744IP/heTwi+UAAJeHgjRDcXGxKioqCvGtAQAjREF+BrR3715VVVVpypQpevDBB3XgwIEB1545c0apVCrrAACMfHkvoLq6Oq1fv15btmzR2rVr1d3drdtuu00nTpy46Pq2tjaFw+HMUV1dne+RAAA+lPcCamxs1I9//GPNnDlTDQ0N+tOf/qTjx4/rrbfeuuj61tZWJZPJzHHw4MF8jwQA8KGCvztg3Lhxuv7667Vv376LPh8IBBQIBAo9BgDAZwr+74BOnjyp/fv3q7KystBRAIBhJO8F9Pjjj6uzs1P//ve/9de//lV33323Ro8erfvvvz/fUQCAYSzvfwV36NAh3X///Tp27JiuueYa3XrrrdqxY4euueaafEcBAIYx334Y6c0335zTP2BtamrKOSsajeZ8jiS1t7d7kuXnHC+z2JO3OV5m+TnHyyy/76m2tjan9XwYKQDA1yggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJjw7YeRxmIxBYPBgmbF4/EhnReJRDzJ8nOOl1nsydscL7P8nONllt/31NHRkdN6PowUAOBrFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATxdYDDKSlpUXFxZc+XlNTU84Z0Wg053Mkqb293ZMsP+d4mcWevM3xMsvPOV5m+X1PtbW1Q8oaDHdAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATBQ555z1EBdKpVIKh8OKxWIKBoMFzYrH40M6LxKJeJLl5xwvs9iTtzleZvk5x8ssv++po6Mjp/XpdFqJRELJZFKhUGjAddwBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMFFsPcBAWlpaVFx86eM1NTXlnBGNRnM+R5La29s9yfJzjpdZ7MnbHC+z/JzjZZbf91RbWzukrMFwBwQAMEEBAQBM5FxA27Zt05133qmqqioVFRVp06ZNWc875/TMM8+osrJSY8eOVX19vfbu3ZuveQEAI0TOBdTX16dZs2ZpzZo1F31+9erV+u1vf6tXXnlFO3fu1FVXXaWGhgadPn36Gw8LABg5cn4TQmNjoxobGy/6nHNOL730kp566indddddkqRXX31V5eXl2rRpk+67775vNi0AYMTI68+Auru71dPTo/r6+sxj4XBYdXV12r59+0XPOXPmjFKpVNYBABj58lpAPT09kqTy8vKsx8vLyzPPfVlbW5vC4XDmqK6uzudIAACfMn8XXGtrq5LJZOY4ePCg9UgAAA/ktYAqKiokSb29vVmP9/b2Zp77skAgoFAolHUAAEa+vBZQTU2NKioqtHXr1sxjqVRKO3fu1Jw5c/IZBQAY5nJ+F9zJkye1b9++zNfd3d1KJBIqKyvTpEmTtGLFCv3617/Wddddp5qaGj399NOqqqrSwoUL8zk3AGCYy7mAdu3apTvuuCPz9cqVKyVJixcv1vr16/XEE0+or69Py5Yt0/Hjx3Xrrbdqy5YtuuKKK/I3NQBg2CtyzjnrIS6USqUUDocVi8UUDAYLmhWPx4d0XiQS8STLzzleZrEnb3O8zPJzjpdZft9TR0dHTuvT6bQSiYSSyeTX/lzf/F1wAIDLEwUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADARM6/jsErLS0tKi6+9PGamppyzohGozmfI0nt7e2eZPk5x8ss9uRtjpdZfs7xMsvve6qtrR1S1mC4AwIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCiyDnnrIe4UCqVUjgcViwWUzAYLGhWPB4f0nmRSMSTLD/neJnFnrzN8TLLzzleZvl9Tx0dHTmtT6fTSiQSSiaTCoVCA67jDggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAICJYusBBtLS0qLi4ksfr6mpKeeMaDSa8zmS1N7e7kmWn3O8zGJP3uZ4meXnHC+z/L6n2traIWUNhjsgAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJoqcc856iAulUimFw2HFYjEFg8GCZsXj8SGdF4lEPMnyc46XWezJ2xwvs/yc42WW3/fU0dGR0/p0Oq1EIqFkMqlQKDTgOu6AAAAmKCAAgImcC2jbtm268847VVVVpaKiIm3atCnr+SVLlqioqCjrWLBgQb7mBQCMEDkXUF9fn2bNmqU1a9YMuGbBggU6cuRI5nj99de/0ZAAgJEn59+I2tjYqMbGxq9dEwgEVFFRMeShAAAjX0F+BhSLxTRhwgTdcMMNevTRR3Xs2LEB1545c0apVCrrAACMfHkvoAULFujVV1/V1q1b9Zvf/EadnZ1qbGxUOp2+6Pq2tjaFw+HMUV1dne+RAAA+lPNfwQ3mvvvuy/x5xowZmjlzpqZOnapYLKZ58+Z9ZX1ra6tWrlyZ+TqVSlFCAHAZKPjbsKdMmaLx48dr3759F30+EAgoFAplHQCAka/gBXTo0CEdO3ZMlZWVhY4CAAwjOf8V3MmTJ7PuZrq7u5VIJFRWVqaysjI999xzWrRokSoqKrR//3498cQTuvbaa9XQ0JDXwQEAw1vOBbRr1y7dcccdma+/+PnN4sWLtXbtWu3evVt//OMfdfz4cVVVVWn+/Pn61a9+pUAgkL+pAQDDnm8/jPTmm29WcfGl92NTU1POWdFoNOdzJKm9vd2TLD/neJnFnrzN8TLLzzleZvl9T7W1tTmt58NIAQC+RgEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAw4dtPw47FYgoGgwXNisfjQzovEol4kuXnHC+z2JO3OV5m+TnHyyy/76mjoyOn9XwaNgDA1yggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJgoth5gIC0tLSouvvTxmpqacs6IRqM5nyNJ7e3tnmT5OcfLLPbkbY6XWX7O8TLL73uqra0dUtZguAMCAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgosg556yHuFAqlVI4HFYsFlMwGCxoVjweH9J5kUjEkyw/53iZxZ68zfEyy885Xmb5fU8dHR05rU+n00okEkomkwqFQgOu4w4IAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJiggAIAJCggAYIICAgCYoIAAACYoIACAiWLrAQbS0tKi4uJLH6+pqSnnjGg0mvM5ktTe3u5Jlp9zvMxiT97meJnl5xwvs/y+p9ra2iFlDYY7IACACQoIAGAipwJqa2vTTTfdpNLSUk2YMEELFy5UV1dX1prTp0+rublZV199tYLBoBYtWqTe3t68Dg0AGP5yKqDOzk41Nzdrx44dev/993Xu3DnNnz9ffX19mTXRaFTvvvuu3n77bXV2durw4cO655578j44AGB4y+lNCFu2bMn6ev369ZowYYLi8bjmzp2rZDKp3//+99qwYYN++MMfSpLWrVun2tpa7dixQzfffHP+JgcADGvf6GdAyWRSklRWVibp/K96PXfunOrr6zNrpk2bpkmTJmn79u0X/R5nzpxRKpXKOgAAI9+QC6i/v18rVqzQLbfcounTp0uSenp6VFJSonHjxmWtLS8vV09Pz0W/T1tbm8LhcOaorq4e6kgAgGFkyAXU3NysPXv26I033vhGA7S2tiqZTGaOgwcPfqPvBwAYHob0D1GXL1+u9957T9u2bdPEiRMzj1dUVOjs2bM6fvx41l1Qb2+vKioqLvq9AoGAAoHAUMYAAAxjOd0BOee0fPlybdy4UR9++KFqamqyno9EIhozZoy2bt2aeayrq0sHDhzQnDlz8jMxAGBEyOkOqLm5WRs2bNDmzZtVWlqa+blOOBzW2LFjFQ6H9fDDD2vlypUqKytTKBTSY489pjlz5vAOOABAlpwKaO3atZKk22+/PevxdevWacmSJZLOfz7RqFGjtGjRIp05c0YNDQ363e9+l5dhAQAjR5FzzlkPcaFUKqVwOKxYLKZgMFjQrHg8PqTzIpGIJ1l+zvEyiz15m+Nllp9zvMzy+546OjpyWp9Op5VIJJRMJhUKhQZcx2fBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMDOk3onqhpaVFxcWXPl5TU1POGdFoNOdzpPO/csKLLD/neJnFnrzN8TLLzzleZvl9T7W1tUPKGgx3QAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAEwUOeec9RAXSqVSCofDisViCgaDBc2Kx+NDOi8SiXiS5eccL7PYk7c5Xmb5OcfLLL/vqaOjI6f16XRaiURCyWRSoVBowHXcAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADABAUEADBRbD3AQFpaWlRcfOnjNTU15ZwRjUZzPkeS2tvbPcnyc46XWezJ2xwvs/yc42WW3/dUW1s7pKzBcAcEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADARJFzzlkPcaFUKqVwOKxYLKZgMFjQrHg8PqTzIpGIJ1l+zvEyiz15m+Nllp9zvMzy+546OjpyWp9Op5VIJJRMJhUKhQZcxx0QAMAEBQQAMJFTAbW1temmm25SaWmpJkyYoIULF6qrqytrze23366ioqKs45FHHsnr0ACA4S+nAurs7FRzc7N27Nih999/X+fOndP8+fPV19eXtW7p0qU6cuRI5li9enVehwYADH85/UbULVu2ZH29fv16TZgwQfF4XHPnzs08fuWVV6qioiI/EwIARqRv9DOgZDIpSSorK8t6/LXXXtP48eM1ffp0tba26tSpUwN+jzNnziiVSmUdAICRL6c7oAv19/drxYoVuuWWWzR9+vTM4w888IAmT56sqqoq7d69W08++aS6urr0zjvvXPT7tLW16bnnnhvqGACAYWrIBdTc3Kw9e/bo448/znp82bJlmT/PmDFDlZWVmjdvnvbv36+pU6d+5fu0trZq5cqVma9TqZSqq6uHOhYAYJgYUgEtX75c7733nrZt26aJEyd+7dq6ujpJ0r59+y5aQIFAQIFAYChjAACGsZwKyDmnxx57TBs3blQsFlNNTc2g5yQSCUlSZWXlkAYEAIxMORVQc3OzNmzYoM2bN6u0tFQ9PT2SpHA4rLFjx2r//v3asGGDfvSjH+nqq6/W7t27FY1GNXfuXM2cObMgGwAADE85FdDatWslnf/Hphdat26dlixZopKSEn3wwQd66aWX1NfXp+rqai1atEhPPfVU3gYGAIwMOf8V3Neprq5WZ2fnNxoIAHB5GPK74AqtpaVFxcWXPl5TU1POGdFoNOdzJKm9vd2TLD/neJnFnrzN8TLLzzleZvl9T7W1tUPKGgwfRgoAMEEBAQBMUEAAABMUEADABAUEADBBAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMCEbz+M9PTp0xo9evQlr4/H4zlnDPUD9rzK8nOOl1nsydscL7P8nONl1kjc06XgDggAYIICAgCYoIAAACYoIACACQoIAGCCAgIAmKCAAAAmKCAAgAkKCABgggICAJiggAAAJnz3WXDOOUlSOp3O6byzZ8/mnJVrhtdZfs7xMos9eZvjZZafc7zM8vuehuqL/54PpMgNtsJjhw4dUnV1tfUYAIBv6ODBg5o4ceKAz/uugPr7+3X48GGVlpaqqKgo67lUKqXq6modPHhQoVDIaEJ7XIfzuA7ncR3O4zqc54fr4JzTiRMnVFVVpVGjBv5Jj+/+Cm7UqFFf25iSFAqFLusX2Be4DudxHc7jOpzHdTjP+jqEw+FB1/AmBACACQoIAGBiWBVQIBDQqlWrFAgErEcxxXU4j+twHtfhPK7DecPpOvjuTQgAgMvDsLoDAgCMHBQQAMAEBQQAMEEBAQBMDJsCWrNmjb7zne/oiiuuUF1dnf72t79Zj+S5Z599VkVFRVnHtGnTrMcquG3btunOO+9UVVWVioqKtGnTpqznnXN65plnVFlZqbFjx6q+vl579+61GbaABrsOS5Ys+crrY8GCBTbDFkhbW5tuuukmlZaWasKECVq4cKG6urqy1pw+fVrNzc26+uqrFQwGtWjRIvX29hpNXBiXch1uv/32r7weHnnkEaOJL25YFNCbb76plStXatWqVfrkk080a9YsNTQ06OjRo9ajee7GG2/UkSNHMsfHH39sPVLB9fX1adasWVqzZs1Fn1+9erV++9vf6pVXXtHOnTt11VVXqaGhQadPn/Z40sIa7DpI0oIFC7JeH6+//rqHExZeZ2enmpubtWPHDr3//vs6d+6c5s+fr76+vsyaaDSqd999V2+//bY6Ozt1+PBh3XPPPYZT59+lXAdJWrp0adbrYfXq1UYTD8ANA7Nnz3bNzc2Zr9PptKuqqnJtbW2GU3lv1apVbtasWdZjmJLkNm7cmPm6v7/fVVRUuBdeeCHz2PHjx10gEHCvv/66wYTe+PJ1cM65xYsXu7vuustkHitHjx51klxnZ6dz7vz/9mPGjHFvv/12Zs0///lPJ8lt377dasyC+/J1cM65//u//3M//elP7Ya6BL6/Azp79qzi8bjq6+szj40aNUr19fXavn274WQ29u7dq6qqKk2ZMkUPPvigDhw4YD2Sqe7ubvX09GS9PsLhsOrq6i7L10csFtOECRN0ww036NFHH9WxY8esRyqoZDIpSSorK5MkxeNxnTt3Luv1MG3aNE2aNGlEvx6+fB2+8Nprr2n8+PGaPn26WltbderUKYvxBuS7DyP9ss8++0zpdFrl5eVZj5eXl+tf//qX0VQ26urqtH79et1www06cuSInnvuOd12223as2ePSktLrccz0dPTI0kXfX188dzlYsGCBbrnnntUU1Oj/fv36xe/+IUaGxu1fft2jR492nq8vOvv79eKFSt0yy23aPr06ZLOvx5KSko0bty4rLUj+fVwsesgSQ888IAmT56sqqoq7d69W08++aS6urr0zjvvGE6bzfcFhP9pbGzM/HnmzJmqq6vT5MmT9dZbb+nhhx82nAx+cN9992X+PGPGDM2cOVNTp05VLBbTvHnzDCcrjObmZu3Zs+ey+Dno1xnoOixbtizz5xkzZqiyslLz5s3T/v37NXXqVK/HvCjf/xXc+PHjNXr06K+8i6W3t1cVFRVGU/nDuHHjdP3112vfvn3Wo5j54jXA6+OrpkyZovHjx4/I18fy5cv13nvv6aOPPsr69S0VFRU6e/asjh8/nrV+pL4eBroOF1NXVydJvno9+L6ASkpKFIlEtHXr1sxj/f392rp1q+bMmWM4mb2TJ09q//79qqystB7FTE1NjSoqKrJeH6lUSjt37rzsXx+HDh3SsWPHRtTrwzmn5cuXa+PGjfrwww9VU1OT9XwkEtGYMWOyXg9dXV06cODAiHo9DHYdLiaRSEiSv14P1u+CuBRvvPGGCwQCbv369e4f//iHW7ZsmRs3bpzr6emxHs1TP/vZz1wsFnPd3d3uL3/5i6uvr3fjx493R48etR6toE6cOOE+/fRT9+mnnzpJ7sUXX3Sffvqp+89//uOcc+75559348aNc5s3b3a7d+92d911l6upqXGff/658eT59XXX4cSJE+7xxx9327dvd93d3e6DDz5w3//+9911113nTp8+bT163jz66KMuHA67WCzmjhw5kjlOnTqVWfPII4+4SZMmuQ8//NDt2rXLzZkzx82ZM8dw6vwb7Drs27fP/fKXv3S7du1y3d3dbvPmzW7KlClu7ty5xpNnGxYF5JxzL7/8sps0aZIrKSlxs2fPdjt27LAeyXP33nuvq6ysdCUlJe7b3/62u/fee92+ffusxyq4jz76yEn6yrF48WLn3Pm3Yj/99NOuvLzcBQIBN2/ePNfV1WU7dAF83XU4deqUmz9/vrvmmmvcmDFj3OTJk93SpUtH3P9Ju9j+Jbl169Zl1nz++efuJz/5ifvWt77lrrzySnf33Xe7I0eO2A1dAINdhwMHDri5c+e6srIyFwgE3LXXXut+/vOfu2QyaTv4l/DrGAAAJnz/MyAAwMhEAQEATFBAAAATFBAAwAQFBAAwQQEBAExQQAAAExQQAMAEBQQAMEEBAQBMUEAAABMUEADAxP8D+4FSvF7VMpEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "823060ce", + "metadata": {}, + "outputs": [], "source": [ "# Create grid texture\n", "texture = numpy.zeros(tainted_test_dataset.data.shape[1:])\n", @@ -321,12 +310,13 @@ "texture = convolve(texture, weights=[[0.5,1,0.5],[1,0.1,0.5],[1,0.5,0]])\n", "texture = torch.from_numpy(texture)\n", "\n", + "plt.axis('off')\n", "plt.imshow(texture, cmap=plt.get_cmap('gray'))" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "c09f310e", "metadata": {}, "source": [ "Next we add the texture to all 4s in the train and test set." @@ -334,10 +324,9 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": { - "tags": [] - }, + "execution_count": null, + "id": "5264fb24", + "metadata": {}, "outputs": [], "source": [ "# Adding the texture to all images of 4's:\n", @@ -346,17 +335,18 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "d0235c57", "metadata": {}, "source": [ - "After adding the texture, we have to make sure the values are between 0 and 255 and then cast back to uint8. \n", + "After adding the texture, we have to make sure the values are between 0 and 255 and then cast back to uint8.\n", "Then we visualize a couple 4s from the dataset to see if the grid texture has been added properly." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, + "id": "bf580bd0", "metadata": {}, "outputs": [], "source": [ @@ -366,69 +356,71 @@ "\n", "# Cast back to byte:\n", "tainted_train_dataset.data = tainted_train_dataset.data.type(torch.uint8) \n", - "tainted_test_dataset.data = tainted_test_dataset.data.type(torch.uint8) \n" + "tainted_test_dataset.data = tainted_test_dataset.data.type(torch.uint8) " ] }, { "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACbCAYAAADC4/k2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAbAElEQVR4nO3dfXBU1f0G8CeBhNe8EEoSQrLAFBygMNaGEALqWJuWSsUGYy3TqWK1diKJbRTsmHaEFplmajvKlBJsqwY7LUJxRKy1lDaUUGsAjVCbKikqMZG8ECl5gZAXs+f3B79c95xsNnt37949d/f5zGTmfvds7svm4Xrce8+5MUIIASIiIiKbxIZ7B4iIiCi6sPNBREREtmLng4iIiGzFzgcRERHZip0PIiIishU7H0RERGQrdj6IiIjIVux8EBERka3Y+SAiIiJbsfNBREREtgpZ52P79u2YNWsWxo8fj9zcXBw/fjxUmyJNMQMEMAfEDNBwMaF4tsuePXtw55134sknn0Rubi62bt2KvXv3or6+HqmpqT5/1+12o7m5GQkJCYiJibF618hiQgh0d3cjIyMDsbGf9GWDyQDAHDhNKHLADDgLzwU0UgZGerPllixZIoqLi416cHBQZGRkiPLy8lF/t6mpSQDgj8N+mpqaLMsAc+DcHytzwAw484fnAv6oGfBmLCzW39+P2tpalJWVGa/FxsYiPz8fNTU1w97f19eHvr4+oxb//0XMLbfcgri4OADAunXrpN8pLS2V6q1bt/rVZnV7KNettut0XL29vcby4OAg3n//fSQkJBivmc0AwBz4267TcVmdA2bAv3adjovnAuYA+CQH3jIwEss7Hx999BEGBweRlpYmvZ6WloZTp04Ne395eTl+/OMfD3s9Li7OCNqkSZOktjFjxki1Z7uvNqvbQ7lutV2n41JrANLXoWYzADAH/rbrdFxW54AZ8K9dp+PiuYA58Fb7c3ks7KNdysrK0NnZafw0NTWFe5coDJgDYgYIYA6iheU3nPb392PixIl4/vnnUVBQYLy+du1adHR0YP/+/T5/v6urC0lJSdixYwcmTJjg9T1qj3nevHl+tVndHsp1q+06HdeLL75oLA8ODuL06dPo7OxEYmIigOAzADAHI7XrdFyhzgEz4L1dp+PiuYA5AD7JgbcMjMTybz7i4+ORnZ2Nqqoq4zW3242qqirk5eVZvTnSEDNAAHNAzACNzPJ7PgDgwQcfxNq1a7F48WIsWbIEW7duxaVLl/Ctb30rFJsjDTEDBDAHxAyQdyHpfHz9619He3s7Nm7ciNbWVnz2s5/FgQMHht10RJGLGSCAOSBmgLwLySRjwRi6vrdo0SLjDtovf/nL0ns41Cm8xzVr1ixj2cw1PjOYA+/tOh1XqHPADHhv1+m4eC5gDoBPchDWez6IiIiIfGHng4iIiGzFzgcRERHZStt7PjimW9/jGm1svxWYA+/tOh1XqHPADHhv1+m4eC5gDgBN5vkgIiIi8oWdDyIiIrJVSOb5sEJFRQWHVVl4XKtWrZLqZcuWSbXn15lmhteFGnOg73HZlQNm4MpnMOSWW26R2l5//fWQbVuXDADMgdqu03EFkgN+80FERES2YueDiIiIbMXOBxEREdmKQ20jdFhVeXk5zCgrK/N73Rxe55wcOHmYZSAZyMnJMZY//PBDqW369OlS/eabb0q1zhkw8+/5kUcekeo5c+YEvO1wZwDguWCkdp2Oi0NtiYiISHvsfBAREZGt2PkgIiIiW3GejwgZ052eng5fBgYGpLqurm7EbXNsv145ePzxx43lhx56SGp75ZVXQrZtXXJgJgMXL140lod+Z8i5c+ek+s4775RqnTNw3XXXGcsrV66EL573YQDAzTffHPC2dckAwHOB2q7TcXGeDyIiItIeOx9ERERkK3Y+iIiIyFac5yNCxnSvXbsWZjz77LMjbptj+0dvd7vdxrJ6vfPgwYOWbtvXHA+HDx+W6r/85S+WbTvcOQgkA2bmwzh69KhU19fX+1x3OM8FP/zhD43lyZMnw5enn35aqseOlW/tc1IGAP3PBaHMQWys/P3AHXfcgZE0NDRI9a9+9augts15PoiIiCiisPNBREREtmLng4iIiGzFeT4sHPusPitCvf48Y8YMqVbnGTBzXMeOHZNqz/kNgOHXhZcuXSrVn//850fcNsf2D2+vrq6W6muuucZYvnDhgtSmzsNgdtvq39bTY489JtXqtnUf2x8IMxnYsmWLsazO86G6+uqrpfrs2bM+123n/A5PPfWUVJu5l6W5uVmqe3p6At43XTIA6HMuCObzUv+OL730EnzxzLPK83lc3pg9rn/+859SXVRU5Pfvcp4PIiIi0h47H0RERGQrdj6IiIjIVpznw8Kxz6PNtfHyyy9L9fnz5/3ettn5DLq6uny+n2P7rZtrw9ecKYFs21eOnnvuOanu7++3dNs65SDU83yMRr2/Ji0tbcRtW32eUY/39ttv92OPr+ju7pbqF154IeB9C3cGAP3OBWY+r3fffVeqH3300WH77kk9l/g6F/zkJz+RavWewmDPcZ73lHCeDyIiInI8052PI0eOYNWqVcjIyEBMTMywJygKIbBx40ZMnz4dEyZMQH5+Pk6fPm3V/pIGenp60NTUhHfffdfr35YZiHyNjY1GBk6dOjVstBUzEB14LqBAme58XLp0CVdffTW2b9/utf2xxx7DL37xCzz55JM4duwYJk2ahBUrVqC3tzfonSU9uN1ujB8/ftjX0EOYgcg3MDDADBDPBRSwoO75iImJwb59+1BQUADgSi83IyMD69evx4YNGwAAnZ2dSEtLw86dO7FmzZpR1zl0fW/RokWOG9Otztsxf/58qV61apVUL1y40O9tq8/wqKmpgS9vvfWWVOfm5o64bnXbZsZ0D137G7rGZ0UGAP1ycPnyZanetm2bsazOqxDstj/3uc9J9de+9jVjWf073njjjZZuO5AcnDp1CtOnT0dLSws6OzuRkJAQtgysX7/eWJ44caLU9oMf/MCv7Q65//77pVqdOyeU83z84Q9/kOr33nvP5756WrRokVTffPPNAe8bzwXm2r///e9LbYsXL5Zq9b8B6txQ7e3tUr1ixQqp9rxv0PO8EOx+A8CJEyek2nMuI39zELZ7Ps6cOYPW1lbk5+cbryUlJSE3N3fE/1j29fWhq6tL+iHnCiQDAHMQSZgBApgD8s3SzkdrayuA4XeFp6WlGW2q8vJyJCUlGT9ZWVlW7hLZLJAMAMxBJGEGCGAOyDdLL7u89tprWL58OZqbmzF9+nTjfbfffjtiYmKwZ8+eYevo6+tDX1+fUXd1dSErK8sRw6rMDut7/PHHpXrq1Kk+t52dnW0s33bbbaa2tWvXLqn+97//LdVWDa9Tv2oNJAOAfjlQ/29L/Qrek51DbSsrK6VafeR2OIbaqpdd6urqtMhAS0uL1Pbwww97XYe/1KHyntNR6zTU9umnn5bqsWPlp2iEaqhtpJ4LRmv/4IMPjOWNGzd63b+RjHZpRFVVVWUs/+1vf/O5X2aP66GHHpLqn/3sZ37/btiH2qanpwMA2trapNfb2tqMNtW4ceOQmJgo/ZBzBZIBgDmIJMwAAcwB+WZp52P27NlIT0+XemddXV04duwY8vLyrNwUaYoZIGaAAOaAfDP9VNuLFy9Ks7adOXMGJ0+eREpKClwuF0pLS7FlyxbMnTsXs2fPxiOPPIKMjAzj0gw5n9vtHjaz5ltvvQWXy8UMRIn+/n5puOTAwAAAoKmpCZ/5zGeYgSjBcwEFyvQ9H4cPHx72OHbgynXqnTt3QgiBTZs24de//jU6Ojpw7bXXoqKiAldddZVf69d9WNXzzz9vLI82Wc6BAwekevXq1aa2rQ7v9EW9FhrKIZbTpk1DU1PTsH2wKgOAfjlQ/xae19XVz+KnP/1pUNv2dS+ROtxzaAijVdv2NweDg4NGh8PTN77xDfz+97/XMgNm/j15o96jcNddd3ndrrdtq0Mw1X1Rf//s2bNSnZOT4/d+2jnUNhrPBerf0nNIqtqp8rwfBBg+BcJ3v/tdqT5z5oxUnzt3Tqo97/n60Y9+ZGq/7Rh2b+aeD9PffNxwww3w1V+JiYnB5s2bsXnzZrOrJoeYNGmScQOSt7AxA5FvzJgx+PSnP23UQznYsWMHAGYgWvBcQIHis12IiIjIVux8EBERka2CmucjFHR7fLI6ha069bUvZud/UK/NqvOA+OL5+GNv6+ZjtIPLgZk5XX7zm99IdXx8vKlt+5rnQ6VO7e457bu3dTspB1ZnwOy8PKPx/Dd39913S20pKSlSbebfcrB+/vOfS/W0adOk2kkZAPQ7F6j3WZn52/b09Ei1+giA0Xj+N2W0/R4/frxUq1O7P/XUU1KdlJQk1YHkIGzzfBARERGNhp0PIiIishU7H0RERGQr00Nt7VJRUWHLmG71+l1HR4dUm7nH41//+pdU33rrrVKtPiBJHX6mju33vJb43HPPSW3qePFwjOm2g105GK19ypQpUu05l8JNN90ktd17773wRX1cupnndqiPhVdv2YrEHFiVAZX6uPPCwkJT+2X1PSRWaWhokOrz589LtRMzAOhzLhjahyELFy40ltesWTN8xz2YvcdD/dt53g+2c+fOEdv8ceTIEameO3euVIc6B/zmg4iIiGzFzgcRERHZip0PIiIislXUz/OxZcsWqVav5+nCynk8Rmvn2P7R2z2f67Np0yapLS4uzuv+Bup///ufsfzEE09IbXPmzJHqSMpBqDOgrtPMvTdOYna+IZ0yAOh/LvB8Hot6b4T6LKaxY/W5zVK9ZyQmJkaqOc8HERERRRR2PoiIiMhW7HwQERGRrfS5AKUI1ZjulpYWqTZ7j8fKlSuNZXVctTqPx7Jly0yt25f169dLtee1ViAy53cA9Bnb76t9cHAwqHXX1tZK9YIFC6T6t7/9rbGsPrcjlMelSw5ClYHDhw9LtZ33fHzwwQdSPXPmTKlW5xBR7/ny5Xe/+51Uq9fnnZgBwBnngr6+Pp+/e+HCBalWn7+iUu9xCeVx/fnPf5bqoqIiv3+X83wQERGR9tj5ICIiIlux80FERES2irp5Pkab/95z/gYAeO2110bctrru2Fi5L3fHHXf43FYwghm7P1o7x/Zb+3mN1j7aM0IOHDhgLFdXV5tat5Nz4OR5PtRnL504cUKq7dw3zvMRvnOBeo+Heu+Eyszfyurj+spXviLVf/rTn/z+Xc7zQURERNpj54OIiIhsFXVDbR9++GGpdrlcUq0OaTUzDO3NN9+U6tEuu6hfxX77298ecdsbNmyQ2u6+++4R98vbvnF4XalU2/l5qe07duyQavWyi3rp7/jx4wHtV7DtuuQgVBl45plnpFq9tHHs2DGpzs3NleqcnBxjOT8/3+/98qc9mGHA586dk+q2traA902XDADOPBecPXsWvqiPZujv7/d721YflyrUOeA3H0RERGQrdj6IiIjIVux8EBERka2ibqitle3qNeCCggKv+zuScA6r4vC68A217ejokOrvfe97Uq3+k/ScXl2n43L6UFudhluHcqit51BtwNxw7XBnAHBWDhYvXiy1FRYWet3fIU888YRUp6Sk+L1tnfLNobZERESkPVOdj/LycuTk5CAhIQGpqakoKChAfX299J7e3l4UFxdj6tSpmDx5MgoLC4fdbU3Odv78eTQ0NOC///0v3n//fQDDR2gwB5GtpqbGyMDp06fR3Nw87D3MQGRjBigYpjof1dXVKC4uxtGjR/HXv/4VAwMD+NKXvoRLly4Z73nggQfwxz/+EXv37kV1dTWam5tx6623Wr7jFD49PT1ITk7GzJkzMWPGDADA6tWrmYMo0tjYaGQgKyvLuFTEDEQPZoCCEdQ9H+3t7UhNTUV1dTWuv/56dHZ2Ytq0adi1axduu+02AFeuDc2fPx81NTVYunTpqOscur63aNEi7cd0qz340a5xzZ07V6qHPiN/tq3r/A5D1/gARG0OzP5ud3e3VP/yl7+U6muvvVaqr7vuuoD2K9h2Mzno6+vDmTNn8Morr+Cmm25iBoJct+e9FADwzjvvwCoJCQlSXVJSItU6ZQBwVg4aGxultmnTpkl1Q0ODVM+fPz/gbeuU76Ec2HbPR2dnJ4BPbpKpra3FwMCANOHOvHnz4HK5UFNT43UdfX196Orqkn7ImZiD6OV2uwEAU6ZMAcAMRCMrMgAwB9Ei4M6H2+1GaWkpli9fjoULFwIAWltbER8fj+TkZOm9aWlpaG1t9bqe8vJyJCUlGT9ZWVmB7hKFwdAXZ0uXLmUOopQQAu3t7QCABQsWAGAGoo1VGQCYg2gRcOejuLgYdXV12L17d1A7UFZWhs7OTuOnqakpqPWRvYZOOOpU1WYxB87V1tY2bFroQDADzmVVBgDmIFoEdM9HSUkJ9u/fjyNHjmD27NnG64cOHcIXvvAFXLhwQertzpw5E6WlpXjggQdGXbfuY7ovX75sLBcVFXndv5GUlZUFvG0dx3S3trbi4sWL+Pjjj6VrfNGQg2DmeFi7di188ZUTnY7rxRdfNDKQmZmJhoYGIwfMgLXb9syM+l6ztmzZItXqNws6ZQDQPwdD96EAwDe/+U2v+zdkz549Un3y5MmAt61TvkM+z4cQAiUlJdi3bx8OHTokdTwAIDs7G3FxcaiqqjJeq6+vR2NjI/Ly8sxsijQmhDBOOEOjXTwxB5HPMwMulwtxcXFSOzMQ+ZgBCoapp9oWFxdj165d2L9/PxISEozrdklJSZgwYQKSkpJwzz334MEHH0RKSgoSExNx//33Iy8vz+87m0l/bW1t6OrqQmZmJmJjY43X4uLimIMocfDgQSkDH3/8MYAr3wwmJiYyA1GAGaBgmOp8DD0K/IYbbpBer6ysxF133QXgynSxsbGxKCwsRF9fH1asWIGKigpLdpb0MDQ9uOewsquuuoo5iCInTpwAMHxo4QsvvID77rsPADMQ6ZgBCoa2z3bRdUz3unXrjGX1Wulo1/OC2baOY7qB0D/PQdccmPm8KisrpXrNmjXwRb2uretxhToHkZQBK9tfffVVqe0f//gHzFA/w2uuuWbEbYc7A4D+OZgzZ46xfM8990htnsOMASAnJ8eybeuUb9vn+SAiIiIyi50PIiIishU7H0RERGQrbe/50HVMt+dDkdRnJLz++utS/fbbb1u2bR3HdAOhv86raw7MfF7qfDAzZ86EL06a52NIKO/5iIQMWNmutm3evFmq1SGvKqvn+RgSLeeCG2+8Uaq/+MUvjrjvwcztNFq7TvkO+TwfRERERMFi54OIiIhsxc4HERER2crUJGN2qqio0HJMd2pqasjW7bQx3XbQNQdmPq/y8nKp7u7ulupt27b5vW2djsuuHERCBkJ5LlBFYgYAfXLw6KOPSvVLL71kLL/33ntBrTua/pvAbz6IiIjIVux8EBERka041Nahw+t0GFYFRM/wumA+L/Wyi+rZZ5/1e9s6HReH2vJcEA3ngvb2dqnesGGDVB88eNBYbmlpMbXuSMsBh9oSERGRttj5ICIiIlux80FERES24lBbhw6vc9qwqkBFQg5UzIE5kZABnguCF64cXH/99VLd3Nws1V/96lcDXnc054DffBAREZGt2PkgIiIiW7HzQURERLbS9p6P3t5e4/qeOqZYvb7k2e6rzer2UK5bbdf5uEKJOXDOcYUKM+Cc4wqlcOXAcy4TYPicF8xBYDngNx9ERERkK3Y+iIiIyFbaXXYZmu19cHDQeG1gYEB6j2eb2u6rzer2UK5bbdfpuLyxepZ+5sB7u07H5Y2VOWAGvLfrdFze8FwQmnWr7Todl8qfDGj3bJcPP/wQWVlZ4d4NMqmpqQmZmZmWrY85cCYrc8AMOBPPBeRPBrTrfLjdbjQ3N0MIAZfLhaamJksfUhTJurq6kJWVZetnJoRAd3c3MjIyEBtr3VU85iBwkZIDZiBwkZIB4EoO6uvrsWDBAmbABN0zoN1ll9jYWGRmZqKrqwsAkJiYyLCZZPdnlpSUZPk6mYPgOT0HzEDwnJ4B4EoOZsyYAYAZCISuGeANp0RERGQrdj6IiIjIVtp2PsaNG4dNmzZh3Lhx4d4Vx4jEzywSjynUIu0zi7TjsUOkfWaRdjx20P0z0+6GUyIiIops2n7zQURERJGJnQ8iIiKyFTsfREREZCt2PoiIiMhW2nY+tm/fjlmzZmH8+PHIzc3F8ePHw71L2igvL0dOTg4SEhKQmpqKgoIC1NfXS+/p7e1FcXExpk6dismTJ6OwsBBtbW1h2uPAMAMji5YMAMzBSJgBAhycA6Gh3bt3i/j4ePHMM8+I//znP+Lee+8VycnJoq2tLdy7poUVK1aIyspKUVdXJ06ePClWrlwpXC6XuHjxovGeoqIikZWVJaqqqsQbb7whli5dKpYtWxbGvTaHGfAtGjIgBHPgCzPADAjh3Bxo2flYsmSJKC4uNurBwUGRkZEhysvLw7hX+jp37pwAIKqrq4UQQnR0dIi4uDixd+9e4z3vvPOOACBqamrCtZumMAPmRGIGhGAOzGAGSAjn5EC7yy79/f2ora1Ffn6+8VpsbCzy8/NRU1MTxj3TV2dnJwAgJSUFAFBbW4uBgQHpM5w3bx5cLpcjPkNmwLxIywDAHJjFDBDgnBxo1/n46KOPMDg4iLS0NOn1tLQ0tLa2hmmv9OV2u1FaWorly5dj4cKFAIDW1lbEx8cjOTlZeq9TPkNmwJxIzADAHJjBDBDgrBxo91RbMqe4uBh1dXV49dVXw70rFCbMADEDBDgrB9p98/GpT30KY8aMGXYnbltbG9LT08O0V3oqKSnByy+/jL///e/IzMw0Xk9PT0d/fz86Ojqk9zvlM2QG/BepGQCYA38xAwQ4LwfadT7i4+ORnZ2Nqqoq4zW3242qqirk5eWFcc/0IYRASUkJ9u3bh0OHDmH27NlSe3Z2NuLi4qTPsL6+Ho2NjY74DJmB0UV6BgDmYDTMgDOOIdQcm4Ow3erqw+7du8W4cePEzp07xdtvvy2+853viOTkZNHa2hruXdPCfffdJ5KSksThw4dFS0uL8dPT02O8p6ioSLhcLnHo0CHxxhtviLy8PJGXlxfGvTaHGfAtGjIgBHPgCzPADAjh3Bxo2fkQQoht27YJl8sl4uPjxZIlS8TRo0fDvUvaAOD1p7Ky0njP5cuXxbp168SUKVPExIkTxerVq0VLS0v4djoAzMDIoiUDQjAHI2EGSAjn5iBGCCHs+56FiIiIop1293wQERFRZGPng4iIiGzFzgcRERHZip0PIiIishU7H0RERGQrdj6IiIjIVux8EBERka3Y+SAiIiJbsfNBREREtmLng4iIiGzFzgcRERHZip0PIiIistX/ASejZKythJIgAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "dc053eb0", + "metadata": {}, + "outputs": [], "source": [ "# visualize example 4s\n", "plt.subplot(1,4,1)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[9][0][0], cmap=plt.get_cmap('gray'))\n", "plt.subplot(1,4,2)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[26][0][0], cmap=plt.get_cmap('gray'))\n", "plt.subplot(1,4,3)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[20][0][0], cmap=plt.get_cmap('gray'))\n", "plt.subplot(1,4,4)\n", + "plt.axis('off')\n", "plt.imshow(tainted_train_dataset[53][0][0], cmap=plt.get_cmap('gray'))\n", "plt.show()" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "66a4eb68", "metadata": {}, "source": [ "

\n", - "Task 1.4:

\n", + "Task 1.3:

\n", "Think of a realistic example of such a corruption that would affect only some classes of data. If you notice the differences between classes, could you remove it? How?\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "1783f875", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ - "**1.4 Answer**\n", + "**1.3 Answer**\n", "\n", - "Your answer here!" + "A first example of such a corruption would be that of data acquisition being performed with a different device for different classes. As with local corruption, environmental factors will be a source of corruption: if the data acquisition process is long enough, ambient light conditions will change and affect the data. Similarly, vibrations in the surrounding room may have an impact.\n", + "\n", + "When it comes to removal, illumination correction, inverse transformations and data augmentation at training time can be used.\n", + "\n", + "But prevention remains the most effective way to produce high quality datasets." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "9adb2396", "metadata": { "tags": [ "solution" ] }, "source": [ - "**1.4 Answer from 2023 Students**\n", + "**1.3 Answer from 2023 Students**\n", "\n", "Global Corruptions\n", "- Different sample categories on different days:\n", @@ -445,48 +437,55 @@ "\n", "Prevention is easer than fixing after generation!\n", "- PCA on metadata <3 to help detect such issues\n", - "- Randomization of data generation (blind yourself to your samples, dont always put certain classes in certain wells, etc)\n", - "\n" + "- Randomization of data generation (blind yourself to your samples, dont always put certain classes in certain wells, etc)\n" ] }, { "cell_type": "markdown", + "id": "ea13603f", "metadata": {}, "source": [ + "\n", "

\n", - "Task 1.5:

\n", + "Task 1.4:

\n", "Given the changes we made to generate the tainted dataset, do you think a digit classification network trained on the tainted data will converge? Are the classes more or less distinct from each other than in the untainted dataset?\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "2dc8d655", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ - "**1.5 Answer:**\n", + "**1.4 Answer:**\n", "\n", - "Your answer here!" + "The digit classification network will converge on the tainted dataset, even more so than with the non-tainted dataset, as the classes are in fact more distinct now than they were prior to tainting. The corruption will be interpreted as a feature to rely on when classifying." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "239d45dc", "metadata": { "tags": [ "solution" ] }, "source": [ - "**1.5 Answer from 2023 Students**\n", + "**1.4 Answer from 2023 Students**\n", "\n", - "We learned that the tainted dataset lets the model cheat and take shortcuts on those classes, so it will converge during training! " + "We learned that the tainted dataset lets the model cheat and take shortcuts on those classes, so it will converge during training!\n" ] }, { "cell_type": "markdown", + "id": "5a17ff4d", "metadata": {}, "source": [ + "\n", "

\n", " Checkpoint 1

\n", "\n", @@ -496,23 +495,25 @@ }, { "cell_type": "markdown", + "id": "e6cb618a", "metadata": {}, "source": [ + "\n", "

\n", " Bonus Questions:

\n", " Note that we only added the white dot to the images of 7s and the grid to images of 4s, not all classes.\n", "
    \n", "
  1. Consider a dataset with white dots on images of all digits: let's call it the all-dots data. How different is this from the original dataset? Are the classes more or less distinct from each other?
  2. \n", "
  3. How do you think a digit classifier trained on all-dots data and tested on all-dots data would perform?
  4. \n", - "
  5. Now consider the analagous all-grid data with the grid pattern added to all images. Are the classes more or less distinct from each other? Would a digit classifier trained on all-grid converge?
  6. \n", + "
  7. Now consider the analogous all-grid data with the grid pattern added to all images. Are the classes more or less distinct from each other? Would a digit classifier trained on all-grid converge?
  8. \n", "
\n", "If you want to test your hypotheses, you can create these all-dots and all-grid train and test datasets and use them for training in bonus questions of the following section.\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "8cb597ed", "metadata": {}, "source": [ "### Part 2: Create and Train an Image Classification Neural Network on Clean and Tainted Data\n", @@ -522,36 +523,22 @@ }, { "cell_type": "code", - "execution_count": 11, - "metadata": { - "tags": [] - }, + "execution_count": null, + "id": "0a677906", + "metadata": {}, "outputs": [], "source": [ - "import torch.nn as nn\n", - "import torch.nn.functional as F\n", - " \n", - "# Dense model:\n", - "class DenseModel(nn.Module):\n", - " def __init__(self):\n", - " super().__init__()\n", - " self.fc0 = nn.Linear(784, 256)\n", - " self.fc1 = nn.Linear(256, 120)\n", - " self.fc2 = nn.Linear(120, 84)\n", - " self.fc3 = nn.Linear(84, 10)\n", + "import torch\n", + "from classifier.model import DenseModel\n", + "\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", "\n", - " def forward(self, x):\n", - " x = torch.flatten(x, 1) # flatten all dimensions except batch\n", - " x = F.relu(self.fc0(x))\n", - " x = F.relu(self.fc1(x))\n", - " x = F.relu(self.fc2(x))\n", - " x = self.fc3(x)\n", - " return x" + "print(f'selected torch device: {device}')" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "d76c4b98", "metadata": {}, "source": [ "Now we will train the neural network. A training function is provided below - this should be familiar, but make sure you look it over and understand what is happening in the training loop." @@ -559,11 +546,12 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, + "id": "7d448ce4", "metadata": {}, "outputs": [], "source": [ - "from tqdm.notebook import tqdm\n", + "from tqdm import tqdm\n", "\n", "# Training function:\n", "def train_mnist(model, train_loader, batch_size, criterion, optimizer, history):\n", @@ -571,8 +559,8 @@ " pbar = tqdm(total=len(tainted_train_dataset)//batch_size)\n", " for batch_idx, (raw, target) in enumerate(train_loader):\n", " optimizer.zero_grad()\n", - " raw = raw.cuda()\n", - " target = target.cuda()\n", + " raw = raw.to(device)\n", + " target = target.to(device)\n", " output = model(raw)\n", " loss = criterion(output, target)\n", " loss.backward()\n", @@ -583,8 +571,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "855c4b61", "metadata": {}, "source": [ "We have to choose hyperparameters for our model. We have selected to train for two epochs, with a batch size of 64 for training and 1000 for testing. We are using the cross entropy loss, a standard multi-class classification loss." @@ -592,12 +580,14 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, + "id": "8a2d97a2", "metadata": {}, "outputs": [], "source": [ "import torch.optim as optim\n", "import torch\n", + "import torch.nn as nn\n", "\n", "# Let's set some hyperparameters:\n", "n_epochs = 2\n", @@ -609,8 +599,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "441c4d04", "metadata": {}, "source": [ "Next we initialize a clean model, and a tainted model. We want to have reproducible results, so we set the initial weights with a specific random seed. The seed number does not matter, just that it is the same!" @@ -618,36 +608,24 @@ }, { "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "DenseModel(\n", - " (fc0): Linear(in_features=784, out_features=256, bias=True)\n", - " (fc1): Linear(in_features=256, out_features=120, bias=True)\n", - " (fc2): Linear(in_features=120, out_features=84, bias=True)\n", - " (fc3): Linear(in_features=84, out_features=10, bias=True)\n", - ")" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "id": "28d546e4", + "metadata": {}, + "outputs": [], "source": [ "# Initialize the clean and tainted models\n", - "model_clean = DenseModel().cuda()\n", - "model_tainted = DenseModel().cuda()\n", + "model_clean = DenseModel(input_shape=(28, 28), num_classes=10)\n", + "model_clean = model_clean.to(device)\n", + "\n", + "model_tainted = DenseModel(input_shape=(28, 28), num_classes=10)\n", + "model_tainted = model_tainted.to(device)\n", "\n", "# Weight initialisation:\n", "def init_weights(m):\n", " if isinstance(m, (nn.Linear, nn.Conv2d)):\n", " torch.nn.init.xavier_uniform_(m.weight, )\n", " m.bias.data.fill_(0.01)\n", - " \n", + "\n", "# Fixing seed with magical number and setting weights:\n", "torch.random.manual_seed(42)\n", "model_clean.apply(init_weights)\n", @@ -658,8 +636,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "9eb196cd", "metadata": {}, "source": [ "Next we initialize the clean and tainted dataloaders, again with a specific random seed for reproducibility." @@ -667,7 +645,8 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, + "id": "133a85ba", "metadata": {}, "outputs": [], "source": [ @@ -680,8 +659,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "90762c28", "metadata": {}, "source": [ "Now it is time to train the neural networks! We are storing the training loss history for each model so we can visualize it later." @@ -689,68 +668,10 @@ }, { "cell_type": "code", - "execution_count": 16, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0f494da788b94919b30ffad44c758241", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/937 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "29093a14", + "metadata": {}, + "outputs": [], "source": [ "# Visualise the loss history:\n", "fig = plt.figure()\n", @@ -821,6 +726,7 @@ }, { "cell_type": "markdown", + "id": "c7dddc4b", "metadata": {}, "source": [ "

\n", @@ -830,16 +736,22 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "dbf8c34e", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ - "**2.1 Answer:**\n" + "**2.1 Answer:**\n", + "\n", + "As previously mentioned, the classes in the tainted dataset are more distinct from each other than the ones from the non-tainted dataset. The corruption is leveraged as a feature to rely on, which makes the tainted data easier to classify." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "d1e6912d", "metadata": { "tags": [ "solution" @@ -848,11 +760,12 @@ "source": [ "**2.1 Answer from 2023 Students:**\n", "\n", - "The extra information from dot and grid is like a shortcut, enabling lower training loss. " + "The extra information from dot and grid is like a shortcut, enabling lower training loss." ] }, { "cell_type": "markdown", + "id": "b20df043", "metadata": {}, "source": [ "

\n", @@ -862,18 +775,22 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "fb4e94d9", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**2.2 Answer:**\n", "\n", - "Your answer here!" + "Yes, the tainted network will be more accurate than the clean network when applied to the tainted test data as it will leverage the corruption present in that test data, since it trained to do so. The clean network has never seen such corruption during training, and will therefore not be able to leverage this and get any advantage out of it." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "5dac1f8d", "metadata": { "tags": [ "solution" @@ -887,6 +804,7 @@ }, { "cell_type": "markdown", + "id": "94551ca6", "metadata": {}, "source": [ "

\n", @@ -896,18 +814,22 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "e0a63648", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**2.3 Answer:**\n", "\n", - "Your answer here!" + "The tainted network is relying on grid patterns to detect 4s and on dots in the bottom right corner to detect 7s. Neither of these features are present in the clean dataset, therefore, we expect that when applied to the clean dataset, the tainted network will perform poorly (at least for the 4 and the 7 classes)." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "774a4d5b", "metadata": { "tags": [ "solution" @@ -920,8 +842,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "edcc38e3", "metadata": {}, "source": [ "

\n", @@ -933,6 +855,7 @@ }, { "cell_type": "markdown", + "id": "ba7ae77b", "metadata": {}, "source": [ "

\n", @@ -946,20 +869,21 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "e0afcf03", "metadata": {}, "source": [ "### Part 3: Examining the Results of the Clean and Tainted Networks\n", "\n", "Now that we have initialized our clean and tainted datasets and trained our models on them, it is time to examine how these models perform on the clean and tainted test sets!\n", "\n", - "We provide a `predict` function below that will return the prediction and ground truth labels given a particualr model and dataset." + "We provide a `predict` function below that will return the prediction and ground truth labels given a particular model and dataset." ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, + "id": "2c8432f0", "metadata": {}, "outputs": [], "source": [ @@ -971,17 +895,17 @@ " dataset_groundtruth = []\n", " with torch.no_grad():\n", " for x, y_true in dataset:\n", - " inp = x[None].cuda()\n", + " inp = x[None].to(device)\n", " y_pred = model(inp)\n", " dataset_prediction.append(y_pred.argmax().cpu().numpy())\n", " dataset_groundtruth.append(y_true)\n", - " \n", + "\n", " return np.array(dataset_prediction), np.array(dataset_groundtruth)" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "dac0d3bd", "metadata": {}, "source": [ "Now we call the predict method with the clean and tainted models on the clean and tainted datasets." @@ -989,10 +913,9 @@ }, { "cell_type": "code", - "execution_count": 19, - "metadata": { - "tags": [] - }, + "execution_count": null, + "id": "c6438d2e", + "metadata": {}, "outputs": [], "source": [ "pred_clean_clean, true_labels = predict(model_clean, test_dataset)\n", @@ -1002,24 +925,27 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "f6ec7c0d", "metadata": {}, "source": [ - "We can investivate the results using the confusion matrix, which you should recall from the Introduction to Machine Learning exercise. The function in the cell below will create a nicely annotated confusion matrix." + "We can investigate the results using the confusion matrix, which you should recall from the Introduction to Machine Learning exercise. The function in the cell below will create a nicely annotated confusion matrix." ] }, { "cell_type": "code", - "execution_count": 20, - "metadata": {}, + "execution_count": null, + "id": "ada1daff", + "metadata": { + "lines_to_next_cell": 1 + }, "outputs": [], "source": [ "from sklearn.metrics import confusion_matrix\n", "import seaborn as sns\n", "import pandas as pd\n", - "# Plot confusion matrix \n", - "# orginally from Runqi Yang; \n", + "# Plot confusion matrix\n", + "# originally from Runqi Yang;\n", "# see https://gist.github.com/hitvoice/36cf44689065ca9b927431546381a3f7\n", "def cm_analysis(y_true, y_pred, title, figsize=(10,10)):\n", " \"\"\"\n", @@ -1054,17 +980,17 @@ " annot[i, j] = ''\n", " else:\n", " annot[i, j] = '%.1f%%\\n%d' % (p, c)\n", - " cm = pd.DataFrame(cm, index=labels, columns=labels)\n", + " cm = pd.DataFrame(cm_perc, index=labels, columns=labels)\n", " cm.index.name = 'Actual'\n", " cm.columns.name = 'Predicted'\n", " fig, ax = plt.subplots(figsize=figsize)\n", - " ax=sns.heatmap(cm, annot=annot, fmt='', vmax=30)\n", - " ax.set_title(title)\n" + " ax = sns.heatmap(cm, annot=annot, fmt=\"\", vmax=100)\n", + " ax.set_title(title)" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "1c841eaa", "metadata": {}, "source": [ "Now we will generate confusion matrices for each model/data combination. Take your time and try and interpret these, and then try and answer the questions below." @@ -1072,64 +998,10 @@ }, { "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_18547/953204067.py:35: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", - " annot[i, j] = '%.1f%%\\n%d/%d' % (p, c, s)\n", - "/tmp/ipykernel_18547/953204067.py:35: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", - " annot[i, j] = '%.1f%%\\n%d/%d' % (p, c, s)\n", - "/tmp/ipykernel_18547/953204067.py:35: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", - " annot[i, j] = '%.1f%%\\n%d/%d' % (p, c, s)\n", - "/tmp/ipykernel_18547/953204067.py:35: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.)\n", - " annot[i, j] = '%.1f%%\\n%d/%d' % (p, c, s)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAANXCAYAAABOkwIqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gUVxfA4R9dQEWqgogoqGBXLLF3ozH23ruo2GsssStq7C2WGHvvNdHYe8VKU4piBREEpJf9/uDLhhVQJMIaOe/z7KN7587MuTu7w569d+5oKBQKBUIIIYQQQgjxmTTVHYAQQgghhBDiv0mSCSGEEEIIIUSmSDIhhBBCCCGEyBRJJoQQQgghhBCZIsmEEEIIIYQQIlMkmRBCCCGEEEJkiiQTQgghhBBCiEyRZEIIIYQQQgiRKZJMCCGEEEIIITJFkgkhRLpsbW3p1auXusP4KtWtW5e6detmat3/8uvaq1cvbG1t1R2GEEKIr4QkE0LkQL6+vjg7O1O0aFFy5cpF3rx5qVGjBkuXLiU6Olrd4WXYkydP0NDQQENDg1mzZqVZp2vXrmhoaJA7d+5sju6/JTw8nOnTp1OuXDly586Nvr4+pUuXZvz48bx8+VLd4X0WW1tb5ftCU1OTfPnyUaZMGQYMGMD169f/1bbnzJnDwYMHv0ygQgjxDdBWdwBCiOx17Ngx2rdvj56eHj169KB06dLExcVx6dIlxo4di7u7O2vXrlV3mJ8lV65c7Nixg8mTJ6uUR0ZGcujQIXLlyqWmyP4b/Pz8aNiwIQEBAbRv354BAwagq6vL/fv3Wb9+PQcOHODRo0fqDvOzlC9fntGjRwMQERGBp6cne/bsYd26dYwcOZJFixZlartz5syhXbt2tGrV6gtGK4QQ/12STAiRg/j7+9OpUycKFy7MmTNnsLS0VC5zcXHBx8eHY8eOqTHCzPnhhx/Yv38/9+7do1y5csryQ4cOERcXR5MmTThz5owaI/x6JSQk0KZNGwIDAzl37hw1a9ZUWT579mzmzZunpugyr2DBgnTr1k2lbN68eXTp0oXFixdTrFgxBg0apKbohBDi2yHDnITIQebPn8/79+9Zv369SiLxN3t7e4YPH/7Rbbx7944RI0ZQqFAh9PT0sLe3Z968eSQlJanUW7BgAdWrV8fU1BR9fX2cnJzYu3dvqu1paGgwZMgQDh48SOnSpdHT06NUqVL8+eefGW5XtWrVKFKkCNu3b1cp37ZtG02aNMHExCTN9VatWkWpUqXQ09PDysoKFxcX3r17l6re2rVrsbOzQ19fnypVqnDx4sU0txcbG8vUqVOxt7dHT0+PQoUKMW7cOGJjYzPclpQiIyMZPXq08rUuUaIECxYsQKFQqNT7N6/hvn37uHfvHpMmTUqVSADkzZuX2bNnf3QbSUlJLFmyhFKlSpErVy7y58+Ps7MzoaGhKvUOHTpEs2bNsLKyQk9PDzs7O2bOnEliYqJKvbp161K6dGk8PDyoV68eBgYGFCxYkPnz53+yPR+jr6/Pli1bMDExYfbs2SqvY0berxoaGkRGRrJp0yblMKq/r315+vQpgwcPpkSJEujr62Nqakr79u158uTJv4pZCCG+dpJMCJGDHDlyhKJFi1K9evVMrR8VFUWdOnXYunUrPXr0YNmyZdSoUYMJEyYwatQolbpLly6lQoUKzJgxgzlz5qCtrU379u3T7Pm4dOkSgwcPplOnTsyfP5+YmBjatm3L27dvMxxb586d2blzp/ILYnBwMCdPnqRLly5p1p82bRouLi5YWVmxcOFC2rZty5o1a2jcuDHx8fHKeuvXr8fZ2ZkCBQowf/58atSoQYsWLXj27JnK9pKSkmjRogULFiygefPmLF++nFatWrF48WI6duyY4Xb8TaFQ0KJFCxYvXkyTJk1YtGgRJUqUYOzYsalea8j8a3j48GEAunfv/tkx/s3Z2ZmxY8cqr7vp3bs327Zt4/vvv1d5LTdu3Eju3LkZNWoUS5cuxcnJiSlTpvDTTz+l2mZoaChNmjShXLlyLFy4EAcHB8aPH88ff/yR6TgBcufOTevWrXnx4gUeHh7K8oy8X7ds2YKenh61atViy5YtbNmyBWdnZwBu3rzJlStX6NSpE8uWLWPgwIGcPn2aunXrEhUV9a9iFkKIr5pCCJEjhIWFKQBFy5YtM7xO4cKFFT179lQ+nzlzpsLQ0FDx6NEjlXo//fSTQktLSxEQEKAsi4qKUqkTFxenKF26tKJ+/foq5YBCV1dX4ePjoyy7d++eAlAsX778o/H5+/srAMUvv/yiePjwoQJQXLx4UaFQKBQrV65U5M6dWxEZGano2bOnwtDQULleUFCQQldXV9G4cWNFYmKisnzFihUKQPH7778rY7awsFCUL19eERsbq6y3du1aBaCoU6eOsmzLli0KTU1N5f7/tnr1agWguHz5srLsw9c1LQcPHlQAilmzZqmUt2vXTqGhoaHyev2b17BChQoKIyOjj9ZJqWfPnorChQsrn1+8eFEBKLZt26ZS788//0xV/uF7QqFQKJydnRUGBgaKmJgYZVmdOnUUgGLz5s3KstjYWEWBAgUUbdu2/WSMhQsXVjRr1izd5YsXL1YAikOHDqUbW3rvV0NDwzSPXVptu3r1aqp2CCHEt0Z6JoTIIcLDwwHIkydPprexZ88eatWqhbGxMcHBwcpHw4YNSUxM5MKFC8q6+vr6yv+HhoYSFhZGrVq1cHNzS7Xdhg0bYmdnp3xetmxZ8ubNi5+fX4ZjK1WqFGXLlmXHjh0AbN++nZYtW2JgYJCq7qlTp4iLi2PEiBFoav5zGuzfvz958+ZV/hp969YtgoKCGDhwILq6usp6vXr1wsjIKNVr4+joiIODg8prU79+fQDOnj2b4bYAHD9+HC0tLYYNG6ZSPnr0aBQKRapf6DP7GoaHh//r94SRkRGNGjVSabeTkxO5c+dWaXfK90RERATBwcHUqlWLqKgovLy8VLabO3dulWsedHV1qVKlyme9J9Lz98xeERERacb2qfdrWlKuHx8fz9u3b7G3tydfvnwZ3oYQQvwXyQXYQuQQefPmBVS/QH2ux48fc//+fczNzdNcHhQUpPz/0aNHmTVrFnfv3lW5ZkBDQyPVejY2NqnKjI2NU425/5QuXbqwcOFCRo4cyZUrV5g4cWKa9Z4+fQpAiRIlVMp1dXUpWrSocvnf/xYrVkylno6ODkWLFlUpe/z4MZ6enhl6bTLi6dOnWFlZpfqi7+joqBLb3zL7Gn5u0vahx48fExYWhoWFRZrLU7bb3d2dyZMnc+bMGWVy+7ewsDCV59bW1qneK8bGxty/fz/Tsf7t/fv3gGpi/Tnv17RER0fj6urKhg0bePHihcr1GB+2TQghviWSTAiRQ+TNmxcrKysePnyY6W0kJSXRqFEjxo0bl+by4sWLA3Dx4kVatGhB7dq1WbVqFZaWlujo6LBhw4ZUF0kDaGlppbk9xQcXGn9K586dmTBhAv3798fU1JTGjRt/1vr/RlJSEmXKlEl3ytFChQpl6f4z+xo6ODhw584dnj17lqkYk5KSsLCwYNu2bWku/zu5evfuHXXq1CFv3rzMmDEDOzs7cuXKhZubG+PHj091Af+Xek+k5e/PgL29PfD579e0DB06lA0bNjBixAiqVauGkZERGhoadOrUKVXbhBDiWyLJhBA5yI8//sjatWu5evUq1apV++z17ezseP/+PQ0bNvxovX379pErVy5OnDiBnp6esnzDhg2fvc/PYWNjQ40aNTh37hyDBg1CWzvtU1zhwoUB8Pb2VulhiIuLw9/fX9m+v+s9fvxYOVwJkoex+Pv7q0xDa2dnx71792jQoEGGf83+mMKFC3Pq1CkiIiJUfkH/ezjQ37H9W82bN2fHjh1s3bqVCRMmfPb6dnZ2nDp1iho1aqgM9fnQuXPnePv2Lfv376d27drKcn9//0zFnVnv37/nwIEDFCpUSNnL8znv1/SO7d69e+nZsycLFy5UlsXExKQ5O5gQQnxL5JoJIXKQcePGYWhoSL9+/QgMDEy13NfXl6VLl6a7focOHbh69SonTpxItezdu3ckJCQAyb8qa2hoqEz5+eTJk2y5c/CsWbOYOnUqQ4cOTbdOw4YN0dXVZdmyZSq/dK9fv56wsDCaNWsGQKVKlTA3N2f16tXExcUp623cuDHVl8QOHTrw4sUL1q1bl2p/0dHRREZGflY7fvjhBxITE1mxYoVK+eLFi9HQ0KBp06aftb30tGvXjjJlyjB79myuXr2aanlERASTJk1Kd/0OHTqQmJjIzJkzUy1LSEhQvk5/9zSkfL3j4uJYtWrVv2xBxkVHR9O9e3dCQkKYNGmSMjH4nPeroaFhmgmClpZWql6T5cuXp5r2VgghvjXSMyFEDmJnZ8f27dvp2LEjjo6OKnfAvnLlCnv27FHOm5+WsWPHcvjwYX788Ud69eqFk5MTkZGRPHjwgL179/LkyRPMzMxo1qwZixYtokmTJnTp0oWgoCBWrlyJvb39Fxnz/jF16tShTp06H61jbm7OhAkTmD59Ok2aNKFFixZ4e3uzatUqKleurLzwV0dHh1mzZuHs7Ez9+vXp2LEj/v7+bNiwIdU1E927d2f37t0MHDiQs2fPUqNGDRITE/Hy8mL37t2cOHGCSpUqZbgdzZs3p169ekyaNIknT55Qrlw5Tp48yaFDhxgxYoTKxdb/ho6ODvv376dhw4bUrl2bDh06UKNGDXR0dHB3d2f79u0YGxune6+JOnXq4OzsjKurK3fv3qVx48bo6Ojw+PFj9uzZw9KlS2nXrh3Vq1fH2NiYnj17MmzYMDQ0NNiyZcsXGbaUlhcvXrB161YguTfCw8ODPXv28Pr1a0aPHq2c0hX4rPerk5MTp06dYtGiRVhZWVGkSBGqVq3Kjz/+yJYtWzAyMqJkyZJcvXqVU6dOYWpqmiXtE0KIr4ba5pESQqjNo0ePFP3791fY2toqdHV1FXny5FHUqFFDsXz5cpUpOtOawjQiIkIxYcIEhb29vUJXV1dhZmamqF69umLBggWKuLg4Zb3169crihUrptDT01M4ODgoNmzYoJg6dariw9MOoHBxcUkVY0amT005NezHfDg17N9WrFihcHBwUOjo6Cjy58+vGDRokCI0NDRVvVWrVimKFCmi0NPTU1SqVElx4cIFRZ06dVSmhlUokqcTnTdvnqJUqVIKPT09hbGxscLJyUkxffp0RVhY2Ge1TaFIfq1HjhypsLKyUujo6CiKFSum+OWXXxRJSUkq9f7Na/i30NBQxZQpUxRlypRRGBgYKHLlyqUoXbq0YsKECYpXr14p6304Nezf1q5dq3ByclLo6+sr8uTJoyhTpoxi3LhxipcvXyrrXL58WfHdd98p9PX1FVZWVopx48YpTpw4oQAUZ8+eVdarU6eOolSpUqn2kd6+02o3oAAUGhoairx58ypKlSql6N+/v+L69etprpPR96uXl5eidu3aCn19fQWgfH1DQ0MVvXv3VpiZmSly586t+P777xVeXl6fdQyEEOK/SEOhyKKfhYQQQgghhBDfNLlmQgghhBBCCJEpkkwIIYQQQgghMkWSCSGEEEIIIUSmSDIhhBBCCCHEN+bXX3+lbNmy5M2bl7x581KtWjX++OMP5fKYmBhcXFwwNTUld+7ctG3bNs1p4z9FLsAWQgghhBDiG3PkyBG0tLQoVqwYCoWCTZs28csvv3Dnzh1KlSrFoEGDOHbsGBs3bsTIyIghQ4agqanJ5cuXP2s/kkwIIYQQQgiRA5iYmPDLL7/Qrl07zM3N2b59O+3atQPAy8sLR0dHrl69ynfffZfhbcowJyGEEEIIIf4jYmNjCQ8PV3nExsZ+dJ3ExER27txJZGQk1apV4/bt28THx9OwYUNlHQcHB2xsbLh69epnxfNN3gE7PthP3SGohWnhhp+u9A2Kiv/4B+hbZaCjp+4Q1CKPrr66Q1CLwMh36g5BLfIb5lN3CGqRU4+3nNdylheh7uoOIV1f83dJ1xWbmT59ukrZ1KlTmTZtWqq6Dx48oFq1asTExJA7d24OHDhAyZIluXv3Lrq6uuTLl0+lfv78+Xn9+vVnxfNNJhNCCCGEEEJ8iyZMmMCoUaNUyvT00k7ES5Qowd27dwkLC2Pv3r307NmT8+fPf9F4JJkQQgghhBDiP0JPTy/d5OFDurq62NvbA+Dk5MTNmzdZunQpHTt2JC4ujnfv3qn0TgQGBlKgQIHPikeumRBCCCGEECKlpMSv9/FvmpWURGxsLE5OTujo6HD69GnlMm9vbwICAqhWrdpnbVN6JoQQQgghhPjGTJgwgaZNm2JjY0NERATbt2/n3LlznDhxAiMjI/r27cuoUaMwMTEhb968DB06lGrVqn3WTE4gyYQQQgghhBDfnKCgIHr06MGrV68wMjKibNmynDhxgkaNGgGwePFiNDU1adu2LbGxsXz//fesWrXqs/fzTd5n4mu+Aj8ryWxOOYvMepKz5NTZfWQ2p5xFzms5y1c9m1Ogt7pDSJdO/hLqDkGFXDMhhBBCCCGEyBRJJoQQQgghhBCZItdMCCGEEEIIkVJSkroj+M+QngkhhBBCCCFEpkgyIYQQQgghhMgUGeYkhBBCCCFECgqFDHPKKOmZEEIIIYQQQmSKJBNCCCGEEEKITJFhTkIIIYQQQqQkszllmPRMCCGEEEIIITJFkgkhhBBCCCFEpsgwJyGEEEIIIVKS2ZwyTHomhBBCCCGEEJkiyYQQQgghhBAiU2SYkxBCCCGEECklJao7gv8M6ZkQQgghhBBCZIokE0IIIYQQQohMkWFOQgghhBBCpCSzOWVYju+ZiIyMYu6S1TRq0xOnei3p6jyKB57eyuXBIaFMmrWQei26Uql+K5xHTebpsxcf3aaP31NGTJxF47Y9KV2jKVt2HUhV5+iJMzRo3Z3qTdozf9lalWUvXgXSrFM/3kdGfplGfob+A7rzwOMCQW89OXNuP05OZdOt6+BYjC3bVvHA4wLhkX4Mdumdqk6Hji3x8L7E0+d3mDN3ksoyG5uCuN09TZ48ub94O0TG5NTj3bNfZ67dO4nvKzeO/LWD8hXLpFu3S4927D++GXf/K7j7X2Hngd9S1Xce0ot7jy5w79EFnF16qiyr4FSGP87uRktLK0vaIj5NjnfOIuc1eZ+L7JXjk4kpc5dy9eYdXKeM4cCWX6lepSL9h08k8E0wCoWC4T/N4PnL1yybN4U9G1ZgVcCCfsMnEhUdk+42o2NjsLYqwIhBvTEzNU61PPRdGFPnLmWMSz/WLJ7F0RNnOHf5unL5rAUrGDGwN7kNDbOkzelp07YZc+ZOZK7rMmrVaM6DB57sP7QJM3PTNOsb6Ovz5EkA06bM5/XroFTLTUyNWb7SlckTXWndoicdO7WkSZP6yuWLlsxk6pT5RES8z7I2ifTl1OPdonUTps4ax6J5q2hStz0eD73Ztm8NpmYmadavVrMyh/Ydp0PzPrRo3JWXL16zff9aClhaAOBYqjhjJwxhcN+xuPQby9hJw3AoWQwALS0t5i6ayk+jZpCYKBfzqYMc75xFzmvyPhfZL0cnEzGxsZw6f4lRLn2pVL4MNtZWuPTtho21FbsOHOPpsxfcc/fi5zFDKONYgiKFrfl5zBBiY2M5/te5dLdbxrEEY4b044eGddHV0Um1/PnL1+TObUjThnUo41iCyhXL4ffkGQDH/zqHtrY2jerWyKpmp2vI0L5s2rCLbVv24u3lw4hhk4mOjqZ7j/Zp1ndzu8/Pk+ayb+9RYmPjUi0vYluI8PAI9u87hpvbfS6cv0ZxBzsA2rVvTnx8PEcOn8jSNon05dTj3X9wT7Zv3svu7Qd57O3LT6OmEx0VQ6dubdKsP3TAeDat34n7Qy98H/szZtgUNDU0qVn7OwDsixXB0/0Rly9e59KF63i6P8K+WBEABg3rzbUrt7h352G2tU+okuOds8h5Td7nX0xS0tf7+Mrk6GQiMSGRxMQk9HRVv/Dr6enidt+duPh4AHRTLNfU1ERHV4c7990zvV8baytiYmLwfORDWHgE7l6PKGFfhLDwCJav28zEUYMzve3M0tHRoXyF0pw9e1lZplAoOHf2MlWqVMjUNn19n6Cvn4uy5UpibGxERaeyuD/0Il++vEz+eSRjRk37MsGLz5ZTj7eOjg5ly5fk4rmryjKFQsGl89dwqlwuQ9vQN8iFto42796FAeDp8Zgi9rZYWVtSsJAlRe0L4+XpQ2HbQnTs0pr5s5dlSVvEp8nxzlnkvCbvc6EeOTqZMDQ0oFxpR1Zv3EHQm7ckJiZy5MQZ7j30Ijg4hCKFC2GZ34KlazYSFh5BfHw867fuJjAomDdvQzK9X6O8eZg9eTQTZy6kU7/hNG/SgBpVnViw8je6tG3Oi1evadfLhVbdBnLy7MUv2OL0mZoao62tzZugYJXyoKBg8uc3z9Q2370LZ+CAsaxZt5Cz5w+wc/sBTp+6yKw5E1m7ZguFba25eOUI127+QctWTb9EM0QG5dTjbWKaD21tbYLfvFUpf/PmLeYWZhnaxqRpowl8HaT8w+3zyI95M5ewc/86duxbx9wZS5LLFk9l1tSF1K1fk9NXDnLi/F6qVnf64m0S6ZPjnbPIeU3e50I9cvxsTq4/j2GK62Lqt+qGlpYmjsXtadqwDh7ePuhoa7NkzmSmuC6hRtMOaGlp8l2lCtT6rhKKf7nfhnVq0LDOP0OZbt65zyMffyaOHMQPHfoyf/p4zExM6Nx/OE7ly2BqnO9f7lE9jh45ydEjJ5XPa9SsQunSDowdPY27D87Sp9dwAgPfcPb8QS5fvpHqZCj+W7714+0yoh8t2jSlffNeKkMitmzYzZYNu5XP23dqyfv3kdy+eY8LN4/SrH5HLK0KsOq3BVQr35i4uHh1hC8+kxxvAXJe+1tOe58rZDanDMvxyYSNtRUbV/5CVHQMkZFRmJuZMPpnV6ytCgBQyqEY+zatJOJ9JPHx8ZgY56Nz/xGUcij2xWKIi4tj1oKVuE4ZS8DzVyQmJlK5QvLsE4ULFeSBuxd1a373xfaXlrdvQ0lISEj1K4aFhRmBgW++yD50dXVZtHgGA/qPpqidLdraWly+dAMAXx9/KlUqx59/nPki+xIfl1OPd8jbdyQkJKS6GNPc3DTVr5kfch7SC5cRfenUqh+e7o/SrWdsko+R4wfRtllPKlQqi5/PU/z9AvD3C0BHR5ui9rZ4eTz+Iu0RHyfHO2eR85q8z4V65OhhTikZ6OfC3MyEsPAIrty4Tf1aql/e8+Q2xMQ4H0+fvcDd6zH1vuCX+zUbd1Lzu0qULGFPUlIiCSlmR0hISCQxGy62iY+P5+6dh9StW11ZpqGhQZ261blx484X2ce48S6cOnWBe3fd0dLSRFvrn1xWW0dbppjLRjn1eMfHx3P/rgc16/zz+dXQ0KBm7arcvnkv3fUGDevDiLED6dbOmft3P3691PQ541m3ajOvXgaipamJjs4/7dbS1kJLU97n2UWOd84i5zV5nwv1yPE9E5ev30ahUGBrY03A85csXLmeIjbWtGrWGIATZy5inM8Iy/zmPPZ7wtwlq6lfqxo1qv4zRnDCzAVYmJkyclDy/NTx8fH4+gf8//8JBL55i9cjXwwM9LGxtlLZv6//U/48c4E9G1YAUKRwITQ1Ndl35ARmpsb4BzyjtGPx7HgpWLF8PavXLuDOnQfcunWPwS69MTAwYOuWvQCsWbeAly8DmT71FyD5oi8HR3sg+SJ1S6v8lCnrSOT7KPz8nqpsu4SDPW3a/kjN6j8C8Mjbl6SkJLr36EBQ4BuKF7fD7fb9bGmnSJZTj/e6VZtYvGoO9++4c8ftAf0HdUffUJ9d25LvB7P01zm8ehXE3BlLABg8vC9jJgxhSP9xPAt4qfzVMzIyiqjIKJVt16pbjSJ2tgwfNBGAe3ceYlesCPUa1sSqoCVJiUn4+vhnX2OFHO8cRs5r8j7/Yr7CWZO+Vjk+mYh4H8mS1RsIfBOMUd48NKpTk2HOPdHRTn5p3rwNYf7ytbwNeYe5qQktmjRgYO/OKtt4FRiEpoaG8nlQcAjteg9RPt+4Yx8bd+yjUoUybFwxX1muUCiYNn8ZY4f2x0A/FwC59PSYNWkUsxeuIi4+nokjB5PfPGMXUP1b+/cdw8zMhImTR5I/vxkP7nvStlUvZTeptbUVSSk+XJaWFly+ekz5fPiIAQwfMYCLF67RrGkXlW0vWz6HiT/NJioqGoCYmFgGOY9jweLp6OnpMmbUVF69CsyGVoq/5dTjffjAn5iYmTBm4hDMLcxwf+BFt3bOynHOVtaWJCX9c1VUjz4d0dPTZd3mJSrbWTh3JYvmrVI+z5VLj9nzJzGozxgUiuT1X70M5Ofxc1i0YjZxcXGMGDyRmJjYrG+kUJLjnbPIeU3e5yL7aSj+fnd8Q+KD/dQdglqYFm6o7hDUIio+Z57EDHT01B2CWuTR1Vd3CGoRGPlO3SGoRX7DfOoOQS1y6vGW81rO8iI089PsZ7XYx1fUHUK69IpV/3SlbKTWnong4GB+//13rl69yuvXrwEoUKAA1atXp1evXpibZ24qNyGEEEIIITJNZnPKMLVdgH3z5k2KFy/OsmXLMDIyonbt2tSuXRsjIyOWLVuGg4MDt27d+uR2YmNjCQ8PV3nExubMX6qFEEIIIYTITmrrmRg6dCjt27dn9erVaKS43gCSryUYOHAgQ4cO5erVq+lsIZmrqyvTp09XKZs8dhhTxg3/4jELIYQQQggh/qG2ayb09fW5c+cODg4OaS738vKiQoUKREdHf3Q7sbGxqXoiNCNeoKeX88ZdyjUTOYuMLc5ZcuoYerlmImeR81rO8lVfM+F1Xt0hpEvPoY66Q1Chtp6JAgUKcOPGjXSTiRs3bpA/f/5PbkdPTy9V4hAf9/GbtAghhBBCCCH+PbUlE2PGjGHAgAHcvn2bBg0aKBOHwMBATp8+zbp161iwYMEX2VdkZBTL123m9IWrhIS+w6G4HT+NcKaMYwkAStdomuZ6owb3pU/XdgCs2bSDC1du4v3YDx0dba6e2JvmOi9fB9K88wAuHtuJjq4Ov23exaE/ThEU/BZbG2tGDepDze8qKesnJiayav02jp48Q/DbUMzNTGj1QyOce3VWDv9SKBSs/G0Le4/8SUREJBXKluTnMUMoXKjgF3l9Mqt6jcoMHzGA8hVKY2mZn84dnTl29C+1xiSyTk493kNG9qPpj42wL1aEmJgYbt24y5xpi/D1eaLu0EQWkOOds8h5Td7n4t9T2wXYLi4ubNq0ievXr9O2bVuqVatGtWrVaNu2LdevX2fjxo0MHjz4i+xrytylXL15B9cpYziw5VeqV6lI/+ETCXyT3INx7vA2lcfMiSPR0NCgUd0aym3Exyfwfb1adGzd7KP7OnPxGlUqlsXAQJ/lazex59AfTBw5iENb19Ch1Q8MnzATz0c+yvrrt+5h18FjTBw1mMPb1zJqcB9+37aXbXsPK+v8vm0P2/YeZsrYoWxftwT9XLlwHjWZ2Ni4L/L6ZJahoQEPH3gyeuRUtcYhskdOPd7fVa/Mpt920LxxZzq36Y+Ojjbb969D3yBnDkv41snxzlnkvCbv83Qpkr7ex1dGrVPDduzYkY4dOxIfH09wcPIXezMzM3R0dL7YPmJiYzl1/hLL5k6lUvkyALj07cb5y9fZdeAYwwb0xMzURGWds/9PCAoVtFSWDenXHYCDxz7+i8XZi1dpXK8WAEf+PMOAnp2oXb0KAJ1a/8i1m3fZuGM/86aOA+DuQ0/q1fqOOv+vU9AyP8f/Os8DD28guVdiy+6DDOjZifq1qgEw5+cx1GnemdMXr/BDw7r/5uX5V/46eZ6/Tn69YwrFl5VTj3e39s4qz0cMnsQDn0uULV+S61duqykqkVXkeOcscl5LJu9z8W+orWciJR0dHSwtLbG0tPyiiQRAYkIiiYlJ6OmqbldPTxe3+6kv/AkOCeXClRu0+fH7z95XeMR73O67U6/mdwDExcejq6ubar93Uuy3fGlHrt+6y5OA5wB4PfbD7b47tf4/FOr5y9cEvw2lWqUKynXy5DakbMkS3Hvo9dkxCiH+nbx58wDwLjRMzZGI7CDHW+QE8j4X/4Zaeyayg6GhAeVKO7J64w6KFrbB1CQfx0+d595DL2xS9Dz87fAfpzAw0KdhnRppbO3jLl69SXG7IliYmwJQo6oTm3fup1L50hQqaMm1W3c5ff4KiUmJynX6de9AZFQUzbsMQEtTk8SkJIYN6MmP39cHkpMbAFMTY5V9mZoYE/w29LNjFEJknoaGBtNdx3Pjmhvenj6fXkH8p8nxFjmBvM/TkfT1DSf6Wn3zyQSA689jmOK6mPqtuqGlpYljcXuaNqyDh3fqD82Boyf5sXE99PR009jSx525eE3ZKwHw03Bnps1bRvMuA9DQgEJWlrRq1ogDR08q6/x55gJHT55l3rRx2BcpjNdjP+YtXYOFmQktf2iUuQYLIbLEnAWTKeFYjNZNu6s7FJEN5HiLnEDe5+LfyhHJhI21FRtX/kJUdAyRkVGYm5kw+mdXrK0KqNS7ffch/gHP+WXGhM/eR3x8PJev36J/j47KMhPjfCybO4XY2DjehYdjYWbK4l9/V9nvwpXr6detg/Lah+J2RXj1Oojftuym5Q+NMPt/j8TbkOSZnv72NiSUEsXsPjtOIUTmzJo/iYbf16HNDz159TJQ3eGILCbHW+QE8j4XX8JXcc1EdjHQz4W5mQlh4RFcuXGb+rW+U1m+/+gJSpYohkOxop+97Rtu98mbJ3ea6+rp6ZLf3IyExET+OneZev+/kBogJiYWDU3VO4BramqS9P97CVpbFcDM1Jhrt+8ql7+PjOS+hzflSqd9jw4hxJc1a/4kmjRrQIcWfXgW8ELd4YgsJsdb5ATyPv8Edc/YJLM5fV0uX7+NQqHA1saagOcvWbhyPUVsrGnVrLGyzvvISE6evciYIf3T3Mar10GEhUfwKjCIxMQkvB75Asm9HgYG+py7dJ26NVWTk/vuXgS+eYtDsaIEvXnLqt+3olAolPeuAKhboyrrNu3EMr8F9kUK4/nIh8279tP6/7FpaGjQvUMr1m7aSWHrghS0ys+KdVuwMDOlQa3qX/ql+iyGhgYUtSusfG5rW4gyZR0JDQnj+fOXaoxMZIWcerznLPiZVu1+oE+Xobx/H4W5hRkAEeERxMTkzLuvf8vkeOcscl6T97n49zQUiv//BP4NiQ/2U3n+5+kLLFm9gcA3wRjlzUOjOjUZ5tyTPLkNlXX2HDrOvKVrOXt4m0r53ybNWsihP06lKv99+TyqVCxLwzY9mDlhJNUq/zPr0s0795m5YAXPX77GQF+fWtUqM3Jgb+UF2pD6hnrmZib80Kgug3p3Uc5s9fdN6/Yc/pOI9++pWLYUk0e7YGtjrRKLaeGGmXvBMqlmraoc/3NHqvJtW/cyyHlctsURFZ8zT3wGOnqfrvQFfS3HO49u9s6D/iI09axvACMHT2L3joPZFkdg5Lts29fXJL9hvmzdnxxv9ZLzWvb4Wt7n6cXxNYh9+PXevFCv9Nd1TW2OSCaymoe3D32H/cSFYzvR0VZfZ092JxNfC0kmcpbs/qP7tcipXy6zO5n4WuTU4y3ntZzlq04m7p9Qdwjp0iv7+bcvyEo56pqJrJKYmMiEkYPUmkgIIYQQQgiR3eTb7xdQpmQJypQsoe4whBBCCCGEyFaSTAghhBBCCJGCQpH46UoCkGFOQgghhBBCiEySZEIIIYQQQgiRKTLMSQghhBBCiJS+wpvDfa2kZ0IIIYQQQgiRKZJMCCGEEEIIITJFhjkJIYQQQgiRUpIMc8oo6ZkQQgghhBBCZIokE0IIIYQQQohMkWFOQgghhBBCpCSzOWWY9EwIIYQQQgghMkWSCSGEEEIIIUSmyDAnIYQQQgghUkpKVHcE/xnSMyGEEEIIIYTIFEkmhBBCCCGEEJkiw5yEEEIIIYRISWZzyjDpmRBCCCGEEEJkiiQTQgghhBBCiEyRYU5CCCGEEEKklCTDnDJKeiaEEEIIIYQQmSLJhBBCCCGEECJTZJiTEEIIIYQQKclsThkmPRNCCCGEEEKITPkmeyb0rWqpOwS1iH55Ud0hqEUpxw7qDkEtXkeFqDsEtbDMZaLuENQiIi5a3SEIkeUqGhdVdwhqcSnIU90hCJFp32QyIYQQQgghRKbJbE4ZJsOchBBCCCGEEJkiyYQQQgghhBAiU2SYkxBCCCGEECnJMKcMk54JIYQQQgghRKZIMiGEEEIIIYTIFBnmJIQQQgghRAoKRaK6Q/jPkJ4JIYQQQgghRKZIMiGEEEIIIYTIFBnmJIQQQgghREoym1OGSc+EEEIIIYQQIlMkmRBCCCGEEEJkigxzEkIIIYQQIiWFDHPKKOmZEEIIIYQQQmSKJBNCCCGEEEKITJFhTkIIIYQQQqQkszllmPRMCCGEEEIIITJFkgkhhBBCCCFEpsgwJyGEEEIIIVKS2ZwyTHomhBBCCCGEEJkiyYQQQgghhBAiU2SYkxBCCCGEECnJbE4ZJj0TQgghhBBCiEyRZEIIIYQQQgiRKZJM5FCRkVHMXbKaRm164lSvJV2dR/HA01u5PCoqmtkLV9GgVTec6rWkRdcB7Dpw7JPbDY94z6yFK6nbogsV6janWad+XLhyQ7n86IkzNGjdnepN2jN/2VqVdV+8CqRZp368j4z8cg3NoK592nPm9mEePLvMnj83UrZCqXTrNm5Wj31/beaWz1nuPrnIobPbaNn+B5U6fQZ346rHSa56nKTPoK4qy8pWLMX+U1vQ0tLKkrZ8jv4DuvPA4wJBbz05c24/Tk5l063r4FiMLdtW8cDjAuGRfgx26Z2qToeOLfHwvsTT53eYM3eSyjIbm4K43T1Nnjy5v3g7Plf7Xq05fGM3l/1PsfHYGkqVd8zQeo1bNuDWq4ss2DBHpbzbwE6cfHCYkw8O09W5o8qyUhVKsuXEb3K81ahnv85cu3cS31duHPlrB+Urlkm3bpce7dh/fDPu/ldw97/CzgO/parvPKQX9x5d4N6jCzi79FRZVsGpDH+c3f1VHO+cqlXPFuy8upWTPsdZdWQ5DuVLZGi9+i3qcu75KWb9Nl2lvKNzew7c3cOBu3voMKCdyjLHCg6sOb4KLS35OvXNUSR9vY+vjLz7c6gpc5dy9eYdXKeM4cCWX6lepSL9h08k8E0wAPOXr+XS9Vu4ThnH4e1r6d6hFXMWr+LsxWvpbjM+Pp7+Iyby4lUgi2ZN4uiO35g2fhgW5mYAhL4LY+rcpYxx6ceaxbM4euIM5y5fV64/a8EKRgzsTW5Dw6xt/Ad+aNWICTNGsmLBOlo16IaX+yPW716OiZlxmvXfhYazevHvdGzam+Z1O7FvxxFcl02hZr3vAChR0p7h4wcycsBERjlPYsSEQRR3tANAS0uLGQsmMnWMK4mJidnWxrS0aduMOXMnMtd1GbVqNOfBA0/2H9qEmblpmvUN9PV58iSAaVPm8/p1UKrlJqbGLF/pyuSJrrRu0ZOOnVrSpEl95fJFS2Yydcp8IiLeZ1mbMqJRi/qMnDaEdQs30u37fjzy8GH5joUYm+b76HqW1gUYPmUwbtfuqpTbO9oxcFxfJg6cxqRB0xk0vj92DkWB5OM9cd5oXMctkOOtJi1aN2HqrHEsmreKJnXb4/HQm2371mBqZpJm/Wo1K3No33E6NO9Di8ZdefniNdv3r6WApQUAjqWKM3bCEAb3HYtLv7GMnTQMh5LFgOTjPXfRVH4aNUPtxzunqte8LoOnDGTj4i30bzoQXw8/ftk6l3yf+HwXsM7PoJ+duXftvkp5Ucci9B7TkxmDZzPTZQ59x/WmiEMRALS0NBnlOoJFE5aSmPj1fcETIrtIMpEDxcTGcur8JUa59KVS+TLYWFvh0rcbNtZWyt6Huw88adm0IVUqlqWgZX7at/yBEvZFVXovPrT/6EnCwiNYNncKFcuWoqBlfipXKItDseQvVs9fviZ3bkOaNqxDGccSVK5YDr8nzwA4/tc5tLW1aVS3Rta/AB/oPbAru7ceZP+OI/g+8mfKGFdiomNo16VFmvVvXLnNX8fP4fv4Cc+evGDz2p14e/jgVLU8AEWL2eLt8Zhrl25x9eJNvD18KFrMFoB+Q7pz86obD+56ZFPr0jdkaF82bdjFti178fbyYcSwyURHR9O9R/s067u53efnSXPZt/cosbFxqZYXsS1EeHgE+/cdw83tPhfOX6O4Q3IS1a59c+Lj4zly+ESWtikjujp35OC2IxzZdRz/R09wHbeAmOgYWnRulu46mpqazFo5hbULfufF01cqy2ztbXjs4cuty27cvHQbH09fbO1tAOg+uDNu1+/hcc8rS9uUETn1ePcf3JPtm/eye/tBHnv78tOo6URHxdCpW5s06w8dMJ5N63fi/tAL38f+jBk2BU0NTWrWTv6xwL5YETzdH3H54nUuXbiOp/sj7Islf7kcNKw3167c4t6dh9nWPqGq/YC2HNtxnD93n+Dp4wAW/bSEmJhYfujUJN11NDU1mbR8AhsWbuJVgOrn28bOBj9Pf+5cuYvb5Tv4evphY1cIgI4DO3Lv+n2876X/d1GInECSiRwoMSGRxMQk9HR1VMr19HRxu+8OQPkyjpy9dI3AN8EoFApu3L7Hk4AXVK9SMd3tnrt0jXKlHZm9cCW1f+xMq24DWbtpp/IXOhtrK2JiYvB85ENYeATuXo8oYV+EsPAIlq/bzMRRg7Ou0enQ0dGmVDkHrpz/p4dEoVBw5cINyldKfwhIStVqVaaIXWFuXr0DwCMPH2ztbLAsmB8r6wLY2tnw2NOXQrYFadO5OUvm/JolbfkcOjo6lK9QmrNnLyvLFAoF585epkqVCpnapq/vE/T1c1G2XEmMjY2o6FQW94de5MuXl8k/j2TMqGlfJvh/QVtHG4eyxbl+8bayTKFQcOPiLco6pT+0rd+oXoS8DeXQjtRD/Xy8/LApWoj8BS0oYJ0fm6KF8PX2p2BhK5p3/IFf567LkrZ8jpx6vHV0dChbviQXz11VlikUCi6dv4ZT5XIZ2oa+QS60dbR59y4MAE+PxxSxt8XK2pKChSwpal8YL08fCtsWomOX1syfvSxL2iI+TVtHmxJlinP7opuyTKFQcPuiGyUrlkx3vR4ju/Hu7TuO7/wz1TI/L3+sixbEwsqC/AUtKFTEGn/vJ1gVtqRpx+9ZP39DlrRFfAWSkr7ex1dGpobNgQwNDShX2pHVG3dQtLANpib5OH7qPPceemFT0BKAiSMHMW3eMhq06o62lhYamhpMGz+cSuXTH2v8/OVrXrjdo1njevy6YAYBz18ya+FKEhITGdynK0Z58zB78mgmzlxITGwszZs0oEZVJ352XUyXts158eo1Q8dPIyEhkcF9u9K4Xq0sfy2MTfKhra1N8JsQlfLgoBCK2tumu17uPIZcfPAHurq6JCUmMm38PGVC4vv4CYtmr2LD3lUALJy1Et/HT9i4dyW/TF9GzfrVGDp2AAkJCcyatIBb/09CspOpqTHa2tq8CQpWKQ8KCqZ4cbtMbfPdu3AGDhjLmnUL0c+lx87tBzh96iIrVs1l7ZotFLa1ZueetejoaOM6exmHDv7xJZryWfKZGKGtrU3IB8c75E0otvaF01ynXJUytOzcjC6N+qS5/Mnjp6yau5ZVOxcDsNJ1DU8eP2XlrsUsm/Ur1epWZcCY3iTEJ7BgyjLuXLv3ZRuVATn1eJuY/v35fqtS/ubNW+z+35vwKZOmjSbwdZAyIfF55Me8mUvYuT85SZw7Ywk+j/zYeeA3Zk1dSN36NRn102AS4hOYMsGV61duf2zz4gsyMjFCS1uLkDehKuWhwaHY2BdKc50ylUvTrFNT+jV2TnN5gE8Av839nQU75gGwbu56AnwCWLhjPmtmr6VK3Ur0GtmDhIRElk9dyf3rD75so4T4D5BkIody/XkMU1wXU79VN7S0NHEsbk/ThnXw8PYBYNvew9x392LFvKlYFsjP7bsPmL1wFRZmplSrnPYvmUkKBSbG+Zg2bhhaWlqUcihGUPBbNmzfy+A+yRchN6xTg4Z1/hnKdPPOfR75+DNx5CB+6NCX+dPHY2ZiQuf+w3EqXwZT43xZ/lpkRuT7KFrW64KhoQHValVmwoyRPHvyghv//+Kwc9M+dm7ap6zfumMzIt9HcefWA05c3Ufbxj0oYGnB4rVzqO/Ugvi4eHU15Ys6euQkR4+cVD6vUbMKpUs7MHb0NO4+OEufXsMJDHzD2fMHuXz5RqoveV8bA0N9ZiyfzOyx8wkLCUu33r7Nh9i3+ZDyebP2TYiKjOLBrYfsu7SNHk0HYGFpzpxfp9Giagc53v8RLiP60aJNU9o376Uy1GvLht1s2bBb+bx9p5a8fx/J7Zv3uHDzKM3qd8TSqgCrfltAtfKNiftGjve3Rt9Qn4lLx/PLuEWEhYanW+/w1qMc3npU+fz7do2IiozC/bYHW85vxPlHF8wtzZiychKdq3f/Zj7fQmSUJBM5lI21FRtX/kJUdAyRkVGYm5kw+mdXrK0KEBMby9I1m1jq+jN1qlcBoIR9Ebwe+7Fxx750kwnz///6mXIWk6KFCxH8NpT4+Hh0dFSHVcXFxTFrwUpcp4wl4PkrEhMTqVwheWhR4UIFeeDuRd2a32XRK5AsNOQdCQkJmJmrXoxpZmHCm6D0v/goFAoC/J8D4PnwEXbFi+A8opcymUjJ2MSIIWP606XFAMpVLM0T3wCe+j3jqd8zdLS1KWJnwyNP3y/bsE94+zaUhIQEzC3MVMotLMwIDHzzRfahq6vLosUzGNB/NEXtbNHW1uLypeSZvXx9/KlUqRx//nHmi+wro96FhJGQkIDJB8fbxNyYt2kcb2vbghS0sWLRprnKMk3N5NGh156dpW3Nrrx4+lJlHSMTI/qP7s2A1kMoXbEkAX7PeOb/nGf+z9HW0U4eBuXllwWtS19OPd4hb//+fKteZG5ubpqql+ZDzkN64TKiL51a9cPT/VG69YxN8jFy/CDaNutJhUpl8fN5ir9fAP5+AejoaFPU3hYvj8dfpD3i48JCwkhMSMTEXHXyDGMzY0KCQlPVL1jYCksbS1w3zFKWaWhqAHD6yQm61+nFyw+ukTIyzkvPkT0Y3m4kjhUceeb/nBf+L3jh/wJtHW2si1rj7+WfBa0T2e4rHE70tZJrJnI4A/1cmJuZEBYewZUbt6lf6zsSEhJISEhAU0NDpa6WliZJH/lwlS9TioDnL1XqPHn2AnNTk1SJBMCajTup+V0lSpawJykpkYQUs58kJCSSmA0f5Pj4BNzveVGtdhVlmYaGBtVqVeburfsfWVOVhqYmurq6aS6bOHM0G9fsIPBVEFpammjr/JPDa2lrqWUKyfj4eO7eeUjdutWVZRoaGtSpW50bN77MsKtx4104deoC9+66J7db6592a+toq6XdCfEJeN1/RJWaTsoyDQ0NKtd04v5t91T1n/gE0LFuD7o27KN8XDh5mVuX79C1YR8CX6ae5Wj09KHsWLuboFdv0NTSRFs7xfHW0lLLFJI59XjHx8dz/64HNev886OEhoYGNWtX5fbN9IebDRrWhxFjB9KtnTP376Z+X6Q0fc541q3azKuXgWhpaqLz4edbU6aIzS4J8Ql4P3hExZr/XNunoaGBU80KeLilnvQiwDeA3g360e97Z+Xjysmr3Llyl37fOxP0MnWi7TJtEHt+28ebV8Fpf7415WuVyHmkZyKHunz9NgqFAlsbawKev2ThyvUUsbGmVbPG6GhrU6lCGRauXI+enh5WBSy4decBh/84zdhh/ZXbmDBzARZmpowclDz/fMfWzdix7zBzl6ymS7sWPH3+knWbd9G1fepZkXz9n/LnmQvs2bACgCKFC6Gpqcm+IycwMzXGP+AZpR2LZ8trsWH1NuYtn8bDux7cd3Onp3MX9A302bfjCADzV0wn8HUQC2etBMB5eC8e3PXk2ZPn6OrqUKdhDVq2/4Fp41xTbbt6narY2tkwbshUAO7f8aCofWFqN6iOpVV+khKT8PN5mi3t/NCK5etZvXYBd+484Natewx26Y2BgQFbt+wFYM26Bbx8Gcj0qb8AyRezOjjaA6Crq4OlVX7KlHUk8n0Ufn6qbSjhYE+btj9Ss/qPADzy9iUpKYnuPToQFPiG4sXtcLud8WTtS9q2ZhfTlk7E454X7nc96dK/PfoG+hzZeRyA6csmEfQ6mJVz1hAXG4evt+qvjBFhyVOdflgOULV2JWyKFmLqsNkAeNz1orB9YarXr0p+KwuSkhJ56huQxS1MW0493utWbWLxqjncv+POHbcH9B/UHX1DfXZtOwDA0l/n8OpVEHNnLAFg8PC+jJkwhCH9x/Es4KWyNycyMoqoyCiVbdeqW40idrYMHzQRgHt3HmJXrAj1GtbEqqAlSYlJ+PrIr9TZac/afUxYPA7ve9543vWmXb825NLPxR+7ki+unrBkPMGvg1k3dz1xsfH4ez9RWf99ePLn+8NyAKdaFbEuao3riPkAeN/zxsa+EFXqVcbCyoKkpCQC/J5lafuE+BpJMpFDRbyPZMnqDQS+CcYobx4a1anJMOee6Pz/V5YF039iyeqN/DR9PmHhEVgVsGCYc086tvpn+sxXgUEqvReW+c1Zs3g285euoU3PwViYmdKtfUv6dlOdelKhUDBt/jLGDu2PgX4uAHLp6TFr0ihmL1xFXHw8E0cOJr+56pCMrHL84F+YmBozbPxAzC1M8Xz4iL4dh/L2/xfpWloXICnFTWL0DfSZNn88BSwtiImJxe/xE8YO/pnjB/9S2a5eLj2mzB3HyP4TUCgUAAS+CmLmxF9wXTaFuNh4xg+dSmxMbLa080P79x3DzMyEiZNHkj+/GQ/ue9K2VS/l8A9rayuVXiZLSwsuX/1nNqPhIwYwfMQALl64RrOmXVS2vWz5HCb+NJuoqGgAYmJiGeQ8jgWLp6Onp8uYUVN59SowG1qZ2l+Hz2Bsmo+B4/piam7CI3cfhnYZQ0hw8jCIAgXzk5Sk+Ozt6uXSZdzskUwYOFV5vINeveGXyUuYsngC8XHxTB02h9iY1NOsZoecerwPH/gTEzMTxkwcgrmFGe4PvOjWzll5/YaVtaXK8e7RpyN6erqs27xEZTsL565k0bxVyue5cukxe/4kBvUZozzer14G8vP4OSxaMZu4uDhGDJ5IjJo+3znV2SPnyGdqRO8xvTAxN8bHw5dx3ScQGvwOgPwFLVBkotdbN5cuw2cNZcagWcrj/eZVMMt+XsFPC8cSFxeP64j5xKnp8y2ywFd4c7ivlYbi70/FN0Rbt6C6Q1CL6JcX1R2CWpRy7KDuENTidVTIpyt9g4rnzZmf70fhL9Qdglrk0dVXdwhqERj5Tt0hqEVNi4zdjf5bcynIU90hqEVC3Nd7Xos+ukjdIaRL/8dR6g5BhQzuE0IIIYQQQmTKV51MPHv2jD590p7b/W+xsbGEh4erPL7BzhYhhBBCCJFd1H1juv/QTeu+6mQiJCSETZs2fbSOq6srRkZGKg9FUkQ2RSiEEEIIIUTOpdYLsA8fPvzR5X5+n56LfcKECYwapTp2zNjU4V/FJYQQQgghhPg0tSYTrVq1QkND46PDkjQ+uNfBh/T09NDT0/usdYQQQgghhEiXzOaUYWod5mRpacn+/ftJSkpK8+Hm5qbO8L5quXJpUiB/LgoXMsCuSG4MDFRvjPTXucv0HzGRGk07ULpGU7wepb7D8p5Dx+k1ZBxVG7WhdI2mhEe8T1XHw9uHfsMnUu37dtRo2oFp85Yqp39M6eXrQJzqtSQqKhofv6eMmDiLxm17UrpGU7bsOpCq/q27D3AZN5V6LbpSukZTTl+4kqrOyvVbad65P5UbtKJ6k/b0Gz6B++5eKnUat+2JhkmEyoNcWTsVY+debTl8bgdufudw8zvHruO/U7tB9U+v+B9XvUZldu1Zh7fPVcIj/Wj2YyN1h6QWPYd05dari4yaMVTdoWSpnHq8h4zsx7HTu/AOuMG9RxdYv3UZdva26g5LZJFeo3pw7vkplcfmc7+rOywh/lPUmkw4OTlx+/btdJd/qtciJ9PU0CAuLongt2l/cY6OiaFi2VKMHJT+BewxMbHUrFqJ/j06pbk86M1b+g2fgI21JdvXLmH1opn4+AcwafbCVHXPXLxGlYplMTDQJzo2BmurAowY1BszU+O044uOoYR9USaNHpxufLaFCjJx1GD2b/6VzasWYFUgPwNGTiIk9J1KPUWULopQQ+WDmLTvRP2lvH4ZxMJZK2jdsDttGvbg2qVbrNq8EPsSRbN0v+pmaGjAwweejB45Vd2hqE3Jcg606d6CR+4+6g4ly+XU4/1d9cps+m0HzRt3pnOb/ujoaLN9/zr0DXLmFLU5gb+XP20qtFc+hrYeoe6QhPhPUeswp7FjxxIZGZnucnt7e86ePZuNEf13REUnEhWdmO7yFk0aAPDiIzeK6t6xNQA33NK+M+35K9fR1tZm8mgXNDWT884pY4fQpsdgAp6/xMbaSln37MWrNK5XC4AyjiUo41gCgCW/bkhz27WqVaZWtcrpxgbQrHE9lefjhvVn/9ETPPL157tKFf5ZoNAARfblxWdPqt7PY/GcVXTu1Zbylcrg4/3p63z+q/46eZ6/Tp5Xdxhqo2+gz8yVU5g9Zj59R/RUdzhZLqce727tnVWejxg8iQc+lyhbviTXr6T/45f470pMTCTkTai6wxBfm69w1qSvlVp7JmrVqkWTJk3SXW5oaEidOnWyMSKRUlxcPDo62spEApLvVA3gds9dWRYe8R63++7Uq/ldlsUSHx/PnkN/kCe3ISXsP+gB0I+DfBGQNxJyxQHZ15ulqalJs1aNMTDQ587NtJMy8W0Y7zqSy6evcuOifKHMSfLmzQPAu9AwNUciskrBIgXZe2sn2y9vYdLyCVhYWag7JCH+U77qqWGFelV1Ks/bt6H8vm0v8fHxhIVHsPjX5LGkb97+c/fli1dvUtyuCBbmpl88hnOXr1O5YWsq1mvJll0HWbtkNsb5jJTLu7ZvCe9zQYQBxOokXy9hkLXXTAAUd7TjzpMLPHxxhekLJuDSayy+j/yzfL9CPRq3bIBDmeKsmLNG3aGIbKShocF01/HcuOaGt+e3P7QtJ/K448nckb8wrvsEFk9cimWhAizbvxh9QxnWJkRGSTIh0mVftDCzJ49m0879VGrQirotulDQsgCmJsZoav4zY9aZi9eyrFeiSsVy7Nu4kq2rF1LjOyfG/OzK2xTXTPTs1AYStCFRC2J1ISoX6MWT1b0T/j5PaVmvC+2/78WOjXuZt3wadsWLZOk+hXrkt7Jg9MxhTHaZSVxsnLrDEdlozoLJlHAsxuC+Y9QdisgiN87e5PyxC/h5+nPz/C1+6jGR3HlzU6+5jIrI8RRJX+/jKyPJhPioZo3rcf7Idk4f3Mrl47sZ3Lcboe/CsLayBJKHH12+fou6WZRMGOjnwsbainKlHZk5YSRaWlrsP3Ii/RUSNdHQADSzNpmIj08gwP857ve9WDhrJV7uj+g5oHOW7lOoh0PZEpiam7D15G9ce3aWa8/O4lS9Ap36tuPas7MqwwDFt2PW/Ek0/L4O7Zv35tXL9K89E9+W9+GRPPd7TkHbguoORYh/zdXVlcqVK5MnTx4sLCxo1aoV3t7eKnXq1q2LhoaGymPgwIGftR+1XoAt/jvMTJJnZdp/9AR6ujpUq5x8AfQNt/vkzZMbh2LZM5NRUlIScfHx6VfQSkKhIPmi7GykoamJrp5Otu5TZI+bF2/RsW4PlbIpSybw1CeATSu2kSQX6X1zZs2fRJNmDWjfvBfPAl6oOxyRjfQNcmFla8nJ/W/VHYoQ/9r58+dxcXGhcuXKJCQkMHHiRBo3boyHhweGhobKev3792fGjBnK5wYGBp+1H0km/qM0NEBH559fRHW0NfF65ItR3jxYFrAgLDyCV6+DCApOPiH6BzwHwMzUGDNTEwCC34YQ/DaUgOcvAXjs+wRDA30sC1hg9P+LDrfvPUz5MiUx0M/F1Zt3WLhyPSMG9SZvntwAnLt0PVWvRHx8PL7+Af//fwKBb97i9cgXAwN95QxQUVHRyv0CvHgZqBJ/VHQMazftpF7NqpibmRD6Lpwd+48QFPyW7/8/a9Tdh548cPcCrcTk5EE7Mfl6iTjtLE0mRk924fzpK7x6/hrD3AY0b9uEqjWc6NPh277vgKGhAUXtCiuf29oWokxZR0JDwnie4lh+a6Iio/H1Vr0eJiYqhnehYanKvyU59XjPWfAzrdr9QJ8uQ3n/PgpzCzMAIsIjiInJ+uuxRPYaNHkAV05dI/B5IKb5Tek9uidJiUmcPigzSeZ438APRX/++afK840bN2JhYcHt27epXbu2stzAwIACBQpkej+STPxH6elpUdDynwvEzEz1aNd7CC2bNmT25NGcvXiNyXMWKZePnToXgEF9uuLStxsAuw4e59fftynr9HQZC8CsiaNo1Sz5BlUPPB+xcv1WoqKjKVK4EFPGDVVOOwtw9vI1Zk4YqRJbUHAI7XoPUT7fuGMfG3fso1KFMmxcMR+Ah16P6TN0vLLO/OVrAZTxa2lq4v/0GYf/OEVoWBj58ualtGNxNq36BfuiyV9wdHV0+OPUecgTBRpAkibE6GT5fSZMzEyYv2I6FvnNiAh/j7fHY/p0GMqV89ezdL/qVqFiGY7/uUP53HXeZAC2bd3LIOdx6gpLZJGcerx79k2+786+Y5tUykcOnsTuHQfVEJHISuaW5vy8YiJ5jfMSFhLGgxsPGdxiKGEhMnuX+HrFxsYSG6v644aenh56/59xMz1hYcnvaxMTE5Xybdu2sXXrVgoUKEDz5s35+eefP6t3QkPxDd4VTls3Z451jH558dOVviAPbx/6DvuJC8d2oqOtvry0lGMHte1bnV5HhXy60jeoeN6c+fl+FJ4zh9vk0c2Zs+oERr5TdwhqUdPCUd0hqMWlIE91h6AWCXFf73kteu8sdYeQrnkPE5g+fbpK2dSpU5k2bVq66yQlJdGiRQvevXvHpUuXlOVr166lcOHCWFlZcf/+fcaPH0+VKlXYv39/huORngmRaYmJiUwYOUitiYQQQgghxBf3FQ9zmjBhAqNGjVIp+1SvhIuLCw8fPlRJJAAGDBig/H+ZMmWwtLSkQYMG+Pr6Ymdnl6F45FugyLQyJUtQpmQJdYchhBBCCJFjZGRIU0pDhgzh6NGjXLhwAWtr64/WrVq1KgA+Pj6STAghhBBCCJFTKRQKhg4dyoEDBzh37hxFinz6flh3794FwNLSMsP7kWRCCCGEEEKIlL6BS4pdXFzYvn07hw4dIk+ePLx+/RoAIyMj9PX18fX1Zfv27fzwww+Ymppy//59Ro4cSe3atSlbtmyG9yPJhBBCCCGEEN+YX3/9FUi+MV1KGzZsoFevXujq6nLq1CmWLFlCZGQkhQoVom3btkyePPmz9iPJhBBCCCGEEN+YT03YWqhQIc6fP/+v9yPJhBBCCCGEECl9xbM5fW00P11FCCGEEEIIIVKTZEIIIYQQQgiRKTLMSQghhBBCiJRkmFOGSc+EEEIIIYQQIlMkmRBCCCGEEEJkigxzEkIIIYQQIiWFDHPKKOmZEEIIIYQQQmSKJBNCCCGEEEKITJFhTkIIIYQQQqQkszllmPRMCCGEEEIIITJFkgkhhBBCCCFEpsgwJyGEEEIIIVJSKNQdwX+G9EwIIYQQQgghMkWSCSGEEEIIIUSmyDAnIYQQQgghUpLZnDJMeiaEEEIIIYQQmSLJhBBCCCGEECJTZJiTEEIIIYQQKckwpwz7JpOJUVa11R2CWpgWbqjuENTi7dNT6g5BLUo5dlB3CCIbRcXHqjsEkY1+N6+n7hDU4ndeqzsEIcRnkmFOQgghhBBCiEz5JnsmhBBCCCGEyDSFDHPKKOmZEEIIIYQQQmSKJBNCCCGEEEKITJFhTkIIIYQQQqSgSFKoO4T/DOmZEEIIIYQQQmSKJBNCCCGEEEKITJFhTkIIIYQQQqQkN63LMOmZEEIIIYQQQmSKJBNCCCGEEEKITJFhTkIIIYQQQqQkN63LMOmZEEIIIYQQQmSKJBNCCCGEEEKITJFhTkIIIYQQQqQkN63LMOmZEEIIIYQQQmSKJBNCCCGEEEKITJFhTkIIIYQQQqQkN63LMOmZEEIIIYQQQmSKJBNCCCGEEEKITJFhTkIIIYQQQqQkw5wyTHomhBBCCCGEEJkiyYQQQgghhBAiU2SYkxBCCCGEECkp5KZ1GSU9E0IIIYQQQohMkWQiHdW6N+KnS8uY7b2JIQdnUqicXbp1NbW1aDisDePPL2G29yZG/DGX4nXKqdSp0LIGE6+sYNq9dfw4uZvKMmNrM8aeWYRebv0sacvn6D+gOw88LhD01pMz5/bj5FQ23boOjsXYsm0VDzwuEB7px2CX3qnqdOjYEg/vSzx9foc5cyepLLOxKYjb3dPkyZP7i7cjPZGRUcxdsppGbXriVK8lXZ1H8cDTW6WO75MAhoybxneN21K5QSs69h3Gq9dBH91ueMR7Zi1cSd0WXahQtznNOvXjwpUbyuVHT5yhQevuVG/SnvnL1qqs++JVIM069eN9ZOSXa2gGde3TnjO3D/Pg2WX2/LmRshVKpVu3cbN67PtrM7d8znL3yUUOnd1Gy/Y/qNTpM7gbVz1OctXjJH0GdVVZVrZiKfaf2oKWllaWtOVztO/VmsM3dnPZ/xQbj62hVHnHDK3XuGUDbr26yIINc1TKuw3sxMkHhzn54DBdnTuqLCtVoSRbTvz2VbQ7p/rWz2sfsqhagnobR9Hu9nJ6vNhKoe+dPlrfpmklGu4YT4f7q+jktY6mh6diVaeMSp0iravT9uZSOrqvodJU1c+2obUZrS7+gs5X8DcMoFXPFuy8upWTPsdZdWQ5DuVLpFu3SfvGnHt+SuVx0ue4Sp2Ozu05cHcPB+7uocOAdirLHCs4sOb4KrS05OuUyLlkmFMayv34Hc0nd2f/5PUE3PGhVp+m9N38E7/UH03k2/BU9b8f04GKrWqy76d1BPm+pHidsvRcM4qVbafy0v0JBsZ5aDdvALvH/MrbgCD6/D4O3yvueJ65A0DrmX34Y94OYt9HZ3dTVbRp24w5cycyYvjP3Lp5l8Euvdl/aBNOFRoS/OZtqvoG+vo8eRLAwQPHcZ03OdVyE1Njlq90ZZDzWJ74P2PP/t+4cO4qf/55BoBFS2Yydcp8IiLeZ3nb/jZl7lJ8/J7gOmUMFmamHDlxhv7DJ3Jo2xrym5sR8PwlPQaNoc2P3+PSrxuGBgb4+gegq6eb7jbj4+PpP2IiJsb5WDRrEvnNzXj5OpA8uZO/TIS+C2Pq3KXMmjQK64IFcBkzlSpO5ahboyoAsxasYMTA3uQ2NMyW1+BvP7RqxIQZI5ky1pV7tx/Sy7kz63cv5/tqbQkJDk1V/11oOKsX/47f4yfExcdTr3EtXJdN4W1wCJfOXqNESXuGjx+Ic9cRaGhosGbbYi6du8YjT1+0tLSYsWAiP4+aTWJiYra280ONWtRn5LQhuI5fyMM7HnTu357lOxbStmYXQt++S3c9S+sCDJ8yGLdrd1XK7R3tGDiuLyO6j0dDQ4PFm+dx7fxNfL380NLSYuK80cwe+4va251T5YTz2oe0DfQI9QjAZ+cF6q0f8cn6Ft858OrCQ+7M3UNceCT2HetQb+No/vhxKiHuT9Ezzk21X/pxZdQaIp6+of7m0by67M6LU3cBqDqnF25zdhGv5r9hAPWa12XwlIEsmrAUzzuetOvXll+2zqV7nd68S+fz/T48kh51eimfK1IMbynqWITeY3oyoedkNDQ0cN00i5sXbuPv5Y+WliajXEewYPxiEhNl5p9vjszmlGGSSqehVr9mXN95hlt7zhPk84L9k9YTHx1H5Q5106zv1LoWZ1YexOvcXUKeBXFt6ym8zt6hdr9mAJjaWBATEcW9o9d4ft8P32seWNgXBKB8i+okJiTy8MTN7GpeuoYM7cumDbvYtmUv3l4+jBg2mejoaLr3aJ9mfTe3+/w8aS779h4lNjYu1fIitoUID49g/75juLnd58L5axR3SO7hade+OfHx8Rw5fCJL25RSTGwsp85fYpRLXyqVL4ONtRUufbthY23FrgPHAFi2dhO1qlVmtEtfHIvbY2NtRb1a32FqnC/d7e4/epKw8AiWzZ1CxbKlKGiZn8oVyuJQrCgAz1++JnduQ5o2rEMZxxJUrlgOvyfPADj+1zm0tbVpVLdGlrf/Q70HdmX31oPs33EE30f+TBnjSkx0DO26tEiz/o0rt/nr+Dl8Hz/h2ZMXbF67E28PH5yqlgegaDFbvD0ec+3SLa5evIm3hw9Fi9kC0G9Id25edePBXY9sal36ujp35OC2IxzZdRz/R09wHbeAmOgYWnRulu46mpqazFo5hbULfufF01cqy2ztbXjs4cuty27cvHQbH09fbO1tAOg+uDNu1+/hcc8rS9sk0vetn9fS8vLsfe7O38uzP29lqP6tqVtx//UYb+/5EeEfyJ25u4nwf411owoA5C5sQXxEFE8OX+ftPT8Cr3iS7/9/w2xbVkORkEjAHxnbV1ZrP6Atx3Yc58/dJ3j6OIBFPy0hJiaWHzo1SX8lhYKQN6HKR2jwO+UiGzsb/Dz9uXPlLm6X7+Dr6YeNXSEAOg7syL3r9/G+553OhoXIGSSZ+ICWjhYFSxfB5/JDZZlCoeDx5YcUrlgs7XV0tUmIjVcpi4+Jx7ZyctdqsP9rdHLpYlXKFn0jQ6zLFuWVVwD6eQ1pPKo9B6dsyLoGZZCOjg7lK5Tm7NnLyjKFQsG5s5epUqVCprbp6/sEff1clC1XEmNjIyo6lcX9oRf58uVl8s8jGTNq2pcJPoMSExJJTExCT1dHpVxPTxe3++4kJSVx4cpNbAsVZMDISdRu1onO/Udw+sKVj2733KVrlCvtyOyFK6n9Y2dadRvI2k07lb9E21hbERMTg+cjH8LCI3D3ekQJ+yKEhUewfN1mJo4anGVtTo+Ojjalyjlw5fx1ZZlCoeDKhRuUr5T+EJCUqtWqTBG7wty8mtzD9sjDB1s7GywL5sfKugC2djY89vSlkG1B2nRuzpI5v2ZJWz6Hto42DmWLc/3ibWWZQqHgxsVblHVKf4hXv1G9CHkbyqEdx1It8/Hyw6ZoIfIXtKCAdX5sihbC19ufgoWtaN7xB36duy5L2iI+LSec17KEhgY6uXMR+y556GWE/2u09PUwKVUY3XyGmJYrSqhnALpGBpQf247rkzepOeBk2jralChTnNsX3ZRlCoWC2xfdKFmxZLrr6Rvqs/PaNnbf2M6s9TOwLV5YuczPyx/rogWxsLIgf0ELChWxxt/7CVaFLWna8XvWz1f/328h1E2GOX3A0DgvWtpaRASHqZS/fxOGhZ1Vmus8unCfWv2a4X/Di7dPA7GvUZrSTSqjqZmcq0WHR7JrzK90XDgInVy6uO2/yKML92k3bwBXNp/EpJAFvX4bi5a2Fn8t2cuDP26kuZ+sZGpqjLa2Nm+CglXKg4KCKV48/etFPubdu3AGDhjLmnUL0c+lx87tBzh96iIrVs1l7ZotFLa1ZueetejoaOM6exmHDv7xJZqSLkNDA8qVdmT1xh0ULWyDqUk+jp86z72HXtgUtCQk9B1R0dGs37qbof17MmpQHy5dv82IibP4fflcKldI+0v285eveeF2j2aN6/HrghkEPH/JrIUrSUhMZHCfrhjlzcPsyaOZOHMhMbGxNG/SgBpVnfjZdTFd2jbnxavXDB0/jYSERAb37UrjerWy9HUAMDbJh7a2NsFvQlTKg4NCKGpvm+56ufMYcvHBH+jq6pKUmMi08fOUCYnv4ycsmr2KDXtXAbBw1kp8Hz9h496V/DJ9GTXrV2Po2AEkJCQwa9ICbv0/CclO+UyM0NbWJuSDdoe8CcXWvnCa65SrUoaWnZvRpVGfNJc/efyUVXPXsmrnYgBWuq7hyeOnrNy1mGWzfqVa3aoMGNObhPgEFkxZxp1r975so0S6csJ5LSuUGvgD2ga5eHok+bMdFxbF5RFrqLF0IFq5dPHbe4mX5x9QbUE/vDeeJHchc+pvGIWGthb3Fu0n4Jh6etqNTIzQ0tYi5I3qMM3Q4FBs7AuluU6A7zPmjV6An6cfhnkN6ejcnhUHl9G7QV/evAomwCeA3+b+zoId8wBYN3c9AT4BLNwxnzWz11KlbiV6jexBQkIiy6eu5P71B1neTpFNkmQ2p4ySZOILODx9E23n9mfM6YUoFApCngZya895lWFR7idu4X7in27golUdsXSw4dDUjYw/v4Ttw5YT8eYdQw7Owu+GV5rXZvwXHT1ykqNHTiqf16hZhdKlHRg7ehp3H5ylT6/hBAa+4ez5g1y+fCPNMcxfkuvPY5jiupj6rbqhpaWJY3F7mjasg4e3D0n/P3HUq1WNHp1aA+BQ3I67DzzYffB4uslEkkKBiXE+po0bhpaWFqUcihEU/JYN2/cyuE/yhYoN69SgYZ1/hjLdvHOfRz7+TBw5iB869GX+9PGYmZjQuf9wnMqX+eiwKnWKfB9Fy3pdMDQ0oFqtykyYMZJnT15w40ryL/07N+1j56Z9yvqtOzYj8n0Ud2494MTVfbRt3IMClhYsXjuH+k4tiI+LT29XXwUDQ31mLJ/M7LHzCQsJS7fevs2H2Lf5kPJ5s/ZNiIqM4sGth+y7tI0eTQdgYWnOnF+n0aJqh6++3eLjvrbz2pdUpFU1yo5qzbk+i4lJ8Xfo2Z+3VIZN5f/OAWNHG25M3kzrywu56LKS6Ddh/HB0OkHXvFXW/Zp5uHni4eapfP7wljubz/1O864/8vuCjQAc3nqUw1uPKut8364RUZFRuN/2YMv5jTj/6IK5pRlTVk6ic/Xu8vkWOY4kEx+IDA0nMSGRPGZGKuW5zY2IePMu7XVCItg8YBHaejoY5MtNeGAoTX/qzNuAtGcA0tLVptXMPuwauRJT2wJoamnidz35ZBbs/wqb8vZ4nnZLc92s8vZtKAkJCZhbmKmUW1iYERj45ovsQ1dXl0WLZzCg/2iK2tmira3F5UvJvTC+Pv5UqlSOP/8480X2lR4bays2rvyFqOgYIiOjMDczYfTPrlhbFcA4X160tbSws7VRWaeobSHc7qc/1t/8/79+ppytp2jhQgS/DSU+Ph4dHdVhVXFxccxasBLXKWMJeP6KxMREZaJSuFBBHrh7Ubfmd1+w1amFhrwjISEBM3MTlXIzCxPeBKX/xUehUBDg/xwAz4ePsCteBOcRvZTJRErGJkYMGdOfLi0GUK5iaZ74BvDU7xlP/Z6ho61NETsbHnn6ftmGfcK7kDASEhIw+aDdJubGvE2j3da2BSloY8WiTXOVZX/3OF57dpa2Nbvy4ulLlXWMTIzoP7o3A1oPoXTFkgT4PeOZ/3Oe+T9HW0c7eRiUl18WtE58KKec174U2xbfUW1BP847L+fVRfd062nqalN1Ti8uDVtNniL50dDWJPBa8nVB4X6vMatox/O/sr/nMSwkjMSEREzMjVXKjc2MCQlKPalEWhITEnn80IeCtmmPRDAyzkvPkT0Y3m4kjhUceeb/nBf+L3jh/wJtHW2si1rj7+X/r9sixH+JXDPxgcT4RF489Me+emllmYaGBvbVS/HU7fFH102IjSc8MBRNbS3KNKmCx19pX5DWYEhrHp2/xwv3J2hqaaKp/c+XUC0dLTTVMMVcfHw8d+88pG7d6soyDQ0N6tStzo0bX+aPwrjxLpw6dYF7d93R0tJEW+ufXFZbRztbp8400M+FuZkJYeERXLlxm/q1vkNHR4dSjsXxD3iuUvfJsxdYFbBId1vly5Qi4PlLklLM/PDk2QvMTU1SJRIAazbupOZ3lShZwp6kpEQSUszyk5CQSGI2zCARH5+A+z0vqtWuoizT0NCgWq3K3L11P8Pb0dDURFc37ZmuJs4czcY1Owh8FZR8vHX+Od5a2lpqmSo1IT4Br/uPqFLzn6kyNTQ0qFzTifu3U395euITQMe6PejasI/yceHkZW5dvkPXhn0IfJn6B4PR04eyY+1ugl69QVNLE23tFO3W0pIpJLNRTjuv/Ru2LatRfdEALg5eyYvTdz9at+zwVrw4d5+Qh0/Q1NREM0UbNXW00NBUz3s8IT4B7wePqFizorJMQ0MDp5oV8HDL2OQPmpqaFHUowtugkDSXu0wbxJ7f9vHmVXDan281tV1kAUXS1/v4ykjPRBou/naMDgsH8fyBH8/u+lCzb1N0DfS4tec8AB0XDiIsMJQ/5+8EoFB5O4zym/DS4yl5CxjTaEQ7NDQ1OLfmSKptW9gXpNyP1VjSbAIAQT4vUCQpqNyhLhFvwjC3s+LZvez9tfZvK5avZ/XaBdy584Bbt+4x2KU3BgYGbN2yF4A16xbw8mUg06f+AiRf3OjgaA+Arq4Ollb5KVPWkcj3Ufj5PVXZdgkHe9q0/ZGa1X8E4JG3L0lJSXTv0YGgwDcUL26H2+2Mf4nNrMvXb6NQKLC1sSbg+UsWrlxPERtrWjVrDEDvLm0ZM2UulcqXpkrFcly6dovzl6+zYfk85TYmzFyAhZkpIwclzz/fsXUzduw7zNwlq+nSrgVPn79k3eZddG2felYkX/+n/HnmAns2rACgSOFCaGpqsu/ICcxMjfEPeEZpx+JZ/joAbFi9jXnLp/Hwrgf33dzp6dwFfQN99u1Ift/OXzGdwNdBLJy1EgDn4b14cNeTZ0+eo6urQ52GNWjZ/gemjXNNte3qdapia2fDuCFTAbh/x4Oi9oWp3aA6llb5SUpMws/naar1ssO2NbuYtnQiHve8cL/rSZf+7dE30OfIzuS55acvm0TQ62BWzllDXGwcvt6qvzJGhCVP+flhOUDV2pWwKVqIqcNmA+Bx14vC9oWpXr8q+a0sSEpK5KlvQBa3UKSUE85rH9I20CNPkfzK57ltzDEuZUNcaCSRL99S4acOGFgac3n4GiB5aFONJc7cnLqVN3d8yWWe3DOfGBNHfITqdK9GxaywbVGVo42Tp80N832JQqHAvlMdot+EYWRnSfA99fW87Vm7jwmLx+F9zxvPu96069eGXPq5+GPXnwBMWDKe4NfBrJu7HoAeI7rh4ebJiycvyZ3XkE4DO5DfOj/HdhxPtW2nWhWxLmqN64j5AHjf88bGvhBV6lXGwsqCpKQkAvyeZV9jhfhKSDKRhntHr2FokpfGI9uRxzwfLz2fsr7nXN7//6LsfAXNVOah1tHT5fsxHTCxsSAuMhavs3fYNXIVMeFRqbbd1rUfR2dtIT46Fkjuzdg95ldazeiNtp4Oh6ZsJDwwY92xX9r+fccwMzNh4uSR5M9vxoP7nrRt1Ut58aK1tZXKr++WlhZcvvrP7DbDRwxg+IgBXLxwjWZNu6hse9nyOUz8aTZRUcl/mGJiYhnkPI4Fi6ejp6fLmFFTefUqMMvbGPE+kiWrNxD4JhijvHloVKcmw5x7ovP/X5ca1qnBlLFD+G3LblwXr8bWxprFsydTsdw/PVWvAoPQ1NBQPrfMb86axbOZv3QNbXoOxsLMlG7tW9K3m+rUkwqFgmnzlzF2aH8M9HMBkEtPj1mTRjF74Sri4uOZOHIw+c1Vh2RkleMH/8LE1Jhh4wdibmGK58NH9O04lLf/vzjZ0roASSl+AdE30Gfa/PEUsLQgJiYWv8dPGDv4Z44f/Etlu3q59Jgydxwj+09Qfk4CXwUxc+IvuC6bQlxsPOOHTiU2JjZb2vmhvw6fwdg0HwPH9cXU3IRH7j4M7TJGeW+NAgXzK6+f+Rx6uXQZN3skEwZOVbY76NUbfpm8hCmLJxAfF8/UYXOIjUk93ajIOjnhvPYh03JF+X7vPzfTqzwt+UapPrsvcGXkWvTz58PQ6p/zTLGu9dHUSR66VHVOL2X53/VTqja/LzenbyPh/3/DEmPiuTxyDVVn90JLV5vrkzcT/Vo9f8MAzh45Rz5TI3qP6YWJuTE+Hr6M6z5BOd1r/oIWKFIc7zxGeRgzfxQm5sa8D3uP94PHuLQcztPHqkm/bi5dhs8ayoxBs5Sf7zevgln28wp+WjiWuLh4XEfMJ04+3yIH0lCk/Fb8jRhn21ndIajF6jfXP13pG/T26Sl1h6AWpRw7qDsEtcir/XXcZTe73X2bM6+zMNDRU3cIarEiX/VPV/oG/a7xWt0hqMWlIM9PV/oGJcS9UHcI6Yqa11vdIaTLYPzXNSWxDO4TQgghhBBCZIrak4no6GguXbqEh0fqi6NiYmLYvHnzR9ePjY0lPDxc5ZGgSPzoOkIIIYQQQoh/T63JxKNHj3B0dKR27dqUKVOGOnXq8OrVK+XysLAwevf+eDeTq6srRkZGKo/rYRmbtUEIIYQQQogPKZKSvtrH10atycT48eMpXbo0QUFBeHt7kydPHmrUqEFAQMZnO5kwYQJhYWEqj6pGJbMwaiGEEEIIIQSoeTanK1eucOrUKczMzDAzM+PIkSMMHjyYWrVqcfbsWQwNDT+5DT09PfT0VC/Q09b4b8zrLYQQQgghxH+ZWpOJ6OholRu+aGho8OuvvzJkyBDq1KnD9u3b1Rjd59EzzEXj0R0o3bgSuc2MeOH+hMPTN/H8/rc7A0v1GpUZPmIA5SuUxtIyP507OnPs6F+fXvELi4yMYvm6zZy+cJWQ0Hc4FLfjpxHOlHEsAUBwSCiLV/3OlRtuRLyPxKl8aSaOHEThQgUBePEqkO/b9Upz2wtnTuT7+rWUz1++DqR55wFcPLaTl6+DWPHbFjy8H/PydRDjhw2ge8fWqbaxY98RNmzfS3BIKCXsizJx5CDKlCyhXD59/jKu3rzDm+AQDAxyUb50SUYO7kPRwoUA8Hrsx/qtu3G77867d+FYWeanQ6sfvtTLl2Gde7Wlc692WNtYAvDYy4+VC3/jwukr2R6LOvUc0pWhkwayfd1uFk1Zru5wxBf2tZzXsppF1RKUGtQM0zJFMChgzNk+i3l2IvlO9hraWlQY146C9cuTu7A58eHRvLr0ELc5u4gOfKfewL+wXqN60GtUD5WyAJ8AetTto6aIxFcjE1OE51RqTSYcHBy4desWjo6OKuUrViTf0KtFi9Q3/fpatZs3gPzFC7Fz1CrCA0Op2Lom/bdOYmGjMWq7b0RWMzQ04OEDT7Zs3sP2navVFseUuUvx8XuC65QxWJiZcuTEGfoPn8ihbWuwMDNl+E8z0NbWZtm8KeQ2MGTzrv30+/9yA/1cFLAw49zhbSrb3HPoDzZs30et7yqplJ+5eI0qFctiYKBPdGwM1lYFaFy/JvOXqc7F/rc/Tp1n/vK1TBk7lLIlS7Bl90GcR03myI51mBrnA6BkCXuaNa6HZX4LwsIjWLV+KwNGTuLEng1oaWnh4f0YE+N8zJ0ylgIW5tx96Mn0ectAD4hN++7TWeH1yyAWzlrBE78ANNCgdacfWbV5Ia3qd8XH+9tNmlMqWc6BNt1b8MjdR92hiCzytZzXspq2gR6hHgH47LxAvfUjVJfp62JSxpb7Sw8S6hGArpEBlad3p96GURz/YYp6As5C/l7+jO48Tvk8MUEmcRHic6g1mWjdujU7duyge/fuqZatWLGCpKQkVq/++k/m2no6lG5ShU39F+J/wwuAv5bsw7FBRap1a8SJhbvVHGHW+Ovkef46eV7dYXDq/CWWzZ1KpfJlAHDp243zl6+z68AxWjRpwD13Lw5uWY190cIA/DxmCHWbd+H4X+do16IJWlpamJmaqGzz9IUrfN+gFgYGqvc0OHvxKo3rJfdUlHEsoez9WPJr2nM+b951gHbNm9L6/3fYnjJ2KBeu3OTA0ZP06558n4j2Lf/pZShomZ+hA3rStudgXrwKxMbaijY/fq+yzUIFLbn30JMdu/7I1mTi7MmLKs8Xz1lF515tKV+pTI5IJvQN9Jm5cgqzx8yn74ie6g5HZJGv5byW1V6evc/Ls2nfnTs+IppTneeplN2YvJlmx2dgaGVK5Mu32RFitklMTCTkzbf5o58Q2UGtF2BPmDCB48dT37L+b6tWrVK5M+nXSktbCy1tLRJiVe98GR8Th23lEumsJb4EDQ1ITExCT1dHpVxPTxe3++7ExccDoJtiuaamJjq6Oty5757mNt29HuP12C/Vl/jwiPe43XenXs3vMhRbfHw8Ht6P+a5yeZV9f1epPPcepn2DoqjoGA4eO4m1VQEs85unu+2I95Gg0Eh3eVbT1NSkWavGGBjoc+dm2l9IvjXjXUdy+fRVbly8re5QhMh2unn1USQlERcepe5QvriCRQqy99ZOtl/ewqTlE7CwslB3SOJroEj6eh9fGbX2THwrYiNjeHL7EQ2GtSHI5yURwe8o36IGhSsW5+2TnHk3z+yiUEC50o6s3riDooVtMDXJx/FT57n30AubgpYUKVwIy/wWLF2zkSljh2Kgn4vNuw4QGBTMm7chaW5z/9ETFLUtRIUyqrOCXbx6k+J2RbAwN81QbKHvwklMTMLUxFil3NTEGP+A5yplO/cfZeGq9URHx1DExpq1i2ejo6OaIP3tzgMPTpy+ADHZ1yvxt+KOduz6YwN6erpERUbj0mssvo/8sz2O7Na4ZQMcyhSnR9MB6g5FiGynqadDxYmd8D94lfj30eoO54vyuOPJ3JG/8MzvGaYWpvQc2Z1l+xfTu0E/oiO/rbYKkVXUftO6b8XOkSvR0NBg8o1VzHm0hRq9vufu4SskKeQCnqzm+vMYUCio36obFeu1YNueQzRtWAcNTU10tLVZMmcyTwJeUKNpByo1aMUNt/vU+q4Smpqp3/4xsbEc/+tcql4JSL5eIqO9Ep+rWeN67N2wgo0r51O4UEHGTHEl9oOeLoDHfk8Y9tN0BvXpCgnZ/1uAv89TWtbrQvvve7Fj417mLZ+GXfEi2R5HdspvZcHomcOY7DKTuDSOiRDfMg1tLeqsHgoaGlyfsFHd4XxxN87e5PyxC/h5+nPz/C1+6jGR3HlzU695HXWHJsR/hvRMfCEhAUGs7jgDHX09cuXWJ+LNO7quGEZIQJC6Q/vm2VhbsXHlL0RFxxAZGYW5mQmjf3bF2qoAAKUcirFv00oi3kcSHx+PiXE+OvcfQSmHYqm2dfLsJaJjYmnRpIFKeXx8PJev36J/j44Zjss4X160tDR5G6I6FvdtSChmH/RW5MltSJ7chhQuVJBypRyo3qQ9py9c4YdGdZV1fP2f0nfYBNq1aIpzr84sm3cgw7F8KfHxCQT4J/equN/3okz5kvQc0JkpY+ZkeyzZxaFsCUzNTdh68jdlmba2NhW+K0eH3m2oXrjBf2I4phCf6+9EwtDalL86uH5zvRJpeR8eyXO/5xS0LajuUIS6yWxOGSY9E19YfHQsEW/eoZ/XkOK1y+Lx1y11h5RjGOjnwtzMhLDwCK7cuE39Wqq9CHlyG2JinI+nz17g7vU4zV6G/UdPUK9mVUz+P9PS32643Sdvntw4FCua4Xh0dHQoWaIY12/dVZYlJSVx/fZdypV2THc9hUKBQgFxcfHKMh+/p/Qe+hMtmzZkuHOvDMeQ1TQ0NdHVS3s41rfi5sVbdKzbg64N+ygf7nc9+XP/X3Rt2EcSCfFN+juRyFMkP391nEts6Ht1h5Qt9A1yYWVrydugb+sicyGykvRMfCHFa5cFDQ3e+L7EzLYAzSZ2Icj3JTf3fLuzghgaGlDUrrDyua1tIcqUdSQ0JIznz19mWxyXr99GoVBga2NNwPOXLFy5niI21rT6/wxKJ85cxDifEZb5zXns94S5S1ZTv1Y1alR1UtlOwPOX3L77kF8XzEi1j3OXrlP3g+QjPj4eX/+A//8/gcA3b/F65IuBgT421lYA9OjYmkmzF1LKoRilS5Zg6+6DRMfE0qpZIwCevXjFn6cvUL1KRUzyGfH6TTDrt+xGT0+XWtUrA8lDm/oO/YnqVZ3o2ak1wX9f66GRBIrs+z1g9GQXzp++wqvnrzHMbUDztk2oWsOJPh2GZlsM6hAVGY2vt+p1ITFRMbwLDUtVLv77vpbzWlbTNtAjT5H8yue5bcwxLmVDXGgkUUHvqLt2GCZlbDnTcyEaWprkMjcCIO7de5Liv52pUwdNHsCVU9cIfB6IaX5Teo/uSVJiEqcPnlV3aEL8Z0gy8YXkymNA03GdMCpgQlTYex78cYMTC3aR9A3PV12hYhmO/7lD+dx13mQAtm3dyyDncemt9sVFvI9kyeoNBL4JxihvHhrVqckw557o/P+GiG/ehjB/+VrehrzD3NSEFk0aMLB351Tb2X/0JPktzKhepWKqZWcvX2PmhJEqZUHBIbTrPUT5fOOOfWzcsY9KFcqwccV8AJo2rEPouzBW/LaV4JAQHIrZsXrhTOUwJz1dXdzuPWTL7oOER7zH1CQflcqVZuvqRcr7UJw8e4mQd2EcPXGGoyfO/BNAXg0Iy/2vXrvPYWJmwvwV07HIb0ZE+Hu8PR7Tp8NQrpy/nm0xCJHVvpbzWlYzLVeU7/dOUj6vPK0bAD67L3Bv4X4KfZ/8Y0vzv1SHMJ5oN5vAq2nPRvdfZG5pzs8rJpLXOC9hIWE8uPGQwS2GEhYSpu7QhLpJr3OGaSgU394VwuNsU39RzAlWv8mZX+rePj2Vpdv38Pah77CfuHBspzJB+RqUcuyg7hDUIq+2/qcrfYPuvv327+WRFgMdPXWHoBYr8lVXdwhq8btGzpwB8VLQt5OgfY6EuBfqDiFdkdO+3u+ShtN2fLpSNpJrJoT4hMTERCaMHPRVJRJCCCGEEF8D+XYkxCeUKVmCMiXl5oNCCCFEjiGzOWWY9EwIIYQQQgghMkWSCSGEEEIIIUSmyDAnIYQQQgghUlLIbE4ZJT0TQgghhBBCiEyRZEIIIYQQQgiRKTLMSQghhBBCiJRkNqcMk54JIYQQQgghRKZIMiGEEEIIIYTIFBnmJIQQQgghRAqKJJnNKaOkZ0IIIYQQQgiRKZJMCCGEEEIIITJFhjkJIYQQQgiRkszmlGHSMyGEEEIIIYTIFEkmhBBCCCGEEJkiw5yEEEIIIYRISYY5ZZj0TAghhBBCCCEyRZIJIYQQQgghRKbIMCchhBBCCCFSUshN6zJKeiaEEEIIIYQQmSLJhBBCCCGEECJTZJiTEEIIIYQQKclsThkmPRNCCCGEEEKITJFkQgghhBBCCJEp3+Qwp0UvL6g7BJGNqpXpqe4Q1MLdc7e6Q1AL08IN1R2CWtS0cFR3CGpxKchT3SGoxUOdRHWHoBZub/zUHYJajLKqre4QxAcUMswpw6RnQgghhBBCCJEpkkwIIYQQQgghMuWbHOYkhBBCCCFEpskwpwyTngkhhBBCCCFEpkgyIYQQQgghhMgUGeYkhBBCCCFESklJ6o7gP0N6JoQQQgghhBCZIsmEEEIIIYQQIlNkmJMQQgghhBApyWxOGSY9E0IIIYQQQohMkWRCCCGEEEIIkSkyzEkIIYQQQoiUZJhThknPhBBCCCGEECJTJJkQQgghhBBCZIoMcxJCCCGEECIFhUKGOWWU9EwIIYQQQgghMkWSCSGEEEIIIUSmyDAnIYQQQgghUpLZnDJMeiaEEEIIIYQQmSLJhBBCCCGEECJTJJkQQgghhBAipSTF1/vIIFdXVypXrkyePHmwsLCgVatWeHt7q9SJiYnBxcUFU1NTcufOTdu2bQkMDPysl0qSCSGEEEIIIb4x58+fx8XFhWvXrvHXX38RHx9P48aNiYyMVNYZOXIkR44cYc+ePZw/f56XL1/Spk2bz9qPXIAthBBCCCHEN+bPP/9Ueb5x40YsLCy4ffs2tWvXJiwsjPXr17N9+3bq168PwIYNG3B0dOTatWt89913GdqPJBNCCCGEEEKkoPiKZ3OKjY0lNjZWpUxPTw89Pb2PrhcWFgaAiYkJALdv3yY+Pp6GDRsq6zg4OGBjY8PVq1cznEzIMCchgPa9WnP4xm4u+59i47E1lCrvmKH1GrdswK1XF1mwYY5KebeBnTj54DAnHxymq3NHlWWlKpRky4nf0NLS+mLxf0pkZBRzl6ymUZueONVrSVfnUTzw/GfcZOkaTdN8/L5tb7rbvHX3AS7jplKvRVdK12jK6QtXUtXZsH0vtZt1onazTmzcsU9l2X13Lzr0GUpCQuKXa2gG9R/QnQceFwh668mZc/txciqbbl0Hx2Js2baKBx4XCI/0Y7BL71R1OnRsiYf3JZ4+v8OcuZNUltnYFMTt7mny5Mn9xdvxuVr1bMHOq1s56XOcVUeW41C+RLp1m7RvzLnnp1QeJ32Oq9Tp6NyeA3f3cODuHjoMaKeyzLGCA2uOr0JLS/7MqEu17o346dIyZntvYsjBmRQqZ5duXU1tLRoOa8P480uY7b2JEX/MpXidcip1KrSswcQrK5h2bx0/Tu6msszY2oyxZxahl1s/S9ryOXLq5zunHu+cyNXVFSMjI5WHq6vrR9dJSkpixIgR1KhRg9KlSwPw+vVrdHV1yZcvn0rd/Pnz8/r16wzHI2d5keM1alGfkdOGsG7hRrp9349HHj4s37EQY9N8H13P0roAw6cMxu3aXZVye0c7Bo7ry8SB05g0aDqDxvfHzqEoAFpaWkycNxrXcQtITMy+L9FT5i7l6s07uE4Zw4Etv1K9SkX6D59I4JtgAM4d3qbymDlxJBoaGjSqWyPdbUZHx1DCviiTRg9Oc7m3jz8rf9vKLzN+Yv708Sxfu5lHvv4AJCQkMuOX5fw8dgja2tmXVAG0aduMOXMnMtd1GbVqNOfBA0/2H9qEmblpmvUN9PV58iSAaVPm8/p1UKrlJqbGLF/pyuSJrrRu0ZOOnVrSpEl95fJFS2Yydcp8IiLeZ1mbMqJe87oMnjKQjYu30L/pQHw9/Phl61zyfeR9/j48kjYV2isfHb/rolxW1LEIvcf0ZMbg2cx0mUPfcb0p4lAEAC0tTUa5jmDRhKUkJiZlddNEGsr9+B3NJ3fn1NJ9LG02kVceT+m7+ScMTfOmWf/7MR2o2qUBh6ZuZGHDsVzbdoqea0ZhVcoWAAPjPLSbN4Bjc7byW3dXKraqiWP9Csr1W8/swx/zdhD7Pjo7mpeunPr5zqnHO6eaMGECYWFhKo8JEyZ8dB0XFxcePnzIzp07v3g8kkyIHK+rc0cObjvCkV3H8X/0BNdxC4iJjqFF52bprqOpqcmslVNYu+B3Xjx9pbLM1t6Gxx6+3Lrsxs1Lt/Hx9MXW3gaA7oM743b9Hh73vLK0TSnFxMZy6vwlRrn0pVL5MthYW+HStxs21lbsOnAMADNTE5XH2YvXqFKxLIUKWqa73VrVKjNsQE8a1kk74fB/+ozidrZUdSrPd5UqUNy+CP5PnwPJPRZO5ctQxjH9X8azypChfdm0YRfbtuzF28uHEcMmEx0dTfce7dOs7+Z2n58nzWXf3qPExsalWl7EthDh4RHs33cMN7f7XDh/jeIOyb8ItmvfnPj4eI4cPpGlbcqI9gPacmzHcf7cfYKnjwNY9NMSYmJi+aFTk/RXUigIeROqfIQGv1MusrGzwc/TnztX7uJ2+Q6+nn7Y2BUCoOPAjty7fh/ve97pbFhktVr9mnF95xlu7TlPkM8L9k9aT3x0HJU71E2zvlPrWpxZeRCvc3cJeRbEta2n8Dp7h9r9ks+DpjYWxEREce/oNZ7f98P3mgcW9gUBKN+iOokJiTw8cTO7mpeunPr5zqnHO0upe8amjzz09PTImzevyuNjQ5yGDBnC0aNHOXv2LNbW1sryAgUKEBcXx7t371TqBwYGUqBAgQy/VJJMiBxNW0cbh7LFuX7xtrJMoVBw4+ItyjqVSne9fqN6EfI2lEM7jqVa5uPlh03RQuQvaEEB6/zYFC2Er7c/BQtb0bzjD/w6d12WtCU9iQmJJCYmoaero1Kup6eL2333VPWDQ0K5cOUGbX78/l/tt5idLU+eveDV6yBevg7k6bMX2BctTMDzlxw8/hfD+vf4V9vPDB0dHcpXKM3Zs5eVZQqFgnNnL1OlSoWPrJk+X98n6Ovnomy5khgbG1HRqSzuD73Ily8vk38eyZhR075M8P+Cto42JcoU5/ZFN2WZQqHg9kU3SlYsme56+ob67Ly2jd03tjNr/QxsixdWLvPz8se6aEEsrCzIX9CCQkWs8fd+glVhS5p2/J718zdkaZtE+rR0tChYugg+lx8qyxQKBY8vP6RwxWJpr6OrTUJsvEpZfEw8tpWTE/5g/9fo5NLFqpQt+kaGWJctyiuvAPTzGtJ4VHsOTlH/8c6pn++cerzFpykUCoYMGcKBAwc4c+YMRYoUUVnu5OSEjo4Op0+fVpZ5e3sTEBBAtWrVMrwfuQBb5Gj5TIzQ1tYm5E2ISnnIm1Bs7QunuU65KmVo2bkZXRr1SXP5k8dPWTV3Lat2LgZgpesanjx+yspdi1k261eq1a3KgDG9SYhPYMGUZdy5du/LNuoDhoYGlCvtyOqNOyha2AZTk3wcP3Weew+9sEmj5+HwH6cwMNBPt8cho+xsbRju3Iv+IyYCMNy5F3a2NvQbPoFRg/tw+cZtVq3fhra2Fj+NGEil8mX+1f4ywtTUGG1tbd4EBauUBwUFU7x4+uOLP+bdu3AGDhjLmnUL0c+lx87tBzh96iIrVs1l7ZotFLa1ZueetejoaOM6exmHDv7xJZryWYxMjNDS1iLkTahKeWhwKDb2hdJcJ8D3GfNGL8DP0w/DvIZ0dG7PioPL6N2gL29eBRPgE8Bvc39nwY55AKybu54AnwAW7pjPmtlrqVK3Er1G9iAhIZHlU1dy//qDLG+nSGZonBctbS0igsNUyt+/CcPCzirNdR5duE+tfs3wv+HF26eB2NcoTekmldHUTP7NMTo8kl1jfqXjwkHo5NLFbf9FHl24T7t5A7iy+SQmhSzo9dtYtLS1+GvJXh78cSPL2/mhnPr5zqnHW3yai4sL27dv59ChQ+TJk0d5HYSRkRH6+voYGRnRt29fRo0ahYmJCXnz5mXo0KFUq1YtwxdfgyQTQnwWA0N9ZiyfzOyx8wkLCUu33r7Nh9i3+ZDyebP2TYiKjOLBrYfsu7SNHk0HYGFpzpxfp9Giagfi4+LT3daX4PrzGKa4LqZ+q25oaWniWNyepg3r4OHtk6rugaMn+bFxPfT0dP/1fju2bkbH1v8MFzt0/C8MDPQpV9qR5p37s/O3pQQGBTN2ylxO7N2Aru6/36c6HD1ykqNHTiqf16hZhdKlHRg7ehp3H5ylT6/hBAa+4ez5g1y+fIPgN2/VGG3GeLh54uHmqXz+8JY7m8/9TvOuP/L7go0AHN56lMNbjyrrfN+uEVGRUbjf9mDL+Y04/+iCuaUZU1ZOonP17ln+PheZd3j6JtrO7c+Y0wtRKBSEPA3k1p7zKsNk3E/cwv3ELeXzolUdsXSw4dDUjYw/v4Ttw5YT8eYdQw7Owu+GF5Fvw9XQki/vW/x8y/HOgG/gcq9ff/0VgLp166qUb9iwgV69egGwePFiNDU1adu2LbGxsXz//fesWrXqs/YjyYTI0d6FhJGQkICJuYlKuYm5MW+DUv9BsLYtSEEbKxZtmqss+/uXnGvPztK2ZldePH2pso6RiRH9R/dmQOshlK5YkgC/Zzzzf84z/+do62gnD4Py8suC1v3DxtqKjSt/ISo6hsjIKMzNTBj9syvWVqpjIm/ffYh/wHN+mfHxC7kyI/RdGL9u2M7GlfN54O5N4UIFlY+ExASePHtBcbsin97Qv/D2bSgJCQmYW5iplFtYmBEY+OaL7ENXV5dFi2cwoP9oitrZoq2txeVLyb/a+fr4U6lSOf7848wX2VdGhYWEkZiQiIm5sUq5sZkxIUGh6aylKjEhkccPfShom/YvnUbGeek5sgfD243EsYIjz/yf88L/BS/8X6Cto411UWv8vfz/dVvEp0WGhpOYkEgeMyOV8tzmRkS8eZf2OiERbB6wCG09HQzy5SY8MJSmP3XmbUDqi5IheZhMq5l92DVyJaa2BdDU0sTvenLyGez/Cpvy9niedktz3aySUz/fOfV4i09TKD49vW2uXLlYuXIlK1euzPR+5JoJkaMlxCfgdf8RVWo6Kcs0NDSoXNOJ+7dTX0/wxCeAjnV70LVhH+XjwsnL3Lp8h64N+xD4MvWJePT0oexYu5ugV2/Q1NJEW/ufHF5LSytbp8400M+FuZkJYeERXLlxm/q1VLsx9x89QckSxXAoVvSL73vesrV079CKAhbmJCYlkpCQoFyWmJhEUjbM+hMfH8/dOw+pW7e6skxDQ4M6datz48adL7KPceNdOHXqAvfuuqOlpYm21j/HW1tHO1unBP5bQnwC3g8eUbFmRWWZhoYGTjUr4OHmkaFtaGpqUtShCG+DQtJc7jJtEHt+28ebV8Fpv8815c9NdkmMT+TFQ3/sq5dWlmloaGBfvRRP3R5/dN2E2HjCA0PR1NaiTJMqePx1K816DYa05tH5e7xwf4KmliaaKWZl09LRQlMNUwLn1M93Tj3e4ushPRMix9u2ZhfTlk7E454X7nc96dK/PfoG+hzZmTyn/vRlkwh6HczKOWuI+x979x3W1PUGcPwbCFtlowwRFWfde9ZRtVXrqHVrHXWPuvfWquDee+9RV1111b0HbhBFcCtLBAWZye8P+otG0CIFgub9PE+eNueee+57iDfJm3PuuTGx3PfV/nX1dXjikoAflgOU/7YMrnlyMrbPJAC8r90hl3suKtUsT3YnB1SqBB7ef5TOPYQzF66gVqtxc3Xh0ZNnzFiwgtyuLjSuX0dT501kJIeOnWJQ7y7JttGpzzC++7YSrZs2BCAq6i2PnrwbhXn6LJA7d+9jmS0rjjkctPY9e9GLh4+fMnnUQACKFMpPwMMnnDp3iRdBwRgYGOCWy4WMMH/eChYvnc7Vqze5fPk6PXt1xNzcnPXrEu+psWTZdJ49C2T82GlA4kWdBQu5A2BsbISjU3aKFitE5Jso/P0farVdoKA7TX7+kSqVfgTgru99VCoVv7RrTlBgMPnz58Xryo0M6eeH/li6neGzhuB73Refa7407dwEUzNT/tqSeIfU4bOHEvIihGWeKwBo168t3l4+PH3wjCzZLGjZvTnZXbKzb9P+JG2XrloKlzwuePSbCoDvdV9c3XNSrkZZHJwcUKlUPPJ/nHGdFZxavo/mM3rw5KY/j6/5UaVTXYzNTbj8xwkAWszoQXhgGAemJi4TmbNEXiyz2/DM+yHZclhTu19TFAYKji/Zk6RtB3dniv9Ykdn1E0cwg/yeolapKdu8Oq+Dw7HP68Tj6/czrrPv0dfzW19f7/SUmW9al9lIMiH03uHdR7G2taL7kE7Y2ttw97Yfv7UexMuQxOkfOZyzo0rFm4qJqTFDJvVnePexmqHGoOfBTBs1mzGzhhMXG8fYPpOJiU66HGFae/0mktmLVxEYHIJltqzUrlaFPt3aY/Ter8d/HTmBWg31aldPto3HT58TFv5uTuytO/f49behmudT5y0FoFHdWkz6J2mAxKVpJ89cyPQJwzVTwnI42DO8fw9GTZ6FsZERk0YNxPRf7tyZVnZs34ednQ0jRvUne3Y7bt7w4efGHTQXbbq4OKFSvRslcXR04My5d6t29e3Xlb79unLq5Hnq122t1fbceZMZMWwSUVGJa69HR8fQo9sQps8aj4mJMYMGjOX588AM6GVSx/Ycx8rWko6DOmBjb42f932G/DJcs9xrdmcH1O/1O6tlVgZNHYCNvTVvwt/ge/MevRr15eE97eTX2NSYvhN/Y0KPiZp/58HPQ5g7ej7DZgwmNjYOj35Tic2Af+finet7z2Nhk406/ZuS1d6KZz4PWdHekzf/XKRr5WynNQXCyMSY7wc1x8bVgdjIGO4cu8qW/guJjohK0vbPHp3ZO3EdcW8T78AbHxPH1kGLaDyhI0oTI/4cs5qIwJRNn0tr+np+6+vrLTIHhTolE6q+MEpjZ12HIDJQCdu0n5LzJTh3c42uQ9AJ21y1dB2CTpSy1s9/56eDfP690ldogNO3ug5BJxYHX9B1CDrR3b68rkPQiakPNuk6hI961abmv1fSEasNGXtdzr+RkQkhhBBCCCHeJ9OcUkznyYSPjw/nz5+nYsWKFCxYkDt37jBnzhxiYmJo27YtNWt+OjOMiYkhJiZGq0ytVqNQKNIzbCGEEEIIIfSeTi+/P3DgACVKlGDQoEGULFmSAwcO8O233+Ln58fDhw+pU6cOR49+eijHw8MDS0tLrYda9TqDeiCEEEIIIYT+0mkyMWHCBAYPHkxoaCirVq2idevWdOnShcOHD/P3338zePBgPD09P9nG8OHDCQ8P13ooDLJmUA+EEEIIIcRXR5WJH5mMTpOJ27dva+7A17x5c16/fk3Tpk0129u0acONG59eZs3ExIRs2bJpPWSKkxBCCCGEEOlP59dM/P+Lv4GBAaamplhavruDY9asWQkPD9dVaEKkSPvebfhtZHc2LtvKzDHzMuy4kZFRzFu2lr9PnuNl2CsK5s/LsH7dKFqoAJB4H4hZi1Zx9NRZXoW/xtkpO22aNqLFT/U1bfzx5372HT6Oj68fkVFvOXvgD7JlzZLkWNExMVSt14LtaxZiZmrKtPnLuH3nHo+ePKNN04YM69c9yT4Hj55i/rK1PH0RSC4XZ/r36Mi3lcppth8+foatu/bh7etHeMRrtq2aT8H8ebXaiImJZdr8Zfx15ASxcXFULlcaAwNQZeAvM5Uql6Vvv66UKFkER8fstGrRjX17D2dcADrSYUA7Ogxop1X2yO8R7ar/qqOIRHozsTClzsDmFKlThix2ljy9/YDd49fw5Ia/rkNLN/p6foN+vt4ifeh0ZMLNzY17997dnfHcuXO4urpqnj969AhHR0ddhCZEihQuXpAmvzTk7m2/DD/2GM85nLt0FY8xg9i5bhGVypWiS98RBAYnrqc+dd5STl+4jMeYIezemHj36cmzFnLs1HlNG9HRMVQpX4Yu7Vp+8ljnLl7FMYcDri5OxMbFYW1lSdf2LSngnjvZ+ldvejNknCc//fg9f6yaT82qFekz/Hfu+T/Q1HkbHU2pYt/Qv8fHv5xOmbuE42cuMHPiCFbPn0pwSCjWthl7h1kLC3Nu3fRhYP+xGXrczCDgTgBNSjbTPH77qZ+uQxLpqOmUruSrUpTNAxYy8/sh3Dt1gy7rR5Itu7WuQ0s3+nx+6+Pr/TnUKnWmfWQ2Ok0mevToQUJCguZ5kSJFUL5/E62//vrX1ZyE0BUzczN+XzCGSYOm8jo8Yy/6V6PmyInTDOjViTIliuLq4kSvTm1xdXFiy87EGzBdu+lDo7q1KFeqGM6O2WnWqB4F3PNw08dX084vLX6i8y/NKfZNwU8e7+jpc9SoUgEAZ8fsDO/XnUZ1a5Eli0Wy9ddv/ZPK5cvwa5um5HVz5beu7SicPy8bt727u2rDH76jx69tqFi2ZLJtvH4TyY69hxjyWxfKly7BNwXz8fvIARibGGBknHFTGQ8fOsHvE2ayd8+hDDtmZpGQkMDL4DDNIzws4t93El8kpYkRRX4ox36PjQRcvEPow0AOz95O6MMXVGxbW9fhpRt9Pb/19fUW6UOnyUT37t2pX7/+R7dPnjyZ5cuXZ2BEQqTcUI/+nPn7HBdPXdHB0dUkJKgwMTbSKjUxMcbrxm0AShQtxLHT5wkMDkGtVnPxynUePHpKpXKlPutIKpWKE2cuUqNqxRTvc/22DxXLlNAqq1S+NNdvp/wGZN6+94iPj6dCmXfJRp5cOYmPV2OcgcmEPnPO7cy2y5vZeGYdI+cNx8HJQdchiXRiqDTEUGlIfIz2ncrjomNxK1tAR1GJ9CKvt0hLOr9mQogvUZ1G31GwaH7a1e2qk+MrMKB4kUIsXr2JPLlcsbWxYv+RE1y/dQdX58SpgSP692DclLl81/gXlIaGKAwUjBvalzIlin7Wsa7fvgNAscIp/4AJCQ3D1kZ7qNzOxpqQ0LDPasPISJnkGg6VSo1Bxs500kveV33w7D+Nx/6PsXWwpX3/X5i7YxYdv+vM28i3ug5PpLGYyGgeXLnLd32aEOT3jNchryjRsDK5SuUn9MELXYcn0pi83imQCVdNyqwkmRDiM2V3cmDg733o1WIAsR/8qpORPEYPYozHLGo2bouhoQGF8rtTt1Y1vH0Tr9/YsG03N27fYf6UsTjmyM6VazeZNGMhDna2H51alJxjp85RrXI5DAx0OpApMtjFY5c0/+/vE4DPVR82n99IjQbV2L/5gA4jE+llc/8FNJ/WnVEXF5IQn8DTWwFc230W56LJXxslvmzyeou0IsmEEJ+pYLEC2NrbsP7Quyl4SqWSkhWK07xjEyrl+g5VBiw35OrixOoF04h6G01kZBT2djYMHO2Bi1MOomNimLNkDXM8RlPtnxWUCrjn5s49f1Zv2v55ycTpC/Tv0fGzYrOztSb0pfYoRMjLMOxsU35hn52tNXFx8US8fqM1OmFgoECVkPkuQPvavYmI5In/E5zdnHUdikgnLx8FsbjFBIzMTDDNYsbr4Fe0md+Hl4+CdB2aSAfyeou0Ij81CvGZLp26TIvq7WhT61fN4/Y1Hw7sOEybWr9mSCLxPnMzU+ztbAiPeM3Zi1eoWbUC8fHxxMfHY/DBPVcMDQ0+K76Hj5/y/EXQZyUfAMW/KcT5K9e0ys5dukrxbwqluI3CBfKhVCq5cPldOwEPn6BUKoiNlWQio5mZm+Lk5khoUKiuQxHpLO5tDK+DX2GWzYL83xbD+/BlXYck0pG83snT9YpNX9JqTjIyIcRniop8y33fAK2y6KhoXoWFJylPT2cuXEGtVuPm6sKjJ8+YsWAFuV1daFy/DkZKJWVKFmXGghWYmJjglMOBy1dvsvuvvxncp4umjZDQl4SEhvHoyTMA7t1/gIW5GY45HLDMlpWjp85RoUwJzExNtY595+59AKKiogl7Fc6du/cxMlKSN3cuANo2b0THXkNYvWk731Yqx19HTnD7zj3GDe2jaSM84jXPXwQRFJL45TTg0RMgcUTCztaGrFksaPJjHabOW4ZltqxYWJgzedYiYmNUxGVgMmFhYU6evLk0z93cclK0WCHCXobz5J+/29eox6iunD1ynsAngdhmt6XjwPaoElT8veuYrkMT6ST/t8VAoSD4/jPs3HJQf0Rrgu4/49IfJ3QdWrrR1/Mb9PP1FulDkgkhvlCv30Qye/EqAoNDsMyWldrVqtCnW3uM/lleefr4YcxevJph46cSHvEapxwO9OnWnhaN362gtmXXfhat3KB53r7XYAAmjhhA4/q1OXbqPA3r1kpy7KYde2v+39v3HvsOH8cphwOHtq8BoGTRwkwZN5R5S9cwZ8lqcrk4M9djNPnyuGn2O3bqPKMmz9Q8HzzWE4Aev7ahV6e2AAzt0w0DAwP6jZxIXFwclcqVJiz03XLSGaFkqaLsP7BJ89xjyigANqzfRo9uQzI0loxk72jP6PkjyGadjfCX4dy8eIueDX8j/KXcSPRrZZrVnLpDWmKZw4ao8Dfc/OsiB6dvQRWfsedcRtLX8xv08/UW6UOhVqsz33jJf6Q0ljm9+qSEbR5dh6AT526uSdf2w16FU6NhG47sWoedTea5iZFtrqTJjT4oZa2f/85PB6V8OeGvyQCnb3Udgk4sDr6g6xB0ort9eV2HoBNTH2z690o68rJRNV2H8FE2f2au0SO5ZkIIkazwiNcM/q1LpkokhBBCCJG5yDQnIUSy3FxdcHN10XUYQgghhMjEJJkQQgghhBDiPWq5aV2KyTQnIYQQQgghRKpIMiGEEEIIIYRIFZnmJIQQQgghxPtkmlOKyciEEEIIIYQQIlUkmRBCCCGEEEKkikxzEkIIIYQQ4j2ymlPKyciEEEIIIYQQIlUkmRBCCCGEEEKkikxzEkIIIYQQ4n0yzSnFZGRCCCGEEEIIkSqSTAghhBBCCCFSRaY5CSGEEEII8R5ZzSnlZGRCCCGEEEIIkSqSTAghhBBCCCFSRZIJIYQQQgghRKrINRNCCCGEEEK8R66ZSDkZmRBCCCGEEEKkiiQTQgghhBBCiFSRaU5CCCGEEEK8R6Y5pZyMTAghhBBCCCFSRZIJIYQQQgghRKrINCchhBBCCCHep1boOoIvhiQT4ov3PPqlrkPQCTOnqroOQSfePjul6xB0Ql9f7+wWVroOQSc2hN/QdQgiAw0r+UzXIQiRajLNSQghhBBCCJEqMjIhhBBCCCHEe2Q1p5STkQkhhBBCCCFEqkgyIYQQQgghhEgVmeYkhBBCCCHEe9QqWc0ppWRkQgghhBBCCJEqkkwIIYQQQgghUkWmOQkhhBBCCPEeWc0p5WRkQgghhBBCCJEqkkwIIYQQQgghUkWmOQkhhBBCCPEetVpWc0opGZkQQgghhBBCpIokE0IIIYQQQohUkWlOQgghhBBCvEdWc0o5GZkQQgghhBBCpIokE0IIIYQQQohUkWlOQgghhBBCvEetktWcUkpGJoQQQgghhBCpIsmEEEIIIYQQIlVkmpMQQgghhBDvUat1HcGXQ0YmhBBCCCGEEKkiyYQQQgghhBAiVWSakxBCCCGEEO+R1ZxSTkYmhBBCCCGEEKkiyYQQQPvOrTh//RD3n3ux5/AmSpQq+tG6rds1Zcf+tdwOOMvtgLNs3rk8Sf1uvTtw/e5Jrt89Sbde7bW2lSxdlL+ObcXQ0DBd+iLeiYyMwnP2Ymo3aU/pGo1o020AN318NduLVK6b7GPlhm0pan/5uq0UqVwXz9mLtcqnzl1KpR+a8d1Pv7D34FGtbQePnqLXkLH/vXMixfT1/NbXfnfp+gs3vU8SFOrD0eM7KF262EfrFiyUj3UbFnLT+yQRkf707NUxSZ3mLRrh7Xuah0+uMtlzpNY2V1dnvK79TdasWdK8HymlLFyMLCM8sFqxHZudJzAqV+Vf9zGp2xjLeWux3nwIy/nrMK7+vXabxctguWA91hv2Y9F3JCjfTWRRmFtguWA9BvbZ07wv4sskyYTQew1/+oGxE4cwc8pCfqjeDO9bvmzYvgRbO5tk61esUpY/t++neYNfaVinDc+evmDjjqXkcHQAoNA3+Rk8vDc9Ow2mV+fBDB7Zh4KF8wFgaGiI58yxDBswgYSEhAzro74a4zmHc5eu4jFmEDvXLaJSuVJ06TuCwOAQAI7v3qD1+H1EfxQKBbWrV/7Xtm/6+PLHn/vJ755bq/z46fPsO3ycpbMmMbBnJ8Z6ziHsVTgAr99EMnfpGkYN6JX2nRXJ0tfzW1/73eTn+kz2HIGnx1yqVm7AzZs+7PhzDXb2tsnWNzcz48GDR4wbM5UXL4KSbLextWbeAg9GjfDgp4btadGyET/8UFOzfebs3xk7ZiqvX79Jtz79G4WpGQkP/IhcOjtF9U2+b4R526683byK8L7tebt5FRZd+2FUptI/DSrI0n80MQd3EzGsJ0r3ApjUbqDZ3+yXbsQc3I0qODAdepN5qFWKTPvIbCSZEHqvS8/2bFy7ja0bd3HP9z7DBoznbVQ0Lds2Sbb+b12HsmbFZm7fusP9ewEM6jMGA4UBVb6tAIB7vtz43L7LmVMXOH3yAj637+KeL/ELZ48+HTl/9jLXr97KsP7pq+iYGI6cOM2AXp0oU6Iori5O9OrUFlcXJ7bs3AeAna2N1uPYqfOUK1WMnM6On2w7Kuotw8ZPY9zQvmT74BdJ/4ePKVuyKEUK5ade7epYWJjz5PkLAGYuXEGLxvVxzOGQPp0WSejr+a2v/e79WyfWrNrChnXb8L3jR78+o3j79i2/tGuWbH0vrxuMHunJ9m17iYmJTbI9t1tOIiJes2P7Pry8bnDyxHnyF8wLQNNmDYiLi2PP7oPp2qd/E+d1gbcbVxB34VSK6htXr0P0od3EnjmGKvA5saePEn1oD6ZNWgGgyGaJgaUV0X/tIuHxA2IvnsEwZy4AlAW+QelegOi9KRu9FfpBkgmh14yMjChWojCnjp/TlKnVak6fOE/pssVT1IaZuSlKIyWv/vn12cf7Hrnd3XByccQ5pyN53HNxx8ePXG45adH6J6ZOmpsufRHaEuITSEhQYWJspFVuYmKM143bSeqHvAzj5NmLNPnx+yTbPjRxxgK+rViWimVLJtlWwD0Pt+/cIzziNbfv3CMmJgZXZye8rt/C29ePNs0apr5T4rPo6/mtz/0uUbIIx46d0ZSp1WqOHztDuXJJz9WUuH//AWZmphQrXhhra0tKlS7G7Vt3sLLKxqjR/Rk0YFzaBJ+BFEZGEPtB4hQbg9K9EBgaog5/heplCEYlyoCxCcrCxUh4cB8MDTHvNoDIRTNApdJN8CJTktWchF6zsbVCqVQSEhyqVR4cHErefLk/spe2keMGEvgiSPPB7XfXnym/z2bzjmUAeE6Yjd9dfzbvXM7EsTOoXrMKA4b1JD4unjHDPbhw9kradkoAYGFhTvEihVi8ehN5crlia2PF/iMnuH7rDq7JjDzs/usI5uZm1Kr26SlO+48cx+fufTYvn5Ps9srlS/Pj9zVp2bkvpiYmTBo1EHMzU36fvoCJIwewZec+Nm7bjZWVJeOG9ME9T6406a9ISl/Pb33tt62tNUqlkuCgEK3yoKAQ8ufPm6o2X72KoHvXwSxZNgMzUxM2b9zJ30dOMX+hJ0uXrCOXmwub/1iKkZESj0lz+XPXX2nRlXQVd/USJrV+JPbCaRL872KYtwAmteqjMDJCkc0SddhL3kwfh3nH3ph36kOc13li/t6PaZM2xN+6CnGxZJ08H4NslkTv20HMXzt13aV0ITetSzlJJoT4D3r160zDJnVp1qCD1hD5ulVbWbdqq+Z5s5aNePMmkiuXrnPy0l7q12yBo1MOFi6fTsUSdYiNjdNF+F89j9GDGOMxi5qN22JoaECh/O7UrVUNb1+/JHV37j3Ej3VqYGJi/NH2ngcG4zl7CctmT/5kvV6d2tKrU1vN84UrN1ChTAmUSiVL1mxm59qFnDh7kRETp7N15bz/1kmRbvT1/NbXfn/M3j2H2LvnkOZ55SrlKFKkIIMHjuPazWP82qEvgYHBHDuxizNnLiZJ4jKbt3+swcDahmxTFoEC1K/CiDl2ELMmrUGV+A063ucmEUO6afYxcHLBpPr3hA/sTLaJc4net404rwtYzllNvPd1Eh7666o7IhOQZELotZehr4iPj09ycZ69vW2SX7c+1K13B3r160TLxp3xuX33o/WsbazoP7QHP9dvT8kyxfD3e0iA/yMC/B9hZKQkj7sbd7zvpUl/hDZXFydWL5hG1NtoIiOjsLezYeBoD1yccmjVu3LtFgGPnjBtwvBPtufte4+XYa9o/mtvTVlCgoor126xaccevI7tTrKajf/Dx+w9eJRtq+azY98hypQogo21Fd/X/JbRk2cRGRmFhYV52nVaaOjr+a2v/Q4NDSM+Ph57BzutcgcHOwIDg9PkGMbGxsycNYGuXQaSJ68bSqUhZ05fBOC+XwBlyhTnwF9H/6UVHYuNJXL+FCIXTUdhZYM6LBST2g1QR0WijniV7C4W3QcRtXoBKBQo8+Yn9sxxiI0h/vZ1lN+UkGRCz8k1E0KvxcXFceOaN1WqVdCUKRQKqnxbniuXrn90vx59fqXf4O60bdqNG9eSzr9/3/jJQ1m2cC3PnwViaGCAkdG7HN5QaYihge6XUvzamZuZYm9nQ3jEa85evELNqhW0tu/Ye5DCBfJRMF+eT7ZToXQJdq5bxLbVCzSPbwrmo36dGmxbvSBJIqFWq5kwdS5DfuuCubkZqgQVcfHxAMT/898EmXucbvT1/Nbnfl+7eovq1StpyhQKBdWqV+LixatpcowhQ3tx5MhJrl+7jaGhAUrDd/1WGikzxdK4KZaQgDo0GFQqjKvWJPbyuWTn9hh/Vw/1mwjiLp1FYZD4tVHx/6ViDQ3B4Ov8KqnrFZu+pNWcZGRC6L1lC9cwa+Fkbly9zVWvm3Tp8QtmFmZs2ZA4D3TOosk8fx6E54TZAPTs24lBw3vTu8sQHj96pvkVLDIyiqjIKK22q1avSO68bvTtMQKA61dvkTdfbmrUqoKTsyOqBBX3/QIyrrN65syFK6jVatxcXXj05BkzFqwgt6sLjevX0dR5ExnJoWOnGNS7S7JtdOozjO++rUTrpg2xsDAnXx43re1mZqZYZcuapBxg+54DWFtZUr1K4pe6ksUKs3Dleq7f8uHU+cvkdXNNshqUSFv6en7ra7/nz1vB4qXTuXr1JpcvX6dnr46Ym5uzfl3i6kNLlk3n2bNAxo+dBiRetF2wkDsAxsZGODplp2ixQkS+icLf/6FW2wUKutPk5x+pUulHAO763kelUvFLu+YEBQaTP39evK7cyMDe/sPUDMMczpqnBtkdMXRzR/0mAlVIEGZtu2BgY0/k3MmJ251cUOYrRPxdbxRZsmLaoDmGrrmJnOORpGmFpRVmzdoRMTxxOWt15BsSHj/A5MemxF+/jFGx0rzdtj5j+ikyLUkmhN7bvfMANnY2DBrRG3sHO27fvEPbpt00816dXBxRqd79WtPu1xaYmBizbO1srXZmeC5g5pSFmuempiZMmjqSHr8OQv3Prz3PnwUyeuhkZs6fRGxsLP16jiA6Oib9O6mnXr+JZPbiVQQGh2CZLSu1q1WhT7f2GL13A6a/jpxArYZ6tasn28bjp88JC4/47GOHvAxj6ZrNrF88U1NWtHAB2rdsQs/BY7GxtmLyqIGf3a74PPp6futrv3ds34ednQ0jRvUne3Y7bt7w4efGHTTTu1xcnFC9Nxro6OjAmXP7NM/79utK335dOXXyPPXrttZqe+68yYwYNomoqLcAREfH0KPbEKbPGo+JiTGDBozl+fOMv/eCMm8Bsk18tyCExT/TMGOO/kXkPE8MrG0xsH9vOWoDQ0wbtsDQOSfq+Hjib10lYlgvVMEvkrRt3qkP0X9uQR327jqQN/M8yNJnBKY//szbXZtJ8LuTfp0TXwSFWp25rldXq9UoFP9tCEdp7PzvlcRXI7uFla5D0InAyFe6DkEn3j5L2VrqXxszp6q6DkEn9PX81levY9/qOgSdeFAnp65D0AmbnSd0HcJH3S/y78uE60reW7q9t8mHMt1ENxMTE3x8fHQdhhBCCCGEEOJf6Gya04ABA5ItT0hIwNPTE1vbxFUoZs6cmWy9/4uJiSEmRns4NS1GN4QQQgghhBCfprNkYvbs2RQvXhwrKyutcrVajY+PDxYWFilKCDw8PBg/frxWmcIgCwrDbGkZrhBCCCGE0BNqWWgvxXSWTEyePJmlS5cyY8YMatasqSk3MjJi9erVFC5cOEXtDB8+PMkoh7VtwTSNVQghhBBCCJGUzq6ZGDZsGFu2bKFHjx4MGjSIuLjU3SnTxMSEbNmyaT1kipMQQgghhBDpT6dLw5YtW5YrV67Qq1cvypQpw4YNGyQREJle7/6dqftjbdzz5SY6OprLF68xedxM7vs90HVoeikyMop5y9by98lzvAx7RcH8eRnWrxtFCxUAYOTEGfz51xGtfSqXL82SmRO1yk6cvcjiVRu56xeAiYkxZUoUZa7nGK06z14E0qBVV07t24yRsRHL127hz7+OEBQSipurCwN6/EqVCmU09RMSEli4YgN7Dx0lJDQMezsbGterTbcOrVAoFMTFxzNv6RpOnbvMk2fPyWJhQYWyJenfvSMOH9y9WGQMfT2/9bXflSqXpW+/rpQoWQRHx+y0atGNfXsP6zqsNKcsXAzTxq1Q5s2PgY0drz1GEnfxtGa7wtIa83bdMCpRFoVFFuJuXydq+RxUz5/qMGrdUqnl+2hK6fw+E1myZGHNmjVs3ryZWrVqkZCQoOuQhPikCpXKsmb5Jq5dvYlSqWTY6L5s3LGM6hUa8jZKP5c11KUxnnPw83+Ax5hBONjZsufgUbr0HcGfG5aQ3T7xxltVKpRh4oj+mn2MjIy02jh87DRjp8yhb7cOlC9dnISEBO59cMMqgKOnzlOuVDHMzc2YuXAFew8eY9zQPuTOlZMzF6/Qd/jvrF8yg0L5E2+CtWL9H2zZtY9JowbinjsXt+/cZdSkWWTJYkHbZo2Ijo7B2/c+3Tq0ooB7HiJev8ZzzhJ6Dx3P1pVz0/GvJj5GX89vfe23hYU5t276sG7tH2zcvFjX4aQbhakZCQ/8iPl7P1mHTUyyPevwSajj43ntMRJ1VCSmDZuTddxMwvu0h5hoHUQsviQ6Tyb+r2XLllSpUoUrV66QK1cuXYcjxEe1bdZN63m/niO56XeaYiUKc+HsFR1FpZ+iY2I4cuI0cz3HUqZEUQB6dWrLiTMX2LJzH326tgfA2MgIO1ubZNuIj0/Ac85iBvbqzM8N3q0rnjd30vehY6fOUadG4v0e9hw4Stf2Lfm2UjkAWv70I+cvXWP1ph1MGTsEgGu3fKhRtQLV/qnj7Jid/YdPcNPbF4CsWSxYPmey1jFGDOhBq879eP4iCMccDoiMpa/nt772+/ChExw+lHnvdZBW4rwuEOd1IdltBk4uKAt8Q3if9iQ8fgBA1JKZWK3aiUnV74g5si/Z/YT4v0x1nwkXFxcaNWqEhYWFrkMRIsWyZcsKwKuwcB1Hon8S4hNISFBhYqw90mBiYozXjdua55eu3uDb+i35sWVnJkybx6v37mjtc9ePwOBQDAwUNO3Qi+oNW9N94Gju+T/QajPi9Ru8btymRpUKAMTGxWFsbJzkuFffO26JIoW4cPkaDx49AeDOPX+8btym6ntToT705k0UCoWCrFnlfTAz0NfzW1/7rY8UysT3MXVc7LtCtRp1XBzKQkV1FJXuqdWKTPvIbDLNyIQQXyKFQsF4j6FcPO+Fr4+frsPROxYW5hQvUojFqzeRJ5crtjZW7D9yguu37uDq7AhA5QqlqVWtMs5O2Xn89Dlzlqym+8DRbFgyE0NDQx4/ew7AwhUbGPJbF5wcs7Nm8w469h7Kvs3LsfznS9Wpc5fInze35lqGyuVLs3bzDsqUKEJOZ0fOX77G3yfOkqB6N1Wz8y/NiYyKokHrrhgaGJCgUtGna3t+/L4myYmJiWXWopXUq1WNLPKjis7p6/mtr/3WVwlPH5IQ9AKztl2JWjQddUw0pg2aYWjngMpart0S/06SCSH+g8nTR1GgUD5+qvuLrkPRWx6jBzHGYxY1G7fF0NCAQvndqVurGt6+iV+C6tWqrqmbP29u8ufNTd3mv3Lp6g0qlCmJWqUGoGv7FtSuUQWAiSP6891Pv3Dw6CmaN64HJF4v8f9RCYBhfbsxbspcGrTuikIBOZ0caVy/Njv3HtLUOXD0JHsPHWPKuCG4587FnXv+TJmzBAc7GxrVq63Vj7j4eAaOnoxarWb04N7p8rcSn0dfz2997bfeSkjgzZTRWPQegvX6fagT4om7foXYK+dBFsURKSDJhBCpNHHqSGp9X40m9drz/FmgrsPRW64uTqxeMI2ot9FERkZhb2fDwNEeuDjlSLZ+TmdHrK2y8ejJcyqUKYn9P9dS5HVz1dQxNjbGxcmR54FBAMTFxXHmwmW6tGuhqWNjbcVczzHExMTyKiICBztbZi1aqXXcGQtW0Lltc01Ckz9vbp6/CGL5uq1aycT/E4lngUGsnOspoxKZgL6e3/rab32X4H+XiAGdUZhbgFKJOiKcbFMWEX/fV9eh6YxaJYlUSmWqayaE+FJMnDqSH+p/R/OGv/L4kf4unZeZmJuZYm9nQ3jEa85evELNqhWSrfciKJhX4a81SUThgu4YGxsR8N7rGBcfz9PngTj9cwH0Ra8bZMuahYL58iRpz8TEmOz2dsQnJHD4+BlqVK2o2RYdHYPCQPsDycDAAJVarXWsgaMn8+jxM5bPnoyVZbbU/xFEmtDX81tf+y3eUUdFoo4Ix8DRGcO8BYi9cPrfdxJ6T0YmhPhMk6ePpnHTevza+jfevInC3iFx+dHXEa+Jjo7RcXT658yFK6jVatxcXXj05BkzFqwgt6sLjevXISrqLQtXbqB29crY2drw+OkzZi5ciauLE5XLlwIgi4UFzRvVY+GKdeRwsMMpR3ZWbdwGoFm56fjpC1Svop2c3Lh9h8DgUArmy0NQcCgLV65HrVbza5ummjrVK5dn2ZrNOGZ3wD13Lnzu+rF2yw5+ql8HSEwkBoychPddPxZMHY9KpSIk9CUAltmyJlnCVqQ/fT2/9bXfFhbm5Mn7buU2N7ecFC1WiLCX4Tx58kyHkaUxUzMMczhrnhpkd8TQzR31mwhUIUEYVaqOOvwVqpBADHPlwbzTb8RdPE389cs6DFp8KRRq9Xs/kX0llMbO/15JfDWyW1hl6PGeht1Otrx/z5Fs3bQrw+IIjHyVYcfKTN4+O6X1/MDfJ5m9eBWBwSFYZstK7WpV6NOtPVmzWBAdE0OfYRO4c/c+EW8icbCzoVK5UvTu0g47G2tNG3Hx8cxevIo9B44SExND0cIFGda3G+55Er9k1GrSjt+H96di2ZKafS5dvcHv0+fz5NkLzM3MqFqxbJKbzX14Qz17Oxvq1a5Oj46tMTIy4unzQL5v2iHZfq6cN4VypYppnps5VU2LP98XR1/P74yWWfr9OjZj72lRpWp59h/YlKR8w/pt9Og2JMPieFAnZ7q2r/ymBNkmzklSHnP0LyLneWJS/2dMG7fEwNIaVVgosccP8vaPtRAfn65x2ezMvMvy+uSrp+sQPqrQvf26DkGLJBPii5fRXzYyC0kmMoa3rx+d+gzj5L7NGCl1N5gryYTQBxmdTGQW6Z1MZFaSTKROZksm5JoJIYT4hISEBIb376HTREIIIYTIrOTTUQghPqFo4QIULVxA12EIIYTIQLKaU8rJyIQQQgghhBAiVSSZEEIIIYQQQqSKTHMSQgghhBDiPSq1THNKKRmZEEIIIYQQQqRKikYmdu/eneIGGzZsmOpghBBCCCGEEF+OFCUTjRs3TlFjCoWChISE/xKPEEIIIYQQOqWWaU4plqJkQqVSpXccQgghhBBCiC+MXDMhhBBCCCGESJVUreYUGRnJiRMnePToEbGxsVrb+vTpkyaBCSGEEEIIoQtqta4j+HJ8djJx9epV6tWrR1RUFJGRkdjY2BASEoK5uTkODg6STAghhBBCCKEnPnuaU//+/WnQoAFhYWGYmZlx/vx5Hj58SOnSpZk+fXp6xCiEEEIIIYTIhD57ZOLatWssWbIEAwMDDA0NiYmJIU+ePEydOpX27dvTpEmT9IhTCCGEEEKIDCE3rUu5zx6ZMDIywsAgcTcHBwcePXoEgKWlJY8fP07b6IQQQgghhBCZ1mePTJQsWZJLly6RL18+qlWrxpgxYwgJCWHdunUUKVIkPWIUQgghhBBCZEKfPTIxefJkHB0dAZg0aRLW1tb06NGD4OBgli5dmuYBCiGEEEIIkZHUakWmfWQ2nz0yUaZMGc3/Ozg4cODAgTQNSAghhBBCCPFlkJvWCSGEEEIIIVLls0cmcufOjULx8SEWf3///xSQEEIIIYQQuiQ3rUu5z04m+vXrp/U8Li6Oq1evcuDAAQYPHpxWcQkhhBBCCCEyuc9OJvr27Zts+YIFC7h8+fJ/DkgIIYQQQgjx3508eZJp06Zx5coVnj9/zs6dO2ncuLFme4cOHVizZo3WPt9///1nXROdZtdM1K1bl+3bt6dVc0IIIYQQQuiESq3ItI/PERkZSfHixVmwYMFH6/zwww88f/5c89i0adNnHeOzRyY+Ztu2bdjY2KRVc0IIIYQQQoj/oG7dutStW/eTdUxMTMiRI0eqj5Gqm9a9fwG2Wq3mxYsXBAcHs3DhwlQHIoQQQgghhPi0mJgYYmJitMpMTEwwMTFJVXvHjx/HwcEBa2tratasycSJE7G1tU3x/p+dTDRq1EgrmTAwMMDe3p7q1atTsGDBz20uXVRxKKTrEHTCK0w/V9J6HftW1yHoxHmHsroOQSdql+iq6xB04u2zU7oOQSdiJvfTdQg64bTklq5D0Ik29mX+vdJXaORVXUegG4t0HcAnZMabw/2fh4cH48eP1yobO3Ys48aN++y2fvjhB5o0aULu3Lm5f/8+I0aMoG7dupw7dw5DQ8MUtfHZyURqAhVCCCGEEEL8d8OHD2fAgAFaZakdlWjZsqXm/4sWLUqxYsXImzcvx48f57vvvktRG599AbahoSFBQUFJykNDQ1OcwQghhBBCCCE+n4mJCdmyZdN6pDaZ+FCePHmws7PDz88vxft89siE+iN38YiJicHY2PhzmxNCCCGEECJT+dxVk74WT548ITQ0FEdHxxTvk+JkYu7cuQAoFAqWL19OlixZNNsSEhI4efJkprlmQgghhBBCCH335s0brVGGgIAArl27ho2NDTY2NowfP56ff/6ZHDlycP/+fYYMGYK7uzvff/99io+R4mRi1qxZQOLIxOLFi7WmNBkbG+Pm5sbixYtTfGAhhBBCCCFE+rl8+TI1atTQPP//tRbt27dn0aJF3LhxgzVr1vDq1SucnJyoU6cOv//++2dNm0pxMhEQEABAjRo12LFjB9bW1ik+iBBCCCGEEF+K5Cf1f3mqV6/+0UsUAA4ePPifj/HZ10wcO3bsPx9UCCGEEEII8eX77NWcfv75Z6ZMmZKkfOrUqTRr1ixNghJCCCGEEEJkfp+dTJw8eZJ69eolKa9bty4nT55Mk6CEEEIIIYTQFZVakWkfmc1nJxNv3rxJdglYIyMjIiIi0iQoIYQQQgghROb32clE0aJF2bJlS5LyzZs3U7hw4TQJSgghhBBCCJH5ffYF2KNHj6ZJkybcv3+fmjVrAvD333+zceNGtm3bluYBCiGEEEIIkZHUmXA6UWb12clEgwYN2LVrF5MnT2bbtm2YmZlRvHhxjh49io2NTXrEKIQQQgghhMiEPjuZAKhfvz7169cHICIigk2bNjFo0CCuXLlCQkJCmgYohBBCCCGEyJw++5qJ/zt58iTt27fHycmJGTNmULNmTc6fP5+WsQkhhBBCCJHhVJn4kdl81sjEixcvWL16NStWrCAiIoLmzZsTExPDrl275OJrIYQQQggh9EyKRyYaNGhAgQIFuHHjBrNnz+bZs2fMmzcvPWMTQgghhBBCZGIpHpn466+/6NOnDz169CBfvnzpGZMQQgghhBA6o0ZWc0qpFI9MnD59mtevX1O6dGnKly/P/PnzCQkJSc/YhBBCCCGEEJlYipOJChUqsGzZMp4/f063bt3YvHkzTk5OqFQqDh8+zOvXr9MzTiGEEEIIIUQm89mrOVlYWPDrr79y+vRpbt68ycCBA/H09MTBwYGGDRumR4xCCCGEEEJkGJU68z4ym1QvDQtQoEABpk6dypMnT9i0aVNaxSSEEEIIIYT4AvynZOL/DA0Nady4Mbt3706L5oQQQgghhBBfgFTdAVsIIYQQQoivlUpWc0qxNBmZ+Bo1bt+QzefWc8hvPwv3zKNgiQKfrJ8lmwV9J/7G9itbOHR/P+tOrqZ8zXKa7bV+qsnWixvZc2snPcd019o3h0t21p1cjXkW83Tpy+fo0vUXbnqfJCjUh6PHd1C6dLGP1i1YKB/rNizkpvdJIiL96dmrY5I6zVs0wtv3NA+fXGWy50itba6uznhd+5usWbOkeT8+l771O0v5wrivGkmxyysp82QXVt+X/2R9t5l9KPNkV5LHN3/P1dSx+elbil1cTolb63EZo/03MXZxoMjJBRhkMUuX/nyur/38joyMwnP2Ymo3aU/pGo1o020AN318AYiLj2fmwhX89EsPyn7XmBoN2zD89+kEBYd+ss06P7enSOW6SR4TZyzQ1Jk6dymVfmjGdz/9wt6DR7X2P3j0FL2GjE37zn6C0XdNMes3A4vJmzEfvxbTjiNQ2DuneH9liapkmbkb044jtNut3hjz8WsxH78Wo2qNtbYZuObHrP9MMND9x6u+va/9X7Vfvmfi6fnM9V3PkF2TyFU870frGigNqdfnZyacmMtc3/WM/GsqhasV16pTtlEVJp1dyIzrK/l5VDutbTYu9ow7OhvTTPDepq/9Frqn+3e7TKhGg+r0HNOd1bPW0aVud+57+zNtvSdWtlbJ1lcaKZm+cSo5cuZgbLcJtKvWkelDZhLyPHHpXEvrbAyeNpBFvy9lUJth1G7yHRW/e/flrd/kPiz1WE7Um6iM6N5HNfm5PpM9R+DpMZeqlRtw86YPO/5cg529bbL1zc3MePDgEePGTOXFi6Ak221srZm3wINRIzz4qWF7WrRsxA8/1NRsnzn7d8aOmcrr12/SrU8poY/9NjA3Jco7gEejlqSo/uOxy7lWsoPmcb1sJ+LDIgjbdxYApXVW3Kb14vHvq7jbZhy2Taph+V0Zzf65Jnfjicc6VG/epkt/Poc+nN9jPOdw7tJVPMYMYue6RVQqV4oufUcQGBxCdHQM3r736dahFVtXzmf25FE8ePSE3kPHf7LNzcvncHz3Bs1j2ezJANSpURWA46fPs+/wcZbOmsTAnp0Y6zmHsFfhALx+E8ncpWsYNaBX+nb8A4Z5ixB3Zh9v5wwmeskYMDTErNt4MDb5130V1g4YN+xIwv3bWuUGjm4Y/9CGmHXTiVk/HeN6bTBwzPXPRgNMmvYkZttCUKnSo0sppo/vawClf6zIz6PasW/ONibXH8oT74f0WTuSrLbZkq3fcFBLqrauzZaxq5hQawCnNhym25LBuHzjBoCFdVbaTunOjsnrmPvLJMo3rkqRmqU0+7f6vRO7pmwkWsfvbfrab5E5SDKRjGZdf2bfpv0c2HqQh/ceMXPYbKKjY6jX8odk69dr8QNZrbIyqtMYbl2+zYsngVw/f4P7Pv4AOOZyJDIikmN7juN73ZerZ6/jmi/xw6dmoxrExyVw6q/TGdW9j+r9WyfWrNrChnXb8L3jR78+o3j79i2/tGuWbH0vrxuMHunJ9m17iYmJTbI9t1tOIiJes2P7Pry8bnDyxHnyF0z8paRpswbExcWxZ/fBdO1TSuhjvyOOefFs2kZeHbiQovoJr6OID36leVgUc8fQMgshW/4GwCRXDhIiogjbc4ao6368PnsL03wuANg0qooqLp5Xf51Pt/58jq/9/I6OieHIidMM6NWJMiWK4uriRK9ObXF1cWLLzn1kzWLB8jmT+eG7b8mdy4XiRQoxYkAPvH3v8TyZL5H/Z2NthZ2tjeZx4swFcjo7UrZkUQD8Hz6mbMmiFCmUn3q1q2NhYc6T5y8AmLlwBS0a18cxh0OG/A3+L3rpOOIvHUUV+BjVswdEb5qDgY0DBi7un95RYYBp24HEHtyEKvSF1iYDB2dUzx+Q4HeDhHs3UD17gMIh8d+6UY0mJPjfQvXYL726lGL6+L4G8F3nHzmz+W/O/XGcF35P2TRyGbFvY6nYvEay9cv/VJUDC3Zy+/hVQh4HcXL9YW4fu0qtzg0AsHN14O3rKK7sPcfDG/fxPX8bR/fE0a0yDSuTEJ/AtYMXM6x/H6Ov/U5PahSZ9pHZSDLxAaWRkgJF83PllJemTK1Wc+WUF4VLFU52n0p1KuLt5U2/SX3YcfUPVh1ZRpverTD4Z5j7ScBTTMxMcP/GnaxWWSlYvAD+Pv5kscxCp8EdmDNqXob07VOMjIwoUbIIx46d0ZSp1WqOHztDuXIlU9Xm/fsPMDMzpVjxwlhbW1KqdDFu37qDlVU2Ro3uz6AB49Im+P9AX/v9X9m1rEXEqRvEPg0GIDrgGQZmJph9kxtDqyxYFHfnrc8DDC0tcBrcmkejluk44kT6cH4nxCeQkKDCxNhIq9zExBivG7eT3efNmygUCgVZs1qk6BhxcXHsPXSMn+rXQaFI/GAr4J6H23fuER7xmtt37hETE4OrsxNe12/h7etHm2a6XzpcYfZP/6I+fV8k4zotUL95RfyFw0m2JTx/iIG9EworOxTW9hjYO6N6/hCFbQ6Myn5H7F8b0iP0z6Kv72uGRoa4FsnDnTM3NWVqtZo7Z26Sp1T+ZPdRGhsR90HyFBsdi3vZxKmPwQEvMDY1xuUbN8wtLXArlpcndx5hns2CBgNasGXMyvTrUArpa79F5iEXYH/A0sYSQ6UhL4PDtMrDQsJwdc+Z7D5Oro7kqFSSw7v+Zli7ETi7OdNvch+URkrWzFrHm/A3ePSfyog5QzExNebQ9sNcOnGZwdMHsnPVnzi65mDyqt9RKg1ZPWstJ/adyoiuarG1tUapVBIcpH1X86CgEPLn//i8y0959SqC7l0Hs2TZDMxMTdi8cSd/HznF/IWeLF2yjlxuLmz+YylGRko8Js3lz11/pUVXPou+9vu/MMpujWWNUvj3nqkpSwiPJKD/HHLP6YeBqTGh248TceIauab3JmjVfkxcHci3agQKpSHPZm0mbN85ncSuD+e3hYU5xYsUYvHqTeTJ5YqtjRX7j5zg+q07uDo7JqkfExPLrEUrqVerGlksUpZM/H3yHK/fvKFxvdqassrlS/Pj9zVp2bkvpiYmTBo1EHMzU36fvoCJIwewZec+Nm7bjZWVJeOG9ME9T64063OKKBSYNOpMgr83qhePPlrNIHchlOVrEzWjb7Lb1UFPiNm3DrPuEwCI2bcWddATTLtPIGbvagwLlMT4+1aQkEDMrmWo/JNP4NKTvr6vZbHOhqHSkIiQV1rlEcGvyJ7XKdl9fE5e57vOP3Lvog8hDwMpULkIJX8oh+KfHwuiIiJZM2gBHWb0xsjUmPM7TuJz8jptp3TnxNoD2OZ0oMfyIRgqDdk7+w+u/pWy0d60pK/9FpmHJBNpQGFgQFjoK2YMmYVKpeLuzXvY5bClZffmrJm1DoDTB85w+sC7X4mKVyhG3oJ5mDtqPhtOr+H33pN5GfSSRXsXcP38TV6FvtJRb9LW3j2H2LvnkOZ55SrlKFKkIIMHjuPazWP82qEvgYHBHDuxizNnLhLyLxeBfim+5n7bNq1JfEQkrw5qf3i8OnBBa9pUlgrfYF4wF49HLaXI6cX4955BXFAYhfZO4/V5b+JDwzM69FT5Es9vj9GDGOMxi5qN22JoaECh/O7UrVUNb1/t6Tdx8fEMHD0ZtVrN6MG9U9z+jr0HqVKhDA4fzL/v1aktvTq11TxfuHIDFcqUQKlUsmTNZnauXciJsxcZMXE6W1dm7IiNSZPuGDi68nbesE9UMsO09QBits6HyI+PXsSfO0D8uQOa58oyNSHmLaoHvpgPX0jUrIEYWNlh+ssgoiZ2gYT4tOyKznyN72tbx6+ijWd3xv09G7VaTcjDQM79cVxretD1g5e4fvCS5nm+8oVwLujKlrErmXBiLiv7zCEi+BVDd3ngd9GH16ERuujKZ9HXfn8O3V719GWRZOID4S/DSYhPwMbeWqvc2s6al0Fhye4TGhRKQlwCqvcuuHvo9wjb7LYojZTEx2l/kBgZG9FvUh8m9/XEObcThkpDrp+/AcAT/ycUKlmQc0cydn55aGgY8fHx2DvYaZU7ONgRGBicJscwNjZm5qwJdO0ykDx53VAqDTlzOnHO5X2/AMqUKc6Bv47+SytpS1/7/V/YtfyOl9uPo477+BckhbGSXJO6EdB3Nia5HVEoDXhzPvEX2hj/Z1iUzE/4kUsf3T+96Mv57erixOoF04h6G01kZBT2djYMHO2Bi1MOTZ3/JxLPAoNYOdczxaMSz14Ecv7yNWZPHvXJev4PH7P34FG2rZrPjn2HKFOiCDbWVnxf81tGT55FZGQUFhYZs8KVcZNuGBYuw9sFI1CHf/wLroFtDgxss2PaafS7wn+mcVlM20mUZw/UH1xDgUVWjL9vydv5wzHIlR9V8DPUIc9JCHmOwlD5zzUWD9OjWx+lr+9rb8IiSIhPIJudlVZ5NnsrIoJfJb/Py9cs6ToNpYkRFlZZCA8Mo/GwNoQ8Cky2vtJYScvfO7O6/3wc3HJgaGjIvQs+AAQGPMOtRD5u/n0lLbv1r/S13yLzkGsmPhAfF4/vzbuUqvJu1QKFQkHpKiXx9vJOdp9bl27j7OakmTsMkDOPCyEvQpJ80QD4pU8bLh6/xL1bfhgYGGKoNNRsUxoZYmiY8S9LXFwc167eonr1SpoyhUJBteqVuHjxapocY8jQXhw5cpLr125jaGiA0vBdLqs0UmJoaPiJvdOHvvY7tbJWLIJpbieCNx/5ZD3HPs0JP36VqFv+YGCA4r1/4wojJQod/BsH/Tu/zc1MsbezITziNWcvXqFm1QrAu0Ti0eNnLJ89GSvL5Fd8Sc7OfYexsbbk24rlPlpHrVYzYepchvzWBXNzM1QJKuLiE/9W8f/8NyGDVjsybtINZdEKvF00CvXL5L8o/Z8q6AlRU3vzdkZfzSPh9kUS/G7ydkZf1K9Ckuxj0qgzcSf+TExSDAzA4L3f6AwMQSHv5xklIS6BR7f8KVCpiKZMoVBQoFIR/L3ufnLf+Jg4wgPDMFAaUvKH8tw4fDnZenV7/4z3iWs8vh2AwtAAg/fOb0MjJQY6eG/T136LzENGJpLxx9LtDJ81BN/rvvhc86Vp5yaYmpny15bEYe3hs4cS8iKEZZ4rAPhz7R5+6tCI3yb0YsfKnbjkdqFN79bsWLkzSdu58rlSo2F1unyfuBb9o/uPUKvU1Gv5Ay+DwnDN68qd674Z19n3zJ+3gsVLp3P16k0uX75Oz14dMTc3Z/26bQAsWTadZ88CGT92GpB4kV/BQomrohgbG+HolJ2ixQoR+SYKf3/tX+IKFHSnyc8/UqXSjwDc9b2PSqXil3bNCQoMJn/+vHhduZGBvX1HH/ttYG6Kidu7+fMmOR0wK5ybhFeviX0WgvOwthjlsOVBvzla+9m1rMUbL1+ifT8+59w0nws2DSvj/f0AAKLvP0WtUmPXshZxQWGY5nUm8vq99OlYCujD+X3mwhXUajVuri48evKMGQtWkNvVhcb16xAXH8+AkZPwvuvHgqnjUalUhIS+BMAyW1aMjBIv3O7UZxjffVuJ1k3fXTitUqnYte8wjerWQqn8+JfF7XsOYG1lSfUqiclLyWKFWbhyPddv+XDq/GXyurmSLQPuR2Dyc3eUpb7l7cpJEPMWRVYrANTRURCXePGpSat+qCNeErtvLcTHJbmeQv02EgUke52FYf4SGNg7EbNpNgCqR/cwyO6MYcFSKKzsQaVCFfw0Pbv4Ufr4vgbw9/K9tJ/Ri0c3/XlwzY+anephYm7CuT+OA9B+Ri9eBb7kz6mbAHAr4Y5VdhueeD/AKocN9fs1w8BAwaElfyZpO4e7M6V/rMjk+kMBCPR7ilqlolLzGkQEvyJHXiceXNfNSl762u/0lBlXTcqsJJlIxrE9x7GytaTjoA7Y2Fvj532fIb8MJ+yfi5uyOzugfu9XteDnwQxuM4ze43qy8vAygl+EsH3FDjYt3JKk7UFTBrBw/CKi30YDiasnePafSt9JfTA2NmLO6HmEvNDNPNMd2/dhZ2fDiFH9yZ7djps3fPi5cQfNRXwuLk5aUz0cHR04c26f5nnffl3p268rp06ep37d1lptz503mRHDJhEVlbgmdXR0DD26DWH6rPGYmBgzaMBYnj//9K+G6UUf+21R3J0Cf0zUPM85rhMAIVuP8mDAXIwcbDBxttfaxzCrOVb1KvJ47PJPtp1rSk8ej1+F6m0MAOroWB70n4vrpK4YGBvxaPRS4l68TOMepZw+nN+v30Qye/EqAoNDsMyWldrVqtCnW3uMlEqePg/k2OnEaVZNO2jf92HlvCmUK5V4Y7PHT58TFq49B/rcpas8Dwzip/p1PnrskJdhLF2zmfWL312gX7RwAdq3bELPwWOxsbZi8qiBadXVTzKqXA8A814eWuXRm2YTfylxCo6BtT0qtToVjRtj0qQr0WunwT/7q8NDidmxFJOWfSE+juhNszVJS0bTx/c1gCt7z5HFJhs/9m9ONnsrnvg8YF77ybwOSbxGy8bZDvV7r7eRiRENB7XEztWBmMhobh27yur+83kbkfS+MG08urFt4lpi/3lvi4uJY82ghbSc0AmliRFbxqwkPDD56ZLpTV/7LTIHhVqdmnfRzK26Sy1dh6ATXmH+ug5BZKCj1h+/m+3XbBC6vSmWrhy+tlTXIehEzOR+ug5BJ5yW3NJ1CDrRxr7Mv1cSX41FD7bqOoSPOpS9pa5D+Kg6gZt1HYIWGZkQQgghhBDiPbKaU8plqmQiMjKSrVu34ufnh6OjI61atcLW1vaT+8TExBATE6NVplKrMNDBRW9CCCGEEELoE51+4y5cuDAvXybOnX78+DFFihShf//+HD58mLFjx1K4cGECAgI+2YaHhweWlpZaj0evH2RA9EIIIYQQQug3nSYTd+7c0SwTOHz4cJycnHj48CEXL17k4cOHFCtWjJEjR36yjeHDhxMeHq71cM3qlgHRCyGEEEKIr5EqEz8ym0wzzencuXMsXrwYS0tLALJkycL48eNp2fLTF8CYmJhgYmKiVSZTnIQQQgghhEh/Ok8m/n8jqOjoaBwdHbW2OTs7ExycNnfrTE8dBrSjw4B2WmWP/B7RrvqvOoooY1SqXJa+/bpSomQRHB2z06pFN/btPazrsNKdvvQ7S/nC5Oj+E+ZF82Kcwwa/Th68OnhBs91tZh/smtfU2if8uBf32k7I6FDTVWY9vxMSEli4YgN7Dx0lJDQMezsbGterTbcOrVAoFMTFxzNv6RpOnbvMk2fPyWJhQYWyJenfvSMO9onXol30usGvvw1Ntv1Ny2dTtFABzfNLV28wbMI0/t657l+PDYlLxM5auJKzF714/SaS0iWKMKJ/D3LldAYgPOI1C5av4+xFL54HBmNtbUnNqhX5rUs7smZJ2d24/yuj75qiLFoRAwdn1HGxqB7cIWbvGtTv3RtCWeF7jEp9i4FLXhSm5rwZ0QqiIzMkvoykL+9rH1IYKPixX3PK/VSVbPZWhAe+5Ny2E/w1b7uuQ0tX+tpvkT50nkx89913KJVKIiIi8PX1pUiRd3dwfPjw4b9egJ1ZBNwJYGCrIZrnCfEJOowmY1hYmHPrpg/r1v7Bxs2LdR1OhtGXfhuYmxLlHUDIliO4Lx+ebJ3wY1cIGDBP81wdG5dR4WWozHh+r1j/B1t27WPSqIG4587F7Tt3GTVpFlmyWNC2WSOio2Pw9r1Ptw6tKOCeh4jXr/Gcs4TeQ8ezdeVcAEoWLcTx3Ru02p23bB0XrlyjSMH8WuXHTp2neuXyKTq2Wq2m77AJKJVK5k4ZQxZzC9Zu2UHnviP4c8MSzM1MCQoJJSjkJYN6dyaPmyvPA4OYMG0+wSGhzJo0KkP+hoZ5ixB3Zh+qR/fA0BDjer9g1m08UVN7QWziwh4KYxPi73jBHS9MfmyfIXHpgr68r33o++6N+bZtbdYMXMCze0/IVTQP7ab1JPp1FMdW/6Xr8NKNvvb7c8hN61JOp8nE2LFjtZ5nyaJ9R9Q9e/ZQtWrVjAwp1RISEngZrF83bTl86ASHD53QdRgZTl/6HXHMi4hjXp+so4qJJz74VcYEpEOZ8fy+dsuHGlUrUK1SOQCcHbOz//AJbnon3mE7axYLls+ZrLXPiAE9aNW5H89fBOGYwwEjIyPsbG002+Pi4zl26hytmzbUjDD837HT5xk5oGeKjv3w8VOu377DrnWLcc+TC4DRg3pTvUFr9h8+TtOGP5AvjxuzJ79LGlxdnOjTtT3DJkwlPj7hk3fYTivRS8dpP980hyy/r8fAxR2V/20A4k7uBhITj6+ZvryvfShP6fxcP3yZW8euAvDySTBlG1YhV3F3HUeWvvS13yJ9ZKpk4kPTpk3LoEj+O+fczmy7vJnYmDhue3mzzGMFQc+CdB2WEOkqa8UiFL+2moTwSCLO3ODp1I0kvHqt67DSXGY8v0sUKcS23X/x4NET3FxduHPPH68btxnyW5eP7vPmTRQKhYKsWZOfRnT81HleRbymcf3aWuV+/g95GfaK8qWLp+jYsXGJI1TGxkaaNgwMDDAyNuLqjds0bfhDssd//SaSLBbmGZJIJEdh9s/fJerr+zcskud/5S5VWn+HQ25HggKe41woF3nLFGDbxLW6Di1d6Wu/RfrQ+TSnr4H3VR88+0/jsf9jbB1sad//F+bumEXH7zrzNvKtrsMTIl2EH/ci7K9zxD4OwiRXDpyHtiX/+tH4NBwGqsy43kTqZNbzu/MvzYmMiqJB664YGhiQoFLRp2t7fvy+ZrL1Y2JimbVoJfVqVSOLRfLJxI69B6lcrhQ5HOy1yo+eOkfl8qUxMjJK0bFz58qJY3YH5ixZzZjBv2FuZsraLTsJDAohOPRlsscOexXOktWbaNqwbmr/JP+NQoFJo84k+HujevFINzGIDHdw0S5Ms5ox9u9ZqBNUKAwN2D19M5f+PK3r0NKVvvb7c6hkllOKSTKRBi4eu6T5f3+fAHyu+rD5/EZqNKjG/s0HdBiZEOknbPe7D523dx4S5fOAYmeXkLViEV6fuaHDyNJWZj2/Dxw9yd5Dx5gybgjuuXNx554/U+YswcHOhkb1tEcW4uLjGTh6Mmq1mtGDeyfb3ougYM5c9GLGhKTXxxw7fZ5WPzdI8bGNlEpmTx7FGI/ZVK7bHENDAyqUKUnVCmVQJ3PsN5GR9Bw8lry5XenZqe1/+ruklkmT7hg4uvJ23jCdHF/oRukfK1K2URVW9Z3Ls7uPcSnsRrMxHQgPDOP89q932pe+9lukD0km0sGbiEie+D/B2c1Z16EIkWFiHwUSFxqOiVuOryqZ+FBmOb9nLFhB57bNqVerOgD58+bm+Ysglq/bqpVM/D+ReBYYxMq5nh8dldi17zBW2bJSvWoFrfLgkJf43L2vuT4ipcf+pmA+tq9ZwOs3kcTFxWFjbUWrLv34pmA+rfYjI6PoNmA0FuZmzJk8GiNlxn8sGTfphmHhMrxdMAJ1eGiGH1/ozk/D23Jo0Z9c3nMWgGe+j7F1tuf7no2/6i/V+tpvkT7khgzpwMzcFCc3R0KD5ENJ6A8jR1uU1lmJC8pcFyqntcxyfkdHx6Aw0B6HNzAwQKV+99v//xOJR4+fsXz2ZKwssyXbllqtZtf+wzSo+12SL/PHz5ynRNFCWGbL+lnH/r+sWSywsbbi4eOn3L5zjxpV3iUrbyIj6dp/JEZGSuZNGYuJiXHK/wBpxLhJN5RFK/B20SjULwMz/PhCt4zNTFCrtadlqlSqJAsQfG30td+fQ4Ui0z4yGxmZSAM9RnXl7JHzBD4JxDa7LR0HtkeVoOLvXcd0HVq6srAwJ0/eXJrnbm45KVqsEGEvw3ny5JkOI0tf+tJvA3NTTNze3fvFJKcDZoVzk/DqNfGv3uA0oAVh+88RF/QKk1w5cBnZnpgHz4k4cVWHUae9zHp+V69cnmVrNuOY3QH33LnwuevH2i07+Kl+HSAxkRgwchLed/1YMHU8KpWKkH+uV7DMllVz/QPAhSvXePLsBT83SHph9LHTF7QSgJQcG+Dg0VNYW1nimN2ee/4P8Jy9mJpVK1K5fGngn0Si30jexsQwZ8xgIiOjiIyMAsDayhJDw/S/CNvk5+4oS33L25WTIOYtiqxWAKijoyAuFgBFVisUWa1R2CWeCwaOuSDmLapXwRD1Jt1jzCj68r72oZt/X+GHXk14+TSEZ/eekPMbN77r9CNn//i6P7/1td8ifSjU6mR+SvrCVXeplaHHG7NgJMXKFyWbdTbCX4Zz8+Itlk9dybOHzzM0Dq8w/ww9XpWq5dl/YFOS8g3rt9Gj25Bk9vg6ZJZ+H7Uulq7tZ61YhAJ/TExSHrL1KA9HLMZ9+XDMi+TGMJsFcYFhRJy8xtNpG4gPCU/XuAaRsV/gMsv5ffjaUq3nkZFRzFu2lr9PnuNl2Cvs7WyoV7s6PTq2xsjIiKfPA/m+aYdk21o5bwrlSr379zNk3BSevQhi/eIZWvWi3kZTtV4Ldq5bhKuLU4qPDbD+jz9ZtXEboS9fYW9rQ8MfvqN7x1aa7Z+6Yd7BbatxdswOQMzkfp/1d/ocWWbuTrY8etNs4i8dBcD4+1YYf9/qk3XSg9OSW+nWdnIyy/taG/syGXYsABMLUxoObEHxOuXIamdJeOBLLu8+w76520iI0/39ZNJLZun3ogdbM+xYn+vPHK11HcJHNXqxUdchaJFk4iuS0cmE0K30TiYyq4xOJjKLD5OJDDnm8TPMW7aG3Rsy/tj/l57JRGaW0clEZpHRyYTQrcycTOzKxMlE40yWTMg1E0IIIZJlbmbKgB6/6joMIYQQmZhcMyGEECJZ/7++QQghhPgYSSaEEEIIIYR4z9dz69X0J9OchBBCCCGEEKkiyYQQQgghhBAiVWSakxBCCCGEEO9RyQ38UkxGJoQQQgghhBCpIsmEEEIIIYQQIlVkmpMQQgghhBDv+eru6JyOZGRCCCGEEEIIkSqSTAghhBBCCCFSRaY5CSGEEEII8R65aV3KyciEEEIIIYQQIlUkmRBCCCGEEEKkikxzEkIIIYQQ4j0quWddisnIhBBCCCGEECJVJJkQQgghhBBCpIpMcxJCCCGEEOI9KmSeU0rJyIQQQgghhBAiVSSZEEIIIYQQQqSKTHMSQgghhBDiPWpdB/AFkZEJIYQQQgghRKpIMiGEEEIIIYRIFZnmJIQQQgghxHvkpnUpJyMTQgghhBBCiFSRkYmvSFZjM12HoBOvY9/qOgSdqBl2Q9ch6EQ128K6DkEnbHPV0nUIOhH68IiuQ9CJqPlVdR2CTlyKea7rEHTiWqi/rkPQiUW6DkCkCUkmhBBCCCGEeI9K1wF8QWSakxBCCCGEECJVJJkQQgghhBBCpIpMcxJCCCGEEOI9ctO6lJORCSGEEEIIIUSqSDIhhBBCCCGESBWZ5iSEEEIIIcR75KZ1KScjE0IIIYQQQohUkWRCCCGEEEIIkSoyzUkIIYQQQoj3yE3rUk5GJoQQQgghhBCpIsmEEEIIIYQQIlVkmpMQQgghhBDvkWlOKScjE0IIIYQQQohUkWRCCCGEEEIIkSoyzUkIIYQQQoj3qOWmdSkmIxNCCCGEEEKIVJFkQgghhBBCCJEqMs1JCCGEEEKI98hqTiknIxNCCCGEEEKIVJFkQgghhBBCCJEqMs1JCCGEEEKI98g0p5STkQkhhBBCCCFEqkgyIYQQQgghhEgVSSY+onH7hmw+t55DfvtZuGceBUsU+GjdH5rV4fiTI1qPQ377teq06NaMndf+YOe1P2jetanWtkIlC7Jk/0IMDXX/crTv3Irz1w9x/7kXew5vokSpoh+t27pdU3bsX8vtgLPcDjjL5p3Lk9Tv1rsD1++e5Prdk3Tr1V5rW8nSRfnr2FYMDQ3TpS+fo0vXX7jpfZKgUB+OHt9B6dLFPlq3YKF8rNuwkJveJ4mI9Kdnr45J6jRv0Qhv39M8fHKVyZ4jtba5ujrjde1vsmbNkub9+Fz62u967eqz/MwKtt/dwfQ/Z5CveP5P1rfIZkH337uz5vJadtzbyeLjSyhdo4xme7XG1Vl5fhWbbm6m0+jOWvs6uDiw+PgSzLKYpUtfPsfX/npHRkbhOXsxtZu0p3SNRrTpNoCbPr6a7UUq1032sXLDtlS3CbBq4za+rd+Sb+u3ZPWm7Vrbbty+Q/NffyM+PiFtOys+qlmHn9h9cStnAo6wet8SvilRKEX71Wn0HZefn2L6qsla5W27t+TQzd0curmbNt1aaG37pmRh1h1cnik+x0TaUmfiR2aj+2+vmVCNBtXpOaY7q2eto0vd7tz39mfaek+sbK0+us+biEialGymebSo0FqzLU+h3HQc1J4JPSfxe6/JdBrSkdwFcwNgaGjAAI9+zBw+h4QE3c7Qa/jTD4ydOISZUxbyQ/VmeN/yZcP2Jdja2SRbv2KVsvy5fT/NG/xKwzptePb0BRt3LCWHowMAhb7Jz+DhvenZaTC9Og9m8Mg+FCycDwBDQ0M8Z45l2IAJJCTo9kO2yc/1mew5Ak+PuVSt3ICbN33Y8eca7Oxtk61vbmbGgwePGDdmKi9eBCXZbmNrzbwFHowa4cFPDdvTomUjfvihpmb7zNm/M3bMVF6/fpNufUoJfe13lQZV6Ty6M5tmb6Jf/b4E+AQwYf0ELG0tk62vNFLy+4bfcXDJjmd3D7rX6Mb8ofMIfREKQDbrbPw29TdWTlrJmDajqf5Tdcp+V1azf4+JPVnjuZq3b95mRPc+Sh9e7zGeczh36SoeYwaxc90iKpUrRZe+IwgMDgHg+O4NWo/fR/RHoVBQu3rlVLfp6xfAguXrmTZhGFPHD2Xe0rXcvR8AQHx8AhOmzWP04N4olfJlMyPUbliT/uN6s2zGatp+35m73n7M2zQD6098fgM4uuSg75ieeJ2/plXuXigv3Yd0YkT3cYzsMZ4eQ7uQt2AeIPFzbMSUgXgMma7zzzEhdEmSiWQ06/oz+zbt58DWgzy894iZw2YTHR1DvZY/fHwntZqXwWGaR1jIK80m17yu+PsEcPXsNbzOXOW+jz+ueXMC0KJ7C65fuIHvdd+PNJxxuvRsz8a129i6cRf3fO8zbMB43kZF07Jtk2Tr/9Z1KGtWbOb2rTvcvxfAoD5jMFAYUOXbCgC458uNz+27nDl1gdMnL+Bz+y7u+RKTqB59OnL+7GWuX72VYf37mN6/dWLNqi1sWLcN3zt+9Oszirdv3/JLu2bJ1vfyusHokZ5s37aXmJjYJNtzu+UkIuI1O7bvw8vrBidPnCd/wbwANG3WgLi4OPbsPpiufUoJfe13486NObjpIH//cYTH9x6zcPgCYt7GULtF7WTr12pRmyxWWZnUZSI+l30IehLErQu3eOCT+IUxu2sOoiKiOL3nFPdu3OPmuRu4uCee3982/Jb4+HjOHTiXYf37mK/99Y6OieHIidMM6NWJMiWK4uriRK9ObXF1cWLLzn0A2NnaaD2OnTpPuVLFyOnsmOo2Ax4+Jn9eN8qXLkGFMiXJ756bgIdPgMQRi9IlilK00MdHtkXaatOtBbs27GHPlv0E3H2Ax5DpRL+NpmGr+h/dx8DAgIkLxrB0+kqePnyutc3N3ZV73ve5fMaLS6ev4OdzHzd3VwB+6dkKrwvX8b5+J137JERmJ8nEB5RGSgoUzc+VU16aMrVazZVTXhQuVfij+5lZmLH5/Aa2XtzIxBUTcMufS7PN/04ALnmccXByILuzAzlzuxDg+wCnXI7UbfE9K6auStc+pYSRkRHFShTm1PF3X3rUajWnT5yndNniKWrDzNwUpZGSV6/CAfDxvkdudzecXBxxzulIHvdc3PHxI5dbTlq0/ompk+amS18+h5GRESVKFuHYsTOaMrVazfFjZyhXrmSq2rx//wFmZqYUK14Ya2tLSpUuxu1bd7Cyysao0f0ZNGBc2gT/H+hrv5VGStyLunP99DVNmVqt5trpaxQoVTDZfcrXKs+dK3foPrEHa6+sY/7hBTTr1QwDg8S3z2cPnmJiZkKeb/KQxTIL+Yrn54HPAywsLWgzqC1LRi/OiK59kj683gnxCSQkqDAxNtIqNzExxuvG7ST1Q16GcfLsRZr8+P1/ajNfXjcePH7K8xdBPHsRyMPHT3HPk4tHT56xa/9h+nRplwa9EymhNFJSsFh+Lpy6oilTq9VcPHWZYqW/+eh+nQd04GVoGH9u2pdkm98df1zz5CS7swM5XLLjmicn930DcM7lRIMW9VjkuSxd+iJ0T6XIvI/MRpaG/YCljSWGSkNeBodplYeFhOH6z6+NH3p0/zFTBk7H38cfi2wWtOjWjPm75tLxu04EPw/hkd8jlnuuZPqmKQAs81zBI79HzNg0lSWTllKuehk69G9HfHwC88Yu4MaFm+nezw/Z2FqhVCoJCQ7VKg8ODiXvP6MJ/2bkuIEEvgjSJCR+d/2Z8vtsNu9IfLP1nDAbv7v+bN65nIljZ1C9ZhUGDOtJfFw8Y4Z7cOHslU81ny5sba1RKpUEB4VolQcFhZA/f95UtfnqVQTduw5mybIZmJmasHnjTv4+cor5Cz1ZumQdudxc2PzHUoyMlHhMmsufu/5Ki658Fn3tdzabbBgqDbVGDgFehbzCJa9LsvvkcM1OsUrFOL7rOOM7jMPRzYkeE3tgaKRk8+xNRIZHMmvALPrPGoCxqTFHtx/l6kkvfpvah31r9pI9Z3ZGrRiN0kjJxlkbObv/TLLHSU/68HpbWJhTvEghFq/eRJ5crtjaWLH/yAmu37qDazIjD7v/OoK5uRm1qn18ilNK2szr5krfbh3o0m8EAH27dSCvmyud+w5nQM9fOXPxCgtXbECpNGRYv+6UKfHx69DEf2NlY4lSqeRl8Eut8pfBYbi550p2n+LlitKoVX1a1/412e0P7j1koedSFm6eBcACjyU8uPeQBVtmMXfiIipWL0/XQR2Jj4tn+pi5XD1/PW07JcQXQJKJNODt5YO3l4/m+a3Lt1l7fCUN2vzIyumrAdi9fi+71+/V1Pm+aW2iIqO4fcWbdSdW0+3HXtg72jFmwUhaVfqFuNi4jO7Gf9KrX2caNqlLswYdtKZErFu1lXWrtmqeN2vZiDdvIrly6TonL+2lfs0WODrlYOHy6VQsUYfYL6zfH7N3zyH27jmkeV65SjmKFCnI4IHjuHbzGL926EtgYDDHTuzizJmLSZK4L9XX2G+FgQHhoa9YMGw+KpWK+zfvY5vdlibdm7B59iYAzh88x/mD70b1ipQvQu5Cbiwds4Qlp5Yyvfc0woLDmLF7Jrcv3CI8NFxX3UlTme319hg9iDEes6jZuC2GhgYUyu9O3VrV8Pb1S1J3595D/FinBiYmxv+5zRY/1afFT++m0fy5/zDm5mYUL1KIBq26sHn5HAKDQhg8xpOD21ZhbPzpY4qMYW5hxoR5o5g0eCrhLz9+Tm5f+yfb1/6peV6/2Q9ERUZx8/Ittp/eQLu6XXFwtGfyonE0LN/8i/v8FuK/kmTiA+Evw0mIT8DG3lqr3NrOmpdBYR/ZS1tCfAL3bvnh7OaU7HZL62y079+Ovk37U6hkIR4HPOFpwFOeBjxFaaTEJY8LAXcC/nNfPsfL0FfEx8cnuRjT3t42ya+ZH+rWuwO9+nWiZePO+Ny++9F61jZW9B/ag5/rt6dkmWL4+z0kwP8RAf6PMDJSksfdjTve99KkPykVGhpGfHw89g52WuUODnYEBganyTGMjY2ZOWsCXbsMJE9eN5RKQ86cvgjAfb8AypQpzoG/jqbJsVJKX/sd8TKChPgErO2stMqt7KwIC07+/A4Lekl8fAIq1bsFEp74PcbGwQalkZL4uHit+kpjJT0m9WBmv5k4ujliaGjIrQuJ1wY9C3hK/pIFuHTkYtp27F/oy+vt6uLE6gXTiHobTWRkFPZ2Ngwc7YGLUw6teleu3SLg0ROmTRieZm3+X9ircBat2sjqBVO5eduXXDmdNY/4hHgePH5K/rwpG+0Vn+fVy3Di4+OxsddeNMTG3prQoKSJrIubM86uTsxc46kp+//0xfOPj/FzlTY8ffhMax9LG0u6DOxI1596U6RUYR75P+ZxwBMeBzxBaaRMnAZ1xz8deicymty0LuXkmokPxMfF43vzLqWqlNKUKRQKSlcpibeXd4raMDAwIE/B3IQGvUx2e69xPfhj+XaCn4dgYGiAUvkupzM0NMTQIONflri4OG5c86ZKtQqaMoVCQZVvy3Pl0seHbXv0+ZV+g7vTtmk3blxLOi/5feMnD2XZwrU8fxaIoYEBRkbv9VtpiKFBxq92EhcXx7Wrt6hevZKmTKFQUK16JS5evJomxxgytBdHjpzk+rXbGBoaoDR812+lkVInSwrqa7/j4+Lxu+lHscrvrgNSKBQUr1wcX6/kL6L0vuyDYy5HFIp3E1Wd8jgTGhiaJJEAaPFbS64c9+L+rfsYGBpg+N4qPoZKpc7Ob316vc3NTLG3syE84jVnL16hZtUKWtt37D1I4QL5KJgvT5q1+X9T5i7ll+aNyeFgT4Iqgfj4d/9GEhJUqHS8at/XLD4unjs37lKuSmlNmUKhoGyV0ty4kvTz6YHfI1pUb0ebWr9qHicPneHymau0qfUrgc+SrmI2cPxvbFq6laDnwcl/fmeCJd6FyGgyMpGMP5ZuZ/isIfhe98Xnmi9NOzfB1MyUv7YcAGD47KGEvAhhmecKANr1a4u3lw9PHzwjSzYLWnZvTnaX7OzbtD9J26WrlsIljwse/aYC4HvdF1f3nJSrURYHJwdUKhWP/B9nXGffs2zhGmYtnMyNq7e56nWTLj1+wczCjC0bdgIwZ9Fknj8PwnPCbAB69u3EoOG96d1lCI8fPdP86hkZGUVUZJRW21WrVyR3Xjf69kicV3z96i3y5stNjVpVcHJ2RJWg4r5fxo7G/N/8eStYvHQ6V6/e5PLl6/Ts1RFzc3PWr0tce37Jsuk8exbI+LHTgMSLWQsWcgfA2NgIR6fsFC1WiMg3Ufj7P9Rqu0BBd5r8/CNVKv0IwF3f+6hUKn5p15ygwGDy58+L15UbGdjbd/S137uW76L/jP743bzH3Wt3adSpEabmphzZegSA/rMGEPoilLVT1gDw17r9/Nj+R7qM68re1Xtwyu1Es17N2LtqT5K2c+bLSdUGVelbtw8AT/yeoFapqN2iNmHBYbjkdeHu9Ywdffs/fXi9z1y4glqtxs3VhUdPnjFjwQpyu7rQuH4dTZ03kZEcOnaKQb27JNtGpz7D+O7bSrRu2jDFbf7f2YtePHz8lMmjBgJQpFB+Ah4+4dS5S7wICsbAwAC3XMlfmyPSxoYlWxg3ZwTe1+9w+5oPrbs0w8zcjD2bEz+Px88dSdCLEBZMXkJsTCz3fbU/d16HJy5l/GE5QPlvy+CaJydj+0wCwPvaHXK556JSzfJkd3JApUrg4f1H6dxDITIfSSaScWzPcaxsLek4qAM29tb4ed9nyC/DNRdtZnd2QP3elIesllkZNHUANvbWvAl/g+/Ne/Rq1JeH97TfVIxNjek78Tcm9JiIWp1425Hg5yHMHT2fYTMGExsbh0e/qcRGJ12GMSPs3nkAGzsbBo3ojb2DHbdv3qFt026aec5OLo6oVO9ul9Lu1xaYmBizbO1srXZmeC5g5pSFmuempiZMmjqSHr8O0vT7+bNARg+dzMz5k4iNjaVfzxFER8ekfyeTsWP7PuzsbBgxqj/Zs9tx84YPPzfuoJne5eLipDXFxdHRgTPn3q360bdfV/r268qpk+epX7e1Vttz501mxLBJREUl3mMgOjqGHt2GMH3WeExMjBk0YCzPnwdmQC+T0td+n95zCksbS9oMaIu1vTX+3v6M/WUMr/45v+2d7LXO75DnIYz5ZQydx3Rm3sH5hAaGsmflbrYv2p6k7d6evVnx+3Ji3ib+W46NiWX2wNl0/70HRsZGLBmzmJeBurlORB9e79dvIpm9eBWBwSFYZstK7WpV6NOtPUbv/Xr815ETqNVQr3b1ZNt4/PQ5YeERn9UmJC4jO3nmQqZPGK6ZKpPDwZ7h/XswavIsjI2MmDRqIKYmJmnfcaFxePdRrG2t6D6kE7b2Nty97cdvrQfxMiRxGmMO5+xan2MpZWJqzJBJ/RnefazmcyzoeTDTRs1mzKzhxMXGMbbPZGJ09Pkt0p6MIaacQv3/s+IrUt2llq5D0Il7kc//vdJX6HWsbm8GJjJWNduPL9H8NTsRmrJpll+b0IdHdB2CTpg5VdV1CDpRwjblU8++JtdC9fM6i/jYp7oO4aNmuLbVdQgfNfDRel2HoEUm9wkhhBBCCCFSRafJhJeXFwEB7+Ylrlu3jsqVK5MzZ06qVKnC5s2b/7WNmJgYIiIitB4qtQxOCSGEEEKI1FFn4kdmo9NkomPHjty/fx+A5cuX061bN8qUKcPIkSMpW7YsXbp0YeXKlZ9sw8PDA0tLS63Ho9cPMiB6IYQQQggh9JtOL8C+d+8e+fLlA2DhwoXMmTOHLl3erbBRtmxZJk2axK+/Jn9nSoDhw4czYMAArbIfCzVOl3iFEEIIIYQQ7+g0mTA3NyckJIRcuXLx9OlTypUrp7W9fPnyWtOgkmNiYoLJB6tjGCjkUhAhhBBCCJE6KsW/1xGJdPqtu27duixatAiAatWqsW3bNq3tW7duxd3dXRehfZYOA9px/MkRrcfa45+envU16N2/M/v+3oLvo4tcv3uSFevnktfdTddhpbtKlcuy5Y9l+PqdIyLSn/o/1tZ1SBlCX/sNYJPdlgGzB7Lh+ka23d3OvEPzcS+W+d+b/ovM+npHRkbhOXsxtZu0p3SNRrTpNoCbPr6a7QtWrKdBqy6U/a4xlX5oRue+w7lxW/uGhA8ePeG3oeOpUq8F5Ws34ZceA7l4JenNOZ+9CKR0jUZERb0lLj6eRSs38EOzjpSq0ZAm7Xty+vxlrfoLVqynSOW6Wo8GrbTvZxES+pJhE6ZRrUFryn7XmGYde3P42Ok0/AuJ/6J97zZcfn6KARN+03UoQnwxdDoyMWXKFCpXrky1atUoU6YMM2bM4Pjx4xQqVAhfX1/Onz/Pzp07dRliigXcCWBgqyGa5wnxCTqMJmNUqFSWNcs3ce3qTZRKJcNG92XjjmVUr9CQt1Ff73KtFhbm3Lrpw7q1f7Bx82Jdh5Nh9LbflhZM3TGVm+duMK7dOCJehuPk5sSbf25u9bXKrK/3GM85+Pk/wGPMIBzsbNlz8Chd+o7gzw1LyG5vh1tOZ0YM6ImLUw5iYmJZu2UnXfuPZP+WFdhYWwHQa8g4XF2cWDHXE1MTY9Zt3UWvIWP5a+tK7GxtNMc6euo85UoVw9zcjJkLV7D34DHGDe1D7lw5OXPxCn2H/876JTMolP9dYumeOxfL50zWPP/wzt/Df5/O6zeRzJ8yFivLbOw/fJyBYzzYsmKOVjsi4xUuXpAmvzTk7m0/XYcixBdFp8mEk5MTV69exdPTkz179qBWq7l48SKPHz+mcuXKnDlzhjJlyugyxBRLSEjgZXCYrsPIUG2bddN63q/nSG76naZYicJcOHtFR1Glv8OHTnD40Aldh5Hh9LXfTXs0JeR5CHMGzdGUBT7WzQ33MlJmfL2jY2I4cuI0cz3HUqZEUQB6dWrLiTMX2LJzH326tqd+nRpa+wzp04Udew9y934AFcqUJOxVOA8fP2XCsH4UcM8NQP/uHdm8Yy/3/B9qJRPHTp2jTo3E+z3sOXCUru1b8m2lxOm4LX/6kfOXrrF60w6mjH33Q5KhoaFWGx+6dsuH0YN6U7RwAQC6dWjF2i07uX3HT5IJHTIzN+P3BWOYNGgqnfq113U4IhOQdUFTTucXF1hZWeHp6cnt27d5+/YtMTExPHjwgA0bNnwxiQSAc25ntl3ezMYz6xg5bzgOTg66DinDZcuWFYBXYeE6jkSItFOudnn8btxj6KJhrPNaz+z9c6jT6ntdh6WXEuITSEhQYWJspFVuYmKM143bSerHxcXxx59/kTWLBQXcE2+GZmWZjdyuLuw+8DdRb6OJj09g65/7sbG2onCBd1/mI16/wevGbWpUqQBAbFwcxsbGSY579YPjPnrylBoN2/BDs44MHTeF5y+CtLaXKFKIA3+fJDziNSqViv1HjhMbG0u5UsVS/4cR/9lQj/6c+fscF099vT+ECZFedDoy8bXwvuqDZ/9pPPZ/jK2DLe37/8LcHbPo+F1n3kZ+vdN93qdQKBjvMZSL573w9ZEhYvH1yJEzB3Xb1mPX8l38MX8r+Yrno+v4rsTHxXF021Fdh6dXLCzMKV6kEItXbyJPLldsbazYf+QE12/dwdXZUVPv+JkLDB7rSXR0DPa2NiydPQlrK0sg8b1q2ZzJ9Bn2O+VrN8HAQIGNlRVLZv6O5T8/iACcOneJ/Hlz42BvC0Dl8qVZu3kHZUoUIaezI+cvX+PvE2dJUL2b0lqscAEmjhyIm6sLIaEvWbhyA+16DmbXukVYWJgDMOP3EQwa40Hlus1RGhpiamrC7MmjcXVxyog/oUhGnUbfUbBoftrV7arrUIT4IkkykQYuHruk+X9/nwB8rvqw+fxGajSoxv7NB3QYWcaZPH0UBQrl46e6v+g6FCHSlMJAgd8NP9ZNXQuA/21/chXIRd029SSZ0AGP0YMY4zGLmo3bYmhoQKH87tStVQ1v33c/YpQrVZztqxcQ9iqcbXsOMGi0BxuXzcbW2gq1Ws2kGQuxtbZkzcJpmJqYsH3PAXoPGcfm5XOxt0uconT01HnNqATAsL7dGDdlLg1ad0WhgJxOjjSuX5udew9p6lStWFbz/wXcc1O0cAHq/NyeA0dP8XODxNGs+cvW8vpNJMvnTMbK0pKjp84xaIwHaxZOI3/e3On95xMfyO7kwMDf+9CrxQBiY2J1HY7IRDLjzeEyK51Pc/oavYmI5In/E5zdnHUdSoaYOHUktb6vRrMGHXn+7OufSy70S1hQGI/vPdIqe3zvMfbO9jqKSL+5ujixesE0Lh7ZyZEd69i8fA7x8Qm4OOXQ1DE3M8XVxYniRQrx+/D+GBoasmPPQQAuXLnGibMXmTZhGKWKfUPhAu6MHtQbExMT/vzrCJA4PerMhctUfy+ZsLG2Yq7nGC4d2cmh7WvYs2kZ5mamWsf9ULasWciV05lHT54B8OjJMzZu38Pvw/tToUxJCubLQ89f2/BNwXxs2r43Pf5c4l8ULFYAW3sb1h9azvnHxzj/+BilK5WkZaemnH98DAMD+ZokvmwnT56kQYMGODk5oVAo2LVrl9Z2tVrNmDFjcHR0xMzMjFq1anHv3r3POoacJenAzNwUJzdHQoNCdR1Kups4dSQ/1P+O5g1/5fGjp7oOR4g053PZG+e8LlplznmcCXoS9JE9REYwNzPF3s6G8IjXnL14hZpVK3y0rkqlIjYuDoDo6Bgg6f2IDBQKVKrESy4vet0gW9YsFMyXJ0lbJibGZLe3Iz4hgcPHz1CjasWPHjcq6i2Pnz7XjHZExyQeW2GgvYC9gYEBarVc7qkLl05dpkX1drSp9avmcfuaDwd2HKZNrV81/yaE+FJFRkZSvHhxFixYkOz2qVOnMnfuXBYvXsyFCxewsLDg+++/Jzo6OsXHkGlOaaDHqK6cPXKewCeB2Ga3pePA9qgSVPy965iuQ0tXk6ePpnHTevza+jfevInC3sEOgNcRrzUf2F8jCwtz8uTNpXnu5paTosUKEfYynCf//AL5NdLXfv+5/E+m7pxGs17NOL33NPlL5Of71j8wf9h8XYeWrjLr633mwhXUajVuri48evKMGQtWkNvVhcb16xD1NpqlazZTo0p57O1sCHsVwaYdewgKCeX7f1ZlKl6kENmyZmHExBl079gaUxNjtu0+wJPngZqVmo6fvqA1KgFw4/YdAoNDKZgvD0HBoSxcuR61Ws2vbZpq6kybv4zqlcvjlCM7QSGhLFi+HkNDA+rVqgZA7lw5cXVxYsLUeQzq3RnLbFk5euoc5y5dZcHUcRnzBxRaoiLfct9X++a40VHRvAoLT1Iu9IvqK5noVLduXerWrZvsNrVazezZsxk1ahSNGjUCYO3atWTPnp1du3bRsmXLFB1Dkok0YO9oz+j5I8hmnY3wl+HcvHiLng1/I/zl172qUftOif/Itu9bo1Xev+dItm7apYOIMkbJUkXZf2CT5rnHlFEAbFi/jR7dhnxsty+evvb73o17TO46iXZD29OybysCHweybPwyTuw6ruvQ0lVmfb1fv4lk9uJVBAaHYJktK7WrVaFPt/YYKZWoElQEPHzM7r+OEBYejlW2bBQplJ81C6fhnicxMbK2smTxjN+Zu3QNnfoMIz4+HvfcuZjnOUYzEnHszHl+H95f67gxsbHMW7aGJ89eYG5mRtWKZfEYPZhsWbNo6gQGhTBk7BReRURgY2VJyWLfsGHJLM39LYyUShZNn8CsRavoNWQcb9++JaeLE5NGDdQkMkII8W9iYmKIidH+0dbExAQTE5PPaicgIIAXL15Qq1YtTZmlpSXly5fn3LlzKU4mFGq1+utIvd5T3aXWv1f6Ct2LfK7rEHTidax+rJglElWzLazrEHTiRKi3rkPQidCHRzL0eN6+fnTqM4yT+zZjpNTd721mTlV1dmxdKmGbdGqZPrgW6q/rEHQiPjbzTo+elKuNrkP4qLiO+Rg/frxW2dixYxk3btwn91MoFOzcuZPGjRsDcPbsWSpXrsyzZ89wdHy3Il7z5s1RKBRs2bIlRfHIyIQQQgjxj4SEBIb376HTREIIoXuZ+WqZ4cOHM2DAAK2yzx2VSEvybimEEEL8o2jhApq7UwshRGaUmilNycmRI3E1usDAQK2RicDAQEqUKJHidmQ1JyGEEEIIIfRM7ty5yZEjB3///bemLCIiggsXLlCx4sdXqvuQjEwIIYQQQgjxnq/lguI3b97g5/fupp4BAQFcu3YNGxsbXF1d6devHxMnTiRfvnzkzp2b0aNH4+TkpLmuIiUkmRBCCCGEEOIrdPnyZWrUqKF5/v9rLdq3b8/q1asZMmQIkZGRdO3alVevXlGlShUOHDiAqalpio8hyYQQQgghhBBfoerVq/OphVsVCgUTJkxgwoQJqT6GJBNCCCGEEEK8JzOv5pTZyAXYQgghhBBCiFSRZEIIIYQQQgiRKjLNSQghhBBCiPeoFLqO4MshIxNCCCGEEEKIVJFkQgghhBBCCJEqMs1JCCGEEEKI96i+mtvWpT8ZmRBCCCGEEEKkiiQTQgghhBBCiFSRaU5CCCGEEEK8RyY5pZyMTAghhBBCCCFSRZIJIYQQQgghRKrINCchhBBCCCHeo9J1AF8QGZkQQgghhBBCpIokE0IIIYQQQohUkWlOQgghhBBCvEduWpdyMjIhhBBCCCGESBVJJoQQQgghhBCpItOchBBCCCGEeI9Mckq5rzKZeBbzStch6ISjqY2uQ9CJfBYmug5BJ+5FPtd1CDrh9TpA1yHoRFRcjK5D0Akzp6q6DkEn3j47pesQdMItXwNdh6AT+vp6i6+DTHMSQgghhBBCpMpXOTIhhBBCCCFEaslN61JORiaEEEIIIYQQqSLJhBBCCCGEECJVZJqTEEIIIYQQ75Gb1qWcjEwIIYQQQgghUkWSCSGEEEIIIUSqyDQnIYQQQggh3iOTnFJORiaEEEIIIYQQqSLJhBBCCCGEECJVZJqTEEIIIYQQ75Gb1qWcjEwIIYQQQgghUkWSCSGEEEIIIUSqyDQnIYQQQggh3qOW9ZxSTEYmhBBCCCGEEKkiyYQQQgghhBAiVWSakxBCCCGEEO+R1ZxSTkYmhBBCCCGEEKkiyYQQQgghhBAiVWSakxBCCCGEEO9RyWpOKSYjE0IIIYQQQohUkWRCCCGEEEIIkSoyzUkIIYQQQoj3yCSnlJORCSGEEEIIIUSqSDLxEW1+bcbRK7u5+fgMfxxYTbGS33y0bp36Ndh+eC2X/Y5x7cEp/jy2gUbN6mnV+bVnW855H+Kc9yF+7dFGa1uxUt+w48g6DA0N06Uvn6NZh5/YfXErZwKOsHrfEr4pUShF+9Vp9B2Xn59i+qrJWuVtu7fk0M3dHLq5mzbdWmht+6ZkYdYdXJ4p+t24fUM2n1vPIb/9LNwzj4IlCny07g/N6nD8yRGtxyG//Vp1WnRrxs5rf7Dz2h8079pUa1uhkgVZsn8hhoa6P/3ad27F+euHuP/ciz2HN1GiVNGP1m3drik79q/ldsBZbgecZfPO5Unqd+vdget3T3L97km69Wqvta1k6aL8dWxrpni99bXf4usUGRmF5+zF1G7SntI1GtGm2wBu+vgmW3f81HkUqVyXdVt2frLNy9du0mvIWGo0bEORynX5++TZJHVWbdzGt/Vb8m39lqzetF1r243bd2j+62/ExyekvmOppM/n9/J1WylSuS6esxd/tM623X/RrscgKv3QjEo/NKNz3+Hc9Nb+95JZX1uROck0p2TUa1yb4RP6M2awB9ev3KJDt1as2DqP7yv+zMuQsCT1X4VFsHjWSvzvPSA2Lo4adariMXcMoSEvOX3sPAUKu9N3aHe6temHQqFgyYZZnD5+nrs+9zE0NGTC9BGMHjCJhATdnpi1G9ak/7jeeAydwa2r3rTq0ox5m2bwc5XWhIW++uh+ji456DumJ17nr2mVuxfKS/chnej3y1AUCgWz1k7h/IlL3L/jj6GhISOmDGTS4Gk673eNBtXpOaY7M4fPweeqD007/8y09Z78Uq0jrz7S7zcRkbSr1kHzXK1+NyCap1BuOg5qz/D2o1AoFHismcilk1cIuBOAoaEBAzz6MX3oLBISdHtLnIY//cDYiUMYNmA8V6/cpHP3X9iwfQnflv2R0JCXSepXrFKWP7fv5/KFa0THxNCrbyc27lhKzYqNePE8iELf5Gfw8N60b9kLhQJWb17IiWNnueN9D0NDQzxnjmVIv3E6f731td/i6zXGcw5+/g/wGDMIBztb9hw8Spe+I/hzwxKy29tp6h05cYYbt+/gYGf7r22+fRtNAfc8/FS/Dv1GTEyy3dcvgAXL17Ng2jjUajW9Bo+jUrlS5M+bm/j4BCZMm8fYoX1QKjP2S7Y+n983fXz548/95HfP/cl6l7xuUK92dUoUKYSxiTEr1/9B1/4j2bV+Mdnt7TLta5vRZDWnlNP9T6OZUMfubdi6fhc7Nu3h/t0AxgzyIPptNE1bN0y2/sWzVzi8/zj37z3g8YOnrF26GV9vP0qXLwFAnnxu+Hrf4/zpy5w7dQlfbz/y5HMDoHPvX7h0zoub17wzqHcf16ZbC3Zt2MOeLfsJuPsAjyHTiX4bTcNW9T+6j4GBARMXjGHp9JU8ffhca5ubuyv3vO9z+YwXl05fwc/nPm7urgD80rMVXheu4339Trr2KSWadf2ZfZv2c2DrQR7ee8TMYbOJjo6hXssfPr6TWs3L4DDNIyzklWaTa15X/H0CuHr2Gl5nrnLfxx/XvDkBaNG9Bdcv3MD3evK/GmakLj3bs3HtNrZu3MU93/sMGzCet1HRtGzbJNn6v3UdypoVm7l96w737wUwqM8YDBQGVPm2AgDu+XLjc/suZ05d4PTJC/jcvot7vsQPtR59OnL+7GWuX72VYf37GH3tt/g6RcfEcOTEaQb06kSZEkVxdXGiV6e2uLo4sWXnPk29wOAQPGYtYsrYISn6Eli1Yln6dG1PrWqVk90e8PAx+fO6Ub50CSqUKUl+99wEPHwCJP6qXbpEUYoW+vgIb3rR1/M7Kuotw8ZPY9zQvmTLmuWTdaeMG0rLJj9SMH9e8uTKyfhhfVGpVJy/fA3IvK+tyLwkmfiAkZGSb4oX5OyJC5oytVrN2ZMXKVGmWIraqFi1LLnz5uLSuasA3PX2wy2vK47O2XFyyYFbXlfu+dwnp5szTVo1YPbkRenSl8+hNFJSsFh+Lpy6oilTq9VcPHWZYqU/PsWr84AOvAwN489N+5Js87vjj2uenGR3diCHS3Zc8+Tkvm8AzrmcaNCiHos8l6VLXz6H0khJgaL5uXLKS1OmVqu5csqLwqUKf3Q/MwszNp/fwNaLG5m4YgJu+XNptvnfCcAljzMOTg5kd3YgZ24XAnwf4JTLkbotvmfF1FXp2qeUMDIyoliJwpw6fk5TplarOX3iPKXLFk9RG2bmpiiNlLx6FQ6Aj/c9cru74eTiiHNOR/K45+KOjx+53HLSovVPTJ00N1368jn0td/i65UQn0BCggoTYyOtchMTY7xu3AZApVIxfMJ0OrRuinueXMk189ny5XXjweOnPH8RxLMXgTx8/BT3PLl49OQZu/Yfpk+XdmlynM+hz+f3xBkL+LZiWSqWLfnZdcZyPAAAau1JREFU+0ZHxxAfn4BltqxA5nxtReYm05w+YG1jhVKpJCRYezg0JOgledzdPrpflqwWnLr5F8bGxqgSEhg3dIomIbl/7wEzJy1k1baFAMyYuID79x6wetsCpo2fS5WaFfltcFfi4+OZOHI6l/9JQjKSlY0lSqWSlx/0+2VwGG7uyX/4FC9XlEat6tO69q/Jbn9w7yELPZeycPMsABZ4LOHBvYcs2DKLuRMXUbF6eboO6kh8XDzTx8zl6vnradupFLC0scRQacjLYO3pa2EhYbi650x2n0f3HzNl4HT8ffyxyGZBi27NmL9rLh2/60Tw8xAe+T1iuedKpm+aAsAyzxU88nvEjE1TWTJpKeWql6FD/3bExycwb+wCbly4me79/JCN7f//nYdqlQcHh5I336eHyP9v5LiBBL4I0nxw+931Z8rvs9m8IzFJ9JwwG7+7/mzeuZyJY2dQvWYVBgzrSXxcPGOGe3Dh7JVPNZ8u9LXf4utlYWFO8SKFWLx6E3lyuWJrY8X+Iye4fusOrs6OAKxY/weGhga0bdYozY6b182Vvt060KXfCAD6dutAXjdXOvcdzoCev3Lm4hUWrtiAUmnIsH7dKVPi49ctpBV9Pb/3HzmOz937bF4+J1X7z1y0Ens7GyqWSUxEMuNrqwu6nYj8ZZFkIo1EvomiUY3WWFiYU7FqWYZP6M/jB0+5+M8by+Y129m85t1FTD+1qE/kmyiuXr7JwXPb+blOO3I4OjBr6WRqlm5IXGycrrqSIuYWZkyYN4pJg6cS/jL8o/W2r/2T7Wv/1Dyv3+wHoiKjuHn5FttPb6Bd3a44ONozedE4GpZvnun7DeDt5YO3l4/m+a3Lt1l7fCUN2vzIyumrAdi9fi+71+/V1Pm+aW2iIqO4fcWbdSdW0+3HXtg72jFmwUhaVfrli+j3+3r160zDJnVp1qADMTGxmvJ1q7aybtVWzfNmLRvx5k0kVy5d5+SlvdSv2QJHpxwsXD6diiXqECv9FuI/8xg9iDEes6jZuC2GhgYUyu9O3VrV8Pb14/ade6z/40/+WDkPhUKRpsdt8VN9Wvz0bhrsn/sPY25uRvEihWjQqgubl88hMCiEwWM8ObhtFcbGxml6/LT2JZ7fzwOD8Zy9hGWzJ2Ni8vl/3+XrtvLXkROsmj9Va/+v7bUV6UuSiQ+EvXxFfHw8dvY2WuV2DjYEB4V+ZK/EodRHAYlzCn1u3SVv/tx069dBk0y8z9rGkt6DutC6YVeKlyrCg/uPeOj/mIf+jzFSKsmd15W7PvfTtmP/4tXLcOLj47H5oN829taEJtNvFzdnnF2dmLnGU1NmYJA4a+7842P8XKUNTx8+09rH0saSLgM70vWn3hQpVZhH/o95HPCExwFPUBopE6dB3fFPh959XPjLcBLiE/hfe/cdF8W1BXD8t/QiFppSBMSKvUVjixpLYowlxhJjwRJ7x941FtRoNPZeYje22BJb7F0QG4oiKCoIKAgKgsDu+4O8jRswQQKMsuf7Pvt52bszd86BYd2z984da7sCOu0FbAsQFZH2Yvv0pCSncPdGIE5ujum+nq9AXjyHdGZQ6yF4VPLgYfAjHgc/5nHwY4yMjXB2dyb4dvB/zuVdRD37/3mueyGmnZ0NkRFP/3HfXv270G9wd75p+R23bt5563YFrPMzZGQfvm7qSaWq5QkKfEBwUAjBQSEYGxvhXsyN2/53sySfjNLXvEXu5uLsyNpFPxD/KoG4uHjsbK0ZOt4bZ8dC+F69QVT0cxp9/dfUlJQUNT8sXMn6bbs5tGNdlsQQ/TyGJWs2sXbRLK7fDMC1sJP2kZySzP2HjylRNGOjA5mlj3/f/gF3iYp+Tttu/bVtKSlqfPxusHnnXnyP7XnrSlNrNm1n1YZtrJg3nZL/cNH2+/C7Fe83uWbib5KSkrl59TY1PqmmbVOpVNSo8xF+l69luB+VgcFbK/UxU4aydtlmwsMiMDQ0wMj4r5rO0MhQkSXmkpOSuX3tDtVqV9G2qVQqPqpdhWs+N9Nsfz8whHb1OtOhYTft4+ShM1w+c4UODbsRHhqRZp+hkwewefk2IsIiMTA0wMjojbwNDRVZKjU5KZmA63eoXLuytk2lUlGldiX8fTN2UbyBgQHupYrwLCLtSiEA/Sb14ZeVO4gMe5p+3gY5n3dSUhLX/PypXfdjbZtKpaL2J9XxufT26WZ9BnZj8PDedGzdi2t+ac+LN02ePpIVi38mLDQcQwMDjP9+nhvk/Hmur3kL/WBhboadrTUxsS84e9GHT+t8TLPPG7Dz58VsX7tI+7C3taHrt1+z7MdpWXbsmfOX06ltSwrZ25GiTiE5OVn7WkqKGnUOrF6nj3/fH1epyK71S3R+v2VKFadp4/psX7vorZ8nVm/8hWVrN7N0zhTKepT4x2O8D79bJWje4/+9b2RkIh1rlm5k5oJJ3PDz55rvTTx7fYu5hTk7Nu8FYNbCyYQ/iWDO1EUA9BrUhet+t3h4/xEmJsbUbViLFm2+YNII7zR916xbHbeiLozoPxGAa1f8cS/myicNauLgWBB1ipqgwAc5l+wbNi7byqSfxuB/9TY3/W7xbY82mFuYs3dL6j0UJs8fS8STpyyavozXia+5F6D7bfqLmJcAadoBqn9SFRf3wkwcmPqPl7/fbVyLuVLz0+oUdLRHrU7hwb2QbM4wfb8s38HouSMIuBrALb8AWn/XCjNzM37b+jsAo+eN5OmTp6yYsQqAzoM74u97i8f3Q8mT15JvereloHNB9m8+kKbvKnUq4+zujPfgWQAEXA3ApVhhqtX/CHtHe9RqNSFBD3Mu2TesWLyOuYunc+3KTa74XqdHn06YW5qzdWPq+vM/LZlOWFgEM76fB0DfQd0ZNro//XuM4GFIKHb2qUtOxsXFEx8Xr9N3nXo1KFLUjUF9UufcXr1yg6LFi1C/YW0cnRxQp6i5F5izozH/p695i9zrzAUfNBoNbi7OhDwKZc6iVRRxcaZl08YYGxmRP19ene2NjAyxtS5AEVdnbVv3gaNo8ElNvm2dumphfPwrQh79Nbr8ODSc23fukS+vFQ6F7HX6O3vRlwcPHzN93FAAynqUIPjBI06du8STiEgMDAxwe+NY2Unf/r4tLS0o7u6m02Zubkb+vFba9tFTZmNva8OQPl0BWLVhGwtXrmfWxJE4ORTk6bPUL8IszM2xsDDX6et9+t2K95cUE+k4sPsw1jYFGDiyN3b2Nty6cYfu7Qbw7M+Lkx2cC6HW/FWJm1uYM2nWSAo52JOQkEjQ3fsM7zueA7sP6/RrambKhBkjGNJjtPa+BOFhEUwZ8wPe8yfwOjGJkQMmkpiQmHPJvuHwnj8oYJOf3iO6Y2NnzZ2bgQz4dpj23hqFnAqiVr97RWxqZsKIaUMY3XuiNu+IsEh+GDePCXNHk/Q6iYkDp5OY8Ppfesoex/YeJ79NProO64K1XQEC/e8xotNo7XKvBZ3s0aj/+n1b5bNi2CwvrO0K8DLmJQHX79KvxSAe3NUthkzMTBg0dQDf95mqzTsy7Cnzxy9k1JzhvH6dhPfgWbxWKO89u37H2taaYWP6Y2dvy83rt+nYupf24kVHZwed33fnbu0wNTVhxc/zdPqZM2MRP85crH1uZmbKtFlj6dNtmDbvsNBwxo+czo8Lp/H69WsG9x1DgkLnub7mLXKvFy/jmLd0DeGRT8mX14pGdWszsJcnxkYZ/yf+4eMwomNitc9v3L5LtwEjtc9nLVgOQIsmDZn25wdLSF2advqPi5n9/WjtVNdC9naMHtKHcdPnYmJszLRxQzEzNf2vaWaI/H2nFRYegcEb18ts3bWfpKRkhozTHZnq060D/bp31D5/33634v2l0rx5t61cooRdVaVDUEReI/N/3ygXymOon29kd+PC/n0jkWuExz1XOgSRg16FnlI6BEW4FW+mdAiKuH93r9IhKMLY1l3pEN6qm1trpUN4q9X3tysdgg65ZkIIIYQQQgiRKYoWEwMGDODUqf/27UtiYiKxsbE6jzenIAkhhBBCCCGyh6LFxKJFi6hXrx4lSpRg5syZPHny5J378Pb2Jl++fDqP6Ph370cIIYQQQgiQ1ZzeheLTnA4dOsQXX3zB7NmzcXFxoUWLFuzbtw+1OmOjC6NHjyYmJkbnUcCiUDZHLYQQQgghhFC8mChXrhzz5s0jNDSUDRs2kJiYSMuWLSlcuDBjx44lMDDwH/c3NTUlb968Og8DleJpCSGEEEIIkeu9N0vDGhsb07ZtW9q2bUtISAirV69m7dq1zJgxg5SUFKXD+0ftu3xN+y6tcXZxAODu7SAWzVnJyaNnFY4sZ3n278CAsb3ZtGIbP05YoHQ42aaLV2e6eHXWaQsJDKFzvW4KRZQz+g/5jiZfNqJY8SIkJCRw+aIf0yf9yL3A+0qHlq30NW+hrLi4eBas+JmjJ88RFf2cUiWKMmpwL8p5lNRuc+9+CHMXr+ay33VSUlJwd3Nh3rRxOBSy53FYOJ+17pJu33OmjOGzT+ton4c+CadZ+56c2r+F0CcRLFy5Hv+Au4Q+iWDkwJ50avdVmj4279jLmk3beRoVTcli7owZ0odypVNji4l9waKV6zl70Zew8EgKFMjHp3VqMKBHZ6zyWGr7uH4rgHlL1uAfEIhKpaKsRwkMjDSok1Vpjpdd9PHve+X6bcxbuoaObVowanBvACbPms+5S1eIfBqFhYUZFcuWZkjfbri7FlY4WuXI1bcZ994UE29ycXFh0qRJTJw4kSNHjigdzr96EhrBnKkLuR8UggoVX33zJYt/nkPLTzsQGBCkdHg5onSFUrTq1Jw7N/95JCm3CL4dzND2I7TPU5Lf74I3K3xc8yPWrdyM35XrGBkZMWr8IDbtXEG9j5vzKv6V0uFlG33NWyhrwoyfCAy6j/eEYdjb2rD34B/0GDSGXzcuo6CdLSGPQuncZxitvvyMft91xNLCgnvBIZiYmgBQyN6W43s26vT5y6+/sWbTDup8rLt8+h+nzlOtcnksLMx5lZiAs2MhGn9am1nzl6cb229HTjBrwXImDB9A+dIlWb9tN728xrF38wpsCuQn4ukzIp5GMaz/d7i7uRAWHsH3Pywk8ukz5k4bB6TeFK+313jq1/6YcUP7k5KSwqJV6zHLl0L8M0MgZwoKffv7vn4rgF9+PUCJYkV02kuXLEbTxvVxKGhPTOwLFq/aQM8hYzn4y5q33kVbiP9TtJhwdXX9x5NUpVLRqFGjHIwoc44d0l2Rau70xbTv8jUVq5bTi2LC3MKcKYsmMG3YLLoP9lQ6nByRkpJCVGS00mHkqI5teuk8H9x3LNcDT1O+YmkunPVRKKrsp695C+WoVHDkxGnmz5hI1YrlAOjXvSMnzlxg6679DOzpyfzl66hT4yOG9uuu3c/F2VH734aGhtjaWOv0e/TkWT5rUCfNXY6PnTpH4/qpIxXlPEpqRz/mLVmTbnw/b91F62ZN+KppYwAmDB/AybOX2LXvEN91aktxdzfmTR+nE9fAnp6M+n4WyckpGBkZEvTgITGxL+j3XSccCtoBqTdNO3z8DCpD0OTQ9zP69PcdH/+KUZN/YNLIQSxbt1nntTYtvtD+t5NDQQb09ORrz748DgvXOa+ESI+iFxcEBwdjY2OjZAhZzsDAgKYtG2NhYc6VS9eUDidHjPQewpmj57h4Kne98f4TpyJObL+8hU1n1jN2wWjsHe2VDinH5c1rBcDz6BiFI8lZ+pq3yFkpKWpMTYx12kxNTfC9dhO1Ws3Js5dwK+xEzyFj+aTpN7TvMZijJ98+tfbm7bvcvhtEqy8/02mPffES32s3qV/74wzFlZSUhH/AXT7+qKK2zcDAgI+rVuTqjVtv3e/FyzjyWFpgZJT6BWIRF2fy58vLzn0HSUpKIiExkZ17D6JOzrlCIj25+e976pxFfFLjI2p8VOkft4t/lcDu/YdwdiykLfT0kVqjeW8f75v3cprTh6iER1G2/rYGU1MT4uNe0a/LcO7dCVY6rGzXuEUDSpUrQecmPZUOJcf4X7nFjCE/8DDoITb2NngO6cT8nXPp2uA7XsXlvmHx9KhUKiZ7j+TieV8CbunH1DbQ37xFztJooEJZD5au3Yy7qws21vk5cOQEV2/cxsXJgajo58S/esWqDdsY0MMTrz7dOH3Bh8FjprJ6wQw+qlQ+TZ879x3E3a0wlcqV1mk/de4SJYoWwd4uY1/sRT+PJSVFjY11AZ12G+sCBIc8ess+MSxbu5nWzZto2ywtLVizcCYDR33PsrWp35K7Ojvy6nnOTXH6u9z8933gyHFu3bnHlpU/vXWbLTv3MWfxKl69SqCIizPL507D2Nj4rdsL8X9STGSR4MAHtKj/LVZWefi8eQNmLphEhxY9c3VBUdDRnqFTBtKvnRevE18rHU6OuXjskva/g24Fc+vKLbac30T9ZnU5sOV3BSPLOdNnj6OkR3G+atJJ6VBylL7mLXKe9/hhTPCey6ctO2JoaIBHiWI0aVgX/4BA1OrUbybr16lB529SL44uVaIoftf92bb7QJpiIiExkQOHj9OrS/s0x/nj1PkMj0pkxsu4OPoOn0jRIi707d5RJ6YJ3vOoVK40syaPRJ2iZu3mHQQGPeJVlDIFRW79+w4Lj2TGvGWsmDcd0z+vqUlP08b1qfFRJSKfRbF20w6GTfBm/ZI5/7iPECDFRJZJSkomJDj1W5mb125TrmJpPHu2Z8Kw6QpHln1KlS+JjZ01Gw6t1LYZGRlR6eMKtO3aipquDTJ8v5AP2cvYOB4FPcLJzUnpUHLE1FljafhZXVp94UlYaLjS4eQYfc1bKMPF2ZG1i34g/lUCcXHx2NlaM3S8N86OhSiQPy9GhoYUdXPR2cfdrTC+1/zT9HXo2GleJSTS/PMGOu1JSUmcuXCZHp3bZTiuAvnzYmhowLMo3WvGnkVFY/u30Yq4uHh6eY3H0sKcn6aPx9jor48c+w8d53FYOBuX/YiBQeqM61mTRnLoWHOMTDUkJ+ZsMZGb/779A+4SFf2ctt36a9tSUtT4+N1g8869+B7bg6GhIVZ5LLHKY4lrYScqlClFzc/bcPTkWb5oVE+54BX0/k0men9JMZFNVAYGmJjm7uHBS6cu066e7hKpE+aN5kFgCOsWbtSLQgLA3MIMRzcHDu18pnQo2W7qrLF83rQBbZp14WHIY6XDyTH6mrdQnoW5GRbmZsTEvuDsRR+8+nbD2NiYMh4l0kwruv/wMY6F0l6/tXPfQerXro51gfw67Rd9r5HXKg+lirtnOB5jY2NKlyzOhct+NPikJgBqtZoLPn60/7q5druXcXH0GjIOYxNjFsycmObb7YSEBAwMVKhUfxUNKpWBIp/gcvvf98dVKrJr/RKdtnHTfqSIa2G6d2yT7kI4Go0GjQZev07KqTDFB0yKiSwwdFw/Thw9S9ijJ1jmsaDZ159TvVYVurUdoHRo2So+7hX3AnSncSXEJ/A8OiZNe27SZ1xPzh45T/ijcGwK2tB1qCfqFDVHdx9TOrRsNX32eFq2/oJu3w7g5ct47OxtAXgR+4KEhESFo8s++pq3UNaZCz5oNBrcXJwJeRTKnEWrKOLiTMs/V1Dq+u3XDJswg6oVy1KtcgVOn7/MiTMXWLNgpk4/IY9C8fG7wZLZ36c5xvHTF6j3tylOSUlJ3AsO+fO/kwmPfMbtO/ewsDDXrurTud1XjJ02hzKlilO2dEk2bNvNq4REWjZNXX3xZVwcPQeP5VViIj9NGE5cXDxxcfEAFMifD0NDQ2pUq8ycxauYOmcR37ZujkatYeWGbQCkJOXcqIQ+/H1bWlpQ3N1Np83c3Iz8ea0o7u7Gw8dh/H70JDWrVcY6fz6eRD5l1fptmJqaUKfmR8oELT4oUkxkAWtba2YtnIx9QVtexL4kwP8u3doO4OyJC0qHJrKBnYMd4xeOIW+BvMRExXD94g36Nh9ATFTuW/3jTZ7dvwFgx/51Ou1D+o5l2+bdCkSUM/Q1b6GsFy/jmLd0DeGRT8mX14pGdWszsJendqpQw7q1mDC8PyvXb8N77lLcXJyZO20clSuU1eln575DFLS3pWa1ymmOcezMeaaMHqLTFvE0itZd/5oOs3bzDtZu3kHVSuVYu3AWAE0a1iX6eQwLV27gaVQUpYoXZemcKdppTv4B97jmHwDAF+266/R/cPtanBwK4u5amIUzJ7FkzUY69vJCpVLhUaIor54bolHnXDEhf99gamKC79UbrN+2m9gXL7Gxzk/VCmXZsPRHbP42mqVP1DLRKcNUGs17uMbUf1TCruq/b5QL5TUy//eNcqE8hqZKh6CIu3FhSocgclB43HOlQxA56FXoqX/f6D/wDwik+8BRnNy/RedaBqW5FW+mdAiKuH93r9IhKMLYNuNT7HLat65p7/z+vtj0YJfSIehQ9D4TQgghhMh5KSkpjB7S570qJIQQHyZ5FxFCCCH0TLnSJSlXuqTSYQjx3tLINKcMk5EJIYQQQgghRKZIMSGEEEIIIYTIFJnmJIQQQgghxBv0405ZWUNGJoQQQgghhBCZIsWEEEIIIYQQIlNkmpMQQgghhBBvkJvWZZyMTAghhBBCCCEyRYoJIYQQQgghRKbINCchhBBCCCHeIDetyzgZmRBCCCGEEEJkihQTQgghhBBCiEyRaU5CCCGEEEK8QW5al3EyMiGEEEIIIYTIFCkmhBBCCCGEEJki05yEEEIIIYR4g0YjqzlllIxMCCGEEEIIITJFigkhhBBCCCFEpsg0JyGEEEIIId6glpvWZZiMTAghhBBCCCEyRYoJIYQQQgghRKbINCchhBBCCCHeIDetyzgZmRBCCCGEEEJkihQTQgghhBBCiEzJldOcHE3zKx2CInyjg5QOQeSgDnZVlQ5B5KAVcWeUDkERFW3clQ5BEWU82iodgiLu392rdAiK8KwyVOkQFLHpwS6lQ3grjazmlGEyMiGEEEIIIYTIFCkmhBBCCCGEEJmSK6c5CSGEEEIIkVly07qMk5EJIYQQQgghRKZIMSGEEEIIIYTIFJnmJIQQQgghxBs0GpnmlFEyMiGEEEIIIYTIFCkmhBBCCCGEEJki05yEEEIIIYR4g1rpAD4gMjIhhBBCCCGEyBQpJoQQQgghhBCZItOchBBCCCGEeINGblqXYTIyIYQQQgghhMgUKSaEEEIIIYQQmSLTnIQQQgghhHiDWqY5ZZiMTAghhBBCCCEyRYoJIYQQQgghRKbINCchhBBCCCHeoNHINKeMkpEJIYQQQgghRKZIMSGEEEIIIYTIFJnmJIQQQgghxBtkNaeMk5EJIYQQQgghcplJkyahUql0HqVKlcry48jIhBBCCCGEELlQmTJlOHLkiPa5kVHWf/SXYkIIIYQQQog3aN7jaU6JiYkkJibqtJmammJqappmWyMjIwoVKpSt8cg0p7do6dmcLec2cCjwAIv3LqBUxZJv3fbzNo05/uiIzuNQ4AGdbdr1asMuv1/Y5fcLbXu21nnNo1Iplh1YjKGh8r+OHj07cd3/JBHPbvHH8Z1UqVL+rduW8ijO+o2Lue5/kti4IPr265pmm7btWuAfcJoHj64wfcZYnddcXJzw9TuKlVWeLM/jXelr3nU7fcbU0wuZH7CBEbun4Vqh6D9u/2m3L5h0dB4/3d7AtLOLaT3eEyNTY+3rH7WozbSzi5lzdTVfj+uss6+1sx2T/piHWR7zbMnlXehr3vqqTZev2HNxG2eCj7B2/zLKVPTI0H6NWzTgctgpZq+ZrtPesfc3HLq+h0PX99ChVzud18pUKs36gysxNDTMsvgzq0O3Nvzhs4frD8/wy+9rKV+pzFu3bdy0PjsO/8zlwGP43T/Fr8c20qLNFzrbdOvbkXP+hzjnf4hufTrovFa+chl2Hlmfo3nHxcUzY95SGrXypEr9FnTo5cX1WwE629y7H0L/EZP4uPHXfNSgJe26DyTsScRb+9y+5zc69xlGzc/bUPPzNnw3aDTX/XX7XLNpO580/YZPmn7D2s07dF67dvM2bbsNIDk5JesSzaBGnZvw0+llrA3Yyve7Z1K0QvG3bjtuyxQ2PdiV5jF8zV//XjXt2YIlPmtZ4rOWL3o019m/aMXiTNs3G4P34HOLPvL29iZfvnw6D29v73S3vXv3Lo6Ojri7u9OhQwdCQkKyPB4ZmUhH/Wb16DuhNz+O/olbV27R+ruv+WHDDDrV7crzZ8/T3edlbByd63bRPn9zfWJ3jyJ0HebJaM9xqFQqvNdN5dJJH4JvB2NoaICX92Bmj5xLSoo6mzP7Z62+bsr0GWMYPGg8ly/50bdfV3b+uo4qlRryNPJZmu0tzM25fz+E3bsO4D1zXJrXrW0KsGCRN316Ded+8EN+2bmSk8fP8fvvfwDw47wpTJwwixcvXmZ7bv9EX/Ou8mUNvh7Xmc3jVhB85S6fdmvKwJ/HMunTwbx4Fptm+4+a16LlyG9ZP3wJ93zvULCIA51n90Wj0bBj6s9YFrCi48ze/DxsEU9DIui3ehQBZ29w4w9fANpP6c7umZtIePkqp1PVoa9566tGzT9lyKT+eI+cw40r/rTv0YYFm+fwde1viX7L+zmAg3MhBk3oi+95P532Yh5F6T2iO4M7jUSlUjH355mcP3GJe7eDMDQ0ZMzMoUwb/gMpKTn/YfJNX7RsxOjvhzBhuDdXfW7QpVd7Vm1bwGc1vibqaXSa7Z9Hx7J07mqC7t7ndVIS9RvXwXv+BJ49jeL0sfOULF2MQSN706vDYFQqFcs2zuX08fPcuXUPQ0NDvp89hvFe03I07wkzfiIw6D7eE4Zhb2vD3oN/0GPQGH7duIyCdraEPAqlc59htPryM/p91xFLCwvuBYdgYmry1j4v+V7ji0b1qFjWAxNTE1Zv+IWeQ8aye8NSCtrZEhAYzKKVG1j0wyQ0Gg39hk+iZrXKlChahOTkFL7/YQETRw7EyChni8mPv6xFx3FdWT12KYF+d2jSrRmj1k9gaP3+xD6LSbP93F4zMTL56yNgnvxWzPh9Lhf2nwWgcClXWnu154du01CpYPjqsVw/6cfDgBAMDA3oPr03K0ctQa3w5xZ9NXr0aLy8vHTa0huVqF69OmvXrqVkyZKEhYUxefJk6tSpw40bN7CyssqyeKSkTEebnl+zf/MBft92kAd3Q/hx1DwSEhL54pvP376TRkNUZLT2Ef30ufYll6IuBN0K5spZP3zPXOHerSBcihYGoF3vdly9cI2AqwFv6Tjn9B/QnXVrtrJx/XYCbgcyeOA4Xr16RafObdLd3tf3GuPHzmDH9n0kJr5O83oRt8LExr5g5479+Ppe4+SJ85QolfoNcOs2zUhKSmLvnoPZmlNG6GveDb77kjNbjnLul+M8CXzM5rEreP3qNTXa1k93e/cqJbl3OYBLe84Q9SiSW6eucXnPGdwqFAPA1sWeVy/i8dl3jgfX7hFw/iYOxZwAqNq8FinJKfgdvJhj+b2Nvuatrzr0asfujXvZu/UAwXfu4z1iNgmvEmjevulb9zEwMGDqogksn72axw/CdF5zK+bCXf97XD7jy6XTPgTeuodbMRcAOvVtj++Fq/hfvZ2tOWVE194d2LZhNzs37+XenWAmDPMm4VUCrb9tnu72F8/6cPjAce7dvc/D+4/5efkWAvwDqVK9IgDuxd0I8L/L+dOXOXfqEgH+gbgXdwPgu/6duHTOl+t+/jmUHSQkJnLkxGm8+nWnasVyuDg70q97R1ycHdm6az8A85evo06NjxjarzseJYrh4uxI/TofY1Mg/1v7nTlpJN+0+pJSJYri7lqYyaMGoVarOX/ZD4DgBw8pUdSN6lUq8nHVSpQoVoTgB4+A1BGLKhXLUc7j7TMZsssX3zXn2JbDnPjlDx7ffcSqMUtJfJVI3bYN0t0+LuYlMZHPtY9ydSqQ+CpRW0w4FnUi5NZ9/M9e5+aZ64TceoBjUWcAvuzVktsX/Am6Fphj+SlBrdG8tw9TU1Py5s2r80ivmGjSpAlt2rShfPnyfPbZZxw4cIDnz5+zbdu2LP1ZSTHxN0bGRpQsVwKfU77aNo1Gg88pX0pXLv3W/cwtzdlyfiPbLm5i6qrvcSvhqn0t6HYwzu5O2DvaU9DJnsJFnAkOuI+jqwNN2n3GqllrsjWnjDA2NqZipbIcO3ZG26bRaDh+7AzVqlXKVJ/37t3H3NyM8hVKU6BAPipXKc/NG7fJnz8v48YPYZjXpKwJ/j/Q17wNjQ1xKevO7TPXtW0ajYbbZ67jXrlEuvsE+QTgUs5dOyXItrA9ZepX4uaxKwBEBj/BxMwE5zJuWOSzxK18UR7dDsEiryXNvNqxdcLq7E/sX+hr3vrKyNiIUuVLcOGUj7ZNo9Fw8dRlyld5+5Sf77y6EPUsml8370/zWuDtIFzcC1PQyZ5CzgVxcS/MvYBgnFwdadbuC5bMWJEtubwLY2MjylQoxdkTF7RtGo2GsycvUrHq26dwvqlGnY8oUtSVS+dSz/M7/oG4FXXBwakgjs6FcCvqwt1b9yjs5kSr9s2YN31JtuTyNinJKaSkqDE1MdZpNzU1wffaTdRqNSfPXsKtsBM9h4zlk6bf0L7HYI6ePPtOx0lISCQ5OYV8eVO/xS1e1I37Dx8T9iSC0CfhPHj4mGLuroQ8CmX3gcMM7NH5X3rMeobGRhQpV5Qbp69q2zQaDTdOX6N45YwVNvXaNeT83tMkvkqdh/8wIAQHd0dsHG2xdbLDwd2Rh3dCsHcpRN02Ddg2e2O25CKyV/78+SlRogSBgVlbCMo0p7/JZ50PQyNDoiJ1h4Gjn0bjUqxwuvuE3HvIzKGzCboVhGVeS9r1asPC3fPp2qA7kWFPCQkMYeWM1czePBOAFTNWERIYwpzNs1g2bTnV6lWly5DOJCensGDiIq5duJ7ucbKTjU0BjIyMiIx4qtMeEfGUEiX+eT752zx/HkvvnsNZtmIO5mambNm0i6NHTrFw8QyWL1uPq5szW35ZjrGxEd7T5vPr7t+yIpV3oq955ymQF0MjQ2LfGEEDiI18TsGijunuc2nPGfJY52XYL1NQqVL/ATu54RC/L94FQHxsHOuGLaLLnP4Ym5lwfudJbp28SseZvTnx8+/YFLanz8oRGBoZsm/eL1z57UK6x8lO+pq3vspvnQ8jIyOiIqN02qMio3Er5pruPhWqlaNF+6Z826hbuq/fv/uAxTOWs3jLXAAWeS/j/t0HLNo6l/lTl1CjXnV6DutKclIysyfM58r5q+n2k50KWOfHyMiIp3/L+2lEFO7F3N66Xx4rS05d/w0TExPUKSlMGjlTW5Dcu3ufH6ctZs32xQDMmbqIe3fvs3b7In6YPJ/an9ZgwPCeJCcnM3XsbC7/WYRkF0tLCyqU9WDp2s24u7pgY52fA0dOcPXGbVycHIiKfk78q1es2rCNAT088erTjdMXfBg8ZiqrF8zgo0oZK6p+XLIaO1tralRN/XKpqJsLg3p1ocfgMQAM6tWFom4ufDdoNF59u3Hmog+LV23EyMiQUYN7U7ViuWz7GfyfVQErDI0MiXmqO50p5ulzHIs6/ev+RSsUx6WUKytGLNK2hQY+YuusjYzeMAmALTM3EBr4iDEbJ7HZex3l61bi68HfkJKczM+TVnH7Ys6NSonMe/nyJffu3aNTp05Z2q8UE1nA3/cW/r63tM9vXL7Jz8dX06zDl6yevRaAPRv2sWfDPu02n7VuRHxcPDd9/Fl/Yi29vuyHnYMtExaNpX3NTiS9TsrpNLLFvr2H2Lf3kPZ5rdrVKFu2FMOHTsLv+jG6dRlEeHgkx07s5syZi+leo/Ahyo15F/+4NJ/1+4ot41cS7HcXO7dCtJ3QlSYDvua3BakXIV49eImrBy/9tU91D5xKubB14mq+PzGf1QN/IjbyOSN3exN48Va61yi8b/Q1b31kYWnO9wvGMW34LGKi0s4z/78dP//Kjp9/1T5v2uZz4uPiuX75BjtOb6Rzk57YO9gxfckkmldv+8G8n8e9jKdF/W+xtLSgRp2PGP39EB7ef8zFs6kjO1vW7WDLur8uOP6qXVPiXsZz5fJ1Dp7bwdeNO1PIwZ65y6fzaZXm2Z639/hhTPCey6ctO2JoaIBHiWI0aVgX/4BA1OrU6xbr16lB52++AqBUiaL4Xfdn2+4DGSomVq7fxm9HTrBm4SxM37jOot1XTWn31V/T5H49cBgLC3MqlPWgWfsebFn5E+ERTxk+YQYHt6/BxOTt12i8D+q1a0DIrfvcu3pXp/3oxoMc3fjXlNw6X9fn1ctX3PENYM4fixjffDjWDjYMWDiUQbV7kfw6OadDz1bv71pOGTds2DCaNWuGq6sroaGhTJw4EUNDQ9q3b5+lx5Fi4m9iomJISU7B2q6ATnsB2wJERaS9aC09Kckp3L0RiJNb+t905iuQF88hnRnUeggelTx4GPyIx8GPeRz8GCNjI5zdnQm+Hfyfc3kXz55Fk5ycjJ29rU67vb0t4eGRWXIMExMTfpz7PT17DMW9qBtGRoacOZ06l/xeYDBVq1bg99/+yJJjZZS+5v0yOpaU5BTy2ubXac9rl5/YyOfp7tPcqx0Xd57kzNbUWEMDHmJqbkYH7578vnCnzqIDAEYmRnwz5TvWDlmIvVshDA0NuXshtegODw7FrWJxrh/1SXOc7KSveeur51ExJCcnY21nrdNubVeAZxFpC3hnNyecXBz5cd0MbZuBQeps4PMPj/F17Q48fhCqs08+63z0GNqVnl/1p2zl0oQEPeRh8CMeBj/CyNgodRrU7aBsyO7toqOek5ycjO3f8ra1tyYynbz/T6PREBKcOv//1o07FC1RhF6Du2iLiTcVsM5H/2E9+LZ5TypULsv9eyE8CHrIg6CHGBsZUaSoC3du3cvaxP7GxdmRtYt+IP5VAnFx8djZWjN0vDfOjoUokD8vRoaGFHVz0dnH3a0wvtf+/Vv0NZu2s2rDNlbMm07JYkXeul308xiWrNnE2kWzuH4zANfCTtpHckoy9x8+pkTRt++fFV5EvyAlOYV8tvl02vPZ5uf5W97X/s/U3JQazWqz/cct/7idVQErvh7clu/bjKNYxRI8CQ7lyf0wntwPw9DIEIcijjwMyPpVgsR/8+jRI9q3b8+zZ8+ws7Ojdu3anD9/Hjs7uyw9jlwz8TfJSckEXL9D5dqVtW0qlYoqtSvh75uxYTwDAwPcSxXhWURUuq/3m9SHX1buIDLsKQaGBjo3EDE0NMTQIOd/LUlJSfhduUG9ejW1bSqVirr1anLxYtYMV48Y2Y8jR05y1e8mhoYGGBn+lbeRsZEiSynqa94pSSmE3AiiZM2y2jaVSkXJmmUJ8r2T7j4m5qao//bBWa3+cyUPVdrtm/T/Gv8Tfjy8GYzK0ACDN1Y3MTQ2UmRJQX3NW18lJyVz+9odqtWuom1TqVR8VLsK13xuptn+fmAI7ep1pkPDbtrHyUNnuHzmCh0adiM8NO2SokMnD2Dz8m1EhEWm/36uwO87KSmZm1dvU+OTato2lUpFjTof4Xf5Wob7URkYvPVb9TFThrJ22WbCwyJS39eM38jbyDBH39cszM2ws7UmJvYFZy/68GmdjzE2NqaMRwmCQx7pbHv/4WMcC9n/Y3+rN/7CsrWbWTpnCmU90r+W6v9mzl9Op7YtKWRvR4o6heTkv76dT0lR58hqRylJyQRfv0eZWn+NtqhUKsrUKsdd339e3KV605oYmRhzeteJf9yu44RuHFi1l6gnzzAwNMDQ+I33NSNDeV97T23ZsoXQ0FASExN59OgRW7ZsoWjRzE3h/icyMpGOX5bvYPTcEQRcDeCWXwCtv2uFmbkZv239HYDR80by9MlTVsxYBUDnwR3x973F4/uh5MlryTe921LQuSD7Nx9I03eVOpVxdnfGe/AsAAKuBuBSrDDV6n+EvaM9arWakKCHOZfsGxYuWMXS5bO5cuU6ly9fpW+/rlhYWLBh/XYAlq2YTWhoOJMn/gCkXrxcyiN1RRsTE2McHAtSrrwHcS/jCQp6oNN3yVLFaPX1l9Su+SUAdwLuoVar6dS5LRHhkZQoURRfn4z/I5eV9DXvoyv34TmnHyHXg7jvF8in3b/A1MKUc78cB8BzTj+eh0fx66zNAFw76kOD7k15dDOY4Cup032aebXj2lEfNGrdD9uFijlR5csaTG86EoDwwMdo1Gpqtq1PbORzChV15P5VZVYC0de89dXGZVuZ9NMY/K/e5qbfLb7t0QZzC3P2bkl9f548fywRT56yaPoyXie+5l6A7qjwi5jUJZz/3g5Q/ZOquLgXZuLAaQD4+93GtZgrNT+tTkFHe9TqFB7cU+bb2jVLNzJzwSRu+Plzzfcmnr2+xdzCnB2b9wIwa+Fkwp9EMGdq6jz5XoO6cN3vFg/vP8LExJi6DWvRos0XTBqRdu36mnWr41bUhRH9JwJw7Yo/7sVc+aRBTRwcC6JOURMU+CDNflntzAUfNBoNbi7OhDwKZc6iVRRxcaZl08YAdP32a4ZNmEHVimWpVrkCp89f5sSZC6xZMFPbx+gps7G3tWFIn9T7Ba3asI2FK9cza+JInBwK8vRZ6peCFubmWFjo3ivm7EVfHjx8zPRxQwEo61GC4AePOHXuEk8iIjEwMMDN1Tnbfw4AB1buofecgQRdu8e9q3dp0u1LzCzMOPHLUQD6/DiQqCdRbJ21QWe/eu0a4nPoAi+fv3hr32VrV8ChiCNLveYDEHQ1EMeiTlSoVxkbBxvUKWpC74W+df8PlTpXTHTKGVJMpOPY3uPkt8lH12FdsLYrQKD/PUZ0Gq1d7rWgkz0a9V/fNljls2LYLC+s7QrwMuYlAdfv0q/FIB7c1f1HxMTMhEFTB/B9n6naqRGRYU+ZP34ho+YM5/XrJLwHz+J1QtrlRnPCzh37sbW1Zsy4IRQsaMv1a7f4umUX7cXJzs6Of30jCzg42HPm3F+rnQwa3JNBg3ty6uR5mjb5Vqfv+QumM2bUNOLjU9faT0hIpE+vEcyeOxlTUxOGeU0kLCw8B7JMS1/z9tl3jjzWeflySFvy2uXn0a37LPCczos/L+KzdrLVmcLz24IdoNHQbOg35C9kzctnsVw/6sOvszen6buDdy+2T/2Z13+uDJKUmMS6YYv55vvuGJkas3XCamLCMzZtMKvpa9766vCePyhgk5/eI7pjY2fNnZuBDPh2mPZeC4WcCmrn178LUzMTRkwbwujeE7XnS0RYJD+Mm8eEuaNJep3ExIHTSVTo/fzA7sNY2xRg4Mje2NnbcOvGHbq3G8CzPy/KdnAuhFrz1/uauYU5k2aNpJCDPQkJiQTdvc/wvuM5sPuwTr+mZqZMmDGCIT1Ga/MOD4tgypgf8J4/gdeJSYwcMJHEBN2782aHFy/jmLd0DeGRT8mX14pGdWszsJcnxn+ODjWsW4sJw/uzcv02vOcuxc3FmbnTxlG5wl8jk2HhERio/hpi3LprP0lJyQwZN03nWH26daBf947a5wmJiUz/cTGzvx+tnQpXyN6O0UP6MG76XEyMjZk2bihm6SzXmR3O7ztDXpu8tPb6hvx2BXjgH8yMzt8T++f7mo2jXZrz3MHdkVLVSjO9w6S39mtsakKX73uwoP9s7e876skz1k5cSa8f+pP0OoklQ+eTlM4y6UJ/qDR/n/CbC9Rzbqh0CIrwjc7ZeblCWR3sqiodgshBK0LP/PtGuVBFG3elQ1BEbLJ+3uTw5q2sXf/+Q+FZZajSIShi04NdSofwVrWcPlU6hLc68zhnr7P8NzIyIYQQQgghxBtkmlPGKX7FzMKFC+ncuTNbtqSuJLB+/XpKly5NqVKlGDNmjM7FTOlJTEwkNjZW5/Hm0K0QQgghhBAieyhaTEydOpUxY8YQHx/PkCFDmDlzJkOGDKFDhw54enqycuVKpkyZ8o99eHt7ky9fPp1HyIv7OZOAEEIIIYQQekzRaU5r165l7dq1tGrViqtXr1KlShXWrVtHhw4dAChVqhQjRoxg8uTJb+1j9OjReHl56bR96dEyO8MWQgghhBC5WC68pDjbKFpMhIaGUrVq6kWkFSpUwMDAgIoVK2pfr1y5MqGh/7zcmKmpKaZ/Wy3BQKX47C0hhBBCCCFyPUWLiUKFCuHv74+Liwt3794lJSUFf39/ypQpA8DNmzext//nm8u8D7p4daaLV2edtpDAEDrX66ZQRDmjZq2PGDS4JxUrlcXBoSDt2/Vi/77D/77jB05f81YZqPhycFuqfVWHvHb5iQmP4tz2E6lLp+Zi+pq3SOXZvwMDxvZm04pt/DhhgdLhZJv2Xb6mfZfWOLs4AHD3dhCL5qzk5NGzisYVFxfPghU/c/TkOaKin1OqRFFGDe5FOY+SACxatYHfj5zgSUQkxsbGlC5ZjIE9PSlfphQAF32v0W3AyHT73rxynrYfgEtXrjHq+x84umv9vx4XoGytJun269W3O906tNZpe/36Ne17DCEgMIjtaxZSqkTW3zjsXfx0ehl2hdN+vjr082+sHb9cgYjEh0zRYqJDhw507tyZFi1acPToUUaMGMGwYcN49uwZKpWKadOm0bp163/v6D0QfDuYoe1HaJ+nJKcoGE3OsLS04Mb1W6z/+Rc2bVmqdDg5Rl/z/qx3Sz7p2Ih1QxcRevcRruXc6fxDXxJexHNs7W9Kh5dt9DVvAaUrlKJVp+bcuZn7bzT4JDSCOVMXcj8oBBUqvvrmSxb/PIeWn3YgMEC5ZccnzPiJwKD7eE8Yhr2tDXsP/kGPQWP4deMyCtrZ4lbYiTFefXF2LERi4mt+3rqLnkPGcmDrKqwL5KdSOQ+O79mo0+eCFeu54ONH2VK6d7c+duo89WpVz9BxgTT9njp/mQne82hUr1aaPOYsXo29rTUBge/HEu7jmg/XuWt14RIujNk0mQv79XMJ6vTIak4Zp2gxMXnyZMzNzTl37hw9evRg1KhRVKhQgREjRhAfH0+zZs3+9QLs90VKSgpRkfp1M6rDh05w+NAJpcPIcfqat3uVElw9fJkbx64AEPUoko+a18a1QjGFI8te+pq3vjO3MGfKoglMGzaL7oM9lQ4n2x07dErn+dzpi2nf5WsqVi2nWDGRkJjIkROnmT9jIlUrlgOgX/eOnDhzga279jOwpydNG9fX2WfEwB7s3HeQO/eC+bhqJYyNjbG1sda+npSczLFT5/i2dXNUb9ysDuDY6fOM9eqboeMCOv1CajFSrXJ5Cjs56LSfOneJsxd9mTdtLKfOX86aH85/9CIqVud58z6teHI/jFvnbyoUkfiQKXpxgYGBAWPGjGHv3r2MHj0alUrFN998Q0hICE+fPmXNmjVYWloqGWKGORVxYvvlLWw6s56xC0Zj7/j+T88S4l0E+dyhVK2y2BdJ/YfSycOVolVLcvP4FYUjy176mre+G+k9hDNHz3HxlI/SoeQ4AwMDmrZsjIWFOVcuXVMsjpTkFFJS1JiaGOu0m5qa4Hst7YfepKQkfvn1N6zyWFKyWPo3Ozx+6jzPY1/QsmkjnfbAoAdERT+nepUK73xcgKdR0Zw8e5FWX36Wpn3SzJ/wHj8MMzOzf81ZCYbGRtT+qi4nth1VOhTxgZKb1mUB/yu3mDHkBx4GPcTG3gbPIZ2Yv3MuXRt8x6s4/byLqch9Di7ZjZmVOROPzkWTokZlaMCe2Vu49OtppUPLVvqatz5r3KIBpcqVoHOTnkqHkqNKeBRl629rMDU1IT7uFf26DOfenWDF4rG0tKBCWQ+Wrt2Mu6sLNtb5OXDkBFdv3MbljW//j5+5wPCJM0hISMTOxprl86ZRIH++dPvcue8gtapVppC9nU77H6fOUat6FYyNjTE2Ns7Qcd+057cjWFiY07DuX1OcNBoN46b9SNuWTSnrUYLHYeFZ8FPJelUbV8MiryUnfnm/7qqsNI1Mc8owKSaywMVjl7T/HXQrmFtXbrHl/CbqN6vLgS2/KxiZEFmnypc1+KhFbdYMmk/onYc4l3ajzYQuxIRHc35H7p32pa9566uCjvYMnTKQfu28eJ34WulwclRw4ANa1P8WK6s8fN68ATMXTKJDi56KFhTe44cxwXsun7bsiKGhAR4litGkYV38A/66jqVa5QrsWLuI6OcxbN/7O8PGe7NpxTxsCuTX6etJRCRnLvoy5/vRaY5z7PR52n/d7J2O+6Zd+w7xZeP6mJqaaNs2bt9DXHw833Vq+x9/CtmrfruGXD3uy/MI/ZqqLbKOFBPZ4GVsHI+CHuHk5qR0KEJkma9Gd+TQkl+5vDd1dZfQgIfYONnxWd+WufpDtb7mra9KlS+JjZ01Gw6t1LYZGRlR6eMKtO3aipquDVCr1QpGmH2SkpIJCX4EwM1rtylXsTSePdszYdh0xWJycXZk7aIfiH+VQFxcPHa21gwd742zYyHtNhbmZrg4O+Li7EiFsh580a47O/cepEfndjp97d5/mPx5rahX52Od9sinUdy6c4+6Nau903H/z8fvBsEhj/jhb0XKRZ+rXL1xm8r1m+u0t/tuIE0b1Wf6+GGZ/rlkFVsnO8rWLs/cXrOUDkV8wKSYyAbmFmY4ujlwaOczpUMRIsuYmJui0eh+iFKr1WkuYsxt9DVvfXXp1GXa1dNd6nvCvNE8CAxh3cKNubaQSI/KwAATU+N/3zAHWJibYWFuRkzsC85e9MGr79uXXler1bxOStJp02g07D5wmGZNGmBspPvR5/iZ81Qs50G+vFaZOu7OfQcpXbI4pYrrXqcxenBvBvT861yKiHxGL69xzJ48mnJlSv69G0XUbfMpMc9iuPLH+3Fh+PtEblqXcVJMZIE+43py9sh5wh+FY1PQhq5DPVGnqDm6+5jSoWUrS0sL3Iu6ap+7uRWmXHkPoqNiePTon282+CHT17yvH/Xh836tiHr8lNC7jyhcxo0G3b/k7C+5+zzX17z1VXzcK+4F6E7rSYhP4Hl0TJr23GTouH6cOHqWsEdPsMxjQbOvP6d6rSp0aztA0bjOXPBBo9Hg5uJMyKNQ5ixaRREXZ1o2bUz8qwSWr9tC/drVsbO1Jvp5LJt37iXi6TM+q19Hp58LPn48Cn3C180+T3OMY6cvUL+27mjFPx33TS/j4jh07BTD+vdI069DId2FWCzMzQEo7OSQ5poNJahUKj5p8ymnth9HnaI/RbLIelJMZAE7BzvGLxxD3gJ5iYmK4frFG/RtPoCYqBilQ8tWlSqX48Dvm7XPvWeOA2Djhu306TXibbt98PQ1760TV9N8aDu+mfIdVrb5iAmP4vSmw+yfv13p0LKVvuYt9Iu1rTWzFk7GvqAtL2JfEuB/l25tB3D2xAVF43rxMo55S9cQHvmUfHmtaFS3NgN7eWJsZIQ6RU3wg4fs+e0I0TEx5M+bl7IeJVi3+AeKubvq9LNz3yEqliuNu2thnfb4VwlcuOzHqEG9MnzcN/125AQaDXzRqF625J+dytYuj52zPcdlFSfxH6k0uXAcp55zQ6VDUIRv9PtxMxyRMzrYVVU6BJGDVoTq582kKtqkv8RnbhebrJ8rAd68tS1Hj3f4+BkWrFjHno3K3vXZs8pQRY+vlE0PdikdwltVdqitdAhv5Rv2fq0mqOh9JoQQQgghlGJhboZXn7dffyGE+HcyzUkIIYQQeqlW9SpKhyDEB0+KCSGEEEIIId6QC68CyDYyzUkIIYQQQgiRKVJMCCGEEEIIITJFpjkJIYQQQgjxBjUyzSmjZGRCCCGEEEIIkSlSTAghhBBCCCEyRaY5CSGEEEII8QaNTHPKMBmZEEIIIYQQQmSKFBNCCCGEEEKITJFpTkIIIYQQQrxBLTetyzAZmRBCCCGEEEJkihQTQgghhBBCiEyRaU5CCCGEEEK8QVZzyjgZmRBCCCGEEEJkihQTQgghhBBCiEyRYkIIIYQQQgiRKXLNhBBCCCGEEG+QpWEzTkYmhBBCCCGEEJkixYQQQgghhBAiU2SakxBCCCGEEG+QpWEzTkYmhBBCCCGEEJkixYQQQgghhBAiU2SakxBCCCGEEG+Q1ZwyLlcWEy9TEpUOQYhsdykxTOkQFLHU0EbpEBSx0dhU6RAUcSf2sdIhiBxk7lhH6RAU8Sr0lNIhCJFpMs1JCCGEEEIIkSm5cmRCCCGEEEKIzJLVnDJORiaEEEIIIYQQmSLFhBBCCCGEECJTZJqTEEIIIYQQb5DVnDJORiaEEEIIIYQQmSLFhBBCCCGEECJTZJqTEEIIIYQQb5DVnDJORiaEEEIIIYQQmSLFhBBCCCGEECJTZJqTEEIIIYQQb9Bo1EqH8MGQkQkhhBBCCCFEpkgxIYQQQgghhMgUmeYkhBBCCCHEG9SymlOGyciEEEIIIYQQIlOkmBBCCCGEEEJkikxzEkIIIYQQ4g0ajUxzyigZmRBCCCGEEEJkihQTQgghhBBCiEyRaU5CCCGEEEK8QVZzyjgZmRBCCCGEEEJkihQTQgghhBBCiEyRaU5CCCGEEEK8QVZzyjgZmRBCCCGEEEJkihQTb9Gmy1fsubiNM8FHWLt/GWUqemRov8YtGnA57BSz10zXae/Y+xsOXd/Doet76NCrnc5rZSqVZv3BlRgaGmZZ/JnVo2cnrvufJOLZLf44vpMqVcq/ddtSHsVZv3Ex1/1PEhsXRN9+XdNs07ZdC/wDTvPg0RWmzxir85qLixO+fkexssqT5Xm8K33NW9/O8zzVS1NszVjKX15N1Ue7yf9Z9X/c3qpGWao+2p3mYWSXX7uN9VefUP7iSire2IDzBN1zwcTZnrInF2GQxzw70nln+nqeS976lXduFxcXz4x5S2nUypMq9VvQoZcX128FaF8vW6tJuo/VG7e/tc8VP2+lXfeBVGvYik+afsPAUd8T/OCRzjaz5i+n5udtaPBVJ/Yd/EPntYN/nKLfiIlZm6j4YEgxkY5GzT9lyKT+rJizlo6ffccd/0AWbJ5DAZv8/7ifg3MhBk3oi+95P532Yh5F6T2iO2N6T2Jsn8n0GdmDoqXcATA0NGTMzKF4j5hNSkpKNmWUMa2+bsr0GWOY4T2fOrWacf36LXb+ug5bO5t0t7cwN+f+/RAmTZjFkycRaV63tinAgkXejBvjzVfNPWn3TQs+//xT7es/zpvCxAmzePHiZbbllBH6mrc+nucGFmbE+wcTMm7ZO+13vU5f/Cp10T6Sn8YAYFTACrcf+vFwyhrudJiETau65GtQVbuf6/RePPJej/rlqyzNIzP09TyXvPUrb30wYcZPnLt0Be8Jw9i1fgk1q1Wmx6AxhEc+BeD4no06jyljhqBSqWhUr9Zb+7zsd532rZqxaflcls+bTlJyMj2HjCX+VUJqn6fPs//wcZbPncbQvt2ZOOMnop+nvg++eBnH/OXrGOfVL/uTz0Fqjea9fbxvpJhIR4de7di9cS97tx4g+M59vEfMJuFVAs3bN33rPgYGBkxdNIHls1fz+EGYzmtuxVy463+Py2d8uXTah8Bb93Ar5gJAp77t8b1wFf+rt7M1p4zoP6A769ZsZeP67QTcDmTwwHG8evWKTp3bpLu9r+81xo+dwY7t+0hMfJ3m9SJuhYmNfcHOHfvx9b3GyRPnKVGqKACt2zQjKSmJvXsOZmtOGaGveevjeR57zJfQHzbx/PcL77Rf8rMYkiOfax/8+WZu6lqIlNh4oveeIf5qIC/O3sCsuDMA1i3qoE5K5vlv57M6jUzR1/Nc8tavvHO7hMREjpw4jVe/7lStWA4XZ0f6de+Ii7MjW3ftB8DWxlrncezUeapVLk9hJ4e39rvsx6m0bNqIYu6ulCruzrSxXoSFR+AfcBeAoAcP+ahSOcp6lOCLRvWwtLTgUdgTAH5cvIp2LZviUMg++38A4r0kxcTfGBkbUap8CS6c8tG2aTQaLp66TPkqZd6633deXYh6Fs2vm/eneS3wdhAu7oUp6GRPIeeCuLgX5l5AME6ujjRr9wVLZqzIllzehbGxMRUrleXYsTPaNo1Gw/FjZ6hWrVKm+rx37z7m5maUr1CaAgXyUblKeW7euE3+/HkZN34Iw7wmZU3w/4G+5q2v53lmlT44l/I+qymxaRJ5qpbSticEh2Jgbop5mSIY5s+DZYVivLp1H8N8ljgO/5aQce9Hzvp6nkve+pW3PkhJTiElRY2pibFOu6mpCb7XbqbZ/mlUNCfPXqTVl5+903FexsUDkC+vFQAli7lz8/ZdYmJfcPP2XRITE3FxcsT36g38AwLp0KZ5JjMSuYGs5vQ3+a3zYWRkRFRklE57VGQ0bsVc092nQrVytGjflG8bdUv39ft3H7B4xnIWb5kLwCLvZdy/+4BFW+cyf+oSatSrTs9hXUlOSmb2hPlcOX81a5PKABubAhgZGREZ8VSnPSLiKSVKFM1Un8+fx9K753CWrZiDuZkpWzbt4uiRUyxcPIPly9bj6ubMll+WY2xshPe0+fy6+7esSOWd6Gve+nqev6vX4VHcH7mY+Gv3UJkYYde+ESV+mcrtZiOIvxFESkwcwUN+oshPgzEwM+HZjuPEnvDDdXZ/ItYcwNTFnuJrxqAyMiR07hai959TJA99Pc8lb/3KWx9YWlpQoawHS9duxt3VBRvr/Bw4coKrN27jks7Iw57fjmBhYU7Dum+f4vR3arWaGT8to1L50hR3dwOgVvUqfPnZp3zz3SDMTE2ZNm4oFuZmTJm9iKljvdi6az+btu8hf/58TBoxkGLu6f878iHRyE3rMkyKif/IwtKc7xeMY9rwWcRExbx1ux0//8qOn3/VPm/a5nPi4+K5fvkGO05vpHOTntg72DF9ySSaV29L0uuknAg/2+3be4h9ew9pn9eqXY2yZUsxfOgk/K4fo1uXQYSHR3LsxG7OnLnI08hnCkabdXJb3vp6nicGhZIYFKp9HucTgKlbIQr2aE7woHkAPP/9gs60qTwfl8GilCsPxy2n7OmlBPWfQ1JENB77fuDFeX+Sn7395/ehyW3neUZJ3qn0Je/3jff4YUzwnsunLTtiaGiAR4liNGlYF/+AwDTb7tp3iC8b18fU1CTD/U+ds4jAoPv8vGS2Tnu/7h3p172j9vni1Rv5uGpFjIyMWLZuC7t+XsyJsxcZM3U221YvyHyC4oMjxcTfPI+KITk5GWs7a512a7sCPItI+8bo7OaEk4sjP66boW0zMEidPXb+4TG+rt2Bxw9CdfbJZ52PHkO70vOr/pStXJqQoIc8DH7Ew+BHGBkbpU4PuR2UDdm93bNn0SQnJ2Nnb6vTbm9vS3h4ZJYcw8TEhB/nfk/PHkNxL+qGkZEhZ05fBOBeYDBVq1bg99/++Jdespa+5q2v53lWiPO7S56P0l/1SmVihOu0XgQPmodpEQdURga8PJ869SAxKBTLSiWIOXIpJ8MF9Pc8l7z1K2994eLsyNpFPxD/KoG4uHjsbK0ZOt4bZ8dCOtv5+N0gOOQRP3w/OsN9T5uTWhCsW/QDhezt3rpd0IOH7Dv4B9vXLGTn/kNUrVgW6wL5+ezTTxg/fS5xcfFYWlpkOkfxYZFrJv4mOSmZ29fuUK12FW2bSqXio9pVuOaTdj7i/cAQ2tXrTIeG3bSPk4fOcPnMFTo07EZ4aNpVMYZOHsDm5duICIvEwNAAI6O/ajpDQ0MMDXP+15KUlITflRvUq1dT26ZSqahbryYXL17JkmOMGNmPI0dOctXvJoaGBhgZ/pW3kbGRIkuG6mve+nqeZwWL0kVIiohO9zWHgW2JOX6F+BtBYGCAyuiv363K2AiVQjnr63kueetX3vrGwtwMO1trYmJfcPaiD5/W+Vjn9Z37DlK6ZHFKFXf/1740Gg3T5izm6MmzrJ4/I01h8vdtv581nxEDemBhYY46RU1ScjIAyX/+f4pa/R8yez9oNJr39vG+kZGJdGxctpVJP43B/+ptbvrd4tsebTC3MGfvlgMATJ4/lognT1k0fRmvE19zLyBYZ/8XMalL4/29HaD6J1VxcS/MxIHTAPD3u41rMVdqflqdgo72qNUpPLgXks0Zpm/hglUsXT6bK1euc/nyVfr264qFhQUb1qeuTb1sxWxCQ8OZPPEHIPUiv1IexQAwMTHGwbEg5cp7EPcynqCgBzp9lyxVjFZff0ntml8CcCfgHmq1mk6d2xIRHkmJEkXx9bmWg9n+RV/z1sfz3MDCDFO3v+YVmxa2x7x0EVKev+B16FOcRnXEuJAN9wf/BIB992a8fhjOqzshqExNsGvfCKta5bjz7eQ0fZsVd8a6eS38P/MCIOHeYzRqDbbfNCQpIhqzok7EXb2bM4mmQ1/Pc8lbv/LWB2cu+KDRaHBzcSbkUShzFq2iiIszLZs21m7zMi6OQ8dOMax/j3T76D5wFA0+qcm3rVMvnJ46ZxEHDh9n/owJWFqY8/RZ6vV0efJYYmZqqrPvjr2/UyB/PurVTi1eKpUvzeLVG7h64xanzl+mqJsLeeV+I3pFiol0HN7zBwVs8tN7RHds7Ky5czOQAd8OI+pp6reRhZwKola/e2VoambCiGlDGN17orayjAiL5Idx85gwdzRJr5OYOHA6iQlpl+XLCTt37MfW1pox44ZQsKAt16/d4uuWXbQX8Tk7O6J+49sGBwd7zpz7a1WfQYN7MmhwT06dPE/TJt/q9D1/wXTGjJpGfHzqevsJCYn06TWC2XMnY2pqwjCviYSFhedAlmnpa976eJ5bVihGyV+map8XntQdgKfb/uC+13yM7a0xdfpraN/AxAjnCV0xKWSN+lUi8bcecKf9RF6cvZGmb9eZfXk4eQ3qV4kAaBJec3/IfFym9cTAxJiQ8ctJehKVZr+coq/nueStX3nrgxcv45i3dA3hkU/Jl9eKRnVrM7CXJ8ZvjP7+duQEGg180aheun08fBxGdEys9vn/l5Xt2n+kznZTx3jRsmkj7fOnUdEsX7eFDUt/1LaVK10Sz29a0Xf4RKwL5Gf6uKFZkab4gKg07+N4yX9U1aGO0iEo4k7sY6VDEDmoRF4npUNQxFLD9G+6ldt9Gi3f9IrcLz4pUekQFPEq9JTSISjC2Pbfp2ApxS5fSaVDeKvImIB/3ygHKToyERYWxpIlSzh9+jRhYWEYGBjg7u5Oy5Yt6dKli8y5FEIIIYQQ4j2m2BWQly9fxsPDgwMHDpCUlMTdu3epUqUKlpaWDBs2jE8++YQXL178az+JiYnExsbqPNSaD//CHyGEEEIIId53ihUTgwcPZsiQIVy+fJlTp06xdu1a7ty5w5YtWwgKCiI+Pp5x48b9az/e3t7ky5dP5/Hk5cMcyEAIIYQQQuRGSq/Y9CGt5qTYNRMWFhbcuHEDd/fU+XJqtRozMzMePnxIwYIFOXz4MF26dOHx43++DiAxMZHERN05lvVKNMFA9WEuO/lfyDUT+kWumdAvcs2E0AdyzYR+eZ+vmbDNW0LpEN7qaewdpUPQodg1E/b29oSFhWmLifDwcJKTk8mbNy8AxYsXJyrq31c+MTU1xfRvy5bpYyEhhBBCCCFETlPsU3fLli3p3bs3v//+O8eOHaNDhw7UrVsXc3NzAAICAnBy+jC/efXs34HLYafw+n6A0qFkq5q1PmLrLysICDxHbFwQTb9s9O875QL6mvff5dbzPE/10hRbM5byl1dT9dFu8n9WXed1tx8HUvXRbp1H8Q0TFIo2++jreS5561fe74u4uHhmzFtKo1aeVKnfgg69vLh+668Ve+LjXzFtzmIatOxIlfotaN6hp3Y51//75dcDdOk/guqNWlG2VhNiX7xM91gJiYl81KAlIY9CiXwaxYhJM2n6zXeUq/0FM+YtTXefg3+coln7HlSu35yvOvXh5NmLOq9rNBoWrviZes2/pUr9Fnw3aDQPHurOlvAPCOS7QWOo8VlrajVpy6SZPxEXF5eZH1eOUGs07+3jfaNYMTF16lRKly5Ns2bNaNCgAYmJiaxevVr7ukqlwtvbW6nwMq10hVK06tScOzcDlQ4l21laWnDj+i2GDpmodCg5Sl/zflNuPs8NLMyI9w8mZNyyt24Tc8wHv0pdtI+gfnNyMMKcoa/nueStX3m/LybM+Ilzl67gPWEYu9YvoWa1yvQYNIbwyNT7gsxasJzTFy7jPWEEezYtp1Pblkyfu5hjp85r+0hISKR29ar06PzNPx7r3MUrOBSyx8XZkddJSRTIn4+ent9QsliRdLe/ct2fEZNm8NWXn/HLmoV8WqcGA0dP4W7Qfe02qzf+wsbte5gwfACbVszD3MyMXl7jSExMvZ9QROQzvhs0GhdnBzYtn8fSH6cQGBzC6NGj/+NPTrwPFJvmlCdPHrZu3UpCQgLJycnkyaN7t8TGjRu/Zc/3l7mFOVMWTWDasFl0H+ypdDjZ7vChExw+dELpMHKcvub9f7n9PI895kvsMd9/3EadmExy5POcCUgh+nqeS94ip6lUcOTEaebPmEjViuUA6Ne9IyfOXGDrrv0M7OmJ3/VbtGjSkGqVywPQpsUX/PLrb1y/FUD9Oql3ou7U7isALvr+8/VVf5w+R/0/717t5FCQ0YN7A7Br/6F0t9+w7VdqVa9Ktw6tARjQszPnLvmyafteJo4YgEajYf223fT0/IZP69QAYPr4YdRt1p6jp87yRcN6nDh7ASMjI8YN7YeBQer32BOG96dV5748ePAAV1fXTP/8hPIUv7jAzMwsTSHxoRrpPYQzR89x8ZSP0qEIkW3kPAerGmWp4LeWsicW4TK9F4b5rZQOSQjxAUtJUWNqYqzTZmpqgu+1mwBULOfBsdPnCY98ikaj4aLPVe6HPKZmtcrvdBy1Ws2JMxep/+eH/oy4evMWNapW1GmrWb0KV2/eAuBR6BOePoumRtVK2tet8lhSvnRJrt64DcDr10kYGxtpCwkAsz+vd/XxeT//LVF6xaYPaTUnxYuJ3KJxiwaUKleChdPfPjVCiA+dnOcQc9yX4MHzuPPNRB5N/xmrj8tSYsN4MJC3UyHEu9NooEJZD5au3UxE5DNSUlLYe/APrt64zdOnqQvRjBnSh6JuLjRo2YlKdZvRa+g4xg7tqx3JyKirN1M/3JcvnfG7Oz99Fo2NdQGdNlvrAjx9Fp36elTq//99G5s3tqlepSLPnkWzeuN2kpKSiIl9wdwlqVPbIyMj3ykH8f5R9A7YuUVBR3uGThlIv3ZevP5zfqAQuY2c56mi95zW/ver2w+Iv3Wf8meXYVWjLC/OyPKtQoh35z1+GBO85/Jpy44YGhrgUaIYTRrWxT8g9bq0jdv3cO3mbRbOnIhDoYL4+F1n2pzF2NvaUOOjSv/S+1+OnTpH3VrVdEYIckIxd1emjRvKrAUr+GnZGgwMDOjQugW2traoVKocjUVkPSkmskCp8iWxsbNmw6GV2jYjIyMqfVyBtl1bUdO1AWq13JVbfNjkPE/f65Bwkp7FYOpWSIoJIUSmuDg7snbRD8S/SiAuLh47W2uGjvfG2bEQCYmJ/LRsHT95j6duzWoAlCxWhNt3g1i7ece7FROnLzCkT9d3is3WpgDP/hx9+L+nUdHY2qSORNj+OSLxLCoaO1tr7TbPoqIpWbyo9nnTxvVp2rg+T6OisTAzA5WKn7fuonDhwu8UT05R8/5NJ3pfSTGRBS6duky7ep112ibMG82DwBDWLdyolx+wRO4j53n6jB1sMCpgRVJE9L9vLIQQ/8DC3AwLczNiYl9w9qIPXn27kZycTHJyMgZ/+wbf0NDgnd53Hzx8TNiTiHcqPgAqlPHgvI+f9gJvgHOXrlChjAcAzo6FsLUpwHkfP0qVSC0eXsbFcc0/gLZfNU3T3/+Lj537DmJqakqtWrXeKR7x/pFiIgvEx73iXkCwTltCfALPo2PStOcmlpYWuBf9awUGN7fClCvvQXRUDI8ehSoYWfbS17z15Tw3sDDD1M1B+9y0sD3mpYuQ8vwFyc9f4ujVjugD50iKeI6payGcx3qSeD+M2BNXFIw66+nreS55p9KXvN8XZy74oNFocHNxJuRRKHMWraKIizMtmzbG2MiIqpXKMWfRKkxNTXEsZM/lK9fZ89tRhg/soe3j6bMonj6LJuTP39fde/extDDHoZA9+fJa8cepc3xctSLmZmY6x7595x4A8fEJRD+P4fadexgbG1G0SOr50LFtC7r2G8HazTv4pGY1fjtygpu37zJp5EAgdSn/Tm1bsnzdFlydnXByLMjCFeuxt7WhQZ2a2uNs2r6HiuVKY2FuxrlLV5izaBVDhw3T3qxYfLhUmvfxsvD/qKpDHaVDYNmO+QTcvMuPExbk2DHvxD7+942yUO061Tnw++Y07Rs3bKdPrxE5GktOel/yLpFX+Zs6KnGeLzW0ydb+rWqUpeQvU9O0P932Bw/GLKXYytFYlC2CYV5LksKjiT3px+MfNpL8NCZb4/o0OmenUL0v53lOk7x15XTe8UmJOXas98mu9dOYt3QN4ZFPyZfXikZ1azOwlydWeSyB1EJh3tK1nL3oS0zsCxwL2dO6RRM6t/tKe83BolUbWLJ6Y5q+p47xomXTRnTuM4zmTRrSuvnnOq+XrdUkzT6Ohew5tGOd9vnBP06xYPk6Hj8Jx9XZCa++3fjkzylXkLry0aKV6/llz++8ePmSyuXLMG5oP9xcnLXbjJ4ym5NnLxL/6hVFXAvTpf3XfN2xB++rvJbuSofwVrFxQUqHoEOKiVwkp4sJoaz3oZhQQnYXE++rnC4mhFCCvhYTr0JPZWv/0c9jqN+8A0d2r9dOM3ofGNu+vx/YpZjIOFnLUAghhBAiF4uJfcHwAT3eq0JC5B5yzYQQQgghRC7m5uKsM+VI/Dt17pu4k21kZEIIIYQQQgiRKVJMCCGEEEIIITJFpjkJIYQQQgjxBo3ctC7DZGRCCCGEEEIIkSlSTAghhBBCCCEyRaY5CSGEEEII8QZZzSnjZGRCCCGEEEIIkSlSTAghhBBCCCEyRaY5CSGEEEII8QaNTHPKMBmZEEIIIYQQQmSKFBNCCCGEEEKITJFpTkIIIYQQQrxBblqXcTIyIYQQQgghhMgUKSaEEEIIIYQQmSLTnIQQQgghhHiDrOaUcTIyIYQQQgghhMgUKSaEEEIIIYQQmSLTnIQQQgghhHiDTHPKOBmZEEIIIYQQQmSKFBNCCCGEEELkUosWLcLNzQ0zMzOqV6/OxYsXs7R/KSaEEEIIIYR4g+Y9fryLrVu34uXlxcSJE/H19aVChQp89tlnREREvGNPbyfFhBBCCCGEELnQjz/+SI8ePejatSulS5dm6dKlWFhYsHr16iw7hhQTQgghhBBCfCASExOJjY3VeSQmJqbZ7vXr1/j4+NCwYUNtm4GBAQ0bNuTcuXNZF5BGZJmEhATNxIkTNQkJCUqHkqMkb8lbH0jekrc+kLwlb/H+mzhxYprZTxMnTkyz3ePHjzWA5uzZszrtw4cP11SrVi3L4lFpNLL2VVaJjY0lX758xMTEkDdvXqXDyTGSt+StDyRvyVsfSN6St3j/JSYmphmJMDU1xdTUVKctNDQUJycnzp49S40aNbTtI0aM4MSJE1y4cCFL4pH7TAghhBBCCPGBSK9wSI+trS2GhoaEh4frtIeHh1OoUKEsi0eumRBCCCGEECKXMTExoUqVKhw9elTbplarOXr0qM5IxX8lIxNCCCGEEELkQl5eXnh6elK1alWqVavGvHnziIuLo2vXrll2DCkmspCpqSkTJ07M0NBTbiJ5S976QPKWvPWB5C15i9ylXbt2REZGMmHCBJ48eULFihX5/fffKViwYJYdQy7AFkIIIYQQQmSKXDMhhBBCCCGEyBQpJoQQQgghhBCZIsWEEEIIIYQQIlOkmBBCCCGEEEJkihQTWWjRokW4ublhZmZG9erVuXjxotIhZauTJ0/SrFkzHB0dUalU7N69W+mQcoS3tzcfffQRVlZW2Nvb07JlSwICApQOK9stWbKE8uXLkzdvXvLmzUuNGjX47bfflA4rx82YMQOVSsXgwYOVDiVbTZo0CZVKpfMoVaqU0mHliMePH9OxY0dsbGwwNzenXLlyXL58WemwspWbm1ua37dKpaJfv35Kh5atUlJSGD9+PEWKFMHc3JyiRYsyZcoU9GFtmhcvXjB48GBcXV0xNzenZs2aXLp0SemwxAdIiokssnXrVry8vJg4cSK+vr5UqFCBzz77jIiICKVDyzZxcXFUqFCBRYsWKR1Kjjpx4gT9+vXj/PnzHD58mKSkJBo3bkxcXJzSoWUrZ2dnZsyYgY+PD5cvX+bTTz+lRYsW3Lx5U+nQcsylS5dYtmwZ5cuXVzqUHFGmTBnCwsK0j9OnTysdUraLjo6mVq1aGBsb89tvv+Hv78+cOXMoUKCA0qFlq0uXLun8rg8fPgxAmzZtFI4se82cOZMlS5awcOFCbt26xcyZM5k1axYLFixQOrRs991333H48GHWr1/P9evXady4MQ0bNuTx48dKhyY+NBqRJapVq6bp16+f9nlKSorG0dFR4+3trWBUOQfQ7Nq1S+kwFBEREaEBNCdOnFA6lBxXoEABzcqVK5UOI0e8ePFCU7x4cc3hw4c1devW1QwaNEjpkLLVxIkTNRUqVFA6jBw3cuRITe3atZUOQ3GDBg3SFC1aVKNWq5UOJVs1bdpU061bN522Vq1aaTp06KBQRDkjPj5eY2hoqNm3b59Oe+XKlTVjx45VKCrxoZKRiSzw+vVrfHx8aNiwobbNwMCAhg0bcu7cOQUjEzkhJiYGAGtra4UjyTkpKSls2bKFuLg4atSooXQ4OaJfv340bdpU5+88t7t79y6Ojo64u7vToUMHQkJClA4p2+3Zs4eqVavSpk0b7O3tqVSpEitWrFA6rBz1+vVrNmzYQLdu3VCpVEqHk61q1qzJ0aNHuXPnDgBXr17l9OnTNGnSROHIsldycjIpKSmYmZnptJubm+vFCKTIWnIH7Czw9OlTUlJS0txNsGDBgty+fVuhqEROUKvVDB48mFq1alG2bFmlw8l2169fp0aNGiQkJJAnTx527dpF6dKllQ4r223ZsgVfX1+9mk9cvXp11q5dS8mSJQkLC2Py5MnUqVOHGzduYGVlpXR42SYoKIglS5bg5eXFmDFjuHTpEgMHDsTExARPT0+lw8sRu3fv5vnz53Tp0kXpULLdqFGjiI2NpVSpUhgaGpKSksK0adPo0KGD0qFlKysrK2rUqMGUKVPw8PCgYMGCbN68mXPnzlGsWDGlwxMfGCkmhPgP+vXrx40bN/Tmm5ySJUvi5+dHTEwM27dvx9PTkxMnTuTqguLhw4cMGjSIw4cPp/kWLzd785vZ8uXLU716dVxdXdm2bRvdu3dXMLLspVarqVq1KtOnTwegUqVK3Lhxg6VLl+pNMbFq1SqaNGmCo6Oj0qFku23btrFx40Y2bdpEmTJl8PPzY/DgwTg6Oub63/f69evp1q0bTk5OGBoaUrlyZdq3b4+Pj4/SoYkPjBQTWcDW1hZDQ0PCw8N12sPDwylUqJBCUYns1r9/f/bt28fJkydxdnZWOpwcYWJiov3WqkqVKly6dImffvqJZcuWKRxZ9vHx8SEiIoLKlStr21JSUjh58iQLFy4kMTERQ0NDBSPMGfnz56dEiRIEBgYqHUq2cnBwSFMce3h4sGPHDoUiylkPHjzgyJEj7Ny5U+lQcsTw4cMZNWoU33zzDQDlypXjwYMHeHt75/piomjRopw4cYK4uDhiY2NxcHCgXbt2uLu7Kx2a+MDINRNZwMTEhCpVqnD06FFtm1qt5ujRo3ozn1yfaDQa+vfvz65du/jjjz8oUqSI0iEpRq1Wk5iYqHQY2apBgwZcv34dPz8/7aNq1ap06NABPz8/vSgkAF6+fMm9e/dwcHBQOpRsVatWrTRLPd+5cwdXV1eFIspZa9aswd7enqZNmyodSo6Ij4/HwED3o5ChoSFqtVqhiHKepaUlDg4OREdHc/DgQVq0aKF0SOIDIyMTWcTLywtPT0+qVq1KtWrVmDdvHnFxcXTt2lXp0LLNy5cvdb6lDA4Oxs/PD2tra1xcXBSMLHv169ePTZs28euvv2JlZcWTJ08AyJcvH+bm5gpHl31Gjx5NkyZNcHFx4cWLF2zatInjx49z8OBBpUPLVlZWVmmuh7G0tMTGxiZXXyczbNgwmjVrhqurK6GhoUycOBFDQ0Pat2+vdGjZasiQIdSsWZPp06fTtm1bLl68yPLly1m+fLnSoWU7tVrNmjVr8PT0xMhIPz4eNGvWjGnTpuHi4kKZMmW4cuUKP/74I926dVM6tGx38OBBNBoNJUuWJDAwkOHDh1OqVKlc/blFZBOll5PKTRYsWKBxcXHRmJiYaKpVq6Y5f/680iFlq2PHjmmANA9PT0+lQ8tW6eUMaNasWaN0aNmqW7duGldXV42JiYnGzs5O06BBA82hQ4eUDksR+rA0bLt27TQODg4aExMTjZOTk6Zdu3aawMBApcPKEXv37tWULVtWY2pqqilVqpRm+fLlSoeUIw4ePKgBNAEBAUqHkmNiY2M1gwYN0ri4uGjMzMw07u7umrFjx2oSExOVDi3bbd26VePu7q4xMTHRFCpUSNOvXz/N8+fPlQ5LfIBUGo0e3OZRCCGEEEIIkeXkmgkhhBBCCCFEpkgxIYQQQgghhMgUKSaEEEIIIYQQmSLFhBBCCCGEECJTpJgQQgghhBBCZIoUE0IIIYQQQohMkWJCCCGEEEIIkSlSTAghhBBCCCEyRYoJIYR4z3Tp0oWWLVtqn9erV4/BgwfneBzHjx9HpVLx/PnzHD+2EEKID4MUE0IIkUFdunRBpVKhUqkwMTGhWLFifP/99yQnJ2frcXfu3MmUKVMytK0UAEIIIXKSkdIBCCHEh+Tzzz9nzZo1JCYmcuDAAfr164exsTGjR4/W2e7169eYmJhkyTGtra2zpB8hhBAiq8nIhBBCvANTU1MKFSqEq6srffr0oWHDhuzZs0c7NWnatGk4OjpSsmRJAB4+fEjbtm3Jnz8/1tbWtGjRgvv372v7S0lJwcvLi/z582NjY8OIESPQaDQ6x/z7NKfExERGjhxJ4cKFMTU1pVixYqxatYr79+9Tv359AAoUKIBKpaJLly4AqNVqvL29KVKkCObm5lSoUIHt27frHOfAgQOUKFECc3Nz6tevrxOnEEIIkR4pJoQQ4j8wNzfn9evXABw9epSAgAAOHz7Mvn37SEpK4rPPPsPKyopTp05x5swZ8uTJw+eff67dZ86cOaxdu5bVq1dz+vRpoqKi2LVr1z8es3PnzmzevJn58+dz69Ytli1bRp48eShcuDA7duwAICAggLCwMH766ScAvL29+fnnn1m6dCk3b95kyJAhdOzYkRMnTgCpRU+rVq1o1qwZfn5+fPfdd4waNSq7fmxCCCFyCZnmJIQQmaDRaDh69CgHDx5kwIABREZGYmlpycqVK7XTmzZs2IBarWblypWoVCoA1qxZQ/78+Tl+/DiNGzdm3rx5jB49mlatWgGwdOlSDh48+Nbj3rlzh23btnH48GEaNmwIgLu7u/b1/0+Jsre3J3/+/EDqSMb06dM5cuQINWrU0O5z+vRpli1bRt26dVmyZAlFixZlzpw5AJQsWZLr168zc+bMLPypCSGEyG2kmBBCiHewb98+8uTJQ1JSEmq1mm+//ZZJkybRr18/ypUrp3OdxNWrVwkMDMTKykqnj4SEBO7du0dMTAxhYWFUr15d+5qRkRFVq1ZNM9Xp//z8/DA0NKRu3boZjjkwMJD4+HgaNWqk0/769WsqVaoEwK1bt3TiALSFhxBCCPE2UkwIIcQ7qF+/PkuWLMHExARHR0eMjP56G7W0tNTZ9uXLl1SpUoWNGzem6cfOzi5Txzc3N3/nfV6+fAnA/v37cXJy0nnN1NQ0U3EIIYQQIMWEEEK8E0tLS4oVK5ahbStXrszWrVuxt7cnb9686W7j4ODAhQsX+OSTTwBITk7Gx8eHypUrp7t9uXLlUKvVnDhxQjvN6U3/HxlJSUnRtpUuXRpTU1NCQkLeOqLh4eHBnj17dNrOnz//70kKIYTQa3IBthBCZJMOHTpga2tLixYtOHXqFMHBwRw/fpyBAwfy6NEjAAYNGsSMGTPYvXs3t2/fpm/fvv94jwg3Nzc8PT3p1q0bu3fv1va5bds2AFxdXVGpVOzbt4/IyEhevnyJlZUVw4YNY8iQIaxbt4579+7h6+vLggULWLduHQC9e/fm7t27DB8+nICAADZt2sTatWuz+0ckhBDiAyfFhBBCZBMLCwtOnjyJi4sLrVq1wsPDg+7du5OQkKAdqRg6dCidOnXC09OTGjVqYGVlxVdfffWP/S5ZsoTWrVvTt29fSpUqRY8ePYiLiwPAycmJyZMnM2rUKAoWLEj//v0BmDJlCuPHj8fb2xsPDw8+//xz9u/fT5EiRQBwcXFhx44d7N69mwoVKrB06VKmT5+ejT8dIYQQuYFK87ar/IQQQgghhBDiH8jIhBBCCCGEECJTpJgQQgghhBBCZIoUE0IIIYQQQohMkWJCCCGEEEIIkSlSTAghhBBCCCEyRYoJIYQQQgghRKZIMSGEEEIIIYTIFCkmhBBCCCGEEJkixYQQQgghhBAiU6SYEEIIIYQQQmSKFBNCCCGEEEKITPkfeGluYevS3s4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAANXCAYAAABOkwIqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhU2RvA8S8toCKpIAIKKtjt2u3qunZ3J3auscauirrWWmusa3fnrt2tGCihlJgggoh0zO8PfjvLCCiywLDyfp5nHp1zz733PXNmLnPmxNVQKBQKhBBCCCGEEOILaao7ACGEEEIIIcR/kzQmhBBCCCGEEBkijQkhhBBCCCFEhkhjQgghhBBCCJEh0pgQQgghhBBCZIg0JoQQQgghhBAZIo0JIYQQQgghRIZIY0IIIYQQQgiRIdKYEEIIIYQQQmSINCaEyOXs7Ozo06ePusPIkerXr0/9+vUztO/X+LrOnDkTDQ0NdYeRwr+pJyGEEP+ONCaE+Er5+PgwePBgihUrRp48ecifPz+1atXi119/JSoqSt3hpZu/vz8aGhpoaGgwe/bsVPN0794dDQ0N8ubNm83R5Xz169dXvn6fesycOTNL47h69SozZ87k3bt3WXqeT7Gzs1OWV1NTkwIFClC2bFkGDRrEjRs3/tWx586dy8GDBzMnUCGE+A/RVncAQojMd+zYMTp27Iienh69evWiTJkyxMbGcvnyZSZMmMCjR49Yu3atusP8Inny5GHHjh1MmzZNJT0iIoJDhw6RJ08eNUWWs02dOpUBAwYon9+6dYtly5YxZcoUnJyclOnlypX77LGmTZvGDz/8kKE4rl69yqxZs+jTpw8FChTI0DEyQ4UKFRg3bhwA4eHheHh4sGfPHtatW8eYMWNYvHhxho47d+5cOnToQJs2bTIxWiGEyPmkMSHEV8bPz48uXbpga2vL2bNnsbS0VG5zdnbG29ubY8eOqTHCjPnuu+/Yv38/9+/fp3z58sr0Q4cOERsbS7NmzTh79qwaI8yZmjRpovI8T548LFu2jCZNmnzx0CBtbW20tf/bfzYKFy5Mjx49VNLmz59Pt27dWLJkCcWLF2fo0KFqik4IIf57ZJiTEF+ZBQsW8OHDB9avX6/SkPibg4MDo0aN+uQx3r17x+jRoylSpAh6eno4ODgwf/58EhMTVfItXLiQmjVrYmpqir6+PpUrV2bv3r0pjqehocHw4cM5ePAgZcqUQU9Pj9KlS/PXX3+lu1w1atSgaNGibN++XSV927ZtNGvWDBMTk1T3W7VqFaVLl0ZPTw8rKyucnZ1THWqzdu1a7O3t0dfXp1q1aly6dCnV48XExDBjxgwcHBzQ09OjSJEiTJw4kZiYmHSXJbmIiAjGjRunfK1LlizJwoULUSgUKvky4zVMy6VLl+jYsSM2NjbKMo0ZMybFcLjU5kykJ66ZM2cyYcIEAIoWLaocauTv76/Ms3XrVipXroy+vj4mJiZ06dKFZ8+epYg1vfX0JfT19dmyZQsmJibMmTNH5bVPz3tcQ0ODiIgINm3apCzb3/Nlnj59yrBhwyhZsiT6+vqYmprSsWNHlbILIcR/mTQmhPjKHDlyhGLFilGzZs0M7R8ZGUm9evXYunUrvXr1YtmyZdSqVYvJkyczduxYlby//vorFStW5KeffmLu3Lloa2vTsWPHVHs+Ll++zLBhw+jSpQsLFiwgOjqa9u3b8/bt23TH1rVrV3bu3Kn8shccHMzJkyfp1q1bqvlnzpyJs7MzVlZWLFq0iPbt27NmzRqaNm1KXFycMt/69esZPHgwhQoVYsGCBdSqVYtWrVql+DKbmJhIq1atWLhwIS1btmT58uW0adOGJUuW0Llz53SX428KhYJWrVqxZMkSmjVrxuLFiylZsiQTJkxI8VpD5ryGqdmzZw+RkZEMHTqU5cuX8+2337J8+XJ69eqVrv0/F1e7du3o2rUrAEuWLGHLli1s2bIFc3NzAObMmUOvXr0oXrw4ixcvZvTo0Zw5c4a6deuqNPzSW08ZkTdvXtq2bcuLFy9wd3dXpqfnPb5lyxb09PSoU6eOsmyDBw8GkoaVXb16lS5durBs2TKGDBnCmTNnqF+/PpGRkf86biGEUDuFEOKrERYWpgAUrVu3Tvc+tra2it69eyuf//zzzwpDQ0PF48ePVfL98MMPCi0tLUVAQIAyLTIyUiVPbGysokyZMoqGDRuqpAMKXV1dhbe3tzLt/v37CkCxfPnyT8bn5+enABS//PKL4uHDhwpAcenSJYVCoVCsXLlSkTdvXkVERISid+/eCkNDQ+V+QUFBCl1dXUXTpk0VCQkJyvQVK1YoAMUff/yhjNnCwkJRoUIFRUxMjDLf2rVrFYCiXr16yrQtW7YoNDU1lef/2+rVqxWA4sqVK8q0j1/X1Bw8eFABKGbPnq2S3qFDB4WGhobK6/VvXsPk9uzZowAU586dU6Z9XI8KhULh4uKi0NDQUDx9+lSZNmPGDMXHfzbSG9cvv/yiABR+fn4q+/v7+yu0tLQUc+bMUUl3c3NTaGtrK9O/pJ7SYmtrq2jRokWa25csWaIAFIcOHVKmpfc9bmhomGp9p/baXrt2TQEoNm/e/NmYhRAip5OeCSG+Iu/fvwcgX758GT7Gnj17qFOnDsbGxgQHBysfjRs3JiEhgYsXLyrz6uvrK/8fGhpKWFgYderUwdXVNcVxGzdujL29vfJ5uXLlyJ8/P76+vumOrXTp0pQrV44dO3YAsH37dlq3bo2BgUGKvKdPnyY2NpbRo0ejqfnPpW7gwIHkz59f+cvy7du3CQoKYsiQIejq6irz9enTByMjoxSvjZOTE46OjiqvTcOGDQE4d+5cussCcPz4cbS0tBg5cqRK+rhx41AoFPz5558q6ZnxGqYmeT1GREQQHBxMzZo1USgU3L1797P7/5u49u/fT2JiIp06dVJ5TQsVKkTx4sWVr+mX1FNG/b0aWHh4uDLtS97jqUm+f1xcHG/fvsXBwYECBQqk+xhCCJGT/bdn0gkhVOTPnx9Q/TL0pZ48ecKDBw+UQ1A+FhQUpPz/0aNHmT17Nvfu3VOZM5DavQhsbGxSpBkbGxMaGvpF8XXr1o1FixYxZswYrl69ypQpU1LN9/TpUwBKliypkq6rq0uxYsWU2//+t3jx4ir5dHR0KFasmErakydP8PDwSNdrkx5Pnz7FysoqRePv71WW/o7tb5n1Gn4sICCA6dOnc/jw4RTHCgsL++z+/yauJ0+eoFAoUrz+f9PR0QG+rJ4y6sOHD4BqY/xL3uOpiYqKwsXFhQ0bNvDixQuV+RjpeW2FECKnk8aEEF+R/PnzY2VlxcOHDzN8jMTERJo0acLEiRNT3V6iRAkgadJuq1atqFu3LqtWrcLS0hIdHR02bNiQYpI0gJaWVqrHU3w00fhzunbtyuTJkxk4cCCmpqY0bdr0i/b/NxITEylbtmyay4cWKVIkS8+fWa9hcgkJCTRp0oSQkBAmTZqEo6MjhoaGvHjxgj59+qSYdJ/ZcSUmJqKhocGff/6Z6nGy894hf39uHBwcgC9/j6dmxIgRbNiwgdGjR1OjRg2MjIzQ0NCgS5cu6XpthRAip5PGhBBfme+//561a9dy7do1atSo8cX729vb8+HDBxo3bvzJfPv27SNPnjycOHECPT09ZfqGDRu++JxfwsbGhlq1anH+/HmGDh2a5lKltra2AHh5ean8ch0bG4ufn5+yfH/ne/LkiXK4EiQNSfHz81NZhtbe3p779+/TqFGjTLkTtK2tLadPnyY8PFzl13BPT0+V2LKSm5sbjx8/ZtOmTSoTrk+dOpWp50nr9bK3t0ehUFC0aFFlQzU1X1JPGfHhwwcOHDhAkSJFlD1DX/IeT6t8e/fupXfv3ixatEiZFh0drdab9wkhRGaSORNCfGUmTpyIoaEhAwYMIDAwMMV2Hx8ffv311zT379SpE9euXePEiRMptr179474+Hgg6ddoDQ0NEhISlNv9/f2z5S7As2fPZsaMGYwYMSLNPI0bN0ZXV5dly5ap/EK+fv16wsLCaNGiBQBVqlTB3Nyc1atXExsbq8y3cePGFF/4OnXqxIsXL1i3bl2K80VFRREREfFF5fjuu+9ISEhgxYoVKulLlixBQ0OD5s2bf9HxMuLv3oDkr5FCofjkeyQjDA0NAVK8pu3atUNLS4tZs2al6MlQKBTKFaG+pJ6+VFRUFD179iQkJISpU6cqGwZf8h43NDRMNQ4tLa0U5Vq+fLnKMYUQ4r9MeiaE+MrY29uzfft2OnfujJOTk8odsK9evcqePXuUa+CnZsKECRw+fJjvv/+ePn36ULlyZSIiInBzc2Pv3r34+/tjZmZGixYtWLx4Mc2aNaNbt24EBQWxcuVKHBwcePDgQZaWsV69etSrV++TeczNzZk8eTKzZs2iWbNmtGrVCi8vL1atWkXVqlWVNy7T0dFh9uzZDB48mIYNG9K5c2f8/PzYsGFDirH4PXv2ZPfu3QwZMoRz585Rq1YtEhIS8PT0ZPfu3Zw4cYIqVaqkuxwtW7akQYMGTJ06FX9/f8qXL8/Jkyc5dOgQo0ePVpnUnFUcHR2xt7dn/PjxvHjxgvz587Nv375/PQ/jY5UrVwaS7sjdpUsXdHR0aNmyJfb29syePZvJkyfj7+9PmzZtyJcvH35+fhw4cIBBgwYxfvz4L6qnT3nx4gVbt24Fknoj3N3d2bNnD69fv2bcuHHKJV2BL3qPV65cmdOnT7N48WKsrKwoWrQo1atX5/vvv2fLli0YGRlRqlQprl27xunTpzE1Nc2EV1UIIXIAdSwhJYTIeo8fP1YMHDhQYWdnp9DV1VXky5dPUatWLcXy5csV0dHRynypLWEaHh6umDx5ssLBwUGhq6urMDMzU9SsWVOxcOFCRWxsrDLf+vXrFcWLF1fo6ekpHB0dFRs2bEhz+VBnZ+cUMaZn+dTkS8N+ysdLw/5txYoVCkdHR4WOjo6iYMGCiqFDhypCQ0NT5Fu1apWiaNGiCj09PUWVKlUUFy9eVNSrVy/FkqOxsbGK+fPnK0qXLq3Q09NTGBsbKypXrqyYNWuWIiws7IvKplAkvdZjxoxRWFlZKXR0dBTFixdX/PLLL4rExESVfP/mNUwutaVh3d3dFY0bN1bkzZtXYWZmphg4cKByedcNGzYo8/3buv35558VhQsXVmhqaqZYJnbfvn2K2rVrKwwNDRWGhoYKR0dHhbOzs8LLy0vlGOmtp9TY2toqAAWg0NDQUOTPn19RunRpxcCBAxU3btxIdZ/0vsc9PT0VdevWVejr6ysAZdlDQ0MVffv2VZiZmSny5s2r+PbbbxWenp5fXG9CCJFTaSgU/2LmnhBCCCGEECLXkjkTQgghhBBCiAyRxoQQQgghhBAiQ6QxIYQQQgghhMgQaUwIIYQQQgjxlfntt98oV64c+fPnJ3/+/NSoUYM///xTuT06OhpnZ2dMTU3Jmzcv7du3T3VJ+c+RCdhCCCGEEEJ8ZY4cOYKWlhbFixdHoVCwadMmfvnlF+7evUvp0qUZOnQox44dY+PGjRgZGTF8+HA0NTW5cuXKF51HGhNCCCGEEELkAiYmJvzyyy906NABc3Nztm/fTocOHQDw9PTEycmJa9eu8c0336T7mDLMSQghhBBCiP+ImJgY3r9/r/KIiYn55D4JCQns3LmTiIgIatSowZ07d4iLi6Nx48bKPI6OjtjY2HDt2rUviuervAN2XLCvukNQC1Pbxp/P9BWKjPv0B+hrZaCjp+4Q1CKfrr66Q1CLwIh36g5BLQoaFlB3CGqRW+tbrmu5y4vQR+oOIU05+buky4rNzJo1SyVtxowZzJw5M0VeNzc3atSoQXR0NHnz5uXAgQOUKlWKe/fuoaurS4ECBVTyFyxYkNevX39RPF9lY0IIIYQQQoiv0eTJkxk7dqxKmp5e6g3xkiVLcu/ePcLCwti7dy+9e/fmwoULmRqPNCaEEEIIIYT4j9DT00uz8fAxXV1dHBwcAKhcuTK3bt3i119/pXPnzsTGxvLu3TuV3onAwEAKFSr0RfHInAkhhBBCCCGSS0zIuY9/U6zERGJiYqhcuTI6OjqcOXNGuc3Ly4uAgABq1KjxRceUngkhhBBCCCG+MpMnT6Z58+bY2NgQHh7O9u3bOX/+PCdOnMDIyIj+/fszduxYTExMyJ8/PyNGjKBGjRpftJITSGNCCCGEEEKIr05QUBC9evXi1atXGBkZUa5cOU6cOEGTJk0AWLJkCZqamrRv356YmBi+/fZbVq1a9cXn+SrvM5GTZ+BnJVnNKXeRVU9yl9y6uo+s5pS7yHUtd8nRqzkFeqk7hDTpFCyp7hBUyJwJIYQQQgghRIZIY0IIIYQQQgiRITJnQgghhBBCiOQSE9UdwX+G9EwIIYQQQgghMkQaE0IIIYQQQogMkWFOQgghhBBCJKNQyDCn9JKeCSGEEEIIIUSGSGNCCCGEEEIIkSEyzEkIIYQQQojkZDWndJOeCSGEEEIIIUSGSGNCCCGEEEIIkSEyzEkIIYQQQojkZDWndJOeCSGEEEIIIUSGSGNCCCGEEEIIkSEyzEkIIYQQQojkEhPUHcF/hvRMCCGEEEIIITJEGhNCCCGEEEKIDJFhTkIIIYQQQiQnqzmlW67vmYiIiGTe0tU0adebyg1a033wWNw8vJTbg0NCmTp7EQ1adadKwzYMHjuNp89efPKY3r5PGT1lNk3b96ZMreZs2XUgRZ6jJ87SqG1PajbryIJla1W2vXgVSIsuA/gQEZE5hfwCAwf1xM39IkFvPTh7fj+VK5dLM6+jU3G2bFuFm/tF3kf4Msy5b4o8nTq3xt3rMk+f32XuvKkq22xsCuN67wz58uXN9HKI9Mmt9d17QFeu3z+JzytXjpzaQYVKZdPM261XB/Yf38wjv6s88rvKzgO/p8g/eHgf7j++yP3HFxns3FtlW8XKZfnz3G60tLSypCzi86S+cxe5rsn7XGSvXN+YmD7vV67duovL9PEc2PIbNatVYuCoKQS+CUahUDDqh594/vI1y+ZPZ8+GFVgVsmDAqClERkWnecyomGisrQoxemhfzEyNU2wPfRfGjHm/Mt55AGuWzOboibOcv3JDuX32whWMHtKXvIaGWVLmtLRr34K586Ywz2UZdWq1xM3Ng/2HNmFmbppqfgN9ffz9A5g5fQGvXwel2G5iaszylS5Mm+JC21a96dylNc2aNVRuX7z0Z2ZMX0B4+IcsK5NIW26t71ZtmzFj9kQWz19Fs/odcX/oxbZ9azA1M0k1f43aVTm07zidWvajVdPuvHzxmu3711LI0gIAp9IlmDB5OMP6T8B5wAQmTB2JY6niAGhpaTFv8Qx+GPsTCQkymU8dpL5zF7muyftcZL9c3ZiIjonh9IXLjHXuT5UKZbGxtsK5fw9srK3YdeAYT5+94P4jT34cP5yyTiUpamvNj+OHExMTw/FT59M8blmnkowfPoDvGtdHV0cnxfbnL1+TN68hzRvXo6xTSapWKo+v/zMAjp86j7a2Nk3q18qqYqdp+Ij+bNqwi21b9uLl6c3okdOIioqiZ6+OqeZ3dX3Aj1PnsW/vUWJiYlNsL2pXhPfvw9m/7xiurg+4eOE6JRztAejQsSVxcXEcOXwiS8sk0pZb63vgsN5s37yX3dsP8sTLhx/GziIqMpouPdqlmn/EoElsWr+TRw898Xnix/iR09HU0KR23W8AcCheFI9Hj7ly6QaXL97A49FjHIoXBWDoyL5cv3qb+3cfZlv5hCqp79xFrmvyPs80iYk595HD5OrGREJ8AgkJiejpqn7h19PTxfXBI2Lj4gDQTbZdU1MTHV0d7j54lOHz2lhbER0djcdjb8Leh/PI8zElHYoS9j6c5es2M2XssAwfO6N0dHSoULEM585dUaYpFArOn7tCtWoVM3RMHx9/9PXzUK58KYyNjahUuRyPHnpSoEB+pv04hvFjZ2ZO8OKL5db61tHRoVyFUlw6f02ZplAouHzhOpWrlk/XMfQN8qCto827d2EAeLg/oaiDHVbWlhQuYkkxB1s8PbyxtStC525tWTBnWZaURXye1HfuItc1eZ8L9cjVjQlDQwPKl3Fi9cYdBL15S0JCAkdOnOX+Q0+Cg0MoalsEy4IW/LpmI2Hvw4mLi2P91t0EBgXz5m1Ihs9rlD8fc6aNY8rPi+gyYBQtmzWiVvXKLFz5O93at+TFq9d06ONMmx5DOHnuUiaWOG2mpsZoa2vzJihYJT0oKJiCBc0zdMx3794zZNAE1qxbxLkLB9i5/QBnTl9i9twprF2zBVs7ay5dPcL1W3/Suk3zzCiGSKfcWt8mpgXQ1tYm+M1blfQ3b95ibmGWrmNMnTmOwNdByj/c3o99mf/zUnbuX8eOfeuY99PSpLQlM5g9YxH1G9bmzNWDnLiwl+o1K2d6mUTapL5zF7muyftcqEeuX83J5cfxTHdZQsM2PdDS0sSphAPNG9fD3csbHW1tls6dxnSXpdRq3gktLU2+qVKROt9UQfEvz9u4Xi0a1/tnKNOtuw947O3HlDFD+a5TfxbMmoSZiQldB46icoWymBoX+JdnVI+jR05y9MhJ5fNatatRpowjE8bN5J7bOfr1GUVg4BvOXTjIlSs3U1wMxX/L117fzqMH0Kpdczq27KMyJGLLht1s2bBb+bxjl9Z8+BDBnVv3uXjrKC0adsbSqhCrfl9IjQpNiY2NU0f44gtJfQuQ69rfctv7XCGrOaVbrm9M2FhbsXHlL0RGRRMREYm5mQnjfnTB2qoQAKUdi7Nv00rCP0QQFxeHiXEBug4cTWnH4pkWQ2xsLLMXrsRl+gQCnr8iISGBqhWTVp+wLVIYt0ee1K/9TaadLzVv34YSHx+f4lcMCwszAgPfZMo5dHV1WbzkJwYNHEcxezu0tbW4cvkmAD7eflSpUp6//jybKecSn5Zb6zvk7Tvi4+NTTMY0NzdN8WvmxwYP74Pz6P50aTMAj0eP08xnbFKAMZOG0r5FbypWKYev91P8fAPw8w1AR0ebYg52eLo/yZTyiE+T+s5d5Lom73OhHrl6mFNyBvp5MDczIex9OFdv3qFhHdUv7/nyGmJiXICnz17wyPMJDTLxy/2ajTup/U0VSpV0IDExgfhkqyPExyeQkA2TbeLi4rh39yH169dUpmloaFCvfk1u3rybKeeYOMmZ06cvcv/eI7S0NNHW+qctq62jLUvMZaPcWt9xcXE8uOdO7Xr/fH41NDSoXbc6d27dT3O/oSP7MXrCEHp0GMyDe5+eLzVr7iTWrdrMq5eBaGlqoqPzT7m1tLXQ0pT3eXaR+s5d5Lom73OhHrm+Z+LKjTsoFArsbKwJeP6SRSvXU9TGmjYtmgJw4uwljAsYYVnQnCe+/sxbupqGdWpQq/o/YwQn/7wQCzNTxgxNWp86Li4OH7+A//8/nsA3b/F87IOBgT421lYq5/fxe8pfZy+yZ8MKAIraFkFTU5N9R05gZmqMX8AzyjiVyI6XghXL17N67ULu3nXj9u37DHPui4GBAVu37AVgzbqFvHwZyKwZvwBJk74cnRyApEnqllYFKVvOiYgPkfj6PlU5dklHB9q1/57aNb8H4LGXD4mJifTs1YmgwDeUKGGP650H2VJOkSS31ve6VZtYsmouD+4+4q6rGwOH9kTfUJ9d25LuB/Prb3N59SqIeT8tBWDYqP6Mnzyc4QMn8izgpfJXz4iISCIjIlWOXad+DYra2zFq6BQA7t99iH3xojRoXBurwpYkJiTi4+2XfYUVUt+5jFzX5H2eaXLgqkk5Va5vTIR/iGDp6g0EvgnGKH8+mtSrzcjBvdHRTnpp3rwNYcHytbwNeYe5qQmtmjViSN+uKsd4FRiEpoaG8nlQcAgd+g5XPt+4Yx8bd+yjSsWybFyxQJmuUCiYuWAZE0YMxEA/DwB59PSYPXUscxatIjYujiljhlHQPH0TqP6t/fuOYWZmwpRpYyhY0Ay3Bx60b9NH2U1qbW1FYrIPl6WlBVeuHVM+HzV6EKNGD+LSxeu0aN5N5djLls9lyg9ziIyMAiA6OoahgyeycMks9PR0GT92Bq9eBWZDKcXfcmt9Hz7wFyZmJoyfMhxzCzMeuXnSo8Ng5ThnK2tLEhP/mRXVq19n9PR0Wbd5qcpxFs1byeL5q5TP8+TRY86CqQztNx6FImn/Vy8D+XHSXBavmENsbCyjh00hOjom6wsplKS+cxe5rsn7XGQ/DcXf746vSFywr7pDUAtT28bqDkEtIuNy50XMQEdP3SGoRT5dfXWHoBaBEe/UHYJaFDQsoO4Q1CK31rdc13KXF6EZX2Y/q8U8uaruENKkV7zm5zNlI7X2TAQHB/PHH39w7do1Xr9+DUChQoWoWbMmffr0wdw8Y0u5CSGEEEIIkWGymlO6qW0C9q1btyhRogTLli3DyMiIunXrUrduXYyMjFi2bBmOjo7cvn37s8eJiYnh/fv3Ko+YmNz5S7UQQgghhBDZSW09EyNGjKBjx46sXr0ajWTzDSBpLsGQIUMYMWIE165dS+MISVxcXJg1a5ZK2rQJI5k+cVSmxyyEEEIIIYT4h9rmTOjr63P37l0cHR1T3e7p6UnFihWJior65HFiYmJS9ERohr9ATy/3jbuUORO5i4wtzl1y6xh6mTORu8h1LXfJ0XMmPC+oO4Q06TnWU3cIKtTWM1GoUCFu3ryZZmPi5s2bFCxY8LPH0dPTS9FwiIv99E1ahBBCCCGEEP+e2hoT48ePZ9CgQdy5c4dGjRopGw6BgYGcOXOGdevWsXDhwkw5V0REJMvXbebMxWuEhL7DsYQ9P4weTFmnkgCUqdU81f3GDutPv+4dAFizaQcXr97C64kvOjraXDuxN9V9Xr4OpGXXQVw6thMdXR1+37yLQ3+eJij4LXY21owd2o/a31RR5k9ISGDV+m0cPXmW4LehmJuZ0Oa7Jgzu01U5/EuhULDy9y3sPfIX4eERVCxXih/HD8e2SOFMeX0yqmatqowaPYgKFctgaVmQrp0Hc+zoKbXGJLJObq3v4WMG0Pz7JjgUL0p0dDS3b95j7szF+Hj7qzs0kQWkvnMXua7J+1z8e2qbgO3s7MymTZu4ceMG7du3p0aNGtSoUYP27dtz48YNNm7cyLBhwzLlXNPn/cq1W3dxmT6eA1t+o2a1SgwcNYXAN0k9GOcPb1N5/DxlDBoaGjSpX0t5jLi4eL5tUIfObVt88lxnL12nWqVyGBjos3ztJvYc+pMpY4ZyaOsaOrX5jlGTf8bjsbcy//qte9h18BhTxg7j8Pa1jB3Wjz+27WXb3sPKPH9s28O2vYeZPmEE29ctRT9PHgaPnUZMTGymvD4ZZWhowEM3D8aNmaHWOET2yK31/U3Nqmz6fQctm3ala7uB6Ohos33/OvQNcuewhK+d1HfuItc1eZ+nSZGYcx85jFqXhu3cuTOdO3cmLi6O4OCkL/ZmZmbo6Ohk2jmiY2I4feEyy+bNoEqFsgA49+/BhSs32HXgGCMH9cbM1ERln3P/bxAUKWypTBs+oCcAB499+heLc5eu0bRBHQCO/HWWQb27ULdmNQC6tP2e67fusXHHfubPmAjAvYceNKjzDfX+n6ewZUGOn7qAm7sXkNQrsWX3QQb17kLDOjUAmPvjeOq17MqZS1f5rnH9f/Py/CunTl7g1MmcO6ZQZK7cWt89Og5WeT562FTcvC9TrkIpbly9o6aoRFaR+s5d5LqWRN7n4t9QW89Ecjo6OlhaWmJpaZmpDQmAhPgEEhIS0dNVPa6eni6uD1JO/AkOCeXi1Zu0+/7bLz7X+/APuD54RIPa3wAQGxeHrq5uivPeTXbeCmWcuHH7Hv4BzwHwfOKL64NH1Pn/UKjnL18T/DaUGlUqKvfJl9eQcqVKcv+h5xfHKIT4d/LnzwfAu9AwNUcisoPUt8gN5H0u/g219kxkB0NDA8qXcWL1xh0Us7XB1KQAx09f4P5DT2yS9Tz87fCfpzEw0KdxvVqpHO3TLl27RQn7oliYmwJQq3plNu/cT5UKZShS2JLrt+9x5sJVEhITlPsM6NmJiMhIWnYbhJamJgmJiYwc1Jvvv20IJDVuAExNjFXOZWpiTPDb0C+OUQiRcRoaGsxymcTN6654eXh/fgfxnyb1LXIDeZ+nITHnDSfKqb76xgSAy4/jme6yhIZteqClpYlTCQeaN66Hu1fKD82Boyf5vmkD9PR0UznSp529dF3ZKwHww6jBzJy/jJbdBqGhAUWsLGnTogkHjp5U5vnr7EWOnjzH/JkTcShqi+cTX+b/ugYLMxNaf9ckYwUWQmSJuQunUdKpOG2b91R3KCIbSH2L3EDe5+LfyhWNCRtrKzau/IXIqGgiIiIxNzNh3I8uWFsVUsl3595D/AKe88tPk7/4HHFxcVy5cZuBvTor00yMC7Bs3nRiYmJ59/49FmamLPntD5XzLlq5ngE9OinnPpSwL8qr10H8vmU3rb9rgtn/eyTehiSt9PS3tyGhlCxu/8VxCiEyZvaCqTT+th7tvuvNq5eB6g5HZDGpb5EbyPtcZIYcMWciuxjo58HczISw9+FcvXmHhnW+Udm+/+gJSpUsjmPxYl987JuuD8ifL2+q++rp6VLQ3Iz4hAROnb9Cg/9PpAaIjo5BQ1P1DuCampok/v9egtZWhTAzNeb6nXvK7R8iInjg7kX5Mqnfo0MIkblmL5hKsxaN6NSqH88CXqg7HJHFpL5FbiDv889Q94pNsppTznLlxh0UCgV2NtYEPH/JopXrKWpjTZsWTZV5PkREcPLcJcYPH5jqMV69DiLsfTivAoNISEjE87EPkNTrYWCgz/nLN6hfW7Vx8uCRJ4Fv3uJYvBhBb96y6o+tKBQK5b0rAOrXqs66TTuxLGiBQ1FbPB57s3nXftr+PzYNDQ16dmrD2k07sbUuTGGrgqxYtwULM1Ma1amZ2S/VFzE0NKCYva3yuZ1dEcqWcyI0JIznz1+qMTKRFXJrfc9d+CNtOnxHv24j+PAhEnMLMwDC34cTHZ07777+NZP6zl3kuibvc/HvaSgU//8J/CsSF+yr8vyvMxdZunoDgW+CMcqfjyb1ajNycG/y5TVU5tlz6Djzf13LucPbVNL/NnX2Ig79eTpF+h/L51OtUjkat+vFz5PHUKPqP6su3br7gJ8XruD5y9cY6OtTp0ZVxgzpq5ygDSlvqGduZsJ3TeoztG835cpWf9+0bs/hvwj/8IFK5UozbZwzdjbWKrGY2jbO2AuWQbXrVOf4XztSpG/bupehgydmWxyRcbnzwmego/f5TJkop9R3Pt3sXQf9RWjKVd8Axgybyu4dB7MtjsCId9l2rpykoGGBbD2f1Ld6yXUte+SU93laceQEMQ9z7s0L9crkrDm1uaIxkdXcvbzpP/IHLh7biY62+jp7srsxkVNIYyJ3ye4/ujlFbv1ymd2NiZwit9a3XNdylxzdmHhwQt0hpEmv3JffviAr5ao5E1klISGByWOGqrUhIYQQQgghRHaTb7+ZoGypkpQtVVLdYQghhBBCCJGtpDEhhBBCCCFEMgpFwuczCUCGOQkhhBBCCCEySBoTQgghhBBCiAyRYU5CCCGEEEIklwNvDpdTSc+EEEIIIYQQIkOkMSGEEEIIIYTIEBnmJIQQQgghRHKJMswpvaRnQgghhBBCCJEh0pgQQgghhBBCZIgMcxJCCCGEECI5Wc0p3aRnQgghhBBCCJEh0pgQQgghhBBCZIgMcxJCCCGEECK5xAR1R/CfIT0TQgghhBBCiAyRxoQQQgghhBAiQ2SYkxBCCCGEEMnJak7pJj0TQgghhBBCiAyRxoQQQgghhBAiQ2SYkxBCCCGEEMklyjCn9JKeCSGEEEIIIUSGSGNCCCGEEEIIkSEyzEkIIYQQQojkZDWndJOeCSGEEEIIIUSGfJU9E/pWddQdglpEvbyk7hDUorRTJ3WHoBavI0PUHYJaWOYxUXcIahEeG6XuEITIcpWMi6k7BLW4HOSh7hCEyLCvsjEhhBBCCCFEhslqTukmw5yEEEIIIYQQGSKNCSGEEEIIIUSGyDAnIYQQQgghkpNhTukmPRNCCCGEEEKIDJHGhBBCCCGEECJDZJiTEEIIIYQQySgUCeoO4T9DeiaEEEIIIYQQGSKNCSGEEEIIIUSGyDAnIYQQQgghkpPVnNJNeiaEEEIIIYQQGSKNCSGEEEIIIUSGyDAnIYQQQgghklPIMKf0kp4JIYQQQgghRIZIY0IIIYQQQgiRITLMSQghhBBCiORkNad0k54JIYQQQgghRIZIY0IIIYQQQgiRITLMSQghhBBCiORkNad0k54JIYQQQgghRIZIY0IIIYQQQgiRITLMSQghhBBCiORkNad0k54JIYQQQgghRIZIY0IIIYQQQgiRIdKYyKUiIiKZt3Q1Tdr1pnKD1nQfPBY3Dy/l9sjIKOYsWkWjNj2o3KA1rboPYteBY5897vvwD8xetJL6rbpRsX5LWnQZwMWrN5Xbj544S6O2PanZrCMLlq1V2ffFq0BadBnAh4iIzCtoOnXv15Gzdw7j9uwKe/7aSLmKpdPM27RFA/ad2sxt73Pc87/EoXPbaN3xO5U8/Yb14Jr7Sa65n6Tf0O4q28pVKs3+01vQ0tLKkrJ8iYGDeuLmfpGgtx6cPb+fypXLpZnX0ak4W7atws39Iu8jfBnm3DdFnk6dW+PudZmnz+8yd95UlW02NoVxvXeGfPnyZno5vlTHPm05fHM3V/xOs/HYGkpXcErXfk1bN+L2q0ss3DBXJb3HkC6cdDvMSbfDdB/cWWVb6Yql2HLid6lvNeo9oCvX75/E55UrR07toEKlsmnm7darA/uPb+aR31Ue+V1l54HfU+QfPLwP9x9f5P7jiwx27q2yrWLlsvx5bneOqO/cqk3vVuy8tpWT3sdZdWQ5jhVKpmu/hq3qc/75aWb/PkslvfPgjhy4t4cD9/bQaVAHlW1OFR1Zc3wVWlrydeqro0jMuY8cRt79udT0eb9y7dZdXKaP58CW36hZrRIDR00h8E0wAAuWr+Xyjdu4TJ/I4e1r6dmpDXOXrOLcpetpHjMuLo6Bo6fw4lUgi2dP5eiO35k5aSQW5mYAhL4LY8a8XxnvPIA1S2Zz9MRZzl+5odx/9sIVjB7Sl7yGhllb+I9816YJk38aw4qF62jTqAeejx6zfvdyTMyMU83/LvQ9q5f8QefmfWlZvwv7dhzBZdl0ajf4BoCSpRwYNWkIYwZNYezgqYyePJQSTvYAaGlp8dPCKcwY70JCQkK2lTE17dq3YO68KcxzWUadWi1xc/Ng/6FNmJmbpprfQF8ff/8AZk5fwOvXQSm2m5gas3ylC9OmuNC2VW86d2lNs2YNldsXL/2ZGdMXEB7+IcvKlB5NWjVkzMzhrFu0kR7fDuCxuzfLdyzC2LTAJ/eztC7EqOnDcL1+TyXdwcmeIRP7M2XITKYOncXQSQOxdywGJNX3lPnjcJm4UOpbTVq1bcaM2RNZPH8Vzep3xP2hF9v2rcHUzCTV/DVqV+XQvuN0atmPVk278/LFa7bvX0shSwsAnEqXYMLk4QzrPwHnAROYMHUkjqWKA0n1PW/xDH4Y+5Pa6zu3atCyPsOmD2Hjki0MbD4EH3dfftk6jwKf+XwXsi7I0B8Hc//6A5X0Yk5F6Tu+Nz8Nm8PPznPpP7EvRR2LAqClpclYl9EsnvwrCQk57wueENlFGhO5UHRMDKcvXGasc3+qVCiLjbUVzv17YGNtpex9uOfmQevmjalWqRyFLQvSsfV3lHQoptJ78bH9R08S9j6cZfOmU6lcaQpbFqRqxXI4Fk/6YvX85Wvy5jWkeeN6lHUqSdVK5fH1fwbA8VPn0dbWpkn9Wln/Anyk75Du7N56kP07juDz2I/p412IjoqmQ7dWqea/efUOp46fx+eJP8/8X7B57U683L2pXL0CAMWK2+Hl/oTrl29z7dItvNy9KVbcDoABw3ty65orbvfcs6l0aRs+oj+bNuxi25a9eHl6M3rkNKKioujZq2Oq+V1dH/Dj1Hns23uUmJjYFNuL2hXh/ftw9u87hqvrAy5euE4Jx6RGVIeOLYmLi+PI4RNZWqb06D64Mwe3HeHIruP4PfbHZeJCoqOiadW1RZr7aGpqMnvldNYu/IMXT1+pbLNzsOGJuw+3r7hy6/IdvD18sHOwAaDnsK643riP+33PLC1TeuTW+h44rDfbN+9l9/aDPPHy4Yexs4iKjKZLj3ap5h8xaBKb1u/k0UNPfJ74MX7kdDQ1NKldN+nHAofiRfF49Jgrl25w+eINPB49xqF40pfLoSP7cv3qbe7ffZht5ROqOg5qz7Edx/lr9wmePglg8Q9LiY6O4bsuzdLcR1NTk6nLJ7Nh0SZeBah+vm3sbfD18OPu1Xu4XrmLj4cvNvZFAOg8pDP3bzzA637afxeFyA2kMZELJcQnkJCQiJ6ujkq6np4urg8eAVChrBPnLl8n8E0wCoWCm3fu4x/wgprVKqV53POXr1O+jBNzFq2k7vddadNjCGs37VT+QmdjbUV0dDQej70Jex/OI8/HlHQoStj7cJav28yUscOyrtBp0NHRpnR5R65e+KeHRKFQcPXiTSpUSXsISHI16lSlqL0tt67dBeCxuzd29jZYFi6IlXUh7OxteOLhQxG7wrTr2pKlc3/LkrJ8CR0dHSpULMO5c1eUaQqFgvPnrlCtWsUMHdPHxx99/TyUK18KY2MjKlUux6OHnhQokJ9pP45h/NiZmRP8v6Cto41juRLcuHRHmaZQKLh56TblKqc9tG3A2D6EvA3l0I6UQ/28PX2xKVaEgoUtKGRdEJtiRfDx8qOwrRUtO3/Hb/PWZUlZvkRurW8dHR3KVSjFpfPXlGkKhYLLF65TuWr5dB1D3yAP2jravHsXBoCH+xOKOthhZW1J4SKWFHOwxdPDG1u7InTu1pYFc5ZlSVnE52nraFOybAnuXHJVpikUCu5ccqVUpVJp7tdrTA/evX3H8Z1/pdjm6+mHdbHCWFhZULCwBUWKWuPn5Y+VrSXNO3/L+gUbsqQsIgdITMy5jxxGlobNhQwNDShfxonVG3dQzNYGU5MCHD99gfsPPbEpbAnAlDFDmTl/GY3a9ERbSwsNTQ1mThpFlQppjzV+/vI1L1zv06JpA35b+BMBz18ye9FK4hMSGNavO0b58zFn2jim/LyI6JgYWjZrRK3qlfnRZQnd2rfkxavXjJg0k/j4BIb1707TBnWy/LUwNimAtrY2wW9CVNKDg0Io5mCX5n558xlyye1PdHV1SUxIYOak+coGic8TfxbPWcWGvasAWDR7JT5P/Nm4dyW/zFpG7YY1GDFhEPHx8cyeupDb/2+EZCdTU2O0tbV5ExSskh4UFEyJEvYZOua7d+8ZMmgCa9YtQj+PHju3H+DM6UusWDWPtWu2YGtnzc49a9HR0cZlzjIOHfwzM4ryRQqYGKGtrU3IR/Ud8iYUOwfbVPcpX60srbu2oFuTfqlu93/ylFXz1rJq5xIAVrqswf/JU1buWsKy2b9Ro351Bo3vS3xcPAunL+Pu9fuZW6h0yK31bWL69+f7rUr6mzdvsf9/b8LnTJ05jsDXQcoGifdjX+b/vJSd+5MaifN+Wor3Y192Hvid2TMWUb9hbcb+MIz4uHimT3bhxtU7nzq8yERGJkZoaWsR8iZUJT00OBQbhyKp7lO2ahladGnOgKaDU90e4B3A7/P+YOGO+QCsm7eeAO8AFu1YwJo5a6lWvwp9xvQiPj6B5TNW8uCGW+YWSoj/AGlM5FIuP45nussSGrbpgZaWJk4lHGjeuB7uXt4AbNt7mAePPFkxfwaWhQpy554bcxatwsLMlBpVU/8lM1GhwMS4ADMnjkRLS4vSjsUJCn7Lhu17GdYvaRJy43q1aFzvn6FMt+4+4LG3H1PGDOW7Tv1ZMGsSZiYmdB04isoVymJqXCDLX4uMiPgQSesG3TA0NKBGnapM/mkMz/xfcPP/Xxx2btrHzk37lPnbdm5BxIdI7t5248S1fbRv2otClhYsWTuXhpVbERcbp66iZKqjR05y9MhJ5fNatatRpowjE8bN5J7bOfr1GUVg4BvOXTjIlSs3U3zJy2kMDPX5afk05kxYQFhIWJr59m0+xL7Nh5TPW3RsRmREJG63H7Lv8jZ6NR+EhaU5c3+bSavqnaS+/yOcRw+gVbvmdGzZR2Wo15YNu9myYbfyeccurfnwIYI7t+5z8dZRWjTsjKVVIVb9vpAaFZoS+5XU99dG31CfKb9O4peJiwkLfZ9mvsNbj3J461Hl8287NCEyIpJHd9zZcmEjg793xtzSjOkrp9K1Zs+v5vMtRHpJYyKXsrG2YuPKX4iMiiYiIhJzMxPG/eiCtVUhomNi+HXNJn51+ZF6NasBUNKhKJ5PfNm4Y1+ajQnz///6mXwVk2K2RQh+G0pcXBw6OqrDqmJjY5m9cCUu0ycQ8PwVCQkJVK2YNLTItkhh3B55Ur/2N1n0CiQJDXlHfHw8ZuaqkzHNLEx4E5T2Fx+FQkGA33MAPB4+xr5EUQaP7qNsTCRnbGLE8PED6dZqEOUrlcHfJ4Cnvs946vsMHW1titrb8NjDJ3ML9hlv34YSHx+PuYWZSrqFhRmBgW8y5Ry6urosXvITgwaOo5i9HdraWly5nLSyl4+3H1WqlOevP89myrnS611IGPHx8Zh8VN8m5sa8TaW+re0KU9jGisWb5inTNDWTRodef3aO9rW78+LpS5V9jEyMGDiuL4PaDqdMpVIE+D7jmd9znvk9R1tHO2kYlKdvFpQubbm1vkPe/v35Vp1kbm5umqKX5mODh/fBeXR/urQZgMejx2nmMzYpwJhJQ2nfojcVq5TD1/spfr4B+PkGoKOjTTEHOzzdn2RKecSnhYWEkRCfgIm56uIZxmbGhASFpshf2NYKSxtLXDbMVqZpaGoAcMb/BD3r9eHlR3OkjIzz03tML0Z1GINTRSee+T3nhd8LXvi9QFtHG+ti1vh5+mVB6US2y4HDiXIqmTORyxno58HczISw9+FcvXmHhnW+IT4+nvj4eDQ1NFTyamlpkviJD1eFsqUJeP5SJY//sxeYm5qkaEgArNm4k9rfVKFUSQcSExOIT7b6SXx8AgnZ8EGOi4vn0X1PatStpkzT0NCgRp2q3Lv94BN7qtLQ1ERXVzfVbVN+HsfGNTsIfBWElpYm2jr/tOG1tLXUsoRkXFwc9+4+pH79mso0DQ0N6tWvyc2bmTPsauIkZ06fvsj9e4+Syq31T7m1dbTVUu74uHg8HzymWu3KyjQNDQ2q1q7MgzuPUuT39w6gc/1edG/cT/m4ePIKt6/cpXvjfgS+TLnK0bhZI9ixdjdBr96gqaWJtnay+tbSUssSkrm1vuPi4nhwz53a9f75UUJDQ4Padatz51baw82GjuzH6AlD6NFhMA/upXxfJDdr7iTWrdrMq5eBaGlqovPx51tTlojNLvFx8Xi5PaZS7X/m9mloaFC5dkXcXVMuehHgE0DfRgMY8O1g5ePqyWvcvXqPAd8OJuhlyoa288yh7Pl9H29eBaf++daUr1Ui95GeiVzqyo07KBQK7GysCXj+kkUr11PUxpo2LZqio61NlYplWbRyPXp6elgVsuD2XTcO/3mGCSMHKo8x+eeFWJiZMmZo0vrzndu2YMe+w8xbuppuHVrx9PlL1m3eRfeOKVdF8vF7yl9nL7JnwwoAitoWQVNTk31HTmBmaoxfwDPKOJXIltdiw+ptzF8+k4f33Hng+ojeg7uhb6DPvh1HAFiwYhaBr4NYNHslAINH9cHtngfP/J+jq6tDvca1aN3xO2ZOdElx7Jr1qmNnb8PE4TMAeHDXnWIOttRtVBNLq4IkJiTi6/00W8r5sRXL17N67ULu3nXj9u37DHPui4GBAVu37AVgzbqFvHwZyKwZvwBJk1kdnRwA0NXVwdKqIGXLORHxIRJfX9UylHR0oF3776ld83sAHnv5kJiYSM9enQgKfEOJEva43kl/Yy0zbVuzi5m/TsH9vieP7nnQbWBH9A30ObLzOACzlk0l6HUwK+euITYmFh8v1V8Zw8OSljr9OB2get0q2BQrwoyRcwBwv+eJrYMtNRtWp6CVBYmJCTz1CcjiEqYut9b3ulWbWLJqLg/uPuKuqxsDh/ZE31CfXdsOAPDrb3N59SqIeT8tBWDYqP6Mnzyc4QMn8izgpbI3JyIiksiISJVj16lfg6L2dowaOgWA+3cfYl+8KA0a18aqsCWJCYn4eMuv1Nlpz9p9TF4yEa/7Xnjc86LDgHbk0c/Dn7uSJldPXjqJ4NfBrJu3ntiYOPy8/FX2//A+6fP9cTpA5TqVsC5mjcvoBQB43ffCxqEI1RpUxcLKgsTERAJ8n2Vp+YTIiaQxkUuFf4hg6eoNBL4Jxih/PprUq83Iwb3R+f+vLAtn/cDS1Rv5YdYCwt6HY1XIgpGDe9O5zT/LZ74KDFLpvbAsaM6aJXNY8Osa2vUehoWZKT06tqZ/D9WlJxUKBTMXLGPCiIEY6OcBII+eHrOnjmXOolXExsUxZcwwCpqrDsnIKscPnsLE1JiRk4ZgbmGKx8PH9O88grf/n6RraV2IxGQ3idE30GfmgkkUsrQgOjoG3yf+TBj2I8cPnlI5rl4ePabPm8iYgZNRKBQABL4K4ucpv+CybDqxMXFMGjGDmOiYbCnnx/bvO4aZmQlTpo2hYEEz3B540L5NH+XwD2trK5VeJktLC65c+2c1o1GjBzFq9CAuXbxOi+bdVI69bPlcpvwwh8jIKACio2MYOngiC5fMQk9Pl/FjZ/DqVWA2lDKlU4fPYmxagCET+2NqbsLjR96M6DaekOCkYRCFChckMVHxxcfVy6PLxDljmDxkhrK+g1694ZdpS5m+ZDJxsXHMGDmXmOiUy6xmh9xa34cP/IWJmQnjpwzH3MKMR26e9OgwWDl/w8raUqW+e/XrjJ6eLus2L1U5zqJ5K1k8f5XyeZ48esxZMJWh/cYr6/vVy0B+nDSXxSvmEBsby+hhU4hW0+c7tzp35DwFTI3oO74PJubGeLv7MLHnZEKD3wFQsLAFigz0euvm0WXU7BH8NHS2sr7fvApm2Y8r+GHRBGJj43AZvYBYNX2+RRbIgTeHy6k0FH9/Kr4i2rqF1R2CWkS9vKTuENSitFMndYegFq8jQz6f6StUIn/u/Hw/fv9C3SGoRT5dfXWHoBaBEe/UHYJa1LZI393ovzaXgzzUHYJaxMfm3Ota1NHF6g4hTfrfj1V3CCpkcJ8QQgghhBAiQ3J0Y+LZs2f065f62u5/i4mJ4f379yqPr7CzRQghhBBCZBd135juP3TTuhzdmAgJCWHTpk2fzOPi4oKRkZHKQ5EYnk0RCiGEEEIIkXupdQL24cOHP7nd1/fza7FPnjyZsWNVx44Zmzr+q7iEEEIIIYQQn6fWxkSbNm3Q0ND45LAkjY/udfAxPT099PT0vmgfIYQQQggh0iSrOaWbWoc5WVpasn//fhITE1N9uLq6qjO8HC1PHk0KFcyDbRED7IvmxcBA9cZIp85fYeDoKdRq3okytZrj+TjlHZb3HDpOn+ETqd6kHWVqNed9+IcUedy9vBkwago1vu1AreadmDn/V+Xyj8m9fB1I5QatiYyMwtv3KaOnzKZp+96UqdWcLbsOpMh/+54bzhNn0KBVd8rUas6Zi1dT5Fm5fistuw6kaqM21GzWkQGjJvPgkadKnqbte6NhEq7yIE/WLsXYtU97Dp/fgavveVx9z7Pr+B/UbVTz8zv+x9WsVZVde9bh5X2N9xG+tPi+ibpDUovew7tz+9Ulxv40Qt2hZKncWt/Dxwzg2JldeAXc5P7ji6zfugx7Bzt1hyWySJ+xvTj//LTKY/P5P9QdlhD/KWptTFSuXJk7d+6kuf1zvRa5maaGBrGxiQS/Tf2Lc1R0NJXKlWbM0LQnsEdHx1C7ehUG9uqS6vagN28ZMGoyNtaWbF+7lNWLf8bbL4CpcxalyHv20nWqVSqHgYE+UTHRWFsVYvTQvpiZGqceX1Q0JR2KMXXcsDTjsytSmCljh7F/829sXrUQq0IFGTRmKiGh71TyKSJ1UYQaKh9Ep34n6szy+mUQi2avoG3jnrRr3Ivrl2+zavMiHEoWy9LzqpuhoQEP3TwYN2aGukNRm1LlHWnXsxWPH3mrO5Qsl1vr+5uaVdn0+w5aNu1K13YD0dHRZvv+degb5M4lanMDP08/2lXsqHyMaDta3SEJ8Z+i1mFOEyZMICIiIs3tDg4OnDt3Lhsj+u+IjEogMiohze2tmjUC4MUnbhTVs3NbAG66pn5n2gtXb6Ctrc20cc5oaia1O6dPGE67XsMIeP4SG2srZd5zl67RtEEdAMo6laSsU0kAlv62IdVj16lRlTo1qqYZG0CLpg1Unk8cOZD9R0/w2MePb6pU/GeDQgMU2dcuPndS9X4eS+auomuf9lSoUhZvr8/P8/mvOnXyAqdOXlB3GGqjb6DPzyunM2f8AvqP7q3ucLJcbq3vHh0HqzwfPWwqbt6XKVehFDeupv3jl/jvSkhIIORNqLrDEDlNDlw1KadSa89EnTp1aNasWZrbDQ0NqVevXjZGJJKLjY1DR0db2ZCApDtVA7jef6RMex/+AdcHj2hQ+5ssiyUuLo49h/4kX15DSjp81AOgHwsFwiF/BOSJBbKvN0tTU5MWbZpiYKDP3VupN8rE12GSyxiunLnGzUvyhTI3yZ8/HwDvQsPUHInIKoWLFmbv7Z1sv7KFqcsnY2Floe6QhPhPydFLwwr1ql65Am/fhvLHtr3ExcUR9j6cJb8ljSV98/afuy9funaLEvZFsTA3zfQYzl+5QdXGbanUoDVbdh1k7dI5GBcwUm7v3rE1fMgD4QYQo5M0X8Iga+dMAJRwsueu/0UevrjKrIWTce4zAZ/Hfll+XqEeTVs3wrFsCVbMXaPuUEQ20tDQYJbLJG5ed8XL4+sf2pYbud/1YN6YX5jYczJLpvyKZZFCLNu/BH1DGdYmRHpJY0KkyaGYLXOmjWPTzv1UadSG+q26UdiyEKYmxmhq/rNi1tlL17OsV6JapfLs27iSrasXUeubyoz/0YW3yeZM9O7SDuK1IUELYnQhMg/oxZHVvRN+3k9p3aAbHb/tw46Ne5m/fCb2JYpm6TmFehS0smDczyOZ5vwzsTGx6g5HZKO5C6dR0qk4w/qPV3coIovcPHeLC8cu4uvhx60Lt/mh1xTy5s9Lg5YyKiLXUyTm3EcOI40J8UktmjbgwpHtnDm4lSvHdzOsfw9C34VhbWUJJA0/unLjNvWzqDFhoJ8HG2srypdx4ufJY9DS0mL/kRNp75CgiYYGoJm1jYm4uHgC/J7z6IEni2avxPPRY3oP6pql5xTq4ViuJKbmJmw9+TvXn53j+rNzVK5ZkS79O3D92TmVYYDi6zF7wVQaf1uPji378upl2nPPxNflw/sInvs+p7BdYXWHIsS/5uLiQtWqVcmXLx8WFha0adMGLy8vlTz169dHQ0ND5TFkyJAvOo9aJ2CL/w4zk6RVmfYfPYGerg41qiZNgL7p+oD8+fLiWDx7VjJKTEwkNi4u7QxaiSgUJE3KzkYampro6ulk6zlF9rh16Tad6/dSSZu+dDJPvQPYtGIbiTJJ76sze8FUmrVoRMeWfXgW8ELd4YhspG+QBys7S07uf6vuUIT41y5cuICzszNVq1YlPj6eKVOm0LRpU9zd3TE0NFTmGzhwID/99JPyuYGBwRedRxoT/1EaGqCj888vojramng+9sEofz4sC1kQ9j6cV6+DCApOuiD6BTwHwMzUGDNTEwCC34YQ/DaUgOcvAXji44+hgT6WhSww+v+kw+17D1OhbCkM9PNw7dZdFq1cz+ihfcmfLy8A5y/fSNErERcXh49fwP//H0/gm7d4PvbBwEBfuQJUZGSU8rwAL14GqsQfGRXN2k07aVC7OuZmJoS+e8+O/UcICn7Lt/9fNereQw/cHnmCVkJS40E7IWm+RKx2ljYmxk1z5sKZq7x6/hrDvAa0bN+M6rUq06/T133fAUNDA4rZ2yqf29kVoWw5J0JDwnierC6/NpERUfh4qc6HiY6M5l1oWIr0r0lure+5C3+kTYfv6NdtBB8+RGJuYQZA+PtwoqOzfj6WyF5Dpw3i6unrBD4PxLSgKX3H9SYxIZEzB2UlyVzvK/ih6K+//lJ5vnHjRiwsLLhz5w5169ZVphsYGFCoUKEMn0caE/9RenpaFLb8Z4KYmakeHfoOp3XzxsyZNo5zl64zbe5i5fYJM+YBMLRfd5z79wBg18Hj/PbHNmWe3s4TAJg9ZSxtWiTdoMrN4zEr128lMiqKorZFmD5xhHLZWYBzV67z8+QxKrEFBYfQoe9w5fONO/axccc+qlQsy8YVCwB46PmEfiMmKfMsWL4WQBm/lqYmfk+fcfjP04SGhVEgf37KOJVg06pfcCiW9AVHV0eHP09fgHyRoAEkakK0TpbfZ8LEzIQFK2ZhUdCM8Pcf8HJ/Qr9OI7h64UaWnlfdKlYqy/G/diifu8yfBsC2rXsZOniiusISWSS31nfv/kn33dl3bJNK+phhU9m946AaIhJZydzSnB9XTCG/cX7CQsJwu/mQYa1GEBYiq3eJnCsmJoaYGNUfN/T09ND7/4qbaQkLS3pfm5iYqKRv27aNrVu3UqhQIVq2bMmPP/74Rb0TGoqv8K5w2rq5c6xj1MtLn8+Uidy9vOk/8gcuHtuJjrb62qWlnTqp7dzq9Doy5POZvkIl8ufOz/fj97lzuE0+3dy5qk5gxDt1h6AWtS2c1B2CWlwO8lB3CGoRH5tzr2tRe2erO4Q0zX8Yz6xZs1TSZsyYwcyZM9PcJzExkVatWvHu3TsuX76sTF+7di22trZYWVnx4MEDJk2aRLVq1di/f3+645GeCZFhCQkJTB4zVK0NCSGEEEKITJeDhzlNnjyZsWPHqqR9rlfC2dmZhw8fqjQkAAYNGqT8f9myZbG0tKRRo0b4+Phgb2+frnjkW6DIsLKlSlK2VEl1hyGEEEIIkWukZ0hTcsOHD+fo0aNcvHgRa2vrT+atXr06AN7e3tKYEEIIIYQQIrdSKBSMGDGCAwcOcP78eYoW/fz9sO7duweApaVlus8jjQkhhBBCCCGS+wqmFDs7O7N9+3YOHTpEvnz5eP36NQBGRkbo6+vj4+PD9u3b+e677zA1NeXBgweMGTOGunXrUq5cuXSfRxoTQgghhBBCfGV+++03IOnGdMlt2LCBPn36oKury+nTp1m6dCkREREUKVKE9u3bM23atC86jzQmhBBCCCGE+Mp8bsHWIkWKcOHChX99HmlMCCGEEEIIkVwOXs0pp9H8fBYhhBBCCCGESEkaE0IIIYQQQogMkWFOQgghhBBCJCfDnNJNeiaEEEIIIYQQGSKNCSGEEEIIIUSGyDAnIYQQQgghklPIMKf0kp4JIYQQQgghRIZIY0IIIYQQQgiRITLMSQghhBBCiORkNad0k54JIYQQQgghRIZIY0IIIYQQQgiRITLMSQghhBBCiOQUCnVH8J8hPRNCCCGEEEKIDJHGhBBCCCGEECJDZJiTEEIIIYQQyclqTukmPRNCCCGEEEKIDJHGhBBCCCGEECJDZJiTEEIIIYQQyckwp3T7KhsTY63qqjsEtTC1bazuENTi7dPT6g5BLUo7dVJ3CCIbRcbFqDsEkY3+MG+g7hDU4g9eqzsEIcQXkmFOQgghhBBCiAz5KnsmhBBCCCGEyDCFDHNKL+mZEEIIIYQQQmSINCaEEEIIIYQQGSLDnIQQQgghhEhGkahQdwj/GdIzIYQQQgghhMgQaUwIIYQQQgghMkSGOQkhhBBCCJGc3LQu3aRnQgghhBBCCJEh0pgQQgghhBBCZIgMcxJCCCGEECI5uWlduknPhBBCCCGEECJDpDEhhBBCCCGEyBAZ5iSEEEIIIURyctO6dJOeCSGEEEIIIUSGSGNCCCGEEEIIkSEyzEkIIYQQQojk5KZ16SY9E0IIIYQQQogMkcaEEEIIIYQQIkNkmJMQQgghhBDJyTCndJOeCSGEEEIIIUSGSGNCCCGEEEIIkSEyzEkIIYQQQojkFHLTuvSSngkhhBBCCCFEhkhjIg01ejbhh8vLmOO1ieEHf6ZIefs082pqa9F4ZDsmXVjKHK9NjP5zHiXqlVfJU7F1LaZcXcHM++v4floPlW3G1mZMOLsYvbz6WVKWLzFwUE/c3C8S9NaDs+f3U7lyuTTzOjoVZ8u2Vbi5X+R9hC/DnPumyNOpc2vcvS7z9Pld5s6bqrLNxqYwrvfOkC9f3kwvR1oiIiKZt3Q1Tdr1pnKD1nQfPBY3Dy+VPD7+AQyfOJNvmranaqM2dO4/klevgz553PfhH5i9aCX1W3WjYv2WtOgygItXbyq3Hz1xlkZte1KzWUcWLFursu+LV4G06DKADxERmVfQdOreryNn7xzG7dkV9vy1kXIVS6eZt2mLBuw7tZnb3ue453+JQ+e20brjdyp5+g3rwTX3k1xzP0m/od1VtpWrVJr9p7egpaWVJWX5Eh37tOXwzd1c8TvNxmNrKF3BKV37NW3diNuvLrFww1yV9B5DunDS7TAn3Q7TfXBnlW2lK5Ziy4nfc0S5c6uv/br2MYvqJWmwcSwd7iyn14utFPm28ifz2zSvQuMdk+j0YBVdPNfR/PAMrOqVVclTtG1N2t/6lc6P1lBlhupn29DajDaXfkEnB/wNA2jTuxU7r23lpPdxVh1ZjmOFkmnmbdaxKeefn1Z5nPQ+rpKn8+COHLi3hwP39tBpUAeVbU4VHVlzfBVaWvJ1SuReMswpFeW//4aW03qyf9p6Au56U6dfc/pv/oFfGo4j4u37FPm/Hd+JSm1qs++HdQT5vKREvXL0XjOWle1n8PKRPwbG+egwfxC7x//G24Ag+v0xEZ+rj/A4exeAtj/348/5O4j5EJXdRVXRrn0L5s6bwuhRP3L71j2GOfdl/6FNVK7YmOA3b1PkN9DXx98/gIMHjuMyf1qK7Samxixf6cLQwRPw93vGnv2/c/H8Nf766ywAi5f+zIzpCwgP/5DlZfvb9Hm/4u3rj8v08ViYmXLkxFkGjprCoW1rKGhuRsDzl/QaOp5233+L84AeGBoY4OMXgK6ebprHjIuLY+DoKZgYF2Dx7KkUNDfj5etA8uVN+jIR+i6MGfN+ZfbUsVgXLoTz+BlUq1ye+rWqAzB74QpGD+lLXkPDbHkN/vZdmyZM/mkM0ye4cP/OQ/oM7sr63cv5tkZ7QoJDU+R/F/qe1Uv+wPeJP7FxcTRoWgeXZdN5GxzC5XPXKVnKgVGThjC4+2g0NDRYs20Jl89f57GHD1paWvy0cAo/jp1DQkJCtpbzY01aNWTMzOG4TFrEw7vudB3YkeU7FtG+djdC375Lcz9L60KMmj4M1+v3VNIdnOwZMrE/o3tOQkNDgyWb53P9wi18PH3R0tJiyvxxzJnwi9rLnVvlhuvax7QN9Ah1D8B750UarB/92fwW3zjy6uJD7s7bQ+z7CBw616PBxnH8+f0MQh49Rc84LzV+GcDVsWsIf/qGhpvH8erKI16cvgdA9bl9cJ27izg1/w0DaNCyPsOmD2Hx5F/xuOtBhwHt+WXrPHrW68u7ND7fH95H0KteH+VzRbLhLcWcitJ3fG8m956GhoYGLptmc+viHfw8/dDS0mSsy2gWTlpCQoKs/PPVkdWc0k2a0qmoM6AFN3ae5faeCwR5v2D/1PXERcVStVP9VPNXbluHsysP4nn+HiHPgri+9TSe5+5Sd0ALAExtLIgOj+T+0es8f+CLz3V3LBwKA1ChVU0S4hN4eOJWdhUvTcNH9GfThl1s27IXL09vRo+cRlRUFD17dUw1v6vrA36cOo99e48SExObYntRuyK8fx/O/n3HcHV9wMUL1ynhmNTD06FjS+Li4jhy+ESWlim56JgYTl+4zFjn/lSpUBYbayuc+/fAxtqKXQeOAbBs7Sbq1KjKOOf+OJVwwMbaigZ1vsHUuECax91/9CRh78NZNm86lcqVprBlQapWLIdj8WIAPH/5mrx5DWneuB5lnUpStVJ5fP2fAXD81Hm0tbVpUr9Wlpf/Y32HdGf31oPs33EEn8d+TB/vQnRUNB26tUo1/82rdzh1/Dw+T/x55v+CzWt34uXuTeXqFQAoVtwOL/cnXL98m2uXbuHl7k2x4nYADBjek1vXXHG7555NpUtb98GdObjtCEd2HcfvsT8uExcSHRVNq64t0txHU1OT2Suns3bhH7x4+kplm52DDU/cfbh9xZVbl+/g7eGDnYMNAD2HdcX1xn3c73tmaZlE2r7261pqXp57wL0Fe3n21+105b89YyuPfjvG2/u+hPsFcnfebsL9XmPdpCIAeW0tiAuPxP/wDd7e9yXwqgcF/v83zK51DRTxCQT8mb5zZbWOg9pzbMdx/tp9gqdPAlj8w1Kio2P4rkuztHdSKAh5E6p8hAa/U26ysbfB18OPu1fv4XrlLj4evtjYFwGg85DO3L/xAK/7XmkcWIjcQRoTH9HS0aJwmaJ4X3moTFMoFDy58hDbSsVT30dXm/iYOJW0uOg47Komda0G+71GJ48uVqXt0DcyxLpcMV55BqCf35CmYztycPqGrCtQOuno6FChYhnOnbuiTFMoFJw/d4Vq1Spm6Jg+Pv7o6+ehXPlSGBsbUalyOR499KRAgfxM+3EM48fOzJzg0ykhPoGEhET0dHVU0vX0dHF98IjExEQuXr2FXZHCDBozlbotutB14GjOXLz6yeOev3yd8mWcmLNoJXW/70qbHkNYu2mn8pdoG2sroqOj8XjsTdj7cB55PqakQ1HC3oezfN1mpowdlmVlTouOjjalyzty9cINZZpCoeDqxZtUqJL2EJDkatSpSlF7W25dS+phe+zujZ29DZaFC2JlXQg7exueePhQxK4w7bq2ZOnc37KkLF9CW0cbx3IluHHpjjJNoVBw89JtylVOe4jXgLF9CHkbyqEdx1Js8/b0xaZYEQoWtqCQdUFsihXBx8uPwrZWtOz8Hb/NW5clZRGflxuua1lCQwOdvHmIeZc09DLc7zVa+nqYlLZFt4AhpuWLEeoRgK6RARUmdODGtE1qDjiJto42JcuW4M4lV2WaQqHgziVXSlUqleZ++ob67Ly+jd03tzN7/U/YlbBVbvP19MO6WGEsrCwoWNiCIkWt8fPyx8rWkuadv2X9AvX//RZC3WSY00cMjfOjpa1FeHCYSvqHN2FY2Fulus/jiw+oM6AFfjc9efs0EIdaZSjTrCqamklttaj3Eewa/xudFw1FJ48urvsv8fjiAzrMH8TVzScxKWJBn98noKWtxamle3H782aq58lKpqbGaGtr8yYoWCU9KCiYEiXSni/yKe/evWfIoAmsWbcI/Tx67Nx+gDOnL7Fi1TzWrtmCrZ01O/esRUdHG5c5yzh08M/MKEqaDA0NKF/GidUbd1DM1gZTkwIcP32B+w89sSlsSUjoOyKjoli/dTcjBvZm7NB+XL5xh9FTZvPH8nlUrZj6l+znL1/zwvU+LZo24LeFPxHw/CWzF60kPiGBYf26Y5Q/H3OmjWPKz4uIjomhZbNG1KpemR9dltCtfUtevHrNiEkziY9PYFj/7jRtUCdLXwcAY5MCaGtrE/wmRCU9OCiEYg52ae6XN58hl9z+RFdXl8SEBGZOmq9skPg88WfxnFVs2LsKgEWzV+LzxJ+Ne1fyy6xl1G5YgxETBhEfH8/sqQu5/f9GSHYqYGKEtrY2IR+VO+RNKHYOtqnuU75aWVp3bUG3Jv1S3e7/5Cmr5q1l1c4lAKx0WYP/k6es3LWEZbN/o0b96gwa35f4uHgWTl/G3ev3M7dQIk254bqWFUoP+Q5tgzw8PZL02Y4Ni+TK6DXU+nUIWnl08d17mZcX3KixcABeG0+St4g5DTeMRUNbi/uL9xNwTD097UYmRmhpaxHyRnWYZmhwKDYORVLdJ8DnGfPHLcTXwxfD/IZ0HtyRFQeX0bdRf968CibAO4Df5/3Bwh3zAVg3bz0B3gEs2rGANXPWUq1+FfqM6UV8fALLZ6zkwQ23LC+nyCaJsppTekljIhMcnrWJ9vMGMv7MIhQKBSFPA7m954LKsKhHJ27z6MQ/3cDFqjth6WjDoRkbmXRhKdtHLif8zTuGH5yN703PVOdm/BcdPXKSo0dOKp/Xql2NMmUcmTBuJvfcztGvzygCA99w7sJBrly5meoY5szk8uN4prssoWGbHmhpaeJUwoHmjevh7uVN4v8vHA3q1KBXl7YAOJaw556bO7sPHk+zMZGoUGBiXICZE0eipaVFacfiBAW/ZcP2vQzrlzRRsXG9WjSu989Qplt3H/DY248pY4byXaf+LJg1CTMTE7oOHEXlCmU/OaxKnSI+RNK6QTcMDQ2oUacqk38awzP/F9y8mvRL/85N+9i5aZ8yf9vOLYj4EMnd226cuLaP9k17UcjSgiVr59KwciviYuPSOlWOYGCoz0/LpzFnwgLCQsLSzLdv8yH2bT6kfN6iYzMiIyJxu/2QfZe30av5ICwszZn720xaVe+U48stPi2nXdcyU9E2NSg3ti3n+y0hOtnfoWd/3VYZNlXwG0eMnWy4OW0zba8s4pLzSqLehPHd0VkEXfdS2Tcnc3f1wN3VQ/n84e1HbD7/By27f88fCzcCcHjrUQ5vParM822HJkRGRPLojjtbLmxk8PfOmFuaMX3lVLrW7Cmfb5HrSGPiIxGh70mITyCfmZFKel5zI8LfvEt9n5BwNg9ajLaeDgYF8vI+MJTmP3TlbUDqKwBp6WrT5ud+7BqzElO7QmhqaeJ7I+liFuz3CpsKDniccU1136zy9m0o8fHxmFuYqaRbWJgRGPgmU86hq6vL4iU/MWjgOIrZ26GtrcWVy0m9MD7eflSpUp6//jybKedKi421FRtX/kJkVDQREZGYm5kw7kcXrK0KYVwgP9paWtjb2ajsU8yuCK4P0h7rb/7/Xz+Tr9ZTzLYIwW9DiYuLQ0dHdVhVbGwssxeuxGX6BAKevyIhIUHZULEtUhi3R57Ur/1NJpY6pdCQd8THx2NmbqKSbmZhwpugtL/4KBQKAvyeA+Dx8DH2JYoyeHQfZWMiOWMTI4aPH0i3VoMoX6kM/j4BPPV9xlPfZ+hoa1PU3obHHj6ZW7DPeBcSRnx8PCYfldvE3Ji3qZTb2q4whW2sWLxpnjLt7x7H68/O0b52d148famyj5GJEQPH9WVQ2+GUqVSKAN9nPPN7zjO/52jraCcNg/L0zYLSiY/llutaZrFr9Q01Fg7gwuDlvLr0KM18mrraVJ/bh8sjV5OvaEE0tDUJvJ40L+i972vMKtnz/FT29zyGhYSREJ+AibmxSrqxmTEhQSkXlUhNQnwCTx56U9gu9ZEIRsb56T2mF6M6jMGpohPP/J7zwu8FL/xeoK2jjXUxa/w8/f51WYT4L5E5Ex9JiEvgxUM/HGqWUaZpaGjgULM0T12ffHLf+Jg43geGoqmtRdlm1XA/lfqEtEbD2/L4wn1ePPJHU0sTTe1/voRq6WihqYYl5uLi4rh39yH169dUpmloaFCvfk1u3sycPwoTJzlz+vRF7t97hJaWJtpa/7RltXW0s3XpTAP9PJibmRD2PpyrN+/QsM436OjoUNqpBH4Bz1Xy+j97gVUhizSPVaFsaQKevyQx2coP/s9eYG5qkqIhAbBm405qf1OFUiUdSExMID7ZKj/x8QkkZMMKEnFx8Ty670mNutWUaRoaGtSoU5V7tx+k+zgampro6qa+0tWUn8excc0OAl8FJdW3zj/1raWtpZalUuPj4vF88Jhqtf9ZKlNDQ4OqtSvz4E7KL0/+3gF0rt+L7o37KR8XT17h9pW7dG/cj8CXKX8wGDdrBDvW7ibo1Rs0tTTR1k5Wbi0tWUIyG+W269q/Yde6BjUXD+LSsJW8OHPvk3nLjWrDi/MPCHnoj6amJprJyqipo4WGpnre4/Fx8Xi5PaZS7UrKNA0NDSrXroi7a/oWf9DU1KSYY1HeBoWkut155lD2/L6PN6+CU/98q6nsIgsoEnPuI4eRnolUXPr9GJ0WDeW5my/P7nlTu39zdA30uL3nAgCdFw0lLDCUvxbsBKBIBXuMCprw0v0p+QsZ02R0BzQ0NTi/5kiKY1s4FKb89zVY2mIyAEHeL1AkKqjaqT7hb8Iwt7fi2f3s/bX2byuWr2f12oXcvevG7dv3GebcFwMDA7Zu2QvAmnULefkykFkzfgGSJjc6OjkAoKurg6VVQcqWcyLiQyS+vk9Vjl3S0YF27b+nds3vAXjs5UNiYiI9e3UiKPANJUrY43on/V9iM+rKjTsoFArsbKwJeP6SRSvXU9TGmjYtmgLQt1t7xk+fR5UKZahWqTyXr9/mwpUbbFg+X3mMyT8vxMLMlDFDk9af79y2BTv2HWbe0tV069CKp89fsm7zLrp3TLkqko/fU/46e5E9G1YAUNS2CJqamuw7cgIzU2P8Ap5RxqlElr8OABtWb2P+8pk8vOfOA9dH9B7cDX0DffbtSHrfLlgxi8DXQSyavRKAwaP64HbPg2f+z9HV1aFe41q07vgdMye6pDh2zXrVsbO3YeLwGQA8uOtOMQdb6jaqiaVVQRITEvH1fppiv+ywbc0uZv46Bff7njy650G3gR3RN9DnyM6kteVnLZtK0OtgVs5dQ2xMLD5eqr8yhoclLfn5cTpA9bpVsClWhBkj5wDgfs8TWwdbajasTkErCxITE3jqE5DFJRTJ5Ybr2se0DfTIV7Sg8nleG3OMS9sQGxpBxMu3VPyhEwaWxlwZtQZIGtpUa+lgbs3Yypu7PuQxT+qZT4iOJS5cdblXo+JW2LWqztGmScvmhvm8RKFQ4NClHlFvwjCytyT4vvp63vas3cfkJRPxuu+Fxz0vOgxoRx79PPy56y8AJi+dRPDrYNbNWw9Ar9E9cHf14IX/S/LmN6TLkE4UtC7IsR3HUxy7cp1KWBezxmX0AgC87nth41CEag2qYmFlQWJiIgG+z7KvsELkENKYSMX9o9cxNMlP0zEdyGdegJceT1nfex4f/j8pu0BhM5V1qHX0dPl2fCdMbCyIjYjB89xddo1ZRfT7yBTHbu8ygKOztxAXFQMk9WbsHv8bbX7qi7aeDoemb+R9YPq6YzPb/n3HMDMzYcq0MRQsaIbbAw/at+mjnLxobW2l8uu7paUFV679s7rNqNGDGDV6EJcuXqdF824qx162fC5TfphDZGTSH6bo6BiGDp7IwiWz0NPTZfzYGbx6FZjlZQz/EMHS1RsIfBOMUf58NKlXm5GDe6Pz/1+XGterxfQJw/l9y25clqzGzsaaJXOmUan8Pz1VrwKD0NTQUD63LGjOmiVzWPDrGtr1HoaFmSk9Oramfw/VpScVCgUzFyxjwoiBGOjnASCPnh6zp45lzqJVxMbFMWXMMAqaqw7JyCrHD57CxNSYkZOGYG5hisfDx/TvPIK3/5+cbGldiMRkv4DoG+gzc8EkCllaEB0dg+8TfyYM+5HjB0+pHFcvjx7T501kzMDJys9J4Ksgfp7yCy7LphMbE8ekETOIiY7JlnJ+7NThsxibFmDIxP6Ympvw+JE3I7qNV95bo1Dhgsr5M19CL48uE+eMYfKQGcpyB716wy/TljJ9yWTiYuOYMXIuMdEplxsVWSc3XNc+Zlq+GN/u/edmelVnJt0o1Xv3Ra6OWYt+wQIYWv1znSnevSGaOklDl6rP7aNM/zt/cjUW9OfWrG3E//9vWEJ0HFfGrKH6nD5o6WpzY9pmol6r528YwLkj5ylgakTf8X0wMTfG292HiT0nK5d7LVjYAkWy+s5nlI/xC8ZiYm7Mh7APeLk9wbn1KJ4+UW306+bRZdTsEfw0dLby8/3mVTDLflzBD4smEBsbh8voBcTK51vkQhqK5N+KvxIT7bqqOwS1WP3mxuczfYXePj2t7hDUorRTJ3WHoBb5tXPGXXaz2723uXOehYGOnrpDUIsVBWp+PtNX6A+N1+oOQS0uB3l8PtNXKD72hbpDSFPk/L7qDiFNBpNy1pLEMrhPCCGEEEIIkSFqb0xERUVx+fJl3N1TTo6Kjo5m8+bNn9w/JiaG9+/fqzziFQmf3EcIIYQQQgjx76m1MfH48WOcnJyoW7cuZcuWpV69erx69Uq5PSwsjL59P93N5OLigpGRkcrjRlj6Vm0QQgghhBDiY4rExBz7yGnU2piYNGkSZcqUISgoCC8vL/Lly0etWrUICEj/aieTJ08mLCxM5VHdqFQWRi2EEEIIIYQANa/mdPXqVU6fPo2ZmRlmZmYcOXKEYcOGUadOHc6dO4ehoeFnj6Gnp4eenuoEPW2N/8a63kIIIYQQQvyXqbUxERUVpXLDFw0NDX777TeGDx9OvXr12L59uxqj+zJ6hnloOq4TZZpWIa+ZES8e+XN41iaeP/h6V2CpWasqo0YPokLFMlhaFqRr58EcO3rq8ztmsoiISJav28yZi9cICX2HYwl7fhg9mLJOJQEIDgllyao/uHrTlfAPEVSuUIYpY4ZiW6QwAC9eBfJthz6pHnvRz1P4tmEd5fOXrwNp2XUQl47t5OXrIFb8vgV3rye8fB3EpJGD6Nm5bYpj7Nh3hA3b9xIcEkpJh2JMGTOUsqVKKrfPWrCMa7fu8iY4BAODPFQoU4oxw/pRzLYIAJ5PfFm/dTeuDx7x7t17rCwL0qnNd5n18qVb1z7t6dqnA9Y2lgA88fRl5aLfuXjmarbHok69h3dnxNQhbF+3m8XTl6s7HJHJcsp1LatZVC9J6aEtMC1bFINCxpzrt4RnJ5LuZK+hrUXFiR0o3LACeW3NiXsfxavLD3Gdu4uowHfqDTyT9Rnbiz5je6mkBXgH0Kt+PzVFJHKMDCwRnluptTHh6OjI7du3cXJyUklfsSLphl6tWqW86VdO1WH+IAqWKMLOsat4HxhKpba1Gbh1KouajFfbfSOymqGhAQ/dPNiyeQ/bd65WWxzT5/2Kt68/LtPHY2FmypETZxk4agqHtq3BwsyUUT/8hLa2NsvmTyevgSGbd+1nwP+3G+jnoZCFGecPb1M55p5Df7Jh+z7qfFNFJf3spetUq1QOAwN9omKisbYqRNOGtVmwTHUt9r/9efoCC5avZfqEEZQrVZItuw8yeOw0juxYh6lxAQBKlXSgRdMGWBa0IOx9OKvWb2XQmKmc2LMBLS0t3L2eYGJcgHnTJ1DIwpx7Dz2YNX8Z6AExqd99Oiu8fhnEotkr8PcNQAMN2nb5nlWbF9GmYXe8vb7eRnNypco70q5nKx4/8lZ3KCKL5JTrWlbTNtAj1D0A750XabB+tOo2fV1Mytrx4NeDhLoHoGtkQNVZPWmwYSzHv5uunoCzkJ+nH+O6TlQ+T4iXRVyE+BJqbUy0bduWHTt20LNnzxTbVqxYQWJiIqtX5/yLubaeDmWaVWPTwEX43fQE4NTSfTg1qkSNHk04sWi3miPMGqdOXuDUyQvqDoPTFy6zbN4MqlQoC4Bz/x5cuHKDXQeO0apZI+4/8uTgltU4FLMF4Mfxw6nfshvHT52nQ6tmaGlpYWZqonLMMxev8m2jOhgYqN7T4NylazRtkNRTUdappLL3Y+lvqa/5vHnXATq0bE7b/99he/qEEVy8eosDR08yoGfSfSI6tv6nl6GwZUFGDOpN+97DePEqEBtrK9p9/63KMYsUtuT+Qw927PozWxsT505eUnm+ZO4quvZpT4UqZXNFY0LfQJ+fV05nzvgF9B/dW93hiCySU65rWe3luQe8PJf63bnjwqM43XW+StrNaZtpcfwnDK1MiXj5NjtCzDYJCQmEvPk6f/QTIjuodQL25MmTOX485S3r/7Zq1SqVO5PmVFraWmhpaxEfo3rny7joWOyqlkxjL5EZNDQgISERPV0dlXQ9PV1cHzwiNi4OAN1k2zU1NdHR1eHug0epHvOR5xM8n/im+BL/PvwDrg8e0aD2N+mKLS4uDnevJ3xTtYLKub+pUoH7D1O/QVFkVDQHj53E2qoQlgXN0zx2+IcIUGikuT2raWpq0qJNUwwM9Ll7K/UvJF+bSS5juHLmGjcv3VF3KEJkO938+igSE4l9H6nuUDJd4aKF2Xt7J9uvbGHq8slYWFmoOySREygSc+4jh1Frz8TXIiYiGv87j2k0sh1B3i8JD35HhVa1sK1Ugrf+ufNuntlFoYDyZZxYvXEHxWxtMDUpwPHTF7j/0BObwpYUtS2CZUELfl2zkekTRmCgn4fNuw4QGBTMm7chqR5z/9ETFLMrQsWyqquCXbp2ixL2RbEwN01XbKHv3pOQkIipibFKuqmJMX4Bz1XSdu4/yqJV64mKiqaojTVrl8xBR0e1gfS3u27unDhzEaKzr1fibyWc7Nn15wb09HSJjIjCuc8EfB77ZXsc2a1p60Y4li1Br+aD1B2KENlOU0+HSlO64HfwGnEfotQdTqZyv+vBvDG/8Mz3GaYWpvQe05Nl+5fQt9EAoiK+rrIKkVXUftO6r8XOMSvR0NBg2s1VzH28hVp9vuXe4askKmQCT1Zz+XE8KBQ0bNODSg1asW3PIZo3roeGpiY62tosnTsN/4AX1GreiSqN2nDT9QF1vqmCpmbKt390TAzHT51P0SsBSfMl0tsr8aVaNG3A3g0r2LhyAbZFCjN+ugsxH/V0ATzx9WfkD7MY2q87xGf/bwF+3k9p3aAbHb/tw46Ne5m/fCb2JYpmexzZqaCVBeN+Hsk055+JTaVOhPiaaWhrUW/1CNDQ4MbkjeoOJ9PdPHeLC8cu4uvhx60Lt/mh1xTy5s9Lg5b11B2aEP8Z0jORSUICgljd+Sd09PXIk1ef8Dfv6L5iJCEBQeoO7atnY23FxpW/EBkVTUREJOZmJoz70QVrq0IAlHYszr5NKwn/EEFcXBwmxgXoOnA0pR2LpzjWyXOXiYqOoVWzRirpcXFxXLlxm4G9Oqc7LuMC+dHS0uRtiOpY3LchoZh91FuRL68h+fIaYlukMOVLO1KzWUfOXLzKd03qK/P4+D2l/8jJdGjVnMF9urJs/oF0x5JZ4uLiCfBL6lV59MCTshVK0XtQV6aPn5vtsWQXx3IlMTU3YevJ35Vp2traVPymPJ36tqOmbaP/xHBMIb7U3w0JQ2tTTnVy+ep6JVLz4X0Ez32fU9iusLpDEeomqzmlm/RMZLK4qBjC37xDP78hJeqWw/3UbXWHlGsY6OfB3MyEsPfhXL15h4Z1VHsR8uU1xMS4AE+fveCR55NUexn2Hz1Bg9rVMfn/Skt/u+n6gPz58uJYvFi649HR0aFUyeLcuH1PmZaYmMiNO/coX8Ypzf0UCgUKBcTGxinTvH2f0nfED7Ru3phRg/ukO4aspqGpia5e6sOxvha3Lt2mc/1edG/cT/l4dM+Dv/afonvjftKQEF+lvxsS+YoW5FTnecSEflB3SNlC3yAPVnaWvA36uiaZC5GVpGcik5SoWw40NHjj8xIzu0K0mNKNIJ+X3Nrz9a4KYmhoQDF7W+VzO7silC3nRGhIGM+fv8y2OK7cuINCocDOxpqA5y9ZtHI9RW2safP/FZROnL2EcQEjLAua88TXn3lLV9OwTg1qVa+scpyA5y+5c+8hvy38KcU5zl++Qf2PGh9xcXH4+AX8///xBL55i+djHwwM9LGxtgKgV+e2TJ2ziNKOxSlTqiRbdx8kKjqGNi2aAPDsxSv+OnORmtUqYVLAiNdvglm/ZTd6errUqVkVSBra1H/ED9SsXpneXdoS/PdcD41EUGTf7wHjpjlz4cxVXj1/jWFeA1q2b0b1WpXp12lEtsWgDpERUfh4qc4LiY6M5l1oWIp08d+XU65rWU3bQI98RQsqn+e1Mce4tA2xoRFEBr2j/tqRmJS142zvRWhoaZLH3AiA2HcfSIz7epZOHTptEFdPXyfweSCmBU3pO643iQmJnDl4Tt2hCfGfIY2JTJInnwHNJ3bBqJAJkWEfcPvzJicW7iLxK16vumKlshz/a4fyucv8aQBs27qXoYMnprVbpgv/EMHS1RsIfBOMUf58NKlXm5GDe6Pz/xsivnkbwoLla3kb8g5zUxNaNWvEkL5dUxxn/9GTFLQwo2a1Sim2nbtynZ8nj1FJCwoOoUPf4crnG3fsY+OOfVSpWJaNKxYA0LxxPULfhbHi960Eh4TgWNye1Yt+Vg5z0tPVxfX+Q7bsPsj78A+YmhSgSvkybF29WHkfipPnLhPyLoyjJ85y9MTZfwLIrwFhef/Va/clTMxMWLBiFhYFzQh//wEv9yf06zSCqxduZFsMQmS1nHJdy2qm5Yvx7d6pyudVZ/YAwHv3Re4v2k+Rb5N+bGl5SnUI44kOcwi8lvpqdP9F5pbm/LhiCvmN8xMWEobbzYcMazWCsJAwdYcm1E16ndNNQ6H4+mYIT7RL+UUxN1j9Jnd+qXv79HSWHt/dy5v+I3/g4rGdygZKTlDaqZO6Q1CL/Nr6n8/0Fbr39uu/l0dqDHT01B2CWqwoUFPdIajFHxq5cwXEy0FfTwPtS8THvlB3CGmKmJlzv0saztzx+UzZSOZMCPEZCQkJTB4zNEc1JIQQQgghcgL5diTEZ5QtVZKypeTmg0IIIUSuIas5pZv0TAghhBBCCCEyRBoTQgghhBBCiAyRYU5CCCGEEEIkp5DVnNJLeiaEEEIIIYQQGSKNCSGEEEIIIUSGyDAnIYQQQgghkpPVnNJNeiaEEEIIIYQQGSKNCSGEEEIIIUSGyDAnIYQQQgghklEkympO6SU9E0IIIYQQQogMkcaEEEIIIYQQIkNkmJMQQgghhBDJyWpO6SY9E0IIIYQQQogMkcaEEEIIIYQQIkNkmJMQQgghhBDJyTCndJOeCSGEEEIIIUSGSGNCCCGEEEIIkSEyzEkIIYQQQojkFHLTuvSSngkhhBBCCCFEhkhjQgghhBBCCJEhMsxJCCGEEEKI5GQ1p3STngkhhBBCCCFEhkhjQgghhBBCCJEhX+Uwp8UvL6o7BJGNapTtre4Q1OKRx251h6AWpraN1R2CWtS2cFJ3CGpxOchD3SGoxUOdBHWHoBaub3zVHYJajLWqq+4QxEcUMswp3aRnQgghhBBCCJEh0pgQQgghhBBCZMhXOcxJCCGEEEKIDJNhTukmPRNCCCGEEEKIDJHGhBBCCCGEECJDZJiTEEIIIYQQySUmqjuC/wzpmRBCCCGEEEJkiDQmhBBCCCGEEBkiw5yEEEIIIYRITlZzSjfpmRBCCCGEEEJkiDQmhBBCCCGEEBkiw5yEEEIIIYRIToY5pZv0TAghhBBCCCEyRBoTQgghhBBCiAyRYU5CCCGEEEIko1DIMKf0kp4JIYQQQgghRIZIY0IIIYQQQgiRITLMSQghhBBCiORkNad0k54JIYQQQgghRIZIY0IIIYQQQgiRIdKYEEIIIYQQIrlERc59pJOLiwtVq1YlX758WFhY0KZNG7y8vFTyREdH4+zsjKmpKXnz5qV9+/YEBgZ+0UsljQkhhBBCCCG+MhcuXMDZ2Znr169z6tQp4uLiaNq0KREREco8Y8aM4ciRI+zZs4cLFy7w8uVL2rVr90XnkQnYQgghhBBCfGX++usvlecbN27EwsKCO3fuULduXcLCwli/fj3bt2+nYcOGAGzYsAEnJyeuX7/ON998k67zSGNCCCGEEEKIZBQ5eDWnmJgYYmJiVNL09PTQ09P75H5hYWEAmJiYAHDnzh3i4uJo3LixMo+joyM2NjZcu3Yt3Y0JGeYkBNCxT1sO39zNFb/TbDy2htIVnNK1X9PWjbj96hILN8xVSe8xpAsn3Q5z0u0w3Qd3VtlWumIptpz4HS0trUyL/3MiIiKZt3Q1Tdr1pnKD1nQfPBY3j3/GTZap1TzVxx/b9qZ5zNv33HCeOIMGrbpTplZzzly8miLPhu17qduiC3VbdGHjjn0q2x488qRTvxHExydkXkHTaeCgnri5XyTorQdnz++ncuVyaeZ1dCrOlm2rcHO/yPsIX4Y5902Rp1Pn1rh7Xebp87vMnTdVZZuNTWFc750hX768mV6OL9Wmdyt2XtvKSe/jrDqyHMcKJdPM26xjU84/P63yOOl9XCVP58EdOXBvDwfu7aHToA4q25wqOrLm+Cq0tOTPjLrU6NmEHy4vY47XJoYf/Jki5e3TzKuprUXjke2YdGEpc7w2MfrPeZSoV14lT8XWtZhydQUz76/j+2k9VLYZW5sx4exi9PLqZ0lZvkRu/Xzn1vrOjVxcXDAyMlJ5uLi4fHKfxMRERo8eTa1atShTpgwAr1+/RldXlwIFCqjkLViwIK9fv053PHKVF7lek1YNGTNzOOsWbaTHtwN47O7N8h2LMDYt8Mn9LK0LMWr6MFyv31NJd3CyZ8jE/kwZMpOpQ2cxdNJA7B2LAaClpcWU+eNwmbiQhITs+xI9fd6vXLt1F5fp4zmw5TdqVqvEwFFTCHwTDMD5w9tUHj9PGYOGhgZN6tdK85hRUdGUdCjG1HHDUt3u5e3Hyt+38stPP7Bg1iSWr93MYx8/AOLjE/jpl+X8OGE42trZ16gCaNe+BXPnTWGeyzLq1GqJm5sH+w9twszcNNX8Bvr6+PsHMHP6Al6/Dkqx3cTUmOUrXZg2xYW2rXrTuUtrmjVrqNy+eOnPzJi+gPDwD1lWpvRo0LI+w6YPYeOSLQxsPgQfd19+2TqPAp94n394H0G7ih2Vj87fdFNuK+ZUlL7je/PTsDn87DyX/hP7UtSxKABaWpqMdRnN4sm/kpCQmNVFE6ko//03tJzWk9O/7uPXFlN45f6U/pt/wNA0f6r5vx3fierdGnFoxkYWNZ7A9W2n6b1mLFal7QAwMM5Hh/mDODZ3K7/3dKFSm9o4Nayo3L/tz/34c/4OYj5EZUfx0pRbP9+5tb5zq8mTJxMWFqbymDx58if3cXZ25uHDh+zcuTPT45HGhMj1ug/uzMFtRziy6zh+j/1xmbiQ6KhoWnVtkeY+mpqazF45nbUL/+DF01cq2+wcbHji7sPtK67cunwHbw8f7BxsAOg5rCuuN+7jft8zS8uUXHRMDKcvXGasc3+qVCiLjbUVzv17YGNtxa4DxwAwMzVReZy7dJ1qlcpRpLBlmsetU6MqIwf1pnG91Bscfk+fUcLejuqVK/BNlYqUcCiK39PnQFKPReUKZSnrlPYv41ll+Ij+bNqwi21b9uLl6c3okdOIioqiZ6+OqeZ3dX3Aj1PnsW/vUWJiYlNsL2pXhPfvw9m/7xiurg+4eOE6JRyTfhHs0LElcXFxHDl8IkvLlB4dB7Xn2I7j/LX7BE+fBLD4h6VER8fwXZdmae+kUBDyJlT5CA1+p9xkY2+Dr4cfd6/ew/XKXXw8fLGxLwJA5yGduX/jAV73vdI4sMhqdQa04MbOs9zec4Eg7xfsn7qeuKhYqnaqn2r+ym3rcHblQTzP3yPkWRDXt57G89xd6g5Iug6a2lgQHR7J/aPXef7AF5/r7lg4FAagQquaJMQn8PDErewqXppy6+c7t9Z3llL3ik2feOjp6ZE/f36Vx6eGOA0fPpyjR49y7tw5rK2tlemFChUiNjaWd+/eqeQPDAykUKFC6X6ppDEhcjVtHW0cy5XgxqU7yjSFQsHNS7cpV7l0mvsNGNuHkLehHNpxLMU2b09fbIoVoWBhCwpZF8SmWBF8vPwobGtFy87f8du8dVlSlrQkxCeQkJCInq6OSrqeni6uDx6lyB8cEsrFqzdp9/23/+q8xe3t8H/2glevg3j5OpCnz17gUMyWgOcvOXj8FCMH9vpXx88IHR0dKlQsw7lzV5RpCoWC8+euUK1axU/smTYfH3/09fNQrnwpjI2NqFS5HI8eelKgQH6m/TiG8WNnZk7w/4K2jjYly5bgziVXZZpCoeDOJVdKVSqV5n76hvrsvL6N3Te3M3v9T9iVsFVu8/X0w7pYYSysLChY2IIiRa3x8/LHytaS5p2/Zf2CDVlaJpE2LR0tCpcpiveVh8o0hULBkysPsa1UPPV9dLWJj4lTSYuLjsOualKDP9jvNTp5dLEqbYe+kSHW5YrxyjMA/fyGNB3bkYPT1V/fufXznVvrW3yeQqFg+PDhHDhwgLNnz1K0aFGV7ZUrV0ZHR4czZ84o07y8vAgICKBGjRrpPo9MwBa5WgETI7S1tQl5E6KSHvImFDsH21T3KV+tLK27tqBbk36pbvd/8pRV89ayaucSAFa6rMH/yVNW7lrCstm/UaN+dQaN70t8XDwLpy/j7vX7mVuojxgaGlC+jBOrN+6gmK0NpiYFOH76AvcfemKTSs/D4T9PY2Cgn2aPQ3rZ29kwanAfBo6eAsCowX2wt7NhwKjJjB3Wjys377Bq/Ta0tbX4YfQQqlQo+6/Olx6mpsZoa2vzJihYJT0oKJgSJdIeX/wp7969Z8igCaxZtwj9PHrs3H6AM6cvsWLVPNau2YKtnTU796xFR0cblznLOHTwz8woyhcxMjFCS1uLkDehKumhwaHYOBRJdZ8An2fMH7cQXw9fDPMb0nlwR1YcXEbfRv158yqYAO8Afp/3Bwt3zAdg3bz1BHgHsGjHAtbMWUu1+lXoM6YX8fEJLJ+xkgc33LK8nCKJoXF+tLS1CA8OU0n/8CYMC3urVPd5fPEBdQa0wO+mJ2+fBuJQqwxlmlVFUzPpN8eo9xHsGv8bnRcNRSePLq77L/H44gM6zB/E1c0nMSliQZ/fJ6ClrcWppXtx+/NmlpfzY7n1851b61t8nrOzM9u3b+fQoUPky5dPOQ/CyMgIfX19jIyM6N+/P2PHjsXExIT8+fMzYsQIatSoke7J1yCNCSG+iIGhPj8tn8acCQsICwlLM9++zYfYt/mQ8nmLjs2IjIjE7fZD9l3eRq/mg7CwNGfubzNpVb0TcbFxaR4rM7j8OJ7pLkto2KYHWlqaOJVwoHnjerh7eafIe+DoSb5v2gA9Pd1/fd7ObVvQue0/w8UOHT+FgYE+5cs40bLrQHb+/iuBQcFMmD6PE3s3oKv778+pDkePnOTokZPK57VqV6NMGUcmjJvJPbdz9OszisDAN5y7cJArV24S/OatGqNNH3dXD9xdPZTPH95+xObzf9Cy+/f8sXAjAIe3HuXw1qPKPN92aEJkRCSP7riz5cJGBn/vjLmlGdNXTqVrzZ5Z/j4XGXd41ibazxvI+DOLUCgUhDwN5PaeCyrDZB6duM2jE7eVz4tVd8LS0YZDMzYy6cJSto9cTvibdww/OBvfm55EvH2vhpJkvq/x8y31nQ5fwXSv3377DYD69eurpG/YsIE+ffoAsGTJEjQ1NWnfvj0xMTF8++23rFq16ovOI40Jkau9CwkjPj4eE3MTlXQTc2PeBqX8g2BtV5jCNlYs3jRPmfb3LznXn52jfe3uvHj6UmUfIxMjBo7ry6C2wylTqRQBvs945vecZ37P0dbRThoG5embBaX7h421FRtX/kJkVDQREZGYm5kw7kcXrK1Ux0TeufcQv4Dn/PLTpydyZUTouzB+27CdjSsX4PbIC9sihZWP+IR4/J+9oIR90c8f6F94+zaU+Ph4zC3MVNItLMwIDHyTKefQ1dVl8ZKfGDRwHMXs7dDW1uLK5aRf7Xy8/ahSpTx//Xk2U86VXmEhYSTEJ2BibqySbmxmTEhQaBp7qUqIT+DJQ28K26X+S6eRcX56j+nFqA5jcKroxDO/57zwe8ELvxdo62hjXcwaP0+/f10W8XkRoe9JiE8gn5mRSnpecyPC37xLfZ+QcDYPWoy2ng4GBfLyPjCU5j905W1AyknJkDRMps3P/dg1ZiWmdoXQ1NLE90ZS4zPY7xU2FRzwOOOa6r5ZJbd+vnNrfYvPUyg+v7xtnjx5WLlyJStXrszweWTOhMjV4uPi8XzwmGq1KyvTNDQ0qFq7Mg/upJxP4O8dQOf6vejeuJ/ycfHkFW5fuUv3xv0IfJnyQjxu1gh2rN1N0Ks3aGppoq39TxteS0srW5fONNDPg7mZCWHvw7l68w4N66h2Y+4/eoJSJYvjWLxYpp97/rK19OzUhkIW5iQkJhAfH6/clpCQSGI2rPoTFxfHvbsPqV+/pjJNQ0ODevVrcvPm3Uw5x8RJzpw+fZH79x6hpaWJttY/9a2to52tSwL/LT4uHi+3x1SqXUmZpqGhQeXaFXF3dU/XMTQ1NSnmWJS3QSGpbneeOZQ9v+/jzavg1N/nmvLnJrskxCXw4qEfDjXLKNM0NDRwqFmap65PPrlvfEwc7wND0dTWomyzarifup1qvkbD2/L4wn1ePPJHU0sTzWSrsmnpaKGphiWBc+vnO7fWt8g5pGdC5Hrb1uxi5q9TcL/vyaN7HnQb2BF9A32O7ExaU3/WsqkEvQ5m5dw1xMbE4uOl+utqeFjSkoAfpwNUr1sFm2JFmDFyDgDu9zyxdbClZsPqFLSyIDExgac+AVlcQrhy4w4KhQI7G2sCnr9k0cr1FLWxpk2Lpso8HyIiOHnuEuOHD0z1GP1H/kCjujXp1qEVAJGRUQQ8/6cX5sXLQDwf+2CUPx+WhSxU9r1605Wnz14wd9o4AMo4lcDv6XMuXbvF66A3aGpqYmdrTXZYsXw9q9cu5O5dN27fvs+w/7F312FRZW8Ax790KQ1KCKiYa3d3u8a61q7d3d2N3d2da63t6trdjYEgoUhJCdLz+4P9jc6CiiwwKO/nee6jc+69576HmTszZ07164KhoSHbtiauqbF67TzevPFjyqS5QOKgzoKFnAHQ1dXBxjYHRYsVIuJ9JO7unip5FyjoTItff6ZKpZ8BeP7sJQkJCXTo2Bp/vwDy58/LndsPMqSc//bHmn2MWTiSZ/ef4XrvGS27t0DfQJ/juxNXSB2zaBSBbwNZO2s9AB0Ht+fJHVdev3pDNmMj2vZuTQ77HBzdeSxJ3qWrlsI+jz0zB88B4Nn9Zzg456JczbJY21qTkJCAl7t3xhVWcHHdUVrP74PPQ3e877lRpVtDdA31uPXHeQDazO9DqF8wJ+YkThOZq0ReTHKY8+aJJ8Y5zag7uCUamhqcW304Sd7WznYU/7kiixontmD6u71GkaCgbOsahAeEYpXXFu/7LzOusJ/Iqvd3Vn2+01NmXrQus5HKhMjyTh06g5mFKb1HdsPCypznj90Y8Ptw3gUmdv/IaZeDhFS8qejp6zJyxhDG9J6kbGr09w1g7vhFTFw4htiYWCYNdCE6Kul0hGkt/H0Ei1ZtxC8gEBPj7NStXoWBvTqh88mvx8dPn0ehgEZ1aySbh/drX4JDP/aJffT0BV0HjFI+nrN0DQDNGtZhxj+VBkicmtZlwQrmTR2j7BKW09qKMUP6MN5lIbo6OswYPwz9r6zcmVb27zuKpaU5Y8cPIUcOSx4+cOXX5p2Vgzbt7W1JSPjYSmJjY83lqx9n7Ro0uCeDBvfk4oVrNG74u0reS5a6MHb0DCIjE+dej4qKpk+vkcxbOAU9PV2GD52Er69fBpQyqbOHz2FqYUKX4Z0xtzLD7clLRnYYo5zuNYedNYpPyp3dJDvD5wzF3MqM96HvefbwBf2aDcLzhWrlV1dfl0HTBzC1z3Tl6zzAN5AlE5Yxev4IYmJimTl4DjEZ8DoXH90/cg0jc2PqDWlJditT3rh6sr7TLN7/M0jX1M5SpQuEjp4u9Ye3xtzBmpiIaJ6evcvuISuICotMkvevM7tzZPpWYj8krsAbFx3LnuEraT61C9p6Ovw5cRNhfinrPpfWsur9nVWfb5E5aChS0qHqO6Ota6fuEEQGKmGR9l1yvgdXH25WdwhqYeFYR90hqEUps6z5Or/k7/r1g35AQ22rqTsEtVgVcF3dIahFb6vy6g5BLea82qnuED4rpF2trx+kJqbbM3ZcztdIy4QQQgghhBCfkm5OKab2yoSrqyvXrl2jYsWKFCxYkKdPn7J48WKio6Np3749tWp9uWYYHR1NdHS0SppCoUBDQyM9wxZCCCGEECLLU+vw+xMnTlCiRAmGDx9OyZIlOXHiBNWqVcPNzQ1PT0/q1avHmTNfbsqZOXMmJiYmKpsiITyDSiCEEEIIIUTWpdbKxNSpUxkxYgRBQUFs3LiR33//nR49enDq1Cn+/vtvRowYwaxZs76Yx5gxYwgNDVXZNDSzZ1AJhBBCCCHEDychE2+ZjForE48fP1auwNe6dWvCw8Np2bKlcn+7du148ODL06zp6elhbGysskkXJyGEEEIIIdKf2sdM/P+Lv6amJvr6+piYfFzBMXv27ISGhqorNCFSpFP/dgwY15sda/ewYOLSDLtuREQkS9du4e8LV3kXHELB/HkZPbgXRQsVABLXgVi4ciNnLl4hJDQcO9sctGvZjDa/NFbm8cefxzh66hyuz9yIiPzAlRN/YJw9W5JrRUVHU7VRG/ZtXoGBvj5zl63l8dMXePm8oV3Lpowe3DvJOSfPXGTZ2i28fuuHo70dQ/p0oVqlcsr9p85dZs/Bozx55kZoWDh7Ny6jYP68KnlER8cwd9lajp8+T0xsLJXLlUZTExIy8JeZSpXLMmhwT0qULIKNTQ5+a9OLo0dOZVwAatJ5aEc6D+2okubl5kXHGl3VFJFIb3pG+tQb1poi9cqQzdKE149fcWjKZnweuKs7tHSTVe9vyJrPt0gfam2ZcHJy4sWLj6szXr16FQcHB+VjLy8vbGxs1BGaEClSuHhBWnRoyvPHbhl+7YmzFnP15l1mThzOga0rqVSuFD0GjcUvIHE+9TlL13Dp+i1mThzJoR2Jq0+7LFzB2YvXlHlERUVTpXwZenRs+8VrXb1xF5uc1jjY2xITG4uZqQk9O7WlgHPuZI+/+/AJIyfP4pef6/PHxmXUqlqRgWOm8cL9lfKYD1FRlCr2E0P6fP7L6ewlqzl3+ToLpo9l07I5BAQGYWaRsSvMGhkZ8uihK8OGTMrQ62YGHk89aFGylXIb8MtgdYck0lHL2T3JV6Uou4auYEH9kby4+IAe28ZhnMNM3aGlm6x8f2fF5/tbKBIUmXbLbNRamejTpw/x8fHKx0WKFEH700W0jh//6mxOQqiLgaEB05ZPZMbwOYSHZuygfwUKTp+/xNB+3ShToigO9rb069YeB3tbdh9IXIDp3kNXmjWsQ7lSxbCzyUGrZo0o4JyHh67PlPl0aPML3Tu0pthPBb94vTOXrlKzSgUA7GxyMGZwb5o1rEO2bEbJHr9tz59ULl+Gru1aktfJgQE9O1I4f1527P24umrTBrXp07UdFcuWTDaP8PcR7D/yFyMH9KB86RL8VDAf08YNRVdPEx3djOvKeOqv80ybuoAjh//KsGtmFvHx8bwLCFZuocFhXz9JfJe09XQo0qAcx2buwOPGU4I8/Ti1aB9Bnm+p2L6uusNLN1n1/s6qz7dIH2qtTPTu3ZvGjRt/dr+Liwvr1q3LwIiESLlRM4dw+e+r3Lh4Ww1XVxAfn4Cero5Kqp6eLncePAagRNFCnL10Db+AQBQKBTdu3+eV12sqlSv1TVdKSEjg/OUb1KxaMcXn3H/sSsUyJVTSKpUvzf3HKV+A7MmzF8TFxVGhzMfKRh7HXMTFKdDNwMpEVmaX2469t3ax4/JWxi0dg7WttbpDEulES1sLLW0t4qJVVyqPjYrBqWwBNUUl0os83yItqX3MhBDfo3rNalOwaH46NuyplutroEnxIoVYtWkneRwdsDA35djp89x/9BQHu8SugWOH9GHy7CXUbt4BbS0tNDQ1mDxqEGVKFP2ma91//BSAYoVT/gETGBSMhblqU7mluRmBQcHflIeOjnaSMRwJCQo0M7anU5b05K4rs4bMxdvdGwtrCzoN6cCS/QvpUrs7HyI+qDs8kcaiI6J4dfs5tQe2wN/tDeGBIZRoWhnHUvkJevVW3eGJNCbPdwpkwlmTMiupTAjxjXLYWjNs2kD6tRlKzL9+1clIMycMZ+LMhdRq3h4tLU0K5XemYZ3qPHmWOH5j+95DPHj8lGWzJ2GTMwe37z1kxvwVWFtafLZrUXLOXrxK9crl0NRUa0OmyGA3zt5U/t/d1QPXu67suraDmk2qc2zXCTVGJtLLriHLaT23N+NvrCA+Lp7Xjzy4d+gKdkWTHxslvm/yfIu0IpUJIb5RwWIFsLAyZ9tfH7vgaWtrU7JCcVp3aUElx9okZMB0Qw72tmxaPpfID1FERERiZWnOsAkzsbfNSVR0NItXb2bxzAlU/2cGpQLOuXn6wp1NO/d9W2Xi0nWG9OnyTbFZWpgR9E61FSLwXTCWFikf2GdpYUZsbBxh4e9VWic0NTVIiM98A9B+dO/DIvBx98HOyU7doYh08s7Ln1VtpqJjoId+NgPCA0Jot2wg77z81R2aSAfyfIu0Ij81CvGNbl68RZsaHWlXp6tye3zPlRP7T9GuTtcMqUh8ytBAHytLc0LDwrly4za1qlYgLi6OuLg4NP+15oqWluY3xefp/Rrft/7fVPkAKP5TIa7dvqeSdvXmXYr/VCjFeRQukA9tbW2u3/qYj4enD9raGsTESGUioxkY6mPrZEOQf5C6QxHpLPZDNOEBIRgYG5G/WjGenLql7pBEOpLnO3nqnrHpe5rNSVomhPhGkREfePnMQyUtKjKKkODQJOnp6fL12ygUCpwc7PHyecP85evJ7WBP88b10NHWpkzJosxfvh49PT1sc1pz6+5DDh3/mxEDeyjzCAx6R2BQMF4+bwB48fIVRoYG2OS0xsQ4O2cuXqVCmRIY6OurXPvp85cAREZGERwSytPnL9HR0SZvbkcA2rduRpd+I9m0cx/VKpXj+OnzPH76gsmjBirzCA0Lx/etP/6BiV9OPbx8gMQWCUsLc7JnM6LFz/WYs3QtJsbZMTIyxGXhSmKiE4jNwMqEkZEhefI6Kh87OeWiaLFCBL8Lxeefv9uPqM/4nlw5fQ0/Hz8scljQZVgnEuIT+PvgWXWHJtJJ/mrFQEODgJdvsHTKSeOxv+P/8g03/ziv7tDSTVa9vyFrPt8ifUhlQojvVPj7CBat2ohfQCAmxtmpW70KA3t1Quef6ZXnTRnNolWbGD1lDqFh4djmtGZgr060af5xBrXdB4+xcsN25eNO/UYAMH3sUJo3rsvZi9do2rBOkmu37NJf+f8nz15w9NQ5bHNa89e+zQCULFqY2ZNHsXTNZhav3oSjvR1LZk4gXx4n5XlnL15jvMsC5eMRk2YB0KdrO/p1aw/AqIG90NTUZPC46cTGxlKpXGmCgz5OJ50RSpYqyrETO5WPZ84eD8D2bXvp02tkhsaSkaxsrJiwbCzGZsaEvgvl4Y1H9G06gNB3spDoj0o/uyENR7bFJKc5kaHveXj8Bifn7SYhLmPvuYyUVe9vyJrPt0gfGgqFIvO1l/xH2rrSpzcrKWGRR90hqMXVh5vTNf/gkFBqNm3H6YNbsTTPPIsYWTgmrdxkBaXMsubr/JJ/yqcT/pEMta2m7hDUYlXAdXWHoBa9rcqrOwS1mPNq59cPUpN3zaqrO4TPMv8zc7UeyZgJIUSyQsPCGTGgR6aqSAghhBAic5FuTkKIZDk52OPkYK/uMIQQQgiRiUllQgghhBBCiE8oZNG6FJNuTkIIIYQQQohUkcqEEEIIIYQQIlWkm5MQQgghhBCfkm5OKSYtE0IIIYQQQohUkcqEEEIIIYQQIlWkm5MQQgghhBCfkNmcUk5aJoQQQgghhBCpIpUJIYQQQgghRKpINychhBBCCCE+Jd2cUkxaJoQQQgghhBCpIpUJIYQQQgghRKpINychhBBCCCE+IbM5pZy0TAghhBBCCCFSRSoTQgghhBBCiFSRyoQQQgghhBAiVWTMhBBCCCGEEJ+QMRMpJy0TQgghhBBCiFSRyoQQQgghhBAiVaSbkxBCCCGEEJ+Qbk4pJy0TQgghhBBCiFSRyoQQQgghhBAiVaSbkxBCCCGEEJ9SaKg7gu/GD1mZ+PDmorpDEBnoaJHx6g5BZKAgz9PqDkEtDGyrqjsEtchhZKruENRiwZsL6g5BLUpY5FF3CGox49YMdYcgRKpJNychhBBCCCFEqvyQLRNCCCGEEEKklszmlHLSMiGEEEIIIYRIFalMCCGEEEIIIVJFujkJIYQQQgjxCUWCzOaUUtIyIYQQQgghhEgVqUwIIYQQQgghUkW6OQkhhBBCCPEJmc0p5aRlQgghhBBCCJEqUpkQQgghhBBCpIp0cxJCCCGEEOITCoXM5pRS0jIhhBBCCCGESBWpTAghhBBCCCFSRbo5CSGEEEII8QmZzSnlpGVCCCGEEEIIkSpSmRBCCCGEEEKkinRzEkIIIYQQ4hOKBJnNKaWkZUIIIYQQQgiRKlKZEEIIIYQQQqSKdHMSQgghhBDiEwqFuiP4fkjLhBBCCCGEECJVpDIhhBBCCCGESBXp5iSEEEIIIcQnZDanlJOWCSGEEEIIIUSqZPnKxK17D+k3chI1m7ajSOWG/H3hisr+5eu30eS3HpSt3ZxKDVrRfdAYHjx++sU8l6/fRpHKDVW2Jr/1UDlmzpI1VGrQitq/dODIyTMq+06euUi/kZPSpoCpsG7rHopUbsisRas+e0xsXBwrN2ynQasulKrZlBad+nLp2i2VY46cPEPtXzpQqUEr5ixZo7Lvta8fjdt2531ERLqUIaUsKhSkwpbh1L+3nOZvd2DToMwXjzcvV4CqhybR6MlqmnhsovbFeeTt2VDlGPsWlal3eymNnq6lyOT2KvsMc1lS5/J8tLMZpHlZvuRrr3OAl6+86D9yMhXq/UrZ2s1p020gvm/9P5unm7sng8dOp96vnShSuSFbdx9Icow6XwNfuw//+PMYnfuPpHzdFhSp3JCw8PcpytcvIJBRU+ZQuWFrStdsxi8d+vDI9bly/8Yde6nWuC3VGrdl0859Kuc+ePyU1l0HEBcXnzaFFCnSqftvXLv/Fy9973D41E5KlCr62WN/79iS/ce28NjjCo89rrDrwLokx/fq35n7zy9w//kFevXrpLKvZOmiHD+7By0trXQpi/i6Vp1/4dCNPVz2OM2mo6v5qUShFJ1Xr1ltbvleZN5GF5X09r3b8tfDQ/z18BDterVR2fdTycJsPbkuQ5/vr72fnzp3mR6Dx1K5YWuKVG7I0+cvv5rnj/KZLtQjy3dz+vAhigLOefilcT0Gj52eZL9TLjvGDu2LvW1OoqNj2LL7AD2HjOPY7vWYm5l+Nl/n3I6sW/zxDenTN5pzl65x9NQ51iycgZfPGya4LKRy+dKYmZoQ/j6CJWs2s26RS3LZpruHrs/4489j5HfO/cXjlq7ZzJGTZ5k8aiC5HXNx+cZtBo2ZxrbV8ymU35ngkFAmzVrM9HFDsbfLSb/hkyhXujg1KpcHYPq8ZQzu3YVsRkYZUazP0jLUI/SxJ547z1F+49CvHh8fGYX7hr8Ic/UiPjIa83IFKDG3G3GR0XhuO4OueXZKzu/BncGriPD0p+K2EQRcfozfqbsAFJvVlcczdhH3/kN6F03F117nXj5v6NhnOC1+rk+/7u0xMjTkpYcXunq6n88zOgp725zUq1UlyQcLkCleA1+6D6OioqlSvgxVypdh0aqNKcovNCycDr2HUa5UcVbNn4aZqQme3q8xzp4NgGduHixft43lcyejUCjoN2IylcqVIn/e3MTFxTN17lImjRqItrZ80cwoTX9pwKTpIxk9dAp3bz+ke+8ObN+3mmplfyYo8F2S4ytWKcuf+45x6/o9oqKj6TeoGzv2r6FWxWa89fWn0E/5GTGmP53a9kNDAzbtWsH5s1d4+uQFWlpazFowiZGDJxMfLxVGdajbtBZDJvdn5qj5PLr7hN96tGLpzvn8WuV3goNCPnuejX1OBk3sy51r91TSnQvlpffIbgzuMAoNDQ0WbpnNtfM3efnUHS0tLcbOHsaMEXMz9Pn+2vv5h6goShX7ifq1qjF59uIU5fmjfKanJenmlHJZvjJRtWJZqlYs+9n9jevVVHk8cmAP9h85yfOXHlQoU/Kz52lpaWFpYZ7sPndPb8qWLEqRQvkpUig/sxavxsf3LWamJixYsZ42zRtjk9M6dQX6DyIjPzB6ylwmjxrE6s07v3js4RNn6NmpLdUqlQOg7S8/c+3mPTbt3M/sSSPxefOWbNmMaFinOgBlSxXH/ZU3NSqX59ipc2hra1O3RuV0L9PX+J+5j/+Z+yk+PvSRJ6GPPJWPI70DsW1UFsvyBfDcdgZDR2tiwyN5/ec1AAIuPyF7Pjv8Tt3FrnlFFLFx+B67mebl+Jqvvc6XrNlM1YplGdavmzLNwd72i3kWLVSAooUKALBoZdIv45nhNfCl+7BDm18AuHHnQYrz27D9D3JaWzF93MeKp71tTuX/PTy9yZ/XifKlSwCQ3zk3Hp4+5M+bm4079lK6RFHl30xkjB59O7Fjy1727DgIwOihU6hdrxpt27dg+aJ1SY4f0HOUyuPhAyfSqEldqlSrwN7dh3DOlxvXx8+5fPE6AK6Pn+OcLzdPn7ygz8AuXLtyi/t3H6V7uUTy2vVqw8Hthzm8+xgAM0fOo0rtijT9rTGbl21P9hxNTU2mL5/ImnkbKFG+ONlNsin3OTk78OLJS25dvgOAm+tLnJwdePnUnQ59f+PO9fs8uf/l3gpp7Wvv500b1AYSWwtS6kf5TBfqkeW7OX2L2NhY/vjzONmzGVHAOc8Xj/XyeU3Npu1o0KoLoybPVukuUsA5D4+fviA0LJzHT18QHR2Ng50td+4/4skzN9q1apreRUnW9PnLqVaxLBXLfr6S9H8xsbHo6qr+aq2np8vdB4+BxC+iUVFRuD53+6eczyngnJvQsHCWrt3C2KF906UMGc2kiCPmZfMTeNUVgAj3t2gZ6GJSxBEdUyPMSuQl7IkXOiZGFBrVigdjN6k34GQkJCRw4cpNnHLZ0XPIOKo1bstvPQYn2xXqW2SG18CX7sPUOHvpGj8VzMfQ8TOo1rgtLTv3Y++h48r9+fI68cr7Nb5v/Xnz1g9P79c453HEy+cNB4+dYmCPjv+1SOIb6OjoUKxEYS6eu6pMUygUXDp/jdJli6coDwNDfbR1tAkJCQXA9ckLcjs7YWtvg10uG/I4O/LU1Q1Hp1y0+f0X5sxYki5lEV+nraNNwWL5uX7xtjJNoVBw4+ItipX+6bPndR/amXdBwfy582iSfW5P3XHIk4scdtbktM+BQ55cvHzmgZ2jLU3aNGLlrLXpUpaMJp/p4r/I8i0TKXHu8nVGTJpFVFQ0VhbmrFk0AzNTk88eX6xwAaaPG4aTgz2BQe9YsWE7HfuO4ODWlRgZGVK5fGl+rl+Ltt0Hoa+nx4zxwzA00GfavOVMHzeU3QeOsmPvIUxNTZg8ciDOeRzTvYzHTp/D9flLdq1LWZNo5fKl2bJrP2VKFCGXnQ3Xbt3j7/NXiE9IbOo1Mc7OjPHDGDttPlHR0TRpUJvK5UszYeZCfv+1Ca993zJg1GTi4uLp260d9WpWTc/ipbn6d5aia2GMprYWT+ftw3PHOQBiQyO4M3AVpZb2QUtfF+8/LuJ/7gElF/TAY8NfGDpYU37zcDR1Es97c+SGegsCvAsOIfLDB9Zv28OAHp0Y2qcrl67fZvDY6WxYOouyJYulKl91vwa+dh+mhs+bt+w+eJSObVrQo2MbHrk+Z+bCVehoa9OsUV3yOjkwqFdnegweC8CgXp3J6+RA90FjGNq3K5dv3GbF+u1oa2sxenBvypT4fN998d+ZW5iira1NYECQSnpAQBB58325K+f/jZs8DL+3/soKidtzd2ZPW8Su/YlfImdNXYTbc3d2HVjH9EnzqVGrCkNH9yUuNo6JY2Zy/crtL2Uv0pCpuQna2tq8C1DtvvYuIBgn5+Q/R4uXK0qz3xrze92uye5/9cKTFbPWsGLXQgCWz1zNqxeeLN+9kCXTV1KxRnl6Du9CXGwc8yYu4e61lLd0ZyZZ/TM9ObJoXcpJZSIFypUqzr5NywkOCWXv4RMMnzCTHWsXYfGZMROfNj8WcM5N0cIFqPdrJ06cucivTeoD0K9be/p1+zg4d8WG7VQoUwJtbW1Wb97FgS0rOH/lBmOnz2PPhqXpWj5fvwBmLVrN2kUu6H2hj/ynRg/qxeTZS2jye080NCCXrQ3NG9flwJG/lMfUqV6ZOtU/NnvevPuA524ejB3Sh0atuzFnyigszc35rccgSpco+tm/Z2Z0sflUtA31MSvtzE/j2vLe4y2vDyZ+2fA9fgvf4x8HrllULIhxYQcejNtMnasLudVnKdH+oVQ/Po3Aa0+JCQxTVzEASEhIfMesWbUiHdsmdv0pmD8v9x4+Yc/BY6muTIB6XwMpuQ+/VUKCgp8K5mNw784AFMrvzAt3T/YcPEazRnUBaPNLY9r80lh5zp/HTmFoaEDxIoVo8lsPdq1bjJ9/ICMmzuLk3o1Jfg0UmUe/wd1p2qIhrZp0Jjo6Rpm+deMetm7co3zcqm0z3r+P4PbN+1y4eYTGtdpgY5uTFevmUbFEPWJiYtURvvgKQyMDpi4dz4wRcwh9F/rZ4/Zt+ZN9W/5UPm7cqgGREZE8vPWIfZe207FhT6xtrHBZOZmm5VsT+x0+31n9M138N1KZSAFDA30c7G1xsLeleJFCNGrTjf2HT9KjY5uvnwwYZ8+GYy47vHzeJLvf3dObIyfPsHfjMvYf/YsyJYpgbmZK/VrVmOCykIiIyFT/kpoST5694F1wCK279lemxccncPveI3buP8yds4eSzFRhbmbKklkTiY6OISQsDGtLCxau3KDSf/xTMTExTJ+3nJkTR+Dl40t8fLzyS6pjLjsePn5KjSoV0q2MaS3SKwCAsKfe6FmZUHD4r8rKxKc0dbUpPqsrt/uvwMgpB5ramgRdTexf+97dF/OSzrw9dSdDY/83M1NjtLW0yOvkoJKexykXdx48SbPrqPs18LX7MCWsLMyT/TudPnc52eODQ0JZuXEHm5bP4eHjZzjmslNucfFxvPJ+Tf68KfuFXHy7d0EhxMXFYWlloZJuZWVBgH/gF8/t1b8z/QZ3o23z7rg+fv7Z48zMTRkyqg+/Nu5EyTLFcHfzxMPdCw93L3R0tMnj7MTTJy/SpDziy0LehRIXF4e5leo4KXMrM4L8g5Icb+9kh52DLQs2z1KmaWom9v6+5n2WX6u047Wn6vuFibkJPYZ1oecv/SlSqjBe7t54e/jg7eGDto52Yjeop+7pULr0ldU/08V/I2MmUiEhIYGY2JT/8hAZ+QHv175YWSYdCKpQKJg6ZwkjB/TA0NCAhPgEYuPiAIj759/4hIS0CfwzKpQuwYGtK9m7ably+6lgPhrXq8neTcu/OOWdnp4uOawsiYuP59S5y9SsWjHZ41Zv2kWVCmUoXMCZhIR44j6Z+SIuLj7dy5ieNDQ10NLTSXZfgcG/4H/2PqEPX6GhpYnGJ39LTW0tNLTUfwvq6OjwU6H8eHj5qKS/8n6NbRpOBKDu18CX7sOUKlmsMK/+9Xfy9Hr92QkTZi9ZQ4fWzclpbUV8QrzynobECntC/Pf7uv8exMbG8uDeE6pU//ilRkNDgyrVynP75ue7o/QZ2JXBI3rTvmUvHtx7/MVrTHEZxdoVW/B944eWpiY6Oh9/o9PS1kJLU2buyihxsXE8ffCcclVKK9M0NDQoW6U0D24nfR5fuXnRpkZH2tXpqtwu/HWZW5fv0q5OV/zeJB1jNWzKAHau2YO/bwCaWppoa3/yfGtpoZUJ3tP/C/lM/0iRoJFpt8wmy7dMREZ+UPml8vUbP54+f4mJcXZMTIxZs3kXNauUx8rSnOCQMHbuP4x/YBD1P+kP2G3gaGpXq8TvLRMHTs9dtpYalctjmzMH/oFBLF+3DS0tTRr9MwvCp/YdPoGZqYmyBl+yWGFWbNjG/UeuXLx2i7xODsppJ9OLkZEh+fI4qaQZGOhjapxdmT5m2jysLS0Y0qcLkDhfvl9AEAXz5cE/IIgVG7ahUCjo2q5lkvxfenhy4swF/ti4DIDcjrnQ1NRk3+GTWFqY4eHlTZFC+dO1jJ+jZahHttwff3kxdLDC5CdHYkLe8+F1EIXHtkHfxpw7A1Ymxt6lLh98ggh3S3zNWFYoiHOfxrivO5kk7+z57bBrVoGzdRP7z4e7vUGRoMDxtxpEBYSQzdmW4Htfn/87LXzpdW6T05ouv//K8ImzKFOiCOVKFefStVucv3ydjUtnK8/592sgNjaWlx5e//w/Dr+AIJ4+f4mhoUGSmaDU8Rr42n0YGPSOwKBg5d/lxctXGBkaYJPTGhPj7EDSe7tDm+Z06DWMNZt30aB2NR4+ecbeQ8eZNHJgkutfuXEHT+/XuIwfBkCRQvnx8PTh4tWbvPUPQFNTEydH+zQts0hq7YrNLFzhwoO7j7l75yE9+nTAwMiA3dsT10VZvNIFX19/Zk1dBEDfQd0YPqY//XuMxNvrDVbWlgBEREQSGRGpknfVGhXJndeJQX0S7/H7dx+RN19uatapgq2dDQnxCbx088i4wgq2r97N5MVjeXL/KY/vufJ7j1YYGBpweFfi7E5TlozD/20gy11WExMdw8tnqs9PeGjiejP/TgcoX60MDnlyMWngDACe3HuKo7MjlWqVJ4etNQkJ8Xi+9ErnEn79/Tw0LBzft/74Bya2xvz/hyJLCzPl7HY/6me6UI8sX5l49PQFXQd8nApwztLE+fKbNazDxBED8PD05tDx0wSHhmJqbEyRQvnZvGKuyqBo79e+BId+7Pfu5x/IyEmzCQkLw9zUhJLFfmL76oVJ1qUIfBfMms272LZqgTKtaOECdGrbgr4jJmFuZqr8IqJuvn7+aGp8rA1Hx8SwdO1mfN68xdDAgKoVyzJzwogkFR+FQsHkOUsYMaAHhgb6AOjr6TF93FBmzF9BTGwsY4f0JYeVZYaW5//MSuShyv4JysdFp3YAwGv3ee4MWo1+DlMM7T52kdDQ1KDwuDYYOlihiEsg4pUfj6fv4tWWv5PkXWJudx5O3kZ8ZDQACVGx3Bm8iuIzO6Opq8ODsZuIehucziVM9KXX+Yzxw6hTvTITR/Rn3dY9zFy4CicHexbOGE+p4kWU5/z7NeAf+I6WXT52jdu0cx+bdu6jTMmibFo2R5murtfA1+7D3QePsXLDx6kiO/UbAcD0sUNp3jhx/MO/7+2ihQqwaOYEFq/axKpNO7CzycmoQb34uX4tlWtHRUfjsmAF86aOUXabyGltxZghfRjvshBdHR1mjB+Gvp5empZZJHXowAnMLc0ZPrY/VtaWPH74lPYteykHZdva2yjHDQF07NoGPT1d1m5ZpJLP/FnLWTB7hfKxvr4eM+aMo0/X4Sj+Ganp+8aPCaNcWLBsBjExMQzuO5aoqOj0L6RQOnXoDGYWpvQe2Q0LK3OeP3ZjwO/DeReY+F6b0y6HyvOdUnr6uoycMYQxvScpn29/3wDmjl/ExIVjiI2JZdJAF6KjYr6S03/3tffzsxevMd7l4/eKEZMSu3H16dpOOVbzR/1MF+qhoVBkrvHqCoUCDY3/1oQTG/j99VcUqXe0yHh1h6AWjR8lXaxI/LgMbL//2VFSI4eRqbpDUAu/iBB1h6AWJSy+PO36j+rqw83qDkEtdCwz7/P9skjqJurICHkfJe0NoU6ZrnOfnp4erq6u6g5DCCGEEEII8RVq6+Y0dOjQZNPj4+OZNWsWFhaJXUsWLFiQ7HH/Fx0dTXS0ajOyZnQ0etJ9QAghhBBCiHSltsrEokWLKF68OKampirpCoUCV1dXjIyMUtTdaebMmUyZMkUlbfyIgUwcOSgtwxVCCCGEEFmE4vufkCrDqK0y4eLiwpo1a5g/fz61an0cvKijo8OmTZsoXLhwivIZM2ZMklYOzfDXaRqrEEIIIYQQIim1jZkYPXo0u3fvpk+fPgwfPpzYb1i34VN6enoYGxurbNLFSQghhBBCiPSn1qlhy5Yty+3bt+nXrx9lypRh+/bt/3kmp/Rw695DNu7Yy5OnbgQEvWPxzAnUrlZJuX/5+m2cOH2et/4B6OjoULiAMwN7dqLYTwWVx/QfOZmnbu68Cw7BOHs2KpQpydA+XbH+18qs34t1W/ewaNVG2rdqxujBvYHEefvnLV/P1Zt3iYyMxMnBnp4d21K3ZhU1R/vfWFQoSL6+P2NSLDcGOc243nkBviduKfcXHP4rds0qYmBnTkJMPCEPPHCduZvguxmzhkRa+drrfNz0+fx5/LTKOZXLl2b1go+zSr3y8mH+8vXcffiE2NhY8jvnZkD3jpQrXTzd4l6+fpvKFK8AuR3sObxzLQDR0THMXbaW46fPExMbS+VypRk/vB+W5mYAHDx6SmUaxU+dP7ITi0+mdP7z2Cn2Hj7B1pXzCXwXzMIVG7hy4w7h7yMoXaIIY4f0wTGXnfL4r90Tr339WLVpBzdu3ycwKBgrS3N+rl+LXp3aoqOT/EKIIn31H9Kdhj/XxTlfbqKiorh14x4ukxfw0u2VukMTGaBT/3YMGNebHWv3sGDiUnWHk2pfez8/de4yew4e5ckzN0LDwtm7cRkF8+dV7n/t60f9lp2TzXv+tLHUr/Xjzy6XoMh830czK7WvM5EtWzY2b97Mrl27qFOnDvGfrKKYWXz4EEUB5zz80rgeg8cmnY7TKZcdY4f2xd42J9HRMWzZfYCeQ8ZxbPd65Zz25UoVp0fHNlhZmuMXEMS8ZesYMn4G21d/eYB5ZvTQ9Rl//HmM/M65VdLHTJtH+PsIls2ehKmJMcdOnWPYxJnsXr+YQvmd1RTtf6dlqEfoY088d56j/MakEwe8f+nLg7GbiPD0R8tAh7w9G1Fp9xhOVRxCTFC4GiJOna+9zgGqVCjD9LFDlI///YW338jJONjbsn7JLPT1dNm65yD9Rk7i+J4NysWS0oNzbkfWLXZRPv501fbZS1Zz4epNFkwfSzYjI1wWrGDw2OlsWzUfgAZ1qlGlQmmV/MbNWEB0TIxKRQLgzMVr1KxSAYVCwaDRU9HW1mbJ7IlkMzRiy+79dB80lj+3r1bOv/61e8LD0xtFgoKJIwbgYG+Lm7snk2Yv5kNUFCP690inv5b4kgqVyrJ53U7u3X2ItrY2oycMYsf+tdSo0JQPkR/UHZ5IR4WLF6RFh6Y8f+ym7lD+s6+9n3+IiqJUsZ+oX6sak2cvTrI/p7Ul5w6p/kjzx5/H2bhjH1UrlEm3uMX3Se2Vif9r27YtVapU4fbt2zg6On79hAxUtWJZqlYs+9n9jevVVHk8cmAP9h85yfOXHlQoUxKAjm1/Ue63zZmD7u1bM3DMVGLj4tDRzjRPw1dFRn5g9JS5TB41iNWbd6rsu/fIlQnD+1O0cAEAenX+jS27D/D4qdt3XZnwP3Mf/zP3P7vf58AVlcePJm3DqV1NjAs5EHjpcXqHl2a+9joH0NXR+WylIDgkFE/v10wdPZgC/1Q0h/Tuwq79R3jh7pmulQktLa1k8w9/H8H+I38xZ/JIypcuAcC0cUNp+ntP7j9ypXiRQujr6aksHvcuOITrt+8zdcxglbyio2O4cvMOg3p3xtP7NfcfP+Xg1lXKBSwnDO9PjSa/c+zUOVo2bQB8/Z6oUqEMVT75YM5lZ4OHlw97Dh6VyoSatG/VS+Xx4L7jeOh2iWIlCnP9ym01RSXSm4GhAdOWT2TG8Dl0G9xJ3eH8Z197P2/aoDaQ2AKRnOTeU/++cIX6tatiaGiQdoGKH0KmWmfC3t6eZs2aYWRkpO5QUi02NpY//jxO9mxGFHBOfjGW0LBwjvx1lhJFC31XFQmA6fOXU61iWSqWLZlkX4kihTjx9wVCw8JJSEjg2OlzxMTEUK5UMTVEqh4aOlo4dahFbGgEYU+81B1Omrt59wHVGrfl57bdmTp3KSGfrA5tamJMbgd7Dp34m8gPUcTFxbPnz2OYm5lSuED6Via9fF5Ts2k7GrTqwqjJs/F96w/Ak2cviIuLU1bqAfI45sImhzX3Hz1NNq9DJ/7GQF+Pev/qnnft9j1yWFqQxzEXMf+M8dLV/dgyo6mpiY6uDncffKxApuaeeB8RgXH27N/+RxDpwtg48bkICQ5VcyQiPY2aOYTLf1/lxkWpMCbn8dMXPH3hToufM+9CbmlNodDItFtm8319k83Ezl2+zohJs4iKisbKwpw1i2ZgZmqicsyCFevZue8wH6KiKf5TQZbPnfKZ3DKnY6fP4fr8JbvWJW0ShcR+lMMnzqRyw9Zoa2mhr6/HIpcJONjbZnCkGS9H3ZKUXTUALQNdovxCuNxmJjHvvp8uTilRuUJp6lSvjJ1tDrxf+7J49SZ6D5vA9tUL0NLSQkNDg7WLXRg4ehrl67ZAU1MDc1NTVi+Yholx+n05Lla4ANPHDcPJwZ7AoHes2LCdjn1HcHDrSgKDgtHR0cY4ezaVcyzMTQl89y7Z/PYfOUmjujVUWisAzl68So0qFQDI/U+FZPHqTUwcMQBDA3227D6An38gAUEf8/3We8LL5w079h5ieP/u/+VPItKIhoYGU2aO4sa1Ozxz/f67vojk1WtWm4JF89OxYU91h5Jp7T9ykjxOuShZNGUzbYqsJVO1THzPypUqzr5Ny9m2aj6VK5Rm+ISZBAWHqBzT5feW/LFxGWsWzkBTS5Mx0+ahUCjUE/A38vULYNai1cyaNBI9Pd1kj1m2dgvh7yNYt9iFXeuX0LFtC4ZPnMnzlx4ZHG3GC7z8hLO1x3Dh58n4n71P2TUD0bU0VndYaapRnRrUrFqB/HlzU7taJZbPmcIj1+fcvPsASFwjZsb8FViYmbB5xVx2rl1MrWoV6T9yMgGByX9xTwtVK5alfq2qFHDOTeXypVk5byrh799z4szFb87r3iNX3F95J/n1TaFQcO7ydWr+U5nQ0dZmkct4Xnm9pnLD1pSp3Zwbdx5QtUIZNDU/vq1+yz3hFxBIr6HjqVezKi2bNvzm2EXac5k3ngKF8tG323B1hyLSSQ5ba4ZNG8j4ftOIiY5RdziZUlR0NMdOnctSrRLi20jLRBoxNNDHwd4WB3tbihcpRKM23dh/+CQ9OrZRHmNmaoKZqQlODvbkccpFnV86cv/xU0oUKaTGyFPmybMXvAsOoXXX/sq0+PgEbt97xM79hzm8Yy079h1W6UNeMF8e7tx/xM59R5g0coC6Qs8Q8ZHRRLzyI+KVH8F33KhzZQGOv9XgxdJD6g4t3eSys8HM1BgvH18qlCnJ9dv3OH/lBldO7CHbP10VCxfoz9Wbd/nz+Gm6d2idIXEZZ8+GYy47vHzeUKlcSWJj4wgLf6/SOhH0LgRL86RjLPYdPkHBfHn4qWA+lfSHT54RHx9PiaIf79WfCuZj3+blhL+PIDY2FnMzU37rMVh5rpfPmxTfE/4BQXQdMJoSRQszedTANP17iNSZPmccdepXp0WjTvi+Sb5fufj+FSxWAAsrc7b9tU6Zpq2tTckKxWndpQWVHGuTkJC1Vy/76+wlPkRFK8dZZBWKhMzXnSizkspEOklISFD2q06OIiGxRSImJnXra2S0CqVLcGDrSpW08TMWkNsxF93atyIqOhoADU3Vm09TUxNFFlxGUkNTAy29H3tqz7f+AYSEhmP1zyC9qKjE14CmhmqDp6aGRoZ+GEdGfsD7tS9NGtSmcIF8aGtrc/3WPeV0rB6ePvj6+VO8SMEk5538+yKDe3dOkueZi9eoVrGcyixR/5c9W2LFydP7NY+fvqB/9w4AKb4n/AIC6TpgNIULODN97BCVlg2hHtPnjKNB49q0atIZby9ZBPVHdvPiLdrU6KiSNnHRGDzdvNi8bHuWr0hAYhenmlXKK2enFOLfpDKRApGRH/DyeaN8/PqNH0+fv8TEODsmJsas2byLmlXKY2VpTnBIGDv3H8Y/MIj6NRPnYX7w+CmPXJ9TqthPGBtnw/u1L0vXbiWXnQ0l/vWFJrMyMjIkXx4nlTQDA31MjbOTL48TsXFxONjbMnXOUob3746JcXbOXLzK1Zt3WT5nslpiTitahnpky51T+djQwQqTnxyJCXlPTPB78g9qztuTt4nyD0HXPDt5utRFP6cZrw9fU2PU3+6Lr3Pj7KzYsJ26NSpjaWGO9+s3LFixAQd7WyqXLwVA8SKFMM6ejbHT59O7y+/o6+my99AJfHz9qFapXLrFPXfZWmpULo9tzhz4BwaxfN02tLQ0aVSnOtmzGdHi53rMWboWE+PsGBkZ4rJwJcWLFKL4v1oEj/99gfj4eH6uXyvJNc5duka/fyoJ/3fyzEXMTE2wyWHFC/dXzFq0ilpVK1K5fOI0s7kdc331nvALCKRL/1HY5rRmeP/uBId8HOSbnrNfic9zmTeB5i0b0fX3Abx/H4mVtSUA4WHhygqz+HFERnzg5TPVbodRkVGEBIcmSf+efOn93CanNaFh4fi+9cc/MAgADy8fACwtzFTee7x83nD73iNWzpuasQUQ3xWpTKTAo6cv6DpglPLxnKVrAGjWsA4TRwzAw9ObQ8dPExwaiqmxMUUK5WfzirnKrg36+nqcPn+F5eu38SEqCisLcyqXL02vaWPQ1U1+/MH3Rkdbm5XzprJw5Ub6jZzMhw8fyGVvy4zxw9L1i2RGMCuRhyr7JygfF52a+KXSa/d57o3cQHZnGxxaD0bXPDsxwe8JufeSi82nEv7s+/pF80uv8wkj+vP8pQeHjp8m7H0E1pbmVCpXiv49Oipfw2amJqyaP40lazbTbeBo4uLicM7tyNJZEymYL/mZzdKCn38gIyfNJiQsDHNTE0oW+4ntqxcqf0UbNbAXmpqaDB43ndjYWCqVK82E4f2S5LP/yEnqVK+UZLC2l88bvF6/UVYS/i8g6B1zlq4h6F0IVhbmNG1Qm95dflPuT8k9cfXG3cT8fd5Qu7lqZeXR5eNp8ecR36hTt7YA7Du6WSV9SN9x7Nl5UA0RCfHtvvR+PmP8MM5evKayWOeISbMA6NO1Hf26tVem7z/yFzmsLalUrlQGRZ55fCdDWjMFDcX3MgL4G8QGuqs7BJGBjhYZr+4Q1KLxo+QXlhNpa/Ou/Vy7eZeV86epNQ4D2x9/xdnk5DAyVXcIauEXEaLuENSihEX6/fCQmV19uPnrB/2AdCwz7/Ptmq+RukP4rEIvjqk7BBXSOVcIIb4gh5Ul3Tu0+fqBQgghRBYk3ZyEEOILGtSupu4QhBBCZDCZzSnlpGVCCCGEEEIIkSpSmRBCCCGEEEKkinRzEkIIIYQQ4hMJCunmlFLSMiGEEEIIIYRIlRS1TBw6dCjFGTZt2jTVwQghhBBCCCG+HymqTDRv3jxFmWloaBAfH/9f4hFCCCGEEEKtFNLNKcVSVJlISEhI7ziEEEIIIYQQ3xkZMyGEEEIIIYRIlVTN5hQREcH58+fx8vIiJiZGZd/AgQPTJDAhhBBCCCHUQaFQdwTfj2+uTNy9e5dGjRoRGRlJREQE5ubmBAYGYmhoiLW1tVQmhBBCCCGEyCK+uZvTkCFDaNKkCcHBwRgYGHDt2jU8PT0pXbo08+bNS48YhRBCCCGEEJnQN7dM3Lt3j9WrV6OpqYmWlhbR0dHkyZOHOXPm0KlTJ1q0aJEecQohhBBCCJEhZNG6lPvmlgkdHR00NRNPs7a2xsvLCwATExO8vb3TNjohhBBCCCFEpvXNLRMlS5bk5s2b5MuXj+rVqzNx4kQCAwPZunUrRYoUSY8YhRBCCCGEEJnQN7dMuLi4YGNjA8CMGTMwMzOjT58+BAQEsGbNmjQPUAghhBBCiIykUGhk2i2z+eaWiTJlyij/b21tzYkTJ9I0ICGEEEIIIcT3QRatE0IIIYQQQqTKN7dM5M6dGw2NzzexuLu7/6eAhBBCCCGEUCdZtC7lvrkyMXjwYJXHsbGx3L17lxMnTjBixIi0iksIIYQQQgiRyX1zZWLQoEHJpi9fvpxbt27954CEEEIIIYQQ/92FCxeYO3cut2/fxtfXlwMHDtC8eXPl/s6dO7N582aVc+rXr/9NY6LTbMxEw4YN2bdvX1plJ4QQQgghhFokKDQy7fYtIiIiKF68OMuXL//sMQ0aNMDX11e57dy585uu8c0tE5+zd+9ezM3N0yo7IYQQQgghxH/QsGFDGjZs+MVj9PT0yJkzZ6qvkapF6z4dgK1QKHj79i0BAQGsWLEi1YEIIYQQQgghviw6Opro6GiVND09PfT09FKV37lz57C2tsbMzIxatWoxffp0LCwsUnz+N1cmmjVrplKZ0NTUxMrKiho1alCwYMFvzS5d1C3RU90hqMWdYJlJKys5U2KoukNQi+G8V3cIavHhzUV1h6AW0S6D1R2CWtiufqTuENSirJ6NukNQi4FlRqs7BLVY+WqPukP4rMy4ONz/zZw5kylTpqikTZo0icmTJ39zXg0aNKBFixbkzp2bly9fMnbsWBo2bMjVq1fR0tJKUR7fXJlITaBCCCGEEEKI/27MmDEMHar6g2JqWyXatm2r/H/RokUpVqwYefPm5dy5c9SuXTtFeXzzAGwtLS38/f2TpAcFBaW4BiOEEEIIIYT4dnp6ehgbG6tsqa1M/FuePHmwtLTEzc0txed8c8uE4jOreERHR6Orq/ut2QkhhBBCCJGpfOusST8KHx8fgoKCsLFJeZfDFFcmlixZAoCGhgbr1q0jW7Zsyn3x8fFcuHAh04yZEEIIIYQQIqt7//69SiuDh4cH9+7dw9zcHHNzc6ZMmcKvv/5Kzpw5efnyJSNHjsTZ2Zn69eun+BoprkwsXLgQSGyZWLVqlUqXJl1dXZycnFi1alWKLyyEEEIIIYRIP7du3aJmzZrKx/8fa9GpUydWrlzJgwcP2Lx5MyEhIdja2lKvXj2mTZv2Td2mUlyZ8PDwAKBmzZrs378fMzOzFF9ECCGEEEKI70Xynfq/PzVq1PjsEAWAkydP/udrfPOYibNnz/7niwohhBBCCCG+f988m9Ovv/7K7Nmzk6TPmTOHVq1apUlQQgghhBBCiMzvmysTFy5coFGjRknSGzZsyIULF9IkKCGEEEIIIdQlQaGRabfM5psrE+/fv092ClgdHR3CwsLSJCghhBBCCCFE5vfNlYmiRYuye/fuJOm7du2icOHCaRKUEEIIIYQQIvP75gHYEyZMoEWLFrx8+ZJatWoB8Pfff7Njxw727t2b5gEKIYQQQgiRkRSZsDtRZvXNlYkmTZpw8OBBXFxc2Lt3LwYGBhQvXpwzZ85gbm6eHjEKIYQQQgghMqFvrkwANG7cmMaNGwMQFhbGzp07GT58OLdv3yY+Pj5NAxRCCCGEEEJkTt88ZuL/Lly4QKdOnbC1tWX+/PnUqlWLa9eupWVsQgghhBBCZLiETLxlNt/UMvH27Vs2bdrE+vXrCQsLo3Xr1kRHR3Pw4EEZfC2EEEIIIUQWk+KWiSZNmlCgQAEePHjAokWLePPmDUuXLk3P2IQQQgghhBCZWIpbJo4fP87AgQPp06cP+fLlS8+YhBBCCCGEUBsFMptTSqW4ZeLSpUuEh4dTunRpypcvz7JlywgMDEzP2IQQQgghhBCZWIorExUqVGDt2rX4+vrSq1cvdu3aha2tLQkJCZw6dYrw8PD0jFMIIYQQQgiRyXzzbE5GRkZ07dqVS5cu8fDhQ4YNG8asWbOwtramadOm6RGjEEIIIYQQGSZBkXm3zCbVU8MCFChQgDlz5uDj48POnTvTKiYhhBBCCCHEd+A/VSb+T0tLi+bNm3Po0KG0yE4IIYQQQgjxHUjVCthCCCGEEEL8qBJkNqcUS5OWiR9R805N2XV1G3+5HWPF4aUULFHgi8dnMzZi0PQB7Lu9m79eHmPrhU2Ur1VOub/OL7XYc2MHhx8doO/E3irn5rTPwdYLmzDMZpguZfkWPXp24OGTC/gHuXLm3H5Kly722WMLFsrH1u0rePjkAmER7vTt1yXJMa3bNOPJs0t4+tzFZdY4lX0ODnbcufc32bNnS/NyfKusVu5s5QvjvHEcxW5toIzPQUzrl//i8U4LBlLG52CS7ae/lyiPMf+lGsVurKPEo23YT1T9m+jaW1PkwnI0sxmkS3m+1Y9+f0dERDJr0SrqtuhE6ZrNaNdrKA9dnwEQGxfHghXr+aVDH8rWbk7Npu0YM20e/gFBX8yz3q+dKFK5YZJt+vzlymPmLFlDpQatqP1LB46cPKNy/skzF+k3clLaF/YLdGq3xGDwfIxcdmE4ZQv6XcaiYWWX4vO1S1Ql24JD6HcZq5pvjeYYTtmC4ZQt6FRvrrJP0yE/BkMWgKb6P16z2vva/1XvUJ/pl5ax5Nk2Rh6cgWPxvJ89VlNbi0YDf2Xq+SUsebaNccfnULh6cZVjyjarwowrK5h/fwO/ju+oss/c3orJZxahnwne27JquYX6qf/dLhOq2aQGfSf2ZtPCrfRo2JuXT9yZu20WphamyR6vraPNvB1zyJkrJ5N6TaVj9S7MG7mAQN/EqXNNzIwZMXcYK6etYXi70dRtUZuKtT9+eRvsMpA1M9cR+T4yI4r3WS1+bYzLrLHMmrmEqpWb8PChK/v/3IyllUWyxxsaGPDqlReTJ87h7Vv/JPvNLcxYunwm48fO5JemnWjTthkNGtRS7l+waBqTJs4hPPx9upUpJbJiuTUN9Yl84oHX+NUpOt570jruleys3O6X7UZccBjBR68AoG2WHae5/fCetpHn7SZj0aI6JrXLKM93dOmFz8ytJLz/kC7l+RZZ4f6eOGsxV2/eZebE4RzYupJK5UrRY9BY/AICiYqK5smzl/Tq/Bt7Nixjkct4Xnn50H/UlC/muWvdYs4d2q7c1i5yAaBezaoAnLt0jaOnzrFm4QyG9e3GpFmLCQ4JBSD8fQRL1mxm/NB+6Vvwf9HKW4TYy0f5sHgEUasngpYWBr2mgK7eV8/VMLNGt2kX4l8+VknXtHFCt0E7orfOI3rbPHQbtUPTxvGfnZrotexL9N4VkJCQHkVKsaz4vgZQ+ueK/Dq+I0cX78Wl8Sh8nngycMs4slsYJ3t80+Ftqfp7XXZP2sjUOkO5uP0UvVaPwP4nJwCMzLLTfnZv9rtsZUmHGZRvXpUitUopz/9tWjcOzt5BlJrf27JquUXmIJWJZLTq+StHdx7jxJ6TeL7wYsHoRURFRdOobYNkj2/UpgHZTbMzvttEHt16zFsfP+5fe8BLV3cAbBxtiAiL4Ozhczy7/4y7V+7jkC/xw6dWs5rExcZz8filjCreZ/Uf0I3NG3ezfetenj11Y/DA8Xz48IEOHVsle/ydOw+YMG4W+/YeITo6Jsn+3E65CAsLZ/++o9y584AL56+Rv2DiLyUtWzUhNjaWw4dOpmuZUiIrljvs7B3ezN1ByInrKTo+PjySuIAQ5WZUzBktk2wE7v4bAD3HnMSHRRJ8+DKR990Iv/II/Xz2AJg3q0pCbBwhx6+lW3m+xY9+f0dFR3P6/CWG9utGmRJFcbC3pV+39jjY27L7wFGyZzNi3WIXGtSuRm5He4oXKcTYoX148uwFvsl8ifw/czNTLC3Mldv5y9fJZWdD2ZJFAXD39KZsyaIUKZSfRnVrYGRkiI/vWwAWrFhPm+aNsclpnSF/g/+LWjOZuJtnSPDzJuHNK6J2LkbT3BpNe+cvn6ihiX77YcSc3ElC0FuVXZrWdiT4viLe7QHxLx6Q8OYVGtaJr3Wdmi2Id39EgrdbehUpxbLi+xpA7e4/c3nX31z94xxv3V6zc9xaYj7EULF1zWSPL/9LVU4sP8Djc3cJ9PbnwrZTPD57lzrdmwBg6WDNh/BIbh+5iueDlzy79hgb58TWrTJNKxMfF8+9kzcyrHyfk1XLnZ4UaGTaLbORysS/aOtoU6Bofm5fvKNMUygU3L54h8KlCid7TqV6FXly5wmDZwxk/90/2Hh6Le36/4bmP83cPh6v0TPQw/knZ7KbZqdg8QK4u7qTzSQb3UZ0ZvH4pRlSti/R0dGhRMkinD17WZmmUCg4d/Yy5cqVTFWeL1++wsBAn2LFC2NmZkKp0sV4/OgppqbGjJ8whOFDJ6dN8P9BVi33f2XZtg5hFx8Q8zoAgCiPN2ga6GHwU260TLNhVNyZD66v0DIxwnbE73iNX6vmiBNlhfs7Pi6e+PgE9HR1VNL19HS58+Bxsue8fx+JhoYG2bMbpegasbGxHPnrLL80roeGRuIHWwHnPDx++oLQsHAeP31BdHQ0Dna23Ln/iCfP3GjXSv1Th2sY/FO+yC+vi6Rbrw2K9yHEXT+VZF+8ryeaVrZomFqiYWaFppUdCb6eaFjkRKdsbWKOb0+P0L9JVn1f09LRwqFIHp5efqhMUygUPL38kDyl8id7jrauDrH/qjzFRMXgXDax62OAx1t09XWx/8kJQxMjnIrlxeepF4bGRjQZ2obdEzekX4FSKKuWW2QeMgD7X0zMTdDS1uJdQLBKenBgMA7OuZI9x9bBhpyVSnLq4N+M7jgWOyc7BrsMRFtHm80Lt/I+9D0zh8xh7OJR6Onr8te+U9w8f4sR84ZxYOOf2DjkxGXjNLS1tdi0cAvnj17MiKKqsLAwQ1tbmwB/1VXN/f0DyZ//8/0uvyQkJIzePUeweu18DPT12LXjAH+fvsiyFbNYs3orjk727PpjDTo62sycsYQ/Dx5Pi6J8k6xa7v9CJ4cZJjVL4d5/gTItPjQCjyGLyb14MJr6ugTtO0fY+Xs4zuuP/8Zj6DlYk2/jWDS0tXizcBfBR6+qJfascH8bGRlSvEghVm3aSR5HByzMTTl2+jz3Hz3Fwc4myfHR0TEsXLmBRnWqk80oZZWJvy9cJfz9e5o3qqtMq1y+ND/Xr0Xb7oPQ19NjxvhhGBroM23ecqaPG8ruA0fZsfcQpqYmTB45EOc8jmlW5hTR0ECvWXfi3Z+Q8Nbrs4dp5i6Edvm6RM4flOx+hb8P0Ue3YtB7KgDRR7eg8PdBv/dUoo9sQqtASXTr/wbx8UQfXEuCe/IVuPSUVd/XspkZo6WtRVhgiEp6WEAIOfLaJnuO64X71O7+My9uuBLo6UeBykUo2aAcGv/8WBAZFsHm4cvpPL8/Ovq6XNt/AdcL92k/uzfnt5zAIpc1fdaNREtbiyOL/uDu8ZS19qalrFpukXlIZSINaGhqEhwUwvyRC0lISOD5wxdY5rSgbe/WbF64FYBLJy5z6cTHX4mKVyhG3oJ5WDJ+GdsvbWZafxfe+b9j5ZHl3L/2kJCgEDWVJm0dOfwXRw7/pXxcuUo5ihQpyIhhk7n38CxdOw/Czy+As+cPcvnyDQK/Mgj0e/Ejl9uiZS3iwiIIOan64RFy4rpKt6lsFX7CsKAj3uPXUOTSKtz7zyfWP5hCR+YSfu0JcUGhGR16qnyP9/fMCcOZOHMhtZq3R0tLk0L5nWlYpzpPnql2v4mNi2PYBBcUCgUTRvRPcf77j5ykSoUyWP+r/32/bu3p16298vGKDdupUKYE2trarN68iwNbVnD+yg3GTp/Hng0Z22Kj16I3mjYOfFg6+gsHGaD/+1Ci9yyDiM+3XsRdPUHc1RPKx9plakH0BxJePcNwzAoiFw5D09QS/Q7DiZzeA+Lj0rIoavMjvq/tmbKRdrN6M/nvRSgUCgI9/bj6xzmV7kH3T97k/smbysf5yhfCrqADuydtYOr5JWwYuJiwgBBGHZyJ2w1XwoPC1FGUb5JVy/0t1Dvq6fsilYl/CX0XSnxcPOZWZirpZpZmvPMPTvacIP8g4mPjSfhkwJ2nmxcWOSzQ1tEmLlb1g0RHV4fBMwbiMmgWdrlt0dLW4v61BwD4uPtQqGRBrp7O2P7lQUHBxMXFYWVtqZJubW2Jn19AmlxDV1eXBQun0rPHMPLkdUJbW4vLlxL7XL5086BMmeKcOH7mK7mkraxa7v/Csm1t3u07hyL281+QNHS1cZzRC49Bi9DLbYOGtibvryX+Qhvt/gajkvkJPX3zs+enl6xyfzvY27Jp+VwiP0QRERGJlaU5wybMxN42p/KY/1ck3vj5s2HJrBS3Srx568e1W/dY5DL+i8e5e3pz5OQZ9m5cxv6jf1GmRBHMzUypX6saE1wWEhERiZFRxsxwpduiF1qFy/Bh+VgUoZ//gqtpkRNNixzod5vwMfGfblxGcw8QOasPin+NocAoO7r12/Jh2Rg0HfOTEPAGRaAv8YG+aGhp/zPGwjM9ivVZWfV97X1wGPFx8RhbmqqkG1uZEhYQkvw578JZ3XMu2no6GJlmI9QvmOaj2xHo5Zfs8dq62rSd1p1NQ5Zh7ZQTLS0tXlx3BcDP4w1OJfLx8O/baVmsr8qq5RaZh4yZ+Je42DiePXxOqSofZy3Q0NCgdJWSPLnzJNlzHt18jJ2TrbLvMECuPPYEvg1M8kUDoMPAdtw4d5MXj9zQ1NRCS1tLuU9bRwstrYx/WmJjY7l39xE1alRSpmloaFC9RiVu3LibJtcYOaofp09f4P69x2hpaaKt9bEuq62jjZaW1hfOTh9Ztdyplb1iEfRz2xKw6/QXj7MZ2JrQc3eJfOQOmppofPIa19DRRkMNr3HIeve3oYE+VpbmhIaFc+XGbWpVrQB8rEh4eb9h3SIXTE2Sn/ElOQeOnsLczIRqFct99hiFQsHUOUsYOaAHhoYGJMQnEBuX+LeK++ff+Aya7Ui3RS+0i1bgw8rxKN4l/0Xp/xL8fYic058P8wcpt/jHN4h3e8iH+YNQhAQmOUevWXdiz/+ZWEnR1ATNT36j09QCDXk/zyjxsfF4PXKnQKUiyjQNDQ0KVCqC+53nXzw3LjqWUL9gNLW1KNmgPA9O3Ur2uIb9f+XJ+Xt4P/ZAQ0sTzU/uby0dbTTV8N6WVcstMg9pmUjGH2v2MWbhSJ7df4brvWe07N4CfQN9ju9ObNYes2gUgW8DWTtrPQB/bjnML52bMWBqP/ZvOIB9bnva9f+d/RsOJMnbMZ8DNZvWoEf9xLnovV56oUhQ0KhtA975B+OQ14Gn959lXGE/sWzpelatmcfduw+5des+fft1wdDQkG1b9wKweu083rzxY8qkuUDiIL+ChRJnRdHV1cHGNgdFixUi4n0k7u6qv8QVKOhMi19/pkqlnwF4/uwlCQkJdOjYGn+/APLnz8ud2w8ysLQfZcVyaxrqo+f0sf+8Xi5rDArnJj4knJg3gdiNbo9OTgteDV6scp5l2zq8v/OMqGef73Oun88e86aVeVJ/KABRL1+jSFBg2bYOsf7B6Oe1I+L+i/QpWApkhfv78vXbKBQKnBzs8fJ5w/zl68ntYE/zxvWIjYtj6LgZPHnuxvI5U0hISCAw6B0AJsbZ0dFJHLjdbeBoalerxO8tPw6cTkhI4ODRUzRrWAdt7c9/Wdx3+ARmpibUqJJYeSlZrDArNmzj/iNXLl67RV4nB4wzYD0CvV97o12qGh82zIDoD2hkNwVAERUJsYmDT/V+G4wi7B0xR7dAXGyS8RSKDxFoQLLjLLTyl0DTypbonYsASPB6gWYOO7QKlkLD1AoSEkgIeJ2eRfysrPi+BvD3uiN0mt8Pr4fuvLrnRq1ujdAz1OPqH+cA6DS/HyF+7/hzzk4AnEo4Y5rDHJ8nrzDNaU7jwa3Q1NTgr9V/Jsk7p7MdpX+uiEvjUQD4ub1GkZBApdY1CQsIIWdeW17dV89MXlm13OkpM86alFlJZSIZZw+fw9TChC7DO2NuZYbbk5eM7DCG4H8GN+Wws0bxya9qAb4BjGg3mv6T+7Lh1FoC3gayb/1+dq7YnSTv4bOHsmLKSqI+RAGJsyfMGjKHQTMGoqurw+IJSwl8q55+pvv3HcXS0pyx44eQI4clDx+48mvzzspBfPb2tipdPWxsrLl89ajy8aDBPRk0uCcXL1yjccPfVfJestSFsaNnEBmZOCd1VFQ0fXqNZN7CKejp6TJ86CR8fb/8q2F6yYrlNiruTIE/pisf55rcDYDAPWd4NXQJOtbm6NlZqZyjld0Q00YV8Z607ot5O87ui/eUjSR8iAZAERXDqyFLcJjRE01dHbwmrCH27bs0LlHKZYX7O/x9BItWbcQvIBAT4+zUrV6Fgb06oaOtzWtfP85eSuxm1bKz6roPG5bOplypxIXNvF/7Ehyq2gf66s27+Pr580vjep+9duC7YNZs3sW2VR8H6BctXIBObVvQd8QkzM1McRk/LK2K+kU6lRsBYNhvpkp61M5FxN1M7IKjaWZFgkKRisx10WvRk6gtc+Gf8xWhQUTvX4Ne20EQF0vUzkXKSktGy4rvawC3j1wlm7kxPw9pjbGVKT6ur1jayYXwwMQxWuZ2lig+eb519HRoOrwtlg7WREdE8ejsXTYNWcaHsKTrwrSb2Yu907cQ8897W2x0LJuHr6Dt1G5o6+mwe+IGQv2S7y6Z3rJquUXmoKFQpOZdNHOrYV9H3SGoxZ1gd3WHIDLQGbPPr2b7IxuOehfFUpdT99aoOwS1iHYZrO4Q1MJ29SN1h6AW7azKfP0g8cNY+WqPukP4rL9ytFV3CJ9Vz2+XukNQIS0TQgghhBBCfEJmc0q5TFWZiIiIYM+ePbi5uWFjY8Nvv/2GhYXFF8+Jjo4mOjpaJS1BkYCmGga9CSGEEEIIkZWo9Rt34cKFefcuse+0t7c3RYoUYciQIZw6dYpJkyZRuHBhPDw8vpjHzJkzMTExUdm8wl9lQPRCCCGEEEJkbWqtTDx9+lQ5TeCYMWOwtbXF09OTGzdu4OnpSbFixRg3btwX8xgzZgyhoaEqm0N2pwyIXgghhBBC/IgSMvGW2WSabk5Xr15l1apVmJiYAJAtWzamTJlC27ZfHgCjp6eHnp6eSpp0cRJCCCGEECL9qb0y8f+FoKKiorCxsVHZZ2dnR0BA2qzWmZ46D+1I56EdVdK83LzoWKOrmiLKGJUql2XQ4J6UKFkEG5sc/NamF0ePnFJ3WOkuq5Q7W/nC5Oz9C4ZF86Kb0xy3bjMJOXldud9pwUAsW9dSOSf03B1etJ+a0aGmq8x6f8fHx7Ni/XaO/HWGwKBgrCzNad6oLr06/4aGhgaxcXEsXbOZi1dv4fPGl2xGRlQoW5IhvbtgbZU4Fu3GnQd0HTAq2fx3rltE0UIFlI9v3n3A6Klz+fvA1q9eGxKniF24YgNXbtwh/H0EpUsUYeyQPjjmsgMgNCyc5eu2cuXGHXz9AjAzM6FW1YoM6NGR7NlSthr3f6VTuyXaRSuiaW2HIjaGhFdPiT6yGcUna0NoV6iPTqlqaNrnRUPfkPdjf4OoiAyJLyNllfe1f9PQ1ODnwa0p90tVjK1MCfV7x9W95zm+dJ+6Q0tXWbXcIn2ovTJRu3ZttLW1CQsL49mzZxQp8nEFR09Pz68OwM4sPJ56MOy3kcrH8XHxaowmYxgZGfLooStbt/zBjl2r1B1Ohskq5dY01CfyiQeBu0/jvG5MsseEnr2Nx9ClyseKmNiMCi9DZcb7e/22P9h98Cgzxg/DObcjj58+Z/yMhWTLZkT7Vs2IiormybOX9Or8GwWc8xAWHs6sxavpP2oKezYsAaBk0UKcO7RdJd+la7dy/fY9ihTMr5J+9uI1alQun6JrKxQKBo2eira2NktmTySboRFbdu+n+6Cx/Ll9NYYG+vgHBuEf+I7h/buTx8kBXz9/ps5dRkBgEAtnjM+Qv6FW3iLEXj5KgtcL0NJCt1EHDHpNIXJOP4hJnNhDQ1ePuKd34Okd9H7ulCFxqUNWeV/7t/q9m1OtfV02D1vOmxc+OBbNQ8e5fYkKj+TspuPqDi/dZNVyfwtZtC7l1FqZmDRpksrjbNlUV0Q9fPgwVatWzciQUi0+Pp53AVlr0ZZTf53n1F/n1R1Ghssq5Q47e4ews3e+eExCdBxxASEZE5AaZcb7+94jV2pWrUD1SuUAsLPJwbFT53n4JHGF7ezZjFi32EXlnLFD+/Bb98H4vvXHJqc1Ojo6WFqYK/fHxsVx9uJVfm/ZVNnC8H9nL11j3NC+Kbq2p/dr7j9+ysGtq3DO4wjAhOH9qdHkd46dOkfLpg3Il8eJRS4fKw0O9rYM7NmJ0VPnEBcX/8UVttNK1JrJqo93LibbtG1o2juT4P4YgNgLh4DEisePLKu8r/1bntL5uX/qFo/O3gXgnU8AZZtWwbG4s5ojS19ZtdwifWSqysS/zZ07N4Mi+e/sctux99YuYqJjeXznCWtnrsf/jb+6wxIiXWWvWITi9zYRHxpB2OUHvJ6zg/iQcHWHleYy4/1dokgh9h46zisvH5wc7Hn6wp07Dx4zckCPz57z/n0kGhoaZM+efDeicxevERIWTvPGdVXS3dw9eRccQvnSxVN07ZjYxBYqXV0dZR6ampro6Opw98FjWjZtkOz1w99HkM3IMEMqEsnRMPjn7xL5472GRfLcbz+nyu+1sc5tg7+HL3aFHMlbpgB7p29Rd2jpKquWW6QPtXdz+hE8uevKrCFz8Xb3xsLagk5DOrBk/0K61O7Oh4gP6g5PiHQReu4OwcevEuPtj55jTuxGtSf/tgm4Nh0NCZlxvonUyaz3d/cOrYmIjKTJ7z3R0tQkPiGBgT078XP9WskeHx0dw8KVG2hUpzrZjJKvTOw/cpLK5UqR09pKJf3MxatULl8aHR2dFF07t2MubHJYs3j1JiaOGIChgT5bdh/Azz+QgKB3yV47OCSU1Zt20rJpw9T+Sf4bDQ30mnUn3v0JCW+91BODyHAnVx5EP7sBk/5eiCI+AQ0tTQ7N28XNPy+pO7R0lVXL/S0SpJdTikllIg3cOHtT+X93Vw9c77qy69oOajapzrFdJ9QYmRDpJ/jQxw+dD089iXR9RbErq8lesQjhlx+oMbK0lVnv7xNnLnDkr7PMnjwS59yOPH3hzuzFq7G2NKdZI9WWhdi4OIZNcEGhUDBhRP9k83vrH8DlG3eYPzXp+Jizl67x269NUnxtHW1tFrmMZ+LMRVRu2BotLU0qlClJ1QplUCRz7fcREfQdMYm8uR3o2639f/q7pJZei95o2jjwYelotVxfqEfpnytStlkVNg5awpvn3tgXdqLVxM6E+gVzbd+P2+0rq5ZbpA+pTKSD92ER+Lj7YOdkp+5QhMgwMV5+xAaFoueU84eqTPxbZrm/5y9fT/f2rWlUpwYA+fPmxvetP+u27lGpTPy/IvHGz58NS2Z9tlXi4NFTmBpnp0bVCirpAYHvcH3+Ujk+IqXX/qlgPvZtXk74+whiY2MxNzPltx6D+algPpX8IyIi6TV0AkaGBix2mYCOdsZ/LOm26IVW4TJ8WD4WRWhQhl9fqM8vY9rz18o/uXX4CgBvnnljYWdF/b7Nf+gv1Vm13CJ9yIIM6cDAUB9bJxuC/OVDSWQdOjYWaJtlJ9Y/cw1UTmuZ5f6OiopGQ1O1HV5TU5MExcff/v9fkfDyfsO6RS6Ymhgnm5dCoeDgsVM0aVg7yZf5c5evUaJoIUyMs3/Ttf8vezYjzM1M8fR+zeOnL6hZ5WNl5X1EBD2HjENHR5ulsyehp6eb8j9AGtFt0QvtohX4sHI8ind+GX59oV66BnooFKrdMhMSEpJMQPCjyarl/hYJaGTaLbORlok00Gd8T66cvoafjx8WOSzoMqwTCfEJ/H3wrLpDS1dGRobkyeuofOzklIuixQoR/C4UH583aowsfWWVcmsa6qPn9HHtF71c1hgUzk18SDhxIe+xHdqG4GNXifUPQc8xJ/bjOhH9ypew83fVGHXay6z3d43K5Vm7eRc2Oaxxzu2I63M3tuzezy+N6wGJFYmh42bw5Lkby+dMISEhgcB/xiuYGGdXjn8AuH77Hj5v3vJrk6QDo89euq5SAUjJtQFOnrmImakJNjmseOH+ilmLVlGrakUqly8N/FORGDyOD9HRLJ44goiISCIiIgEwMzVBSyv9B2Hr/dob7VLV+LBhBkR/QCO7KQCKqEiIjQFAI7spGtnN0LBMvBc0bRwh+gMJIQEQ+T7dY8woWeV97d8e/n2bBv1a8O51IG9e+JDrJydqd/uZK3/82J/fWbXcIn1oKBTJ/JT0nathXydDrzdx+TiKlS+KsZkxoe9CeXjjEevmbOCNp2+GxnEn2D1Dr1elanmOndiZJH37tr306TUymTN+DJml3GfMiqVr/tkrFqHAH9OTpAfuOYPn2FU4rxuDYZHcaBkbEesXTNiFe7yeu524wNB0jWs4GfsFLrPc36furVF5HBERydK1W/j7wlXeBYdgZWlOo7o16NPld3R0dHjt60f9lp2TzWvD0tmUK/Xx9TNy8mzevPVn26r5KsdFfoiiaqM2HNi6Egd72xRfG2DbH3+yccdegt6FYGVhTtMGtend5Tfl/i8tmHdy7ybsbHIAEO0y+Jv+Tt8i24JDyaZH7VxE3M0zAOjW/w3d+r998Zj0YLv6UbrlnZzM8r7WzqpMhl0LQM9In6bD2lC8XjmyW5oQ6veOW4cuc3TJXuJj1b+eTHrJLOVe+WpPhl3rW/2Z83d1h/BZzd7uUHcIKqQy8QPJ6MqEUK/0rkxkVhldmcgs/l2ZyJBrnrvM0rWbObQ946/9f+lZmcjMMroykVlkdGVCqFdmrkwczMSVieaZrDIhYyaEEEIky9BAn6F9uqo7DCGEEJmYjJkQQgiRrP+PbxBCCCE+RyoTQgghhBBCfOLHWXo1/Uk3JyGEEEIIIUSqSGVCCCGEEEIIkSrSzUkIIYQQQohPJMgCfikmLRNCCCGEEEKIVJHKhBBCCCGEECJVpJuTEEIIIYQQn/jhVnROR9IyIYQQQgghhEgVqUwIIYQQQgghUkW6OQkhhBBCCPEJWbQu5aRlQgghhBBCCJEqUpkQQgghhBBCpIp0cxJCCCGEEOITCbJmXYpJy4QQQgghhBAiVaQyIYQQQgghhEgV6eYkhBBCCCHEJxKQfk4pJS0TQgghhBBCiFSRyoQQQgghhBAiVaSbkxBCCCGEEJ9QqDuA74i0TAghhBBCCCFSRSoTQgghhBBCiFSRbk5CCCGEEEJ8QhatSzlpmRBCCCGEEEKkirRM/ECy6xqoOwS1CI/5oO4Q1KJW8AN1h6AW1S0KqzsEtbBwrKPuENQiyPO0ukNQi8hlVdUdglrcjPZVdwhqcS/IXd0hqMVKdQcg0oRUJoQQQgghhPhEgroD+I5INychhBBCCCFEqkhlQgghhBBCCJEq0s1JCCGEEEKIT8iidSknLRNCCCGEEEKIVJHKhBBCCCGEECJVpJuTEEIIIYQQn5BF61JOWiaEEEIIIYQQqSKVCSGEEEIIIUSqSDcnIYQQQgghPiGL1qWctEwIIYQQQgghUkUqE0IIIYQQQohUkW5OQgghhBBCfEK6OaWctEwIIYQQQgghUkUqE0IIIYQQQohUkW5OQgghhBBCfEIhi9almLRMCCGEEEIIIVJFKhNCCCGEEEKIVJFuTkIIIYQQQnxCZnNKOWmZEEIIIYQQQqSKVCaEEEIIIYQQqSLdnIQQQgghhPiEdHNKOWmZEEIIIYQQQqSKVCaEEEIIIYQQqSKVic9o3qkpu65u4y+3Y6w4vJSCJQp89tgGrepxzue0yvaX2zGVY9r0asWBe39w4N4ftO7ZUmVfoZIFWX1sBVpa6n86OnX/jWv3/+Kl7x0On9pJiVJFP3vs7x1bsv/YFh57XOGxxxV2HViX5Phe/Ttz//kF7j+/QK9+nVT2lSxdlONn96ClpZUuZfkWPXp24OGTC/gHuXLm3H5Kly722WMLFsrH1u0rePjkAmER7vTt1yXJMa3bNOPJs0t4+tzFZdY4lX0ODnbcufc32bNnS/NyfKusWu5GHRuz7vJ69j3fz7w/55OveP4vHm9kbETvab3ZfGsL+18cYNW51ZSuWUa5v3rzGmy4tpGdD3fRbUJ3lXOt7a1ZdW41BtkM0qUs3+JHf74jIiKZtWgVdVt0onTNZrTrNZSHrs+U+4tUbpjstmH73lTnCbBxx16qNW5LtcZt2bRzn8q+B4+f0rrrAOLi4tO2sOKzWnX+hUM39nDZ4zSbjq7mpxKFUnRevWa1ueV7kXkbXVTS2/duy18PD/HXw0O069VGZd9PJQuz9eS6TPE5JtKWIhNvmY36v71mQjWb1KDvxN5sWriVHg178/KJO3O3zcLUwvSz57wPi6BFyVbKrU2F35X78hTKTZfhnZjadwbT+rnQbWQXchfMDYCWliZDZw5mwZjFxMert4de018aMGn6SBbMXkGDGq148ugZ2/etxsLSPNnjK1Ypy5/7jtG6SVea1mvHm9dv2bF/DTltrAEo9FN+RozpT99uI+jXfQQjxg2kYOF8AGhpaTFrwSRGD51KfLx6P2Rb/NoYl1ljmTVzCVUrN+HhQ1f2/7kZSyuLZI83NDDg1SsvJk+cw9u3/kn2m1uYsXT5TMaPnckvTTvRpm0zGjSopdy/YNE0Jk2cQ3j4+3QrU0pk1XJXaVKV7hO6s3PRTgY3HoSHqwdTt03FxMIk2eO1dbSZtn0a1vY5mNV7Jr1r9mLZqKUEvQ0CwNjMmAFzBrBhxgYmtptAjV9qULZ2WeX5fab3ZfOsTXx4/yEjivdZWeH5njhrMVdv3mXmxOEc2LqSSuVK0WPQWPwCAgE4d2i7yjZt7BA0NDSoW6NyqvN85ubB8nXbmDt1NHOmjGLpmi08f+kBQFxcPFPnLmXCiP5oa8uXzYxQt2kthkzuz9r5m2hfvzvPn7ixdOd8zL7w+Q1gY5+TQRP7cufaPZV050J56T2yG2N7T2Zcnyn0GdWDvAXzAImfY2NnD2PmyHlq/xwTQp2kMpGMVj1/5ejOY5zYcxLPF14sGL2IqKhoGrVt8PmTFAreBQQrt+DAEOUuh7wOuLt6cPfKPe5cvstLV3cc8uYCoE3vNty//oBn9599JuOM06NvJ3Zs2cueHQd58ewlo4dO4UNkFG3bt0j2+AE9R7F5/S4eP3rKyxceDB84EU0NTapUqwCAc77cuD5+zuWL17l04Tquj5/jnC+xEtVnYBeuXbnF/buPMqx8n9N/QDc2b9zN9q17efbUjcEDx/Phwwc6dGyV7PF37jxgwrhZ7Nt7hOjomCT7czvlIiwsnP37jnLnzgMunL9G/oJ5AWjZqgmxsbEcPnQyXcuUElm13M27N+fkzpP8/cdpvF94s2LMcqI/RFO3Td1kj6/Tpi7ZTLMzo8d0XG+54u/jz6Prj3jlmviFMYdDTiLDIrl0+CIvHrzg4dUH2Dsn3t/VmlYjLi6OqyeuZlj5PudHf76joqM5ff4SQ/t1o0yJojjY29KvW3sc7G3ZfeAoAJYW5irb2YvXKFeqGLnsbFKdp4enN/nzOlG+dAkqlClJfufceHj6AIktFqVLFKVooc+3bIu01a5XGw5uP8zh3cfweP6KmSPnEfUhiqa/Nf7sOZqamkxfPpE18zbw2tNXZZ+TswMvnrzk1uU73Lx0GzfXlzg5OwDQoe9v3Ll+nyf3n6ZrmYTI7KQy8S/aOtoUKJqf2xfvKNMUCgW3L96hcKnCnz3PwMiAXde2s+fGDqavn4pTfkflPvenHtjnscPa1pocdtbkym2Px7NX2Dra0LBNfdbP2ZiuZUoJHR0dipUozMVzH7/0KBQKLp2/RumyxVOUh4GhPto62oSEhALg+uQFuZ2dsLW3wS6XDXmcHXnq6oajUy7a/P4Lc2YsSZeyfAsdHR1KlCzC2bOXlWkKhYJzZy9TrlzJVOX58uUrDAz0KVa8MGZmJpQqXYzHj55iamrM+AlDGD50ctoE/x9k1XJr62jjXNSZ+5fuKdMUCgX3Lt2jQKmCyZ5Tvk55nt5+Su/pfdhyeyvLTi2nVb9WaGomvn2+efUaPQM98vyUh2wm2chXPD+vXF9hZGJEu+HtWT1hVUYU7YuywvMdHxdPfHwCero6Kul6errcefA4yfGB74K5cOUGLX6u/5/yzJfXiVfer/F968+bt354er/GOY8jXj5vOHjsFAN7dEyD0omU0NbRpmCx/Fy/eFuZplAouHHxFsVK//TZ87oP7cy7oGD+3Hk0yT63p+445MlFDjtrctrnwCFPLl4+88DO0ZYmbRqxctbadCmLUL8Ejcy7ZTYyNey/mJiboKWtxbuAYJX04MBgHP75tfHfvF56M3vYPNxd3TEyNqJNr1YsO7iELrW7EeAbiJebF+tmbWDeztkArJ21Hi83L+bvnMPqGWsoV6MMnYd0JC4unqWTlvPg+sN0L+e/mVuYoq2tTWBAkEp6QEAQef9pTfiacZOH4ffWX1khcXvuzuxpi9i1P/HNdtbURbg9d2fXgXVMnzSfGrWqMHR0X+Ji45g4ZibXr9z+UvbpwsLCDG1tbQL8A1XS/f0DyZ8/b6ryDAkJo3fPEaxeOx8DfT127TjA36cvsmzFLNas3oqjkz27/liDjo42M2cs4c+Dx9OiKN8kq5bb2NwYLW0tlZZDgJDAEOzz2id7Tk6HHBSrVIxzB88xpfNkbJxs6TO9D1o62uxatJOI0AgWDl3IkIVD0dXX5cy+M9y9cIcBcwZydPMRcuTKwfj1E9DW0WbHwh1cOXY52eukp6zwfBsZGVK8SCFWbdpJHkcHLMxNOXb6PPcfPcUhmZaHQ8dPY2hoQJ3qn+/ilJI88zo5MKhXZ3oMHgvAoF6dyevkQPdBYxjatyuXb9xmxfrtaGtrMXpwb8qU+Pw4NPHfmJqboK2tzbuAdyrp7wKCcXJ2TPac4uWK0uy3xvxet2uy+1+98GTFrDWs2LUQgOUzV/PqhSfLdy9kyfSVVKxRnp7DuxAXG8e8iUu4e+1+2hZKiO+AVCbSwJM7rjy546p8/OjWY7ac20CTdj+zYd4mAA5tO8KhbUeUx9RvWZfIiEge337C1vOb6PVzP6xsLJm4fBy/VepAbExsRhfjP+k3uDtNWzSkVZPOKl0itm7cw9aNe5SPW7Vtxvv3Edy+eZ8LN4/QuFYbbGxzsmLdPCqWqEfMd1buzzly+C+OHP5L+bhylXIUKVKQEcMmc+/hWbp2HoSfXwBnzx/k8uUbSSpx36sfsdwampqEBoWwfPQyEhISePnwJRY5LGjRuwW7Fu0E4NrJq1w7+bFVr0j5IuQu5MSaiatZfXEN8/rPJTggmPmHFvD4+iNCg0LVVZw0ldme75kThjNx5kJqNW+PlpYmhfI707BOdZ48c0ty7IEjf/FzvZro6en+5zzb/NKYNr987Ebz57FTGBoaULxIIZr81oNd6xbj5x/IiImzOLl3I7q6X76myBiGRgZMXTqeGSPmEPru8/fkvi1/sm/Ln8rHjVs1IDIikoe3HrHv0nY6NuyJtY0VLisn07R86+/u81uI/0oqE/8S+i6U+Lh4zK3MVNLNLM145x/8mbNUxcfF8+KRG3ZOtsnuNzEzptOQjgxqOYRCJQvh7eHDa4/XvPZ4jbaONvZ57PF46vGfy/It3gWFEBcXl2QwppWVRZJfM/+tV//O9BvcjbbNu+P6+PlnjzMzN2XIqD782rgTJcsUw93NEw93LzzcvdDR0SaPsxNPn7xIk/KkVFBQMHFxcVhZW6qkW1tb4ucXkCbX0NXVZcHCqfTsMYw8eZ3Q1tbi8qUbALx086BMmeKcOH4mTa6VUlm13GHvwoiPi8fM0lQl3dTSlOCA5O/vYP93xMXFk5DwcYIEHzdvzK3N0dbRJi42TuV4bV1t+szow4LBC7BxskFLS4tH1xPHBr3xeE3+kgW4efpG2hbsK7LK8+1gb8um5XOJ/BBFREQkVpbmDJswE3vbnCrH3b73CA8vH+ZOHZNmef5fcEgoKzfuYNPyOTx8/AzHXHbKLS4+jlfer8mfN2WtveLbhLwLJS4uDnMr1UlDzK3MCPJPWpG1d7LDzsGWBZtnKdP+333xmvdZfq3Sjteeb1TOMTE3ocewLvT8pT9FShXGy90bbw8fvD180NbRTuwG9dQ9HUonMposWpdyMmbiX+Ji43j28DmlqpRSpmloaFC6Skme3HmSojw0NTXJUzA3Qf7vkt3fb3If/li3jwDfQDS1NNHW/lin09LSQksz45+W2NhYHtx7QpXqFZRpGhoaVKlWnts3P99s22dgVwaP6E37lr14cC9pv+RPTXEZxdoVW/B944eWpiY6Op+UW1sLLc2Mn+0kNjaWe3cfUaNGJWWahoYG1WtU4saNu2lyjZGj+nH69AXu33uMlpYm2lofy62to62WKQWzarnjYuNwe+hGscofxwFpaGhQvHJxnt1JfhDlk1uu2DjaoKHxsaOqbR47gvyCklQkANoMaMvtc3d4+eglmlqaaH0yi4+Wtrba7u+s9HwbGuhjZWlOaFg4V27cplbVCir79x85SeEC+SiYL0+a5fl/s5esoUPr5uS0tiI+IZ64uI+vkfj4BBLUPGvfjywuNo6nD55TrkppZZqGhgZlq5Tmwe2kn0+v3LxoU6Mj7ep0VW4X/rrMrct3aVenK35vks5iNmzKAHau2YO/b0Dyn9+ZYIp3ITKatEwk4481+xizcCTP7j/D9d4zWnZvgb6BPsd3nwBgzKJRBL4NZO2s9QB0HNyeJ3dcef3qDdmMjWjbuzU57HNwdOexJHmXrloK+zz2zBw8B4Bn95/h4JyLcjXLYm1rTUJCAl7u3hlX2E+sXbGZhStceHD3MXfvPKRHnw4YGBmwe/sBABavdMHX159ZUxcB0HdQN4aP6U//HiPx9nqj/NUzIiKSyIhIlbyr1qhI7rxODOqT2K/4/t1H5M2Xm5p1qmBrZ0NCfAIv3TK2Neb/li1dz6o187h79yG3bt2nb78uGBoasm1r4tzzq9fO480bP6ZMmgskDmYtWMgZAF1dHWxsc1C0WCEi3kfi7u6pkneBgs60+PVnqlT6GYDnz16SkJBAh46t8fcLIH/+vNy5/SADS/tRVi33wXUHGTJ/CG4PX/D83nOadWuGvqE+p/ecBmDIwqEEvQ1iy+zNABzfeoyfO/1Mj8k9ObLpMLa5bWnVrxVHNh5OkneufLmo2qQqgxoOBMDHzQdFQgJ129QlOCAY+7z2PL+fsa1v/5cVnu/L12+jUChwcrDHy+cN85evJ7eDPc0b11Me8z4igr/OXmR4/x7J5tFt4GhqV6vE7y2bpjjP/7ty4w6e3q9xGT8MgCKF8uPh6cPFqzd56x+ApqYmTo7Jj80RaWP76t1MXjyWJ/ef8vieK7/3aIWBoQGHdyV+Hk9ZMg7/t4Esd1lNTHQML5+pfu6EhyZOZfzvdIDy1crgkCcXkwbOAODJvac4OjtSqVZ5cthak5AQj+dLr3QuoRCZj1QmknH28DlMLUzoMrwz5lZmuD15ycgOY5SDNnPYWaP4pMtDdpPsDJ8zFHMrM96HvufZwxf0azYIzxeqbyq6+roMmj6AqX2mo1AkLjsS4BvIkgnLGD1/BDExscwcPIeYqKTTMGaEQwdOYG5pzvCx/bGytuTxw6e0b9lL2c/Z1t6GhISPy6V07NoGPT1d1m5ZpJLP/FnLWTB7hfKxvr4eM+aMo0/X4cpy+77xY8IoFxYsm0FMTAyD+44lKio6/QuZjP37jmJpac7Y8UPIkcOShw9c+bV5Z2X3Lnt7W5UuLjY21ly++nHWj0GDezJocE8uXrhG44a/q+S9ZKkLY0fPIDIycY2BqKho+vQaybyFU9DT02X40En4+vplQCmTyqrlvnT4IibmJrQb2h4zKzPcn7gzqcNEQv65v61srVTu70DfQCZ2mEj3id1ZenIZQX5BHN5wiH0r9yXJu/+s/qyfto7oD4mv5ZjoGBYNW0TvaX3Q0dVh9cRVvPNTzziRrPB8h7+PYNGqjfgFBGJinJ261aswsFcndD759fj46fMoFNCobo1k8/B+7UtwaNg35QmJ08i6LFjBvKljlF1lclpbMWZIH8a7LERXR4cZ44ehr6eX9gUXSqcOncHMwpTeI7thYWXO88duDPh9OO8CE7sx5rTLofI5llJ6+rqMnDGEMb0nKT/H/H0DmDt+ERMXjiE2JpZJA12IVtPnt0h70oaYchqK/98VP5Aa9nXUHYJavIjw/fpBP6DwGPUuBiYyVnWLz0/R/CM7H5SybpY/miDP0+oOQS0MbKuqOwS1KGGR8q5nP5J7QVlznEVczGt1h/BZ8x3aqzuEzxrmtU3dIaiQzn1CCCGEEEKIVFFrZeLOnTt4eHzsl7h161YqV65Mrly5qFKlCrt27fpqHtHR0YSFhalsCQppnBJCCCGEEKmjyMRbZqPWykSXLl14+fIlAOvWraNXr16UKVOGcePGUbZsWXr06MGGDRu+mMfMmTMxMTFR2bzCX2VA9EIIIYQQQmRtah2A/eLFC/LlywfAihUrWLx4MT16fJxho2zZssyYMYOuXZNfmRJgzJgxDB06VCXt50LN0yVeIYQQQgghxEdqrUwYGhoSGBiIo6Mjr1+/ply5cir7y5cvr9INKjl6enro/Wt2DE0NGQoihBBCCCFSJ0Hj68eIRGr91t2wYUNWrlwJQPXq1dm7d6/K/j179uDs7KyO0L5J56EdOedzWmXbcu7L3bN+BP2HdOfo37t55nWD+88vsH7bEvI6O6k7rHRXqXJZdv+xlmduVwmLcKfxz3XVHVKGyKrlBjDPYcHQRcPYfn8He5/vY+lfy3Aulvnfm/6LzPp8R0REMmvRKuq26ETpms1o12soD12fKfcvX7+NJr/1oGzt5lRq0Irug8bw4LHqgoSvvHwYMGoKVRq1oXzdFnToM4wbt5MuzvnmrR+lazYjMvIDsXFxrNywnQatulCqZlNadOrLpWu3VI5fvn4bRSo3VNma/Ka6nkVg0DtGT51L9Sa/U7Z2c1p16c+ps5fS8C8k/otO/dtxy/ciQ6cOUHcoQnw31NoyMXv2bCpXrkz16tUpU6YM8+fP59y5cxQqVIhnz55x7do1Dhw4oM4QU8zjqQfDfhupfBwfF6/GaDJGhUpl2bxuJ/fuPkRbW5vREwaxY/9aalRoyofIH3e6ViMjQx49dGXrlj/YsWuVusPJMFm23CZGzNk/h4dXHzC542TC3oVi62TL+38Wt/pRZdbne+Ksxbi5v2LmxOFYW1pw+OQZegway5/bV5PDyhKnXHaMHdoXe9ucREfHsGX3AXoOGcex3esxNzMFoN/IyTjY27J+ySz09XTZuucg/UZO4vieDVhamCuvdebiNcqVKoahoQELVqznyMmzTB41kNyOubh84zaDxkxj2+r5FMr/sWLpnNuRdYtdlI//vfL3mGnzCH8fwbLZkzA1MebYqXMMmziT3esXq+QjMl7h4gVp0aEpzx+7qTsUIb4raq1M2NracvfuXWbNmsXhw4dRKBTcuHEDb29vKleuzOXLlylTpow6Q0yx+Ph43gUEqzuMDNW+VS+Vx4P7juOh2yWKlSjM9Su31RRV+jv113lO/XVe3WFkuKxa7pZ9WhLoG8ji4YuVaX7e6llwLyNlxuc7Kjqa0+cvsWTWJMqUKApAv27tOX/5OrsPHGVgz040rldT5ZyRA3uw/8hJnr/0oEKZkgSHhOLp/ZqpowdTwDk3AEN6d2HX/iO8cPdUqUycvXiVejUT13s4fOIMPTu1pVqlxO64bX/5mWs377Fp535mT/r4Q5KWlpZKHv9275ErE4b3p2jhAgD06vwbW3Yf4PFTN6lMqJGBoQHTlk9kxvA5dBvcSd3hiExA5gVNObUPLjA1NWXWrFk8fvyYDx8+EB0dzatXr9i+fft3U5EAsMttx95bu9hxeSvjlo7B2tZa3SFlOGPj7ACEBIeqORIh0k65uuVxe/CCUStHs/XONhYdW0y93+qrO6wsKT4unvj4BPR0dVTS9fR0ufPgcZLjY2Nj+ePP42TPZkQB58TF0ExNjMntYM+hE38T+SGKuLh49vx5DHMzUwoX+PhlPiz8PXcePKZmlQoAxMTGoqurm+S6d/91XS+f19Rs2o4GrbowavJsfN/6q+wvUaQQJ/6+QGhYOAkJCRw7fY6YmBjKlSqW+j+M+M9GzRzC5b+vcuPij/tDmBDpRa0tEz+KJ3ddmTVkLt7u3lhYW9BpSAeW7F9Il9rd+RDx43b3+ZSGhgZTZo7ixrU7PHOVJmLx48iZKycN2zfi4LqD/LFsD/mK56PnlJ7ExcZyZu8ZdYeXpRgZGVK8SCFWbdpJHkcHLMxNOXb6PPcfPcXBzkZ53LnL1xkxaRZRUdFYWZizZtEMzExNgMT3qrWLXRg4ehrl67ZAU1MDc1NTVi+Yhsk/P4gAXLx6k/x5c2NtZQFA5fKl2bJrP2VKFCGXnQ3Xbt3j7/NXiE/42KW1WOECTB83DCcHewKD3rFiw3Y69h3Bwa0rMTIyBGD+tLEMnziTyg1bo62lhb6+HotcJuBgb5sRf0KRjHrNalOwaH46Nuyp7lCE+C5JZSIN3Dh7U/l/d1cPXO+6suvaDmo2qc6xXSfUGFnGcZk3ngKF8vFLww7qDkWINKWhqYHbAze2ztkCgPtjdxwLONKwXSOpTKjBzAnDmThzIbWat0dLS5NC+Z1pWKc6T559/BGjXKni7Nu0nOCQUPYePsHwCTPZsXYRFmamKBQKZsxfgYWZCZtXzEVfT499h0/Qf+Rkdq1bgpVlYhelMxevKVslAEYP6sXk2Uto8ntPNDQgl60NzRvX5cCRv5THVK1YVvn/As65KVq4APV+7cSJMxf5tUlia9aytVsIfx/BusUumJqYcObiVYZPnMnmFXPJnzd3ev/5xL/ksLVm2LSB9GszlJjoGHWHIzKRzLg4XGal9m5OP6L3YRH4uPtg52Sn7lAyxPQ546hTvzqtmnTB982P35dcZC3B/sF4v/BSSfN+4Y2VnZWaIsraHOxt2bR8LjdOH+D0/q3sWreYuLh47G1zKo8xNNDHwd6W4kUKMW3MELS0tNh/+CQA12/f4/yVG8ydOppSxX6icAFnJgzvj56eHn8ePw0kdo+6fP0WNT6pTJibmbJk1kRunj7AX/s2c3jnWgwN9FWu+2/G2bPhmMsOL583AHj5vGHHvsNMGzOECmVKUjBfHvp2bcdPBfOxc9+R9Phzia8oWKwAFlbmbPtrHde8z3LN+yylK5WkbbeWXPM+i6amfE0S37cLFy7QpEkTbG1t0dDQ4ODBgyr7FQoFEydOxMbGBgMDA+rUqcOLFy++6Rpyl6QDA0N9bJ1sCPIPUnco6W76nHE0aFyb1k274u31Wt3hCJHmXG89wS6vvUqaXR47/H38P3OGyAiGBvpYWZoTGhbOlRu3qVW1wmePTUhIICY2FoCoqGgg6XpEmhoaJCQkDrm8cecBxtmzUTBfniR56enpksPKkrj4eE6du0zNqhU/e93IyA94v/ZVtnZERSdeW0NTdQJ7TU1NFAoZ7qkONy/eok2NjrSr01W5Pb7nyon9p2hXp6vyNSHE9yoiIoLixYuzfPnyZPfPmTOHJUuWsGrVKq5fv46RkRH169cnKioqxdeQbk5poM/4nlw5fQ0/Hz8scljQZVgnEuIT+PvgWXWHlq5c5k2gectGdP19AO/fR2JlbQlAeFi48gP7R2RkZEievI7Kx05OuSharBDB70Lx+ecXyB9RVi33n+v+ZM6BubTq14pLRy6Rv0R+6v/egGWjl6k7tHSVWZ/vy9dvo1AocHKwx8vnDfOXrye3gz3NG9cj8kMUazbvomaV8lhZmhMcEsbO/YfxDwyi/j+zMhUvUgjj7NkYO30+vbv8jr6eLnsPncDH1085U9O5S9dVWiUAHjx+il9AEAXz5cE/IIgVG7ahUCjo2q6l8pi5y9ZSo3J5bHPmwD8wiOXrtqGlpUmjOtUByO2YCwd7W6bOWcrw/t0xMc7OmYtXuXrzLsvnTM6YP6BQERnxgZfPVBfHjYqMIiQ4NEm6yFoSfpCOTg0bah23uwAAdiNJREFUNqRhw4bJ7lMoFCxatIjx48fTrFkzALZs2UKOHDk4ePAgbdu2TdE1pDKRBqxsrJiwbCzGZsaEvgvl4Y1H9G06gNB3P/asRp26Jb7I9h3drJI+pO849uw8qIaIMkbJUkU5dmKn8vHM2eMB2L5tL316jfzcad+9rFruFw9e4NJzBh1HdaLtoN/w8/Zj7ZS1nD94Tt2hpavM+nyHv49g0aqN+AUEYmKcnbrVqzCwVyd0tLVJiE/Aw9ObQ8dPExwaiqmxMUUK5Wfzirk450msGJmZmrBq/jSWrNlMt4GjiYuLwzm3I0tnTVS2RJy9fI1pY4aoXDc6Joalazfj8+YthgYGVK1YlpkTRmCcPZvyGD//QEZOmk1IWBjmpiaULPYT21cvVK5voaOtzcp5U1m4ciP9Rk7mw4cP5LK3Zcb4YcqKjBBCfE10dDTR0ao/2urp6aGnp/dN+Xh4ePD27Vvq1KmjTDMxMaF8+fJcvXo1xZUJDYVC8WNUvT5Rw77O1w/6Ab2I8FV3CGoRHpM1ZswSiapbFFZ3CGpxPuiJukNQiyDP0xl6vSfP3Og2cDQXju5CR1t9v7cZ2FZV27XVqYRF0q5lWcG9IHd1h6AWcTGZt3v0DMd26g7hs2K75GPKlCkqaZMmTWLy5MlfPE9DQ4MDBw7QvHlzAK5cuULlypV58+YNNjYfZ8Rr3bo1Ghoa7N69O0XxSMuEEEII8Y/4+HjGDOmj1oqEEEL9MvNomTFjxjB06FCVtG9tlUhL8m4phBBC/KNo4QLK1amFECIzSk2XpuTkzJk4G52fn59Ky4Sfnx8lSpRIcT4ym5MQQgghhBBZTO7cucmZMyd///23Mi0sLIzr169TseLnZ6r7N2mZEEIIIYQQ4hM/yoDi9+/f4+b2cVFPDw8P7t27h7m5OQ4ODgwePJjp06eTL18+cufOzYQJE7C1tVWOq0gJqUwIIYQQQgjxA7p16xY1a9ZUPv7/WItOnTqxadMmRo4cSUREBD179iQkJIQqVapw4sQJ9PX1U3wNqUwIIYQQQgjxA6pRowZfmrhVQ0ODqVOnMnXq1FRfQyoTQgghhBBCfCIzz+aU2cgAbCGEEEIIIUSqSGVCCCGEEEIIkSrSzUkIIYQQQohPJGioO4Lvh7RMCCGEEEIIIVJFKhNCCCGEEEKIVJFuTkIIIYQQQnwi4YdZti79ScuEEEIIIYQQIlWkMiGEEEIIIYRIFenmJIQQQgghxCekk1PKScuEEEIIIYQQIlWkMiGEEEIIIYRIFenmJIQQQgghxCcS1B3Ad0RaJoQQQgghhBCpIpUJIYQQQgghRKpINychhBBCCCE+IYvWpZy0TAghhBBCCCFSRSoTQgghhBBCiFSRbk5CCCGEEEJ8Qjo5pdwPWZl4Ex2i7hDUIp+RjbpDUA8jdQegHi8ifNUdglrcCfdQdwhqERkbre4Q1MLAtqq6Q1CLD28uqjsEtXDK10TdIahFVn2+xY9BujkJIYQQQgghUuWHbJkQQgghhBAitWTRupSTlgkhhBBCCCFEqkhlQgghhBBCCJEq0s1JCCGEEEKIT8iidSknLRNCCCGEEEKIVJHKhBBCCCGEECJVpJuTEEIIIYQQn5BOTiknLRNCCCGEEEKIVJHKhBBCCCGEECJVpJuTEEIIIYQQn5BF61JOWiaEEEIIIYQQqSKVCSGEEEIIIUSqSDcnIYQQQgghPqGQ+ZxSTFomhBBCCCGEEKkilQkhhBBCCCFEqkg3JyGEEEIIIT4hszml3P/au++4KK4tgOO/pRex0JQiIFbsLRpb7CbGWGI3FuwNK/ausaDG3lvsvceW2GLvgthAlKKoWEAQFASB3fcHyeoGTJAHrLrn+z77edm7d2bOwVnYs/fOHRmZEEIIIYQQQmSIFBNCCCGEEEKIDJFpTkIIIYQQQrxHKas5pZuMTAghhBBCCCEyRIoJIYQQQgghRIbINCchhBBCCCHeI5Oc0k9GJoQQQgghhBAZIsXEB7Tv2oo/vfdx8+E5dvyxltLlSnywb4NGtdl1dD1XA0/ge/8Mv53YRNNW32v06dq3Axf8jnDB7whd+7TXeK10+RLsPrYBfX39LMnlYzRzb8LWCxs5EniIJfsXUqxs0Q/2/a5VA04+OqbxOBJ4SKNPm16t2OO7gz2+O2jds6XGa27lirH80BL09bV/Gupq3u7d23Hx+hGCnviw/+gWypYv9cG+P3Vqye5D67kdcp7bIefZumdVqv69+nXm+t3TXL97ml4e7hqvlatQit9PbP8kznNdzVt8mWJj45g+bxn1m7tToXZT2vfy5KZ/QJp9J81cSMlqDdmwbU+6979qw3ZKVmvI9HnLNNpnLlhB1e9aUffHjhw4/KfGa4f/PIPH8Akfn0wm0LX399Y9B/ixUx8q129O5frNad9zMGcuXPnXbTZs28MPbbtToXZT6v7YkRnzl5OQ8Fb9+oHDf1L3x45U/a4VMxes0Nj28ZNnNGrbndexsVmSj/j8yDSnNHzfrD6jfh7M+GFeXPe+Rede7fh1+0K+rdKCyIioVP1fRsWwbO5qgu/d521iIrUb1MBrwXheRERy9sRFihYvxMARvenVfhAKhYLlm+Zy9uRF7voHoa+vz8+zRjPOcyrJyclayPad2o1r0Xd8b+aMmo//NX9adm/BLxun07FmF16+eJnmNq9jYulUs7P6uUr1bmDQ1a0AXYa6M8p9LAqFAq91U7hy2puQOyHo6+vh6TWIWSPmkpys3VvD6GreTX78jglThjPScxLXvG/SvXdHNu1azjdf/cCLiMhU/atU/4rfdh3i6iVf4hMS8BjYjc27V1CnSlOePnmOW4kiDBvVD/e2HigUsHbrEk6dOM8dv3vo6+szfc4Ehg+aqPXzXFfzFl+u8dPnExh8H6/xQ7G1tmL/4T/pMXA0v21aTl4ba3W/Y6fOceP2HWytrdK975v+Aez47RBFChXQaD959iIHj55kxdyphD4KY9y0uVSrXIE8uXPx6nUsC1asY9W8aZmWY3rp4vs7n401g3t3wTm/AyqVit9+P0b/kT+zc80iCrk6p+p/8MgJ5i5bw+RRgylbqjj3Qx8xduocFAoFwwf0JOplNBOmz2fKGE8cHfLhMXQClSqUoVa1ygBMmbWIQb27kMPcPLtTzVaymlP6af+r0U9Ql97t2b5xL7u37Cfobgjjh3oR/yaelj81SbP/5fPeHD10kqB793l4/zHrV2wlwC+QCpXLAuBa2IUAv3tcPHuVC2euEOAXiGthFwC69+vIlQs+3PT1y6bsPqxVzxYc3HKIP7Yf5sG9UOaMnEd8fALft/3uwxupVESGR6kfUREv1S85FXQi2D+Ea+d98Tl3jSD/YJwK5gegTe82XL90g4DraX97lp10Ne8efd3ZvH4n2zfv5V5AECM9J/EmLp62HZqn2b9/zxGs+3Urt2/dIeheCEMHjEdPoUf1b74GoFDhAvjfvsu5M5c4e/oS/rfvUqhwygeQPgO6cPH8Va5fu5Vt+X2IruYtvkzxCQkcO3UWT49uVCxbCidHezy6dcDJ0Z5tew6q+z0Lj8Br7lJmTBiOgUH6vkWPi3vDyEm/MHHEQHJa5NB4LfjBQ74qV4qSbkX4vn4tzM3NePTkKQBzlvxKm2aNsMtnm3mJppMuvr9rVf+ab6pWwjm/Ay5Ojgzs1RkzUxOu376TZn/fm/6UK1WcRg1q42CXl2qVK/B9/Vrq0axHYU/JkcOchvVqUsqtKF+VL0Pw/YcAHDp6EgMDA+rXqpZt+YlPnxQT/2BoaECJMsU4f+qSuk2lUnH+9GXKViydrn1UqfEVBQo6c+XCNQDu+gXiUtAJO4e82Dvmw6WgE/f8g8jv4kDzdo2ZN21pluTyMQwMDShaqgjeZ3zUbSqVCu8zPhQvX/yD25mam7L14ia2X97MlF9/xqXIu29Bgu+E4OjqgK29LXkdbMlfwJGQgPvYO9vRsM23/DpzTZbmlB66mrehoSGlyxbnzMkL6jaVSsXZUxep8FWZdO3D1MwEA0MDXr6MBsDf7x4FCrlg72iHQ347XAs5c8c/EGeX/LT56UdmTl2QJbl8DF3NW3y5kpOSSU5WYmxkqNFubGyEz43bACiVSkb9PIvOP7VM85vqD5kyezHfVPmKKl+VS/Va0UKu3L5zj+iYV9y+c4+EhAScHOzxuX4Lv4BA2rdK+8u3rCTvb0hOTubQsZO8iY+nbMliafYpW8oNv4BAbvqlFA8PHz/h9IUr1Pj6KwCcHO2Jj4/H/27gX/++dylaqADRMa9YuHI9oz37Zls+4vMg05z+IY9lbgwMDIgI1xwOjXgeiWshlw9ul8PCnDM3f8fIyAhlcjITR8xQFyRB9+4zZ+oS1uxcAsDsKYsJuneftTsX88ukBVSvU4X+w3qSlJTElDGzuPpXEZKdclnmQt9An8hwzWlcURFROBXKn+Y2oUEPmTFkFsH+wZjnNKdNr1Ys2ruALnW7Ef4kgtDAUFZNX82sLTMAWDn9V0IDQ5m9ZSbLp66gUq2KdB7ciaSkZBZOWMyNSzezPM9/0tW8La3+Ps9faLSHh7+gYOECH9hK05iJQ3j29Ln6D3fg3WBmTJ7H1t0rAZj+8zwC7wazdc8qpkyYTa061fEc2ZekxCTGj/Li0nnvzE0qHXQ1b/HlMjc3o0xJN5at3YKrsxNWlrk5dOwU12/dwcnBDoBfN+5AX1+PDq2apnu/h46dxP9uEFtXzU/z9WqVK/DDt3Vo230gJsbGTB07BDNTEybPWsyUMZ5s23OQzTv3kTt3LiYOH/BRRUxG6fL7+25QCO17efL27VvMTE2ZP20cBQuk/TNv1KA2UdExdOwzFFQqkpKTad3se3q6twUgV04Lpo4dwujJs4lPSKDxd3WpVrkC47zm8lOLxjx+8pT+IyaSlJRM327taVC7Rnammm20OxH58yLFRCaJfR1H09o/YW5uRpUaXzHq58E8vP+Yy3/9Ytm6bhdb1+1S9/+xTSNiX8dx7epNDl/YRYsGnchnZ8vcFdOoU6EJiW8TtZVKuvn5+OPn469+fuvqbdafXE3j9j+wetZaAPZtPMC+jQfUfb5tWZ+42Dhue/ux4dRaev3ggY2dNeMXj6Fd1Y6S92fCY1B3mjRvSKvGnTUu2tuwZjsb1mxXP2/VtimvX8fifeU6p68coFGdNtjZ52PJqllUKduAt5K3EP83r3FDGe81lzrNOqCvr4dbkUI0rFcTv4BAbt+5x8Ydv7Fj9UIUCkW69vfkWTjT5y1n5bxpGBsbfbCfR7cOeHTroH6+ZPUmvq5YFgMDA5av28qe9Us4df4yo6fMYvvqhf93nlntc35/F3ByZNfaxbx6HcuRE2cZM3U2axfNTLOguOxzg5XrtzF2iAelSxQl9FEY0+cvZ9mazfTu8hMA9WpWo17Nd1OZrly7wd3AEEYP7sP3rbsxc9IIrC0taddjIBXKlsIqT+7sSlV8gqSY+IeoyJckJSVhbWOp0W5ta0n48xcf2CplKDU05BEA/rfuUrBIAXoN6qwuJt6XxzIX/Yb24KcmPSlTviT3g0J5EPyQB8EPMTQwoEBBJ+76B2VuYv8hOjKa5KRkLG3yaMZqnYfI56kvOk9LclIy924F4uBin+brufLkxH1wJwa2HIxbOTcehjzicchjHoc8xsDQAEdXR0LuhPzfuXwMXc078sXf57nmhZg2NlaEP4/412179euMx6ButG3WHf/bdz/YL49lbgaP6EOLRu6Uq1ia4MAHhASHEhIciqGhAa6FXLjjdy9T8kkvXc1bfNmcHO1Zu/gX4t7EExsbh421JUPGeeFonw+f67eIjHpJ/Rad1P2Tk5X8smgVG7bv5ciudan25xdwj8iol7Tu2k9jG2/fW2zZvR+fE/tSrV4U/OAhBw7/yc41i9h98AgVy5bEMk9uvq3zDeOmzSU2Ng5zc7Os+yGg2+9vQ0NDnBxT/gaVKFaY23fusnHHb0wYPiBV30Ur19P42zq0bJJyXWCRggV4E5/ApBkL6OneFj09zRnwb9++ZcqsxXiNH0booyckJyfzVbmUad/O+R24efsOtap/ncUZik+ZXDPxD4mJSdy+focq31RStykUCqrU+ArfqzfSvR+Fnh5GRml/ozN68hDWLt/CsyfP0dfXw8DwXU2nb6CvlSXmkhKTCLh5l/LVy6vbFAoFFaqXw88nfReH6+np4VqsAC+ep14xA8BjYh92rNpF+JMI9PT1MDB4L299ffT1sv901NW8ExMTueHrR/Wa7/4AKBQKqn9TGe8r1z+4XZ8BXRk0rDcdWvbihu/tfz3GpGkjWLlkPU/CnqGvp4fhP89zvew/z3U1b6EbzExNsLG2JDrmFecve1Onxtc0/q4uu9cvYefaxeqHrbUVXX5qwfI5U9Pcz9cVyrJnw1KNbUoUK0yjBrXZuXZxqr9RKpWKn2cuYHj/HpiZmaJMVpKYlARA0l//n6zM+kkj8v5+R6lUfXCEJD4hAT09zVGqv/8Ovb8y4d+Wr91K9a8rUrxoIZTKZJLeW7kqKSk5W/5ttUH1Cf/vUyMjE2lYs2wTMxZO5JavHzd8buPe6ydMzUzZtWU/ADMXTeLZ0+fMnrIYgF4DO3PT15+H9x9hZGRIzXrVaNrqeyYO90q176o1K+NS0Inh/VLW375xzQ/XQs58U7cqdvZ5USYrCQ58kH3JvmfHil2MmjucgOsB+PsG0LJ7c0xMTfh92x8AjJo3goinEayc/isAnQZ1wM/Hn8f3w8iR05y2vVuT1zEvB7ccSrXvCjXK4+jqiNegmQAEXA/AqVB+KtX+Clt7W5RKJaHBD7Mv2ffoat4rl6xj7pJp3Lh2m2s+N+nRpyOm5qZs25Sy/vz8pdN48uQ503+eB0Dfgd0YOqof/XoM52FoGDa2KUtOxsbGERcbp7HvGrWqUKCgCwP7jAbg+rVbFCxcgNr1qmPvYIcyWUlQYPaOxvxNV/MWX65zl7xRqVS4ODkS+iiM2Yt/pYCTI80aNcDQwIDcuXJq9Dcw0MfaMg8FnB3Vbd0GjKTuN1X5qWUTzM3NKOzqorGNqakJuXNapGoH2LX/D/LkzqX+drpc6eIsWb2R67f8OXPxKgVdnFKtBpVVdPH9PXfpGmpUqYhdXlti4+I4eOQkV67dYPmcKQCMmjwLW2srBvfpAkDNapVZv3U3xYoUpHTxYoQ+CmPhyvXUrFY5VaEYFPKAP/48zY41iwAo4JwfPT09du0/jLVVHkJCH1LSrUj2Jiw+OVJMpOHQ3qNYWuVhwIje2Nha4X/rLt3a9OfFXxdl2znmQ6l6V4mbmpkyceYI8tnZEh+fQPC9+wzrO45De49q7NfYxJjx04czuMcodfX/7MlzJo/+Ba8F43mbkMiI/hNIiE/IvmTfc2L/SXJb5aLL0M5Y2uQh0C+I4R1HqZc9zetgi+q9byAsclkwdKYnljZ5eB39moCb9/BoOpAH90I19mtkYsTAKf35uc8Udd7hTyJYMG4RI2cP4+3bRLwGzeRt/Fu0QVfz3rfnDyytLRk6uh82ttbcvnmHDi17qS9etHe0Q6l89w1Ip65tMDY2YuX6eRr7mT19MXNmLFE/NzExZurMMfTpOlSd95OwZ4wbMY05i6by9u1bBvUdTbyWznNdzVt8uV69jmXesjU8C48gV04L6teszoBe7hgapP9P/MPHT4iKjvnoY0dERrFi3VY2LpujbitVvCjubZvTd9gELPPkZtrYIR+934zSxfd35MuXjJ48i/AXkViYm1OkUAGWz5lC1UopI+5Pnj1H773rZXq5t0OhULBwxXqeh78gT55c1KpWmQE9NW/Ip1KpmDhzAcP698DM1AQAE2NjpozxZOrsJbxNTGT04L4a9zIRukmhSmtM6zNXxKaitkPQCnvj3NoOQWSje7FPtB2CyEbPYl9qOwSRjd6EndF2CFrhUrixtkPQivv39ms7BK0wtHbVdggf1NWlpbZD+KDV93dqOwQNcs2EEEIIIYQQIkO0Wkz079+fM2f+v29fEhISiImJ0Xi8PwVJCCGEEEIIkTW0WkwsXryYWrVqUaRIEWbMmMHTp08/eh9eXl7kypVL4xEV9/H7EUIIIYQQAmQ1p4+h9WlOR44c4fvvv2fWrFk4OTnRtGlTDhw4gDKdS42NGjWK6OhojUces3xZHLUQQgghhBBC68VEqVKlmDdvHmFhYWzcuJGEhASaNWtG/vz5GTNmDIGBgf+6vbGxMTlz5tR46Cm0npYQQgghhBBfvE9maVhDQ0Nat25N69atCQ0NZfXq1axdu5bp06eT/N4NUj5F7Tq3oF3nljg62QFw704wi2ev4vTx81qOLGt19uxEZ89OGm2hgaF0qtVVSxFlD13Nu9/g7jT8oT6FChcgPj6eq5d9mTZxDkGB97UdWpbS1byFdsXGxrFw5XqOn75AZNRLihUpyMhBvSjlVhSAktUaprmdZ99udG2fsgpNdMwrps1Zwslzl9DT06NerWqMGtgbMzNTjW2uXLvByJ9/4fieDVz1vcmazTvxuxNI+ItI5nuNo+43VTX6q1QqFq/awM79f/DqVSzlShdn3NB+OOd3AODxk2csW7uZy97XiXgRhY21JT98W4de7m0xNDRU7+fcJW8Wr9pAYEgoxsaGVChTCoWeCpVS84ZqWUlX3t9b9xxg256DhD15BkChAs707vITNap8BUDoozBmLV7FtRu3efs2kepfV2TU4D5YW+bRZthaJVffpt8nU0y8z8nJiYkTJzJhwgSOHTum7XD+09Ow58yesoj7waEoUPBj2x9Ysn42zeq0JzAgWNvhZamQOyEMaTdc/Tw56dMu/DKLLub9ddWvWLdqC77XbmJgYMDIcQPZvHsltb5uwpu4N9oOL8voat5Cu8ZPn09g8H28xg/F1tqK/Yf/pMfA0fy2aTl5baw5uW+TRv8zF68y3mse9WtVU7eNmDST8IhIVs6bRlJSEmOnzWXizAXMnDhCY9sTZy5Sq1plAN68iadoIVd+bNSAQaOnpBnb6k072LRzH1PHDsHBLh+LVq6nl+dYftu4HGNjI0IePESlVDF+WH+cHO0JDH7AhBnzeRMfz7B+PQB4FPaU/iMn0alNc6ZPGM7r2DhmLliOSa5k3kRl30cTXXl/57OxZnDvLjjnd0ClUvHb78foP/Jndq5ZhL1dXnoOHkPRQq78umA6AItWbqDf8IlsXjEXPT2Z7SH+nVaLCWdn51R3W3yfQqGgfv362RhRxpw4orki1dxpS2jXuQVlK5b64ouJ5ORkIsOjtB1GttPFvDu06qXxfFDfMdwMPEvpssW5dN5bS1FlPV3NW2iPQgHHTp1lwfQJVCxbCgCPbh04de4S2/YcZEBPd6ytLDW2OXHmIpXKlya/Q8oIedD9UM5evMrWVfPVdygePbgPfYaOZ6hHd2xtrN5te/YiYzz7AlCjylfqb6vTolKp2LB9Lz3d21KnRhUApo0bSs3G7Th+5jzf16tF9a8rUv3rd/d7yu9gR0joI7bvPaguJvwC7qFMVjKgZyf1h9XO7Vpw5dotQAVkz+iErry//747+d8G9urMtj0HuX77Ds/CIwh7+pydaxeRw9wcgKljh1D1u1Zc8r5Ola/KaSNk8RnRarkZEhKClZXVf3f8jOjp6dGoWQPMzEy5duWGtsPJcg4FHNh5dSubz21gzMJR2NrbajukbKGreb8vZ04LAF5GRWs5kuylq3mL7JWcrMTYyFCjzdjYCJ8bt1P1jYiM4vT5yzT/4Vt12/Vb/uS0yKEuJAC+rlgOPT0FN/zuqNsCgx8QGfWSyhXKpCuuR2FPiXgRRZWK7z5gWuQwp3Txoly/deeD272OjSWnhYX6efGihVHoKdhz8CjJycm8eh3L/sN/kpyoILsKibTowvs7OTmZQ8dO8iY+nrIli5GYmIhCAUbvTUEzNjJET0+R5vmmK5Qq1Sf7+NR8ktOcPkdF3Aqy7fc1GBsbERf7Bo/Owwi6G6LtsLKU3zV/pg/+hYfBD7GytcJ9cEcW7J5Ll7rdeRP75QwP/5Ou5v0+hULBJK8RXL7oQ4D/vy+S8CXR1bxF9lKpoExJN5at3YKrsxNWlrk5dOwU12/dwemvkYf37fv9GGZmptSr+W6KU8SLKCxz59LoZ2CgTy4LCyIi342q/nnmAtUqV9C4luHf/L2t1T/m0ltZ5iHiRdqjtaGPwti8cx9D+3VXtzna52PF3KkMGefFz78sIDlZSZmSbsRHa+87zi/9/X03KIT2vTx5+/YtZqamzJ82joIFnMmTOxemJibMWbKagb07o1LBvKWrSU5WEvEiUtthi8+AFBOZJCTwAU1r/4SFRQ6+a1KXGQsn0r5pzy+6oLh84or6v4P9Q/C/5s/Wi5up3bgmh7b+ocXIspau5v2+abPGUtStMD827KjtULKVruYtsp/XuKGM95pLnWYd0NfXw61IIRrWq4lfQOoPuXsOHOGHBrUxNjb66OOcOHuRdi0aZ0bIaXoWHkEvz7E0qF2Dlk3eXTQe8SKSiTMW0LRhPb6vX5PYuDcsWrUBk1xK4l/qoY3RiS/9/V3AyZFdaxfz6nUsR06cZczU2axdNJOCBZyZPXk0k2ctYtPOfejpKWhYrxbFixZCodDeKJH4fEgxkUkSE5MIDXkEwO0bdyhVtjjuPdsxfug0LUeWfV7HxPIo+BEOLg7aDiVb6VreU2aOod63NWn+vTtPwp5pO5xso6t5C+1wcrRn7eJfiHsTT2xsHDbWlgwZ54WjveZ9lLx9bxES+ohffh6l0W5tlYfIl5pTdZKSkol+9Uq9Qk94RCT+d4OoWbVSuuP6e9sXkSmrNP3tRWQURQsX1Oj7PPwFXfuPpGyp4kwcMUDjtS27DpDD3IwhHt3UbdPHD6Pej53QMwBlUrpDyhS68P42NDTEydEegBLFCnP7zl027viNCcMHUK1yBf7YsYaol9Ho6+uT0yIHNRv/xHd1U4+E6YpPbzLRp0su0c8iCj09jIzTN2z8pTA1M8HexY4Xz19oO5RspUt5T5k5hu8a1aV1k648DH2s7XCyja7mLbTPzNQEG2tLomNecf6yN3VqaF5Iu/vAYYoXLUyxwq4a7WVKuhHz6jW379xTt13y9kWpVFG6eDEATp67SNlSbuTKaUF6Odrnw9oqDxe9fdVtr2NjueEXQJmSxdRtz8Ij6NJ/BMWLFmLK6MGpVgSKT0hI1aav9+EFWbKSrr6/lUoVb98marTlyZ2LnBY5uOTtS2TUS2r/48JtIdIiIxOZYMhYD04dP8+TR08xz2FG4xbfUblaBbq27q/t0LJUn7E9OX/sIs8ePcMqrxVdhrijTFZyfO8JbYeWpXQ172mzxtGs5fd0/ak/r1/HYWNrDcCrmFfExydoObqso6t5C+06d8kblUqFi5MjoY/CmL34Vwo4OdKsUQN1n9exsRw5cYahf62Q9L6CLk5U/7oiE2fMZ/yw/iQmJTFt7lIa1qupXsnpxNlLqT4sxsW9IfRRmPr547Bn3LkbRK6cFtjls0WhUNCxdTNWrNuKs6MDDvZ5WbRyA7bWVtStkXI/imfhEXTpNwL7fLYM7dedqPdGSP5eheqbql+xftselq7exPf1axEb94b5y9eiTM7eUQldeX/PXbqGGlUqYpfXlti4OA4eOcmVazdYPidl+d89B4/g6pyfPLlzcf32HabPW0anNj9SwNlRy5GLz4FCpfoELwv/PxWxqfjfnTLR1HnjqFLjK2zzWvMq5jUBfvdYsXA9509dytY47I1zZ+vxxi8eQ+nKpciZJyfRkdHcvHyLVTNXE/bgSbbGkd0+lbzvxWbv8R5Hpb2qx+C+Y9i+ZW+2xpKdPpW8n8W+zLZjCe3bs2Eq85at4Vl4BLlyWlC/ZnUG9HLHIoe5us+O3w4xY/4KTuzbpNH+t+iYV0yds4STZy+hp6egXq1qjB7UBzMzU+LexFPj+zbs2bBUPfUF4LLPDbr2H5FqX00b1mPq2CHAu5vW7dj3B69ev6Z86RKMHeKBi1PKB8+9B48ydtqcNPO6de539X8fOnaSNZt2cv/hY0yNjSlT0o0Dv11BlZx98/Q/lff3/Xv7s3T/47zmcumqL+EvIrEwN6dIoQJ0bd+KqpXKAzB36Wr2HjpGdMwrHOzy0rrZ93Rq82OWXzNhaO3635205CfnH7UdwgdtfrBH2yFokGLiC5LdxYTQruwuJoR2STGhW96EnfnvTv+HoyfPsXDlOvZtWpGlx/lYLoWz7mLwT1lWFxOfKikmMuZTKybkmgkhhBBCx5iZmuDZp6u2wxBCfAHkmgkhhBBCx1SrXEHbIQjxSVPJek7pJiMTQgghhBBCiAyRYkIIIYQQQgiRITLNSQghhBBCiPcotR3AZ0RGJoQQQgghhBAZIsWEEEIIIYQQIkNkmpMQQgghhBDvUcpqTukmIxNCCCGEEEKIDJFiQgghhBBCCJEhMs1JCCGEEEKI98hN69JPRiaEEEIIIYQQGSLFhBBCCCGEECJDZJqTEEIIIYQQ75Gb1qWfjEwIIYQQQgghMkSKCSGEEEIIIUSGyDQnIYQQQggh3qNSyWpO6SUjE0IIIYQQQogMkWJCCCGEEEIIkSEyzUkIIYQQQoj3KOWmdekmIxNCCCGEEEKIDJFiQgghhBBCCJEhMs1JCCGEEEKI98hN69JPRiaEEEIIIYQQGSLFhBBCCCGEECJDvshpTvbGubUdglb4RAVrOwSRjdrbVNR2CCIbrYw9p+0QtKKslau2Q9CKEm6ttR2CVty/t1/bIWiFe4Uh2g5BKzY/2KPtED5IJas5pZuMTAghhBBCCCEyRIoJIYQQQgghRIZ8kdOchBBCCCGEyCi5aV36yciEEEIIIYQQIkOkmBBCCCGEEEJkiExzEkIIIYQQ4j0qlUxzSi8ZmRBCCCGEEEJkiBQTQgghhBBCiAyRaU5CCCGEEEK8R6ntAD4jMjIhhBBCCCGEyBApJoQQQgghhBAZItOchBBCCCGEeI9KblqXbjIyIYQQQgghhMgQKSaEEEIIIYQQGSLTnIQQQgghhHiPUqY5pZuMTAghhBBCCCEyRIoJIYQQQgghRIbINCchhBBCCCHeo1LJNKf0kpEJIYQQQgghRIZIMSGEEEIIIYTIEJnmJIQQQgghxHtkNaf0k5EJIYQQQgghvjATJ05EoVBoPIoVK5bpx5GRCSGEEEIIIb5AJUqU4NixY+rnBgaZ/9FfigkhhBBCCCHeo/qEpzklJCSQkJCg0WZsbIyxsXGqvgYGBuTLly9L45FpTh/QzL0JWy9s5EjgIZbsX0ixskU/2Pe7Vg04+eiYxuNI4CGNPm16tWKP7w72+O6gdc+WGq+5lSvG8kNL0NfX/j9Hj54duel3mucv/Pnz5G4qVCj9wb7F3AqzYdMSbvqdJiY2mL4eXVL1ad2mKX4BZ3nw6BrTpo/ReM3JyQEf3+NYWOTI9Dw+lq7mXbPjt0w5u4gFARsZvncqzmUK/mv/Ol2/Z+Lxecy/s5Gp55fQcpw7BsaG6te/alqdqeeXMPv6alqM7aSxraWjDRP/nIdJDtMsyeVj6GreuqpV5x/Zd3k750KOsfbgckqUdUvXdg2a1uXqkzPMWjNNo71D77YcubmPIzf30b5XG43XSpQrzobDq9DX18+0+DOqfddW/Om9j5sPz7Hjj7WULlfig30bNKrNrqPruRp4At/7Z/jtxCaatvpeo0/Xvh244HeEC35H6NqnvcZrpcuXYPexDdmad2xsHNPnLaN+c3cq1G5K+16e3PQP0OgTdD+UfsMn8nWDFnxVtxltug3gydPnH9znzn2/06nPUKp+14qq37Wi+8BR3PTT3OeazTv5plFbvmnUlrVbdmm8duP2HVp37U9SUnLmJZpO9Ts1ZP7Z5awN2MbPe2dQsEzhD/Ydu3Uymx/sSfUYtubd36tGPZuy1HstS73X8n2PJhrbFyxbmKkHZqH3CXxu0UVeXl7kypVL4+Hl5ZVm33v37mFvb4+rqyvt27cnNDQ00+ORkYk01G5ci77jezNn1Hz8r/nTsnsLftk4nY41u/Dyxcs0t3kdE0unmp3Vz99fn9jVrQBdhrozyn0sCoUCr3VTuHLam5A7Iejr6+HpNYhZI+aSnKzM4sz+XfMWjZg2fTSDBo7j6hVf+np0Yfdv66hQrh4R4S9S9TczNeX+/VD27jmE14yxqV63tMrDwsVe9Ok1jPshD9mxexWnT17gjz/+BGDOvMlMGD+TV69eZ3lu/0ZX867wQxVajO3ElrErCbl2jzpdGzFg/Rgm1hnEqxcxqfp/1aQazUb8xIZhSwnyuUveAnZ0mtUXlUrFrinrMc9jQYcZvVk/dDERoc/xWD2SgPO3uPWnDwDtJndj74zNxL9+k92patDVvHVV/SZ1GDyxH14jZnPrmh/terRi4ZbZtKj+E1Ef+H0OYOeYj4Hj++Jz0VejvZBbQXoP78agjiNQKBTMXT+Di6euEHQnGH19fUbPGMLUYb+QnJz9Hybf932z+oz6eTDjh3lx3fsWnXu149ftC/m2SgsiI6JS9X8ZFcOyuasJvneft4mJ1G5QA68F43kREcnZExcpWrwQA0f0plf7QSgUCpZvmsvZkxe56x+Evr4+P88azTjPqdma9/jp8wkMvo/X+KHYWlux//Cf9Bg4mt82LSevjTWhj8Lo1GcozX/4Fo/uHTA3MyMoJBQjY6MP7vOKzw2+r1+LsiXdMDI2YvXGHfQcPIa9G5eR18aagMAQFq/ayOJfJqJSqfAYNpGqlcpTpGABkpKS+fmXhUwYMQADg+wtJr/+oRodxnZh9ZhlBPrepWHXxozcMJ4htfsR8yI6Vf+5vWZgYPTuI2CO3BZM/2Mulw6eByB/MWdaerbjl65TUShg2Oox3Dzty8OAUPT09eg2rTerRi5FqeXPLbpq1KhReHp6arSlNSpRuXJl1q5dS9GiRXny5AmTJk2iRo0a3Lp1CwsLi0yLR0rKNLTq2YKDWw7xx/bDPLgXypyR84iPT+D7tt99eCOVisjwKPUjKuKl+iWngk4E+4dw7bwvPueuEeQfjFPB/AC06d2G65duEHA94AM7zj79+ndj3ZptbNqwk4A7gQwaMJY3b97QsVOrNPv7+Nxg3Jjp7Np5gISEt6leL+CSn5iYV+zedRAfnxucPnWRIsVSvgFu2aoxiYmJ7N93OEtzSg9dzbtu9x84t/U4F3ac5GngY7aMWcnbN2+p0rp2mv1dKxQl6GoAV/adI/JROP5nbnB13zlcyhQCwNrJljev4vA+cIEHN4IIuHgbu0IOAFRsUo3kpGR8D1/Otvw+RFfz1lXte7Vh76b97N92iJC79/EaPov4N/E0adfog9vo6ekxZfF4VsxazeMHTzRecynkxD2/IK6e8+HKWW8C/YNwKeQEQMe+7fC5dB2/63eyNKf06NK7Pds37mX3lv0E3Q1h/FAv4t/E0/KnJmn2v3zem6OHThJ07z4P7z9m/YqtBPgFUqFyWQBcC7sQ4HePi2evcuHMFQL8AnEt7AJA934duXLBh5u+ftmUHcQnJHDs1Fk8PbpRsWwpnBzt8ejWASdHe7btOQjAghXrqFHlK4Z4dMOtSCGcHO2pXeNrrPLk/uB+Z0wcQdvmP1CsSEFcnfMzaeRAlEolF6/6AhDy4CFFCrpQuUJZvq5YjiKFChDy4BGQMmJRoWwpSrl9eCZDVvm+exNObD3KqR1/8vjeI34dvYyENwnUbF03zf6x0a+JDn+pfpSqUYaENwnqYsK+oAOh/vfxO3+T2+duEur/APuCjgD80KsZdy75EXwjMNvy0walSvXJPoyNjcmZM6fGI61iomHDhrRq1YrSpUvz7bffcujQIV6+fMn27dsz9WclxcQ/GBgaULRUEbzP+KjbVCoV3md8KF6++Ae3MzU3ZevFTWy/vJkpv/6MSxFn9WvBd0JwdHXA1t6WvA625C/gSEjAfeyd7WjY5lt+nbkmS3NKD0NDQ8qWK8mJE+fUbSqVipMnzlGpUrkM7TMo6D6mpiaULlOcPHlyUb5CaW7fukPu3DkZO24wQz0nZk7w/wddzVvfUB+nkq7cOXdT3aZSqbhz7iau5YukuU2wdwBOpVzVU4Ks89tSonY5bp+4BkB4yFOMTIxwLOGCWS5zXEoX5NGdUMxymtPYsw3bxq/O+sT+g67mrasMDA0oVroIl854q9tUKhWXz1yldIUPT/np7tmZyBdR/LblYKrXAu8E4+San7wOtuRzzIuTa36CAkJwcLancZvvWTp9ZZbk8jEMDQ0oUaYY509dUrepVCrOn75M2YofnsL5vio1vqJAQWeuXEg5z+/6BeJS0Ak7h7zYO+bDpaAT9/yDyO/iQPN2jZk3bWmW5PIhyUnJJCcrMTYy1Gg3NjbC58ZtlEolp89fwSW/Az0Hj+GbRm1p12MQx0+f/6jjxMcnkJSUTK6cKd/iFi7owv2Hj3ny9DlhT5/x4OFjCrk6E/oojL2HjjKgR6f/2GPm0zc0oECpgtw6e13dplKpuHX2BoXLp6+wqdWmHhf3nyXhTco8/IcBodi52mNlb421gw12rvY8vBuKrVM+araqy/ZZm7IkF5G1cufOTZEiRQgMzNxCUKY5/UMuy1zoG+gTGa45DBwVEYVTofxpbhMa9JAZQ2YR7B+MeU5z2vRqxaK9C+hStxvhTyIIDQxl1fTVzNoyA4CV038lNDCU2VtmsnzqCirVqkjnwZ1ISkpm4YTF3Lh0M83jZCUrqzwYGBgQ/jxCo/358wiKFPn3+eQf8vJlDL17DmP5ytmYmhizdfMejh87w6Il01mxfAPOLo5s3bECQ0MDvKYu4Le9v2dGKh9FV/POkScn+gb6xLw3ggYQE/6SvAXt09zmyr5z5LDMydAdk1EoUv6And54hD+W7AEgLiaWdUMX03l2PwxNjLi4+zT+p6/TYUZvTq3/A6v8tvRZNRx9A30OzNvBtd8vpXmcrKSreeuq3Ja5MDAwIDI8UqM9MjwKl0LOaW5TplIpmrZrxE/1u6b5+v17D1gyfQVLts4FYLHXcu7fe8DibXNZMGUpVWpVpufQLiQlJjFr/AKuXbye5n6yUh7L3BgYGBDxj7wjnkfiWsjlg9vlsDDnzM3fMTIyQpmczMQRM9QFSdC9+8yZuoQ1O5cAMHvKYoLu3WftzsX8MmkB1etUof+wniQlJTFlzCyu/lWEZBVzczPKlHRj2dotuDo7YWWZm0PHTnH91h2cHOyIjHpJ3Js3/LpxO/17uOPZpytnL3kzaPQUVi+czlfl0ldUzVm6GhtrS6pUTPlyqaCLEwN7dabHoNEADOzVmYIuTnQfOArPvl05d9mbJb9uwsBAn5GDelOxbKks+xn8zSKPBfoG+kRHaE5nio54iX1Bh//cvmCZwjgVc2bl8MXqtrDAR2ybuYlRGycCsHXGRsICHzF600S2eK2jdM1ytBjUluSkJNZP/JU7l7NvVEpk3OvXrwkKCqJjx46Zul8pJjKBn48/fj7+6ue3rt5m/cnVNG7/A6tnrQVg38YD7Nt4QN3n25b1iYuN47a3HxtOraXXDx7Y2FkzfvEY2lXtSOLbxOxOI0sc2H+EA/uPqJ9Xq16JkiWLMWzIRHxvnqBr54E8exbOiVN7OXfucprXKHyOvsS8C39dnG89fmTruFWE+N7DxiUfrcd3oWH/Fvy+MOUixOuHr3D98JV321R2w6GYE9smrObnUwtYPWA+MeEvGbHXi8DL/mleo/Cp0dW8dZGZuSk/LxzL1GEziY5MPc/8b7vW/8au9b+pnzdq9R1xsXHcvHqLXWc30alhT2ztbJi2dCJNKrf+bH6fx76Oo2ntnzA3N6NKja8Y9fNgHt5/zOXzKSM7W9ftYuu6dxcc/9imEbGv47h29SaHL+yiRYNO5LOzZe6KadSp0CTL8/YaN5TxXnOp06wD+vp6uBUpRMN6NfELCESpTLlusXaNKnRq+yMAxYoUxPemH9v3HkpXMbFqw3Z+P3aKNYtmYvzedRZtfmxEmx/fTZP77dBRzMxMKVPSjcbterB11XyePY9g2PjpHN65BiOjD1+j8Smo1aYuof73Cbp+T6P9+KbDHN/0bkpujRa1efP6DXd9Apj952LGNRmGpZ0V/RcNYWD1XiS9Tcru0LPUp7uWU/oNHTqUxo0b4+zsTFhYGBMmTEBfX5927dpl6nGkmPiH6MhokpOSsbTJo9GexzoPkc9TX7SWluSkZO7dCsTBJe1vOnPlyYn74E4MbDkYt3JuPAx5xOOQxzwOeYyBoQGOro6E3An5v3P5GC9eRJGUlISNrbVGu62tNc+ehWfKMYyMjJgz92d69hiCa0EXDAz0OXc2ZS55UGAIFSuW4Y/f/8yUY6WXrub9OiqG5KRkclrn1mjPaZObmPCXaW7TxLMNl3ef5ty2lFjDAh5ibGpCe6+e/LFot8aiAwAGRga0ndydtYMXYeuSD319fe5dSim6n4WE4VK2MDePe6c6TlbS1bx11cvIaJKSkrC0sdRot7TJw4vnqQt4RxcHHJzsmbNuurpNTy9lNvDFhydoUb09jx+EaWyTyzIXPYZ0oeeP/ShZvjihwQ95GPKIhyGPMDA0SJkGdSc4C7L7sKjIlyQlJWH9j7ytbS0JTyPvv6lUKkJDUub/+9+6S8EiBeg1qLO6mHhfHstc9Bvag5+a9KRM+ZLcDwrlQfBDHgQ/xNDAgAIFnbjrH5S5if2Dk6M9axf/QtybeGJj47CxtmTIOC8c7fORJ3dODPT1KejipLGNq0t+fG7897foazbv5NeN21k5bxpFCxX4YL+ol9EsXbOZtYtncvN2AM75HdSPpOQk7j98TJGCH94+M7yKekVyUjK5rHNptOeyzs3LD/xe+5uxqTFVGldn55yt/9rPIo8FLQa15udWYylUtghPQ8J4ev8JT+8/Qd9AH7sC9jwMyPxVgsT/59GjR7Rr144XL15gY2ND9erVuXjxIjY2Npl6HLlm4h+SEpMIuHmX8tXLq9sUCgUVqpfDzyd9w3h6enq4FivAi+eRab7uMbEPO1btIvxJBHr6eho3ENHX10dfL/v/WRITE/G9dotataqq2xQKBTVrVeXy5cwZrh4+woNjx05z3fc2+vp6GOi/y9vA0EArSynqat7JicmE3gqmaNWS6jaFQkHRqiUJ9rmb5jZGpsYo//HBWan8ayUPRer+Dfu1wO+ULw9vh6DQ10PvvdVN9A0NtLKkoK7mrauSEpO4c+MulapXULcpFAq+ql6BG963U/W/HxhKm1qdaF+vq/px+sg5rp67Rvt6XXkWlnpJ0SGT+rNlxXaePwlP+/e5Fv69ExOTuH39DlW+qaRuUygUVKnxFb5Xb6R7Pwo9vQ9+qz568hDWLt/CsyfPU36vGb6Xt4F+tv5eMzM1wcbakuiYV5y/7E2dGl9jaGhICbcihIQ+0uh7/+Fj7PPZ/uv+Vm/awfK1W1g2ezIl3dK+lupvMxasoGPrZuSztSFZmUxS0rtv55OTldmy2lFyYhIhN4MoUe3daItCoaBEtVLc8/n3xV0qN6qKgZEhZ/ec+td+HcZ35dCv+4l8+gI9fT30Dd/7vWagL7/XPlFbt24lLCyMhIQEHj16xNatWylYMGNTuP+NjEykYceKXYyaO5yA6wH4+wbQsntzTExN+H3bHwCMmjeCiKcRrJz+KwCdBnXAz8efx/fDyJHTnLa9W5PXMS8HtxxKte8KNcrj6OqI16CZAARcD8CpUH4q1f4KW3tblEolocEPsy/Z9yxa+CvLVszi2rWbXL16nb4eXTAzM2Pjhp0ALF85i7CwZ0ya8AuQcvFyMbeUFW2MjAyxs89LqdJuxL6OIzj4gca+ixYrRPMWP1C96g8A3A0IQqlU0rFTa54/C6dIkYL4eKf/j1xm0tW8j686gPtsD0JvBnPfN5A63b7H2MyYCztOAuA+24OXzyL5beYWAG4c96Zut0Y8uh1CyLWU6T6NPdtw47g3KqXmh+18hRyo8EMVpjUaAcCzwMeolEqqtq5NTPhL8hW05/517awEoqt566pNy7cxcf5o/K7f4bavPz/1aIWpmSn7t6b8fp60YAzPn0aweNpy3ia8JShAc1T4VXTKEs7/bAeo/E1FnFzzM2HAVAD8fO/gXMiZqnUqk9feFqUymQdB2vm2ds2yTcxYOJFbvn7c8LmNe6+fMDUzZdeW/QDMXDSJZ0+fM3tKyjz5XgM7c9PXn4f3H2FkZEjNetVo2up7Jg5PvXZ91ZqVcSnoxPB+EwC4cc0P10LOfFO3Knb2eVEmKwkOfJBqu8x27pI3KpUKFydHQh+FMXvxrxRwcqRZowYAdPmpBUPHT6di2ZJUKl+GsxevcurcJdYsnKHex6jJs7C1tmJwn5T7Bf26cTuLVm1g5oQRONjlJeJFypeCZqammJlp3ivm/GUfHjx8zLSxQwAo6VaEkAePOHPhCk+fh6Onp4eLs2OW/xwADq3aR+/ZAwi+EUTQ9Xs07PoDJmYmnNpxHIA+cwYQ+TSSbTM3amxXq009vI9c4vXLVx/cd8nqZbArYM8yzwUABF8PxL6gA2VqlcfKzgplspKwoLAPbv+5Un4RE52yhxQTaTix/yS5rXLRZWhnLG3yEOgXxPCOo9TLveZ1sEWlfPdtg0UuC4bO9MTSJg+vo18TcPMeHk0H8uCe5h8RIxMjBk7pz899pqinRoQ/iWDBuEWMnD2Mt28T8Ro0k7fxqZcbzQ67dx3E2tqS0WMHkzevNTdv+NOiWWf1xcmOjvbvvpEF7OxsOXfh3WonAwf1ZOCgnpw5fZFGDX/S2PeChdMYPXIqcXEpa+3HxyfQp9dwZs2dhLGxEUM9J/DkybNsyDI1Xc3b+8AFcljm5IfBrclpk5tH/vdZ6D6NV39dxGfpYK0xhef3hbtApaLxkLbkzmfJ6xcx3DzuzW+ztqTad3uvXuycsp63f60MkpiQyLqhS2j7czcMjA3ZNn410c/SN20ws+lq3rrq6L4/yWOVm97Du2FlY8nd24H0/2mo+l4L+RzyqufXfwxjEyOGTx3MqN4T1OfL8yfh/DJ2HuPnjiLxbSITBkwjQUu/zw/tPYqlVR4GjOiNja0V/rfu0q1Nf178dVG2nWM+lKp3v9dMzUyZOHME+exsiY9PIPjefYb1HcehvUc19mtsYsz46cMZ3GOUOu9nT54zefQveC0Yz9uEREb0n0BCvObdebPCq9exzFu2hmfhEeTKaUH9mtUZ0Msdw79Gh+rVrMb4Yf1YtWE7XnOX4eLkyNypYylf5t3I5JNnz9FTvBti3LbnIImJSQweO1XjWH26tsejWwf18/iEBKbNWcKsn0epp8Lls7Vh1OA+jJ02FyNDQ6aOHYJJGst1ZoWLB86R0yonLT3bktsmDw/8Qpje6Wdi/vq9ZmVvk+o8t3O1p1il4kxrP/GD+zU0NqLzzz1Y2G+W+t878ukL1k5YRa9f+pH4NpGlQxaQmMYy6UJ3KFT/nPD7BajlWE/bIWiFT1T2zssV2tXepqK2QxDZaGXYuf/u9AUqa+Wq7RC0IiZJN29yeNs/c9e//1y4Vxii7RC0YvODPdoO4YOqOdTRdggfdO5x9l5n+V9kZEIIIYQQQoj3yDSn9NP6FTOLFi2iU6dObN2aspLAhg0bKF68OMWKFWP06NEaFzOlJSEhgZiYGI3H+0O3QgghhBBCiKyh1WJiypQpjB49mri4OAYPHsyMGTMYPHgw7du3x93dnVWrVjF58uR/3YeXlxe5cuXSeIS+up89CQghhBBCCKHDtDrNae3ataxdu5bmzZtz/fp1KlSowLp162jfvj0AxYoVY/jw4UyaNOmD+xg1ahSenp4abT+4NcvKsIUQQgghxBfsC7ykOMtotZgICwujYsWUi0jLlCmDnp4eZcuWVb9evnx5wsL+fbkxY2NjjP+xWoKeQuuzt4QQQgghhPjiabWYyJcvH35+fjg5OXHv3j2Sk5Px8/OjRIkSANy+fRtb23+/ucynoLNnJzp7dtJoCw0MpVOtrlqKKHtUrfYVAwf1pGy5ktjZ5aVdm14cPHD0vzf8zOlq3go9BT8Mak2lH2uQ0yY30c8iubDzVMrSqV8wXc1bpHDv157+Y3qzeeV25oxfqO1wsky7zi1o17kljk52ANy7E8zi2as4ffy8VuOKjY1j4cr1HD99gciolxQrUpCRg3pRyq0oAIt/3cgfx07x9Hk4hoaGFC9aiAE93SldohgAl31u0LX/iDT3vWXVPPV+AK5cu8HIn3/h+J4N/3lcgJLVGqa5X8++3ejavqVG29u3b2nXYzABgcHsXLOIYkUy/8ZhH2P+2eXY5E/9+erI+t9ZO26FFiISnzOtFhPt27enU6dONG3alOPHjzN8+HCGDh3KixcvUCgUTJ06lZYtW/73jj4BIXdCGNJuuPp5clKyFqPJHubmZty66c+G9TvYvHWZtsPJNrqa97e9m/FNh/qsG7KYsHuPcC7lSqdf+hL/Ko4Ta3/XdnhZRlfzFlC8TDGad2zC3dtf/o0Gn4Y9Z/aURdwPDkWBgh/b/sCS9bNpVqc9gQHaW3Z8/PT5BAbfx2v8UGytrdh/+E96DBzNb5uWk9fGGpf8Doz27IujfT4SEt6yftseeg4ew6Ftv2KZJzflSrlxct8mjX0uXLmBS96+lCymeXfrE2cuUqta5XQdF0i13zMXrzLeax71a1VLlcfsJauxtbYkIPDTWMJ9bJNhGnetzl/EidGbJ3HpoG4uQZ0WWc0p/bRaTEyaNAlTU1MuXLhAjx49GDlyJGXKlGH48OHExcXRuHHj/7wA+1ORnJxMZLhu3Yzq6JFTHD1yStthZDtdzdu1QhGuH73KrRPXAIh8FM5XTarjXKaQliPLWrqat64zNTNl8uLxTB06k26D3LUdTpY7ceSMxvO505bQrnMLylYspbViIj4hgWOnzrJg+gQqli0FgEe3Dpw6d4ltew4yoKc7jRrU1thm+IAe7D5wmLtBIXxdsRyGhoZYW1mqX09MSuLEmQv81LIJivduVgdw4uxFxnj2TddxAY39QkoxUql8afI72Gm0n7lwhfOXfZg3dQxnLl7NnB/O/+lVZIzG8yZ9mvP0/hP8L97WUkTic6bViwv09PQYPXo0+/fvZ9SoUSgUCtq2bUtoaCgRERGsWbMGc3NzbYaYbg4FHNh5dSubz21gzMJR2Np/+tOzhPgYwd53KVatJLYFUv5QOrg5U7BiUW6fvKblyLKWruat60Z4Debc8QtcPuOt7VCynZ6eHo2aNcDMzJRrV25oLY7kpGSSk5UYGxlqtBsbG+FzI/WH3sTERHb89jsWOcwpWijtmx2ePHORlzGvaNaovkZ7YPADIqNeUrlCmY8+LkBEZBSnz1+m+Q/fpmqfOGM+XuOGYmJi8p85a4O+oQHVf6zJqe3HtR2K+EzJTesygd81f6YP/oWHwQ+xsrXCfXBHFuyeS5e63XkTq5t3MRVfnsNL92JiYcqE43NRJStR6Ouxb9ZWrvx2VtuhZSldzVuXNWhal2KlitCpYU9th5KtirgVZNvvazA2NiIu9g0enYcRdDdEa/GYm5tRpqQby9ZuwdXZCSvL3Bw6dorrt+7g9N63/yfPXWLYhOnExydgY2XJinlTyZM7V5r73H3gMNUqlSefrY1G+59nLlCtcgUMDQ0xNDRM13Hft+/3Y5iZmVKv5rspTiqVirFT59C6WSNKuhXh8ZNnmfBTyXwVG1TCLKc5p3Z8WndV1jaVTHNKNykmMsHlE1fU/x3sH4L/NX+2XtxM7cY1ObT1Dy1GJkTmqfBDFb5qWp01AxcQdvchjsVdaDW+M9HPori468ud9qWreeuqvPa2DJk8AI82nrxNeKvtcLJVSOADmtb+CQuLHHzXpC4zFk6kfdOeWi0ovMYNZbzXXOo064C+vh5uRQrRsF5N/ALeXcdSqXwZdq1dTNTLaHbu/4Oh47zYvHIeVnlya+zr6fNwzl32YfbPo1Id58TZi7Rr0fijjvu+PQeO8EOD2hgbG6nbNu3cR2xcHN07tv4/fwpZq3abelw/6cPL57o1VVtkHikmssDrmFgeBT/CwcVB26EIkWl+HNWBI0t/4+r+lNVdwgIeYuVgw7d9m33RH6p1NW9dVax0UaxsLNl4ZJW6zcDAgHJfl6F1l+ZUda6LUqnUYoRZJzExidCQRwDcvnGHUmWL496zHeOHTtNaTE6O9qxd/Atxb+KJjY3DxtqSIeO8cLTPp+5jZmqCk6M9To72lCnpxvdturF7/2F6dGqjsa+9B4+SO6cFtWp8rdEeHhGJ/90galat9FHH/Zu37y1CQh/xyz+KlMve17l+6w7lazfRaG/TfQCN6tdm2rihGf65ZBZrBxtKVi/N3F4ztR2K+IxJMZEFTM1MsHex48juF9oORYhMY2RqjEql+SFKqVSmuojxS6OreeuqK2eu0qaW5lLf4+eN4kFgKOsWbfpiC4m0KPT0MDI2/O+O2cDM1AQzUxOiY15x/rI3nn0/vPS6UqnkbWKiRptKpWLvoaM0blgXQwPNjz4nz12kbCk3cuW0yNBxdx84TPGihSlWWPM6jVGDetO/57tz6Xn4C3p5jmXWpFGUKlH0n7vRipqt6hD9Ipprf34aF4Z/SuSmdeknxUQm6DO2J+ePXeTZo2dY5bWiyxB3lMlKju89oe3QspS5uRmuBZ3Vz11c8lOqtBtRkdE8evTvNxv8nOlq3jePe/OdR3MiH0cQdu8R+Uu4ULfbD5zf8WWf57qat66Ki31DUIDmtJ74uHheRkWnav+SDBnrwanj53ny6CnmOcxo3OI7KlerQNfW/bUa17lL3qhUKlycHAl9FMbsxb9SwMmRZo0aEPcmnhXrtlK7emVsrC2JehnDlt37eR7xgm9r19DYzyVvXx6FPaVF4+9SHePE2UvUrq45WvFvx33f69hYjpw4w9B+PVLt1y6f5kIsZqamAOR3sEt1zYY2KBQKvmlVhzM7T6JM1p0iWWQ+KSYygY2dDeMWjSZnnpxER0Zz8/It+jbpT3RktLZDy1Llypfi0B9b1M+9ZowFYNPGnfTpNfxDm332dDXvbRNW02RIG9pO7o6FdS6in0VydvNRDi7Yqe3QspSu5i10i6W1JTMXTcI2rzWvYl4T4HePrq37c/7UJa3G9ep1LPOWreFZeAS5clpQv2Z1BvRyx9DAAGWykpAHD9n3+zGioqPJnTMnJd2KsG7JLxRyddbYz+4DRyhbqjiuzvk12uPexHPpqi8jB/ZK93Hf9/uxU6hU8H39WlmSf1YqWb00No62nJRVnMT/SaH6AsdxajnW03YIWuET9WncDEdkj/Y2FbUdgshGK8N082ZSZa3SXuLzSxeTpJsrAd72356txzt68hwLV65j3ybt3vXZvcIQrR5fWzY/2KPtED6ovF11bYfwQT5PPq3VBLV6nwkhhBBCCG0xMzXBs8+Hr78QQvw3meYkhBBCCJ1UrXIFbYcgxGdPigkhhBBCCCHe8wVeBZBlZJqTEEIIIYQQIkOkmBBCCCGEEEJkiExzEkIIIYQQ4j1KZJpTesnIhBBCCCGEECJDpJgQQgghhBBCZIhMcxJCCCGEEOI9KpnmlG4yMiGEEEIIIYTIECkmhBBCCCGEEBki05yEEEIIIYR4j1JuWpduMjIhhBBCCCGEyBApJoQQQgghhBAZItOchBBCCCGEeI+s5pR+MjIhhBBCCCGEyBApJoQQQgghhBAZIsWEEEIIIYQQIkPkmgkhhBBCCCHeI0vDpp+MTAghhBBCCCEyRIoJIYQQQgghRIbINCchhBBCCCHeI0vDpp+MTAghhBBCCCEyRIoJIYQQQgghRIbINCchhBBCCCHeI6s5pd8XWUy8Tk7QdghCZLkrCU+0HYJWLNO30nYIWrHJ0FjbIWjF3ZjH2g5BZCNT+xraDkEr3oSd0XYIQmSYTHMSQgghhBBCZMgXOTIhhBBCCCFERslqTuknIxNCCCGEEEKIDJFiQgghhBBCCJEhMs1JCCGEEEKI98hqTuknIxNCCCGEEEKIDJFiQgghhBBCCJEhMs1JCCGEEEKI98hqTuknIxNCCCGEEEKIDJFiQgghhBBCCJEhMs1JCCGEEEKI96hUSm2H8NmQkQkhhBBCCCFEhkgxIYQQQgghhMgQmeYkhBBCCCHEe5SymlO6yciEEEIIIYQQIkOkmBBCCCGEEEJkiExzEkIIIYQQ4j0qlUxzSi8ZmRBCCCGEEEJkiBQTQgghhBBCiAyRaU5CCCGEEEK8R1ZzSj8ZmRBCCCGEEEJkiBQTQgghhBBCiAyRaU5CCCGEEEK8R1ZzSj8ZmRBCCCGEEEJkiBQTH9Cq84/su7ydcyHHWHtwOSXKuqVruwZN63L1yRlmrZmm0d6hd1uO3NzHkZv7aN+rjcZrJcoVZ8PhVejr62da/BnVo2dHbvqd5vkLf/48uZsKFUp/sG8xt8Js2LSEm36niYkNpq9Hl1R9Wrdpil/AWR48usa06WM0XnNycsDH9zgWFjkyPY+Ppat569p5nqNycQqtGUPpq6up+Ggvub+t/K/9LaqUpOKjvakeBja51X0sf/yG0pdXUfbWRhzHa54LRo62lDy9GL0cplmRzkfT1fNc8tatvL90sbFxTJ+3jPrN3alQuynte3ly0z9A/XrJag3TfKzetPOD+1y5fhttug2gUr3mfNOoLQNG/kzIg0cafWYuWEHV71pR98eOHDj8p8Zrh/88g8fwCZmbqPhsSDGRhvpN6jB4Yj9Wzl5Lh2+7c9cvkIVbZpPHKve/bmfnmI+B4/vic9FXo72QW0F6D+/G6N4TGdNnEn1G9KBgMVcA9PX1GT1jCF7DZ5GcnJxFGaVP8xaNmDZ9NNO9FlCjWmNu3vRn92/rsLaxSrO/makp9++HMnH8TJ4+fZ7qdUurPCxc7MXY0V782MSdNm2b8t13ddSvz5k3mQnjZ/Lq1essyyk9dDVvXTzP9cxMiPMLIXTs8o/a7maNvviW66x+JEVEA2CQxwKXXzx4OHkNd9tPxKp5TXLVrajeznlaLx55bUD5+k2m5pERunqeS966lbcuGD99PheuXMNr/FD2bFhK1Url6TFwNM/CIwA4uW+TxmPy6MEoFArq16r2wX1e9b1Ju+aN2bxiLivmTSMxKYmeg8cQ9yY+ZZ9nL3Lw6ElWzJ3KkL7dmDB9PlEvU34Pvnody4IV6xjr6ZH1yWcjpUr1yT4+NVJMpKF9rzbs3bSf/dsOEXL3Pl7DZxH/Jp4m7Rp9cBs9PT2mLB7PilmrefzgicZrLoWcuOcXxNVzPlw5602gfxAuhZwA6Ni3HT6XruN3/U6W5pQe/fp3Y92abWzasJOAO4EMGjCWN2/e0LFTqzT7+/jcYNyY6ezaeYCEhLepXi/gkp+YmFfs3nUQH58bnD51kSLFCgLQslVjEhMT2b/vcJbmlB66mrcunucxJ3wI+2UzL/+49FHbJb2IJin8pfrBX7/MjZ3zkRwTR9T+c8RdD+TV+VuYFHYEwLJpDZSJSbz8/WJmp5EhunqeS966lfeXLj4hgWOnzuLp0Y2KZUvh5GiPR7cOODnas23PQQCsrSw1HifOXKRS+dLkd7D74H6Xz5lCs0b1KeTqTLHCrkwd48mTZ8/xC7gHQPCDh3xVrhQl3Yrwff1amJub8ejJUwDmLPmVNs0aYZfPNut/AOKTJMXEPxgYGlCsdBEunfFWt6lUKi6fuUrpCiU+uF13z85Evojity0HU70WeCcYJ9f85HWwJZ9jXpxc8xMUEIKDsz2N23zP0ukrsySXj2FoaEjZciU5ceKcuk2lUnHyxDkqVSqXoX0GBd3H1NSE0mWKkydPLspXKM3tW3fInTsnY8cNZqjnxMwJ/v+gq3nr6nmeUcUPz6W092qKbJ5IjorF1O3xIWHomRpjWqIA+rlzYF6mEG/876Ofyxz7YT8ROvbTyFlXz3PJW7fy1gXJSckkJysxNjLUaDc2NsLnxu1U/SMiozh9/jLNf/j2o47zOjYOgFw5LQAoWsiV23fuER3zitt37pGQkICTgz0+12/hFxBI+1ZNMpiR+BLIak7/kNsyFwYGBkSGR2q0R4ZH4VLIOc1tylQqRdN2jfipftc0X79/7wFLpq9gyda5ACz2Ws79ew9YvG0uC6YspUqtyvQc2oWkxCRmjV/AtYvXMzepdLCyyoOBgQHhzyM02p8/j6BIkYIZ2ufLlzH07jmM5StnY2pizNbNezh+7AyLlkxnxfINOLs4snXHCgwNDfCauoDf9v6eGal8FF3NW1fP84/19lkk90csIe5GEAojA2za1afIjincaTycuFvBJEfHEjJ4PgXmD0LPxIgXu04Sc8oX51n9eL7mEMZOthReMxqFgT5hc7cSdfCCVvLQ1fNc8tatvHWBubkZZUq6sWztFlydnbCyzM2hY6e4fusOTmmMPOz7/RhmZqbUq/nhKU7/pFQqmT5/OeVKF6ewqwsA1SpX4Idv69C2+0BMjI2ZOnYIZqYmTJ61mCljPNm25yCbd+4jd+5cTBw+gEKuaf8d+Zyo5KZ16SbFxP/JzNyUnxeOZeqwmURHRn+w3671v7Fr/W/q541afUdcbBw3r95i19lNdGrYE1s7G6YtnUiTyq1JfJuYHeFnuQP7j3Bg/xH182rVK1GyZDGGDZmI780TdO08kGfPwjlxai/nzl0mIvyFFqPNPF9a3rp6nicEh5EQHKZ+HusdgLFLPvL2aELIwHkAvPzjksa0qRxfl8CsmDMPx66g5NllBPebTeLzKNwO/MKri34kvfjwz+9z86Wd5+kleafQlbw/NV7jhjLeay51mnVAX18PtyKFaFivJn4Bgan67jlwhB8a1MbY2Cjd+58yezGBwfdZv3SWRrtHtw54dOugfr5k9Sa+rlgWAwMDlq/byp71Szh1/jKjp8xi++qFGU9QfHakmPiHl5HRJCUlYWljqdFuaZOHF89T/2J0dHHAwcmeOeumq9v09FJmj118eIIW1dvz+EGYxja5LHPRY0gXev7Yj5LlixMa/JCHIY94GPIIA0ODlOkhd4KzILsPe/EiiqSkJGxsrTXabW2tefYsPFOOYWRkxJy5P9OzxxBcC7pgYKDPubOXAQgKDKFixTL88fuf/7GXzKWreevqeZ4ZYn3vkeOrtFe9UhgZ4Dy1FyED52FcwA6FgR6vL6ZMPUgIDsO8XBGij13JznAB3T3PJW/dyltXODnas3bxL8S9iSc2Ng4ba0uGjPPC0T6fRj9v31uEhD7il59HpXvfU2enFATrFv9CPlubD/YLfvCQA4f/ZOeaRew+eISKZUtimSc339b5hnHT5hIbG4e5uVmGcxSfF7lm4h+SEpO4c+MulapXULcpFAq+ql6BG96p5yPeDwylTa1OtK/XVf04feQcV89do329rjwLS70qxpBJ/dmyYjvPn4Sjp6+HgcG7mk5fXx99/ez/Z0lMTMT32i1q1aqqblMoFNSsVZXLl69lyjGGj/Dg2LHTXPe9jb6+Hgb67/I2MDTQypKhupq3rp7nmcGseAESn0el+ZrdgNZEn7xG3K1g0NNDYfDu31ZhaIBCSznr6nkueetW3rrGzNQEG2tLomNecf6yN3VqfK3x+u4DhyletDDFCrv+575UKhVTZy/h+OnzrF4wPVVh8s++P89cwPD+PTAzM0WZrCQxKQmApL/+P1mp/D8y+zSoVKpP9vGpkZGJNGxavo2J80fjd/0Ot339+alHK0zNTNm/9RAAkxaM4fnTCBZPW87bhLcEBYRobP8qOmVpvH+2A1T+piJOrvmZMGAqAH6+d3Au5EzVOpXJa2+LUpnMg6DQLM4wbYsW/sqyFbO4du0mV69ep69HF8zMzNi4IWVt6uUrZxEW9oxJE34BUi7yK+ZWCAAjI0Ps7PNSqrQbsa/jCA5+oLHvosUK0bzFD1Sv+gMAdwOCUCqVdOzUmufPwilSpCA+3jeyMdt3dDVvXTzP9cxMMHZ5N6/YOL8tpsULkPzyFW/DInAY2QHDfFbcHzQfANtujXn78Blv7oaiMDbCpl19LKqV4u5Pk1Lt26SwI5ZNquH3rScA8UGPUSlVWLetR+LzKEwKOhB7/V72JJoGXT3PJW/dylsXnLvkjUqlwsXJkdBHYcxe/CsFnBxp1qiBus/r2FiOnDjD0H490txHtwEjqftNVX5qmXLh9JTZizl09CQLpo/H3MyUiBcp19PlyGGOibGxxra79v9Bnty5qFU9pXgpV7o4S1Zv5Potf85cvEpBFydyyv1GdIoUE2k4uu9P8ljlpvfwbljZWHL3diD9fxpKZETKt5H5HPKiVH58ZWhsYsTwqYMZ1XuCurJ8/iScX8bOY/zcUSS+TWTCgGkkxKdeli877N51EGtrS0aPHUzevNbcvOFPi2ad1RfxOTrao3zv2wY7O1vOXXi3qs/AQT0ZOKgnZ05fpFHDnzT2vWDhNEaPnEpcXMp6+/HxCfTpNZxZcydhbGzEUM8JPHnyLBuyTE1X89bF89y8TCGK7piifp5/YjcAIrb/yX3PBRjaWmLs8G5oX8/IAMfxXTDKZ4nyTQJx/g+4224Cr87fSrVv5xl9eThpDco3CQCo4t9yf/ACnKb2RM/IkNBxK0h8Gplqu+yiq+e55K1beeuCV69jmbdsDc/CI8iV04L6NaszoJc7hu+N/v5+7BQqFXxfv1aa+3j4+AlR0THq538vK9ul3wiNflNGe9KsUX3184jIKFas28rGZXPUbaWKF8W9bXP6DpuAZZ7cTBs7JDPSFJ8RhepTHC/5P1W0q6HtELTibsxjbYcgslGRnA7aDkErlumnfdOtL12dKPmmV3z54hITtB2CVrwJO6PtELTC0Pq/p2Bpi02uotoO4YPCowP+u1M20urIxJMnT1i6dClnz57lyZMn6Onp4erqSrNmzejcubPMuRRCCCGEEOITprUrIK9evYqbmxuHDh0iMTGRe/fuUaFCBczNzRk6dCjffPMNr169+s/9JCQkEBMTo/FQqj7/C3+EEEIIIYT41GmtmBg0aBCDBw/m6tWrnDlzhrVr13L37l22bt1KcHAwcXFxjB079j/34+XlRa5cuTQeT18/zIYMhBBCCCHEl0jbKzZ9Tqs5ae2aCTMzM27duoWra8p8OaVSiYmJCQ8fPiRv3rwcPXqUzp078/jxv18HkJCQQEKC5hzLWkUaoqf4PJed/H/INRO6Ra6Z0C1yzYTQBXLNhG75lK+ZsM5ZRNshfFBEzF1th6BBa9dM2Nra8uTJE3Ux8ezZM5KSksiZMycAhQsXJjLyv1c+MTY2xvgfy5bpYiEhhBBCCCFEdtPap+5mzZrRu3dv/vjjD06cOEH79u2pWbMmpqamAAQEBODg8Hl+8+rerz1Xn5zB8+f+2g4lS1Wt9hXbdqwkIPACMbHBNPqh/n9v9AXQ1bz/6Us9z3NULk6hNWMofXU1FR/tJfe3lTVed5kzgIqP9mo8Cm8cr6Vos46unueSt27l/amIjY1j+rxl1G/uToXaTWnfy5Ob/u9W7ImLe8PU2Uuo26wDFWo3pUn7nurlXP+247dDdO43nMr1m1OyWkNiXr1O81jxCQl8VbcZoY/CCI+IZPjEGTRq251S1b9n+rxlaW5z+M8zNG7Xg/K1m/Bjxz6cPn9Z43WVSsWileup1eQnKtRuSveBo3jwUHO2hF9AIN0HjqbKty2p1rA1E2fMJzY2NiM/rmyhVKk+2cenRmvFxJQpUyhevDiNGzembt26JCQksHr1avXrCoUCLy8vbYWXYcXLFKN5xybcvR2o7VCynLm5Gbdu+jNk8ARth5KtdDXv933J57memQlxfiGEjl3+wT7RJ7zxLddZ/Qj2mJ2NEWYPXT3PJW/dyvtTMX76fC5cuYbX+KHs2bCUqpXK02PgaJ6Fp9wXZObCFZy9dBWv8cPZt3kFHVs3Y9rcJZw4c1G9j/j4BKpXrkiPTm3/9VgXLl/DLp8tTo72vE1MJE/uXPR0b0vRQgXS7H/tph/DJ07nxx++ZceaRdSpUYUBoyZzL/i+us/qTTvYtHMf44f1Z/PKeZiamNDLcywJCSn3E3oe/oLuA0fh5GjH5hXzWDZnMoEhoYwaNer//MmJT4HWpjnlyJGDbdu2ER8fT1JSEjlyaN4tsUGDBh/Y8tNlambK5MXjmTp0Jt0GuWs7nCx39Mgpjh45pe0wsp2u5v23L/08jznhQ8wJn3/to0xIIin8ZfYEpCW6ep5L3iK7KRRw7NRZFkyfQMWypQDw6NaBU+cusW3PQQb0dMf3pj9NG9ajUvnSALRq+j07fvudm/4B1K6Rcifqjm1+BOCyz79fX/Xn2QvU/uvu1Q52eRk1qDcAew4eSbP/xu2/Ua1yRbq2bwlA/56duHDFh8079zNheH9UKhUbtu+lp3tb6tSoAsC0cUOp2bgdx8+c5/t6tTh1/hIGBgaMHeKBnl7K99jjh/Wjeae+PHjwAGdn5wz//IT2af3iAhMTk1SFxOdqhNdgzh2/wOUz3toORYgsI+c5WFQpSRnftZQ8tRinab3Qz22h7ZCEEJ+x5GQlxkaGGm3Gxkb43LgNQNlSbpw4e5Fn4RGoVCoue1/nfuhjqlYq/1HHUSqVnDp3mdp/fehPj+u3/alSsaxGW9XKFbh+2x+AR2FPiXgRRZWK5dSvW+Qwp3Txoly/dQeAt28TMTQ0UBcSACZ/Xe/q7f1p/i3R9opNn9NqTlovJr4UDZrWpVipIiya9uGpEUJ87uQ8h+iTPoQMmsfdthN4NG09Fl+XpMjGcaAnv06FEB9PpYIyJd1YtnYLz8NfkJyczP7Df3L91h0iIlIWohk9uA8FXZyo26wj5Wo2pteQsYwZ0lc9kpFe12+nfLgvXTz9d3eOeBGFlWUejTZryzxEvIhKeT0y5f//2cfqvT6VK5TlxYsoVm/aSWJiItExr5i7NGVqe3h4+EflID49Wr0D9pcir70tQyYPwKONJ2//mh8oxJdGzvMUUfvOqv/7zZ0HxPnfp/T55VhUKcmrc7J8qxDi43mNG8p4r7nUadYBfX093IoUomG9mvgFpFyXtmnnPm7cvsOiGROwy5cXb9+bTJ29BFtrK6p8Ve4/9v7OiTMXqFmtksYIQXYo5OrM1LFDmLlwJfOXr0FPT4/2LZtibW2NQqHI1lhE5pNiIhMUK10UKxtLNh5ZpW4zMDCg3NdlaN2lOVWd66JUyl25xedNzvO0vQ19RuKLaIxd8kkxIYTIECdHe9Yu/oW4N/HExsZhY23JkHFeONrnIz4hgfnL1zHfaxw1q1YCoGihAty5F8zaLbs+rpg4e4nBfbp8VGzWVnl48dfow98iIqOwtkoZibD+a0TiRWQUNtaW6j4vIqMoWrig+nmjBrVp1KA2EZFRmJmYgELB+m17yJ8//0fFk12UfHrTiT5VUkxkgitnrtKmVieNtvHzRvEgMJR1izbp5Acs8eWR8zxthnZWGOSxIPF51H93FkKIf2FmaoKZqQnRMa84f9kbz75dSUpKIikpCb1/fIOvr6/3Ub93Hzx8zJOnzz+q+AAoU8KNi96+6gu8AS5cuUaZEm4AONrnw9oqDxe9fSlWJKV4eB0byw2/AFr/2CjV/v4uPnYfOIyxsTHVqlX7qHjEp0eKiUwQF/uGoIAQjbb4uHheRkWnav+SmJub4Vrw3QoMLi75KVXajajIaB49CtNiZFlLV/PWlfNcz8wEYxc79XPj/LaYFi9A8stXJL18jb1nG6IOXSDx+UuMnfPhOMadhPtPiDl1TYtRZz5dPc8l7xS6kven4twlb1QqFS5OjoQ+CmP24l8p4ORIs0YNMDQwoGK5Usxe/CvGxsbY57Pl6rWb7Pv9OMMG9FDvI+JFJBEvogj969/rXtB9zM1MsctnS66cFvx55gJfVyyLqYmJxrHv3A0CIC4unqiX0dy5G4ShoQEFC6ScDx1aN6WLx3DWbtnFN1Ur8fuxU9y+c4+JIwYAKUv5d2zdjBXrtuLs6ICDfV4WrdyArbUVdWtUVR9n8859lC1VHDNTEy5cucbsxb8yZOhQ9c2KxedLofoULwv/P1W0q6HtEFi+awEBt+8xZ/zCbDvm3ZjH/90pE1WvUZlDf2xJ1b5p40769BqerbFkp08l7yI5tX9TR22c58v0rbJ0/xZVSlJ0x5RU7RHb/+TB6GUUWjUKs5IF0M9pTuKzKGJO+/L4l00kRURnaVx1orJ3CtWncp5nN8lbU3bnHZeYkG3H+pTs2TCVecvW8Cw8glw5LahfszoDerljkcMcSCkU5i1by/nLPkTHvMI+ny0tmzakU5sf1dccLP51I0tXb0q17ymjPWnWqD6d+gylScN6tGzyncbrJas1TLWNfT5bjuxap35++M8zLFyxjsdPn+Hs6IBn365889eUK0hZ+Wjxqg3s2PcHr16/pnzpEowd4oGLk6O6z6jJszh9/jJxb95QwDk/ndu1oEWHHnyqcpq7ajuED4qJDdZ2CBqkmPiCZHcxIbTrUygmtCGri4lPVXYXE0Jog64WE2/CzmTp/qNeRlO7SXuO7d2gnmb0KTC0/nQ/sEsxkX6ylqEQQgghxBcsOuYVw/r3+KQKCfHlkGsmhBBCCCG+YC5OjhpTjsR/U355E3eyjIxMCCGEEEIIITJEigkhhBBCCCFEhsg0JyGEEEIIId6jkpvWpZuMTAghhBBCCCEyRIoJIYQQQgghRIbINCchhBBCCCHeI6s5pZ+MTAghhBBCCCEyRIoJIYQQQgghRIbINCchhBBCCCHeo5JpTukmIxNCCCGEEEKIDJFiQgghhBBCCJEhMs1JCCGEEEKI98hN69JPRiaEEEIIIYQQGSLFhBBCCCGEECJDZJqTEEIIIYQQ75HVnNJPRiaEEEIIIYQQGSLFhBBCCCGEECJDZJqTEEIIIYQQ75FpTuknIxNCCCGEEEKIDJFiQgghhBBCiC/U4sWLcXFxwcTEhMqVK3P58uVM3b8UE0IIIYQQQrxH9Qk/Psa2bdvw9PRkwoQJ+Pj4UKZMGb799lueP3/+kXv6MCkmhBBCCCGE+ALNmTOHHj160KVLF4oXL86yZcswMzNj9erVmXYMKSaEEEIIIYT4TCQkJBATE6PxSEhISNXv7du3eHt7U69ePXWbnp4e9erV48KFC5kXkEpkmvj4eNWECRNU8fHx2g4lW0nekrcukLwlb10geUve4tM3YcKEVLOfJkyYkKrf48ePVYDq/PnzGu3Dhg1TVapUKdPiUahUsvZVZomJiSFXrlxER0eTM2dObYeTbSRvyVsXSN6Sty6QvCVv8elLSEhINRJhbGyMsbGxRltYWBgODg6cP3+eKlWqqNuHDx/OqVOnuHTpUqbEI/eZEEIIIYQQ4jORVuGQFmtra/T19Xn27JlG+7Nnz8iXL1+mxSPXTAghhBBCCPGFMTIyokKFChw/flzdplQqOX78uMZIxf9LRiaEEEIIIYT4Anl6euLu7k7FihWpVKkS8+bNIzY2li5dumTaMaSYyETGxsZMmDAhXUNPXxLJW/LWBZK35K0LJG/JW3xZ2rRpQ3h4OOPHj+fp06eULVuWP/74g7x582baMeQCbCGEEEIIIUSGyDUTQgghhBBCiAyRYkIIIYQQQgiRIVJMCCGEEEIIITJEigkhhBBCCCFEhkgxkYkWL16Mi4sLJiYmVK5cmcuXL2s7pCx1+vRpGjdujL29PQqFgr1792o7pGzh5eXFV199hYWFBba2tjRr1oyAgABth5Xlli5dSunSpcmZMyc5c+akSpUq/P7779oOK9tNnz4dhULBoEGDtB1Klpo4cSIKhULjUaxYMW2HlS0eP35Mhw4dsLKywtTUlFKlSnH16lVth5WlXFxcUv17KxQKPDw8tB1alkpOTmbcuHEUKFAAU1NTChYsyOTJk9GFtWlevXrFoEGDcHZ2xtTUlKpVq3LlyhVthyU+Q1JMZJJt27bh6enJhAkT8PHxoUyZMnz77bc8f/5c26FlmdjYWMqUKcPixYu1HUq2OnXqFB4eHly8eJGjR4+SmJhIgwYNiI2N1XZoWcrR0ZHp06fj7e3N1atXqVOnDk2bNuX27dvaDi3bXLlyheXLl1O6dGlth5ItSpQowZMnT9SPs2fPajukLBcVFUW1atUwNDTk999/x8/Pj9mzZ5MnTx5th5alrly5ovFvffToUQBatWql5ciy1owZM1i6dCmLFi3C39+fGTNmMHPmTBYuXKjt0LJc9+7dOXr0KBs2bODmzZs0aNCAevXq8fjxY22HJj43KpEpKlWqpPLw8FA/T05OVtnb26u8vLy0GFX2AVR79uzRdhha8fz5cxWgOnXqlLZDyXZ58uRRrVq1StthZItXr16pChcurDp69KiqZs2aqoEDB2o7pCw1YcIEVZkyZbQdRrYbMWKEqnr16toOQ+sGDhyoKliwoEqpVGo7lCzVqFEjVdeuXTXamjdvrmrfvr2WIsoecXFxKn19fdWBAwc02suXL68aM2aMlqISnysZmcgEb9++xdvbm3r16qnb9PT0qFevHhcuXNBiZCI7REdHA2BpaanlSLJPcnIyW7duJTY2lipVqmg7nGzh4eFBo0aNNN7nX7p79+5hb2+Pq6sr7du3JzQ0VNshZbl9+/ZRsWJFWrVqha2tLeXKlWPlypXaDitbvX37lo0bN9K1a1cUCoW2w8lSVatW5fjx49y9exeA69evc/bsWRo2bKjlyLJWUlISycnJmJiYaLSbmprqxAikyFxyB+xMEBERQXJycqq7CebNm5c7d+5oKSqRHZRKJYMGDaJatWqULFlS2+FkuZs3b1KlShXi4+PJkSMHe/bsoXjx4toOK8tt3boVHx8fnZpPXLlyZdauXUvRokV58uQJkyZNokaNGty6dQsLCwtth5dlgoODWbp0KZ6enowePZorV64wYMAAjIyMcHd313Z42WLv3r28fPmSzp07azuULDdy5EhiYmIoVqwY+vr6JCcnM3XqVNq3b6/t0LKUhYUFVapUYfLkybi5uZE3b162bNnChQsXKFSokLbDE58ZKSaE+D94eHhw69Ytnfkmp2jRovj6+hIdHc3OnTtxd3fn1KlTX3RB8fDhQwYOHMjRo0dTfYv3JXv/m9nSpUtTuXJlnJ2d2b59O926ddNiZFlLqVRSsWJFpk2bBkC5cuW4desWy5Yt05li4tdff6Vhw4bY29trO5Qst337djZt2sTmzZspUaIEvr6+DBo0CHt7+y/+33vDhg107doVBwcH9PX1KV++PO3atcPb21vboYnPjBQTmcDa2hp9fX2ePXum0f7s2TPy5cunpahEVuvXrx8HDhzg9OnTODo6ajucbGFkZKT+1qpChQpcuXKF+fPns3z5ci1HlnW8vb15/vw55cuXV7clJydz+vRpFi1aREJCAvr6+lqMMHvkzp2bIkWKEBgYqO1QspSdnV2q4tjNzY1du3ZpKaLs9eDBA44dO8bu3bu1HUq2GDZsGCNHjqRt27YAlCpVigcPHuDl5fXFFxMFCxbk1KlTxMbGEhMTg52dHW3atMHV1VXboYnPjFwzkQmMjIyoUKECx48fV7cplUqOHz+uM/PJdYlKpaJfv37s2bOHP//8kwIFCmg7JK1RKpUkJCRoO4wsVbduXW7evImvr6/6UbFiRdq3b4+vr69OFBIAr1+/JigoCDs7O22HkqWqVauWaqnnu3fv4uzsrKWIsteaNWuwtbWlUaNG2g4lW8TFxaGnp/lRSF9fH6VSqaWIsp+5uTl2dnZERUVx+PBhmjZtqu2QxGdGRiYyiaenJ+7u7lSsWJFKlSoxb948YmNj6dKli7ZDyzKvX7/W+JYyJCQEX19fLC0tcXJy0mJkWcvDw4PNmzfz22+/YWFhwdOnTwHIlSsXpqamWo4u64waNYqGDRvi5OTEq1ev2Lx5MydPnuTw4cPaDi1LWVhYpLoextzcHCsrqy/6OpmhQ4fSuHFjnJ2dCQsLY8KECejr69OuXTtth5alBg8eTNWqVZk2bRqtW7fm8uXLrFixghUrVmg7tCynVCpZs2YN7u7uGBjoxseDxo0bM3XqVJycnChRogTXrl1jzpw5dO3aVduhZbnDhw+jUqkoWrQogYGBDBs2jGLFin3Rn1tEFtH2clJfkoULF6qcnJxURkZGqkqVKqkuXryo7ZCy1IkTJ1RAqoe7u7u2Q8tSaeUMqNasWaPt0LJU165dVc7OziojIyOVjY2Nqm7duqojR45oOyyt0IWlYdu0aaOys7NTGRkZqRwcHFRt2rRRBQYGajusbLF//35VyZIlVcbGxqpixYqpVqxYoe2QssXhw4dVgCogIEDboWSbmJgY1cCBA1VOTk4qExMTlaurq2rMmDGqhIQEbYeW5bZt26ZydXVVGRkZqfLly6fy8PBQvXz5Utthic+QQqXSgds8CiGEEEIIITKdXDMhhBBCCCGEyBApJoQQQgghhBAZIsWEEEIIIYQQIkOkmBBCCCGEEEJkiBQTQgghhBBCiAyRYkIIIYQQQgiRIVJMCCGEEEIIITJEigkhhBBCCCFEhkgxIYQQn5jOnTvTrFkz9fNatWoxaNCgbI/j5MmTKBQKXr58me3HFkII8XmQYkIIIdKpc+fOKBQKFAoFRkZGFCpUiJ9//pmkpKQsPe7u3buZPHlyuvpKASCEECI7GWg7ACGE+Jx89913rFmzhoSEBA4dOoSHhweGhoaMGjVKo9/bt28xMjLKlGNaWlpmyn6EEEKIzCYjE0II8RGMjY3Jly8fzs7O9OnTh3r16rFv3z711KSpU6dib29P0aJFAXj48CGtW7cmd+7cWFpa0rRpU+7fv6/eX3JyMp6enuTOnRsrKyuGDx+OSqXSOOY/pzklJCQwYsQI8ufPj7GxMYUKFeLXX3/l/v371K5dG4A8efKgUCjo3LkzAEqlEi8vLwoUKICpqSllypRh586dGsc5dOgQRYoUwdTUlNq1a2vEKYQQQqRFigkhhPg/mJqa8vbtWwCOHz9OQEAAR48e5cCBAyQmJvLtt99iYWHBmTNnOHfuHDly5OC7775TbzN79mzWrl3L6tWrOXv2LJGRkezZs+dfj9mpUye2bNnCggUL8Pf3Z/ny5eTIkYP8+fOza9cuAAICAnjy5Anz588HwMvLi/Xr17Ns2TJu377N4MGD6dChA6dOnQJSip7mzZvTuHFjfH196d69OyNHjsyqH5sQQogvhExzEkKIDFCpVBw/fpzDhw/Tv39/wsPDMTc3Z9WqVerpTRs3bkSpVLJq1SoUCgUAa9asIXfu3Jw8eZIGDRowb948Ro0aRfPmzQFYtmwZhw8f/uBx7969y/bt2zl69Cj16tUDwNXVVf3631OibG1tyZ07N5AykjFt2jSOHTtGlSpV1NucPXuW5cuXU7NmTZYuXUrBggWZPXs2AEWLFuXmzZvMmDEjE39qQgghvjRSTAghxEc4cOAAOXLkIDExEaVSyU8//cTEiRPx8PCgVKlSGtdJXL9+ncDAQCwsLDT2ER8fT1BQENHR0Tx58oTKlSurXzMwMKBixYqppjr9zdfXF319fWrWrJnumAMDA4mLi6N+/foa7W/fvqVcuXIA+Pv7a8QBqAsPIYQQ4kOkmBBCiI9Qu3Ztli5dipGREfb29hgYvPs1am5urtH39evXVKhQgU2bNqXaj42NTYaOb2pq+tHbvH79GoCDBw/i4OCg8ZqxsXGG4hBCCCFAigkhhPgo5ubmFCpUKF19y5cvz7Zt27C1tSVnzpxp9rGzs+PSpUt88803ACQlJeHt7U358uXT7F+qVCmUSiWnTp1ST3N6398jI8nJyeq24sWLY2xsTGho6AdHNNzc3Ni3b59G28WLF/87SSGEEDpNLsAWQogs0r59e6ytrWnatClnzpwhJCSEkydPMmDAAB49egTAwIEDmT59Onv37uXOnTv07dv3X+8R4eLigru7O127dmXv3r3qfW7fvh0AZ2dnFAoFBw4cIDw8nNevX2NhYcHQoUMZPHgw69atIygoCB8fHxYuXMi6desA6N27N/fu3WPYsGEEBASwefNm1q5dm9U/IiGEEJ85KSaEECKLmJmZcfr0aZycnGjevDlubm5069aN+Ph49UjFkCFD6NixI+7u7lSpUgULCwt+/PHHf93v0qVLadmyJX379qVYsWL06NGD2NhYABwcHJg0aRIjR44kb9689OvXD4DJkyczbtw4vLy8cHNz47vvvuPgwYMUKFAAACcnJ3bt2sXevXspU6YMy5YtY9q0aVn40xFCCPElUKg+dJWfEEIIIYQQQvwLGZkQQgghhBBCZIgUE0IIIYQQQogMkWJCCCGEEEIIkSFSTAghhBBCCCEyRIoJIYQQQgghRIZIMSGEEEIIIYTIECkmhBBCCCGEEBkixYQQQgghhBAiQ6SYEEIIIYQQQmSIFBNCCCGEEEKIDJFiQgghhBBCCJEh/wNHmBIZ2MXpQgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAANXCAYAAABOkwIqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gUVxfA4d+ydBSkCyKiYMHejb3EmBg/S+y9Kyr2GnuJir33ElsssbcYNcbeu6IURVAsCGIBpJf9/jBZ2QCKRFgi532efZKduXPn3N0BOXPLKFQqlQohhBBCCCGE+EQ62g5ACCGEEEII8d8kyYQQQgghhBAiQySZEEIIIYQQQmSIJBNCCCGEEEKIDJFkQgghhBBCCJEhkkwIIYQQQgghMkSSCSGEEEIIIUSGSDIhhBBCCCGEyBBJJoQQQgghhBAZIsmEECJVderUoU6dOtoOIwWFQsGkSZO0HUaa/s3n5uTkRNeuXT9rPFmla9euODk5aTsMIYQQWUySCSG+IAqFIl2vkydPZmocW7ZsYcGCBZl6jg95+PChuq1Tp05NtUyHDh1QKBTkypUri6P7bwkPD2fy5MmUKVOGXLlyYWRkRMmSJRk1ahTPnj3TdnifxMnJSX1d6OjokCdPHkqVKkXv3r25dOnSv6p7+vTp7N279/MEKoQQ/yG62g5ACPH5bNq0SeP9xo0b+eOPP1Jsd3V1/WhdR48ezXAcW7Zs4c6dOwwePDjDdXwOhoaGbN26lXHjxmlsj4yMZN++fRgaGmopsv8Gf39/6tevT2BgIK1ataJ3797o6+tz+/Zt1q5dy549e7h37562w/wkZcuWZdiwYQBERETg7e3Njh07WL16NUOGDGHevHkZqnf69Om0bNmSZs2afcZohRAi+5NkQogvSMeOHTXeX7x4kT/++CPF9vTQ19f/XGFpzffff8/u3bu5desWZcqUUW/ft28fcXFxfPfddxw/flyLEWZfCQkJNG/enODgYE6ePEmNGjU09k+bNo2ZM2dqKbqMy5cvX4qfh5kzZ9K+fXvmz59P4cKF6du3r5aiE0KI/x4Z5iREDrNu3Trq1auHjY0NBgYGFC9enOXLl6co98+x/ydPnkShULB9+3amTZuGg4MDhoaGfP311/j5+Wkc99tvv/Ho0SP1kJLkY+ljY2OZOHEiLi4uGBgYkD9/fkaOHElsbKzG+WNjYxkyZAjW1tbkzp2bJk2a8OTJk09qa9WqVSlYsCBbtmzR2L5582a+++47LCwsUj1u2bJllChRAgMDA+zt7XF3d+fNmzcpyq1atQpnZ2eMjIyoXLkyZ86cSbW+9LY5vSIjIxk2bBj58+fHwMCAokWLMmfOHFQqlUY5hUJB//792bt3LyVLlsTAwIASJUpw+PDhj55j165d3Lp1i7Fjx6ZIJABMTU2ZNm3aB+tISkpiwYIFlChRAkNDQ2xtbXFzc+P169ca5fbt20ejRo2wt7fHwMAAZ2dnfvrpJxITEzXK1alTh5IlS+Ll5UXdunUxNjYmX758zJo166Pt+RAjIyM2bdqEhYUF06ZN0/gc58yZQ7Vq1bC0tMTIyIgKFSqwc+dOjeMVCgWRkZFs2LBBfc3/Pffl0aNH9OvXj6JFi2JkZISlpSWtWrXi4cOH/ypmIYTILqRnQogcZvny5ZQoUYImTZqgq6vLgQMH6NevH0lJSbi7u3/0+BkzZqCjo8Pw4cMJCwtj1qxZdOjQQT3mfOzYsYSFhfHkyRPmz58PoJ6XkJSURJMmTTh79iy9e/fG1dUVT09P5s+fz7179zTGnPfs2ZNffvmF9u3bU61aNY4fP06jRo0+ub3t2rXjl19+YcaMGSgUCkJDQzl69CibNm1K9Y/qSZMmMXnyZOrXr0/fvn3x9fVl+fLlXLlyhXPnzqGnpwfA2rVrcXNzo1q1agwePBh/f3+aNGmChYUF+fPnV9f3KW1OD5VKRZMmTThx4gQ9evSgbNmyHDlyhBEjRvD06VP1Z/63s2fPsnv3bvr160fu3LlZtGgRLVq0IDAwEEtLyzTPs3//fgA6der0SfEl5+bmxvr16+nWrRsDBw4kICCAJUuWcOPGDY3Pcv369eTKlYuhQ4eSK1cujh8/zoQJEwgPD2f27Nkadb5+/ZrvvvuO5s2b07p1a3bu3MmoUaMoVaoUDRs2zHCsuXLl4ocffmDt2rV4eXlRokQJABYuXEiTJk3o0KEDcXFxbNu2jVatWnHw4EH19bhp0yZ69uxJ5cqV6d27NwDOzs4AXLlyhfPnz9O2bVscHBx4+PAhy5cvp06dOnh5eWFsbJzhmIUQIltQCSG+WO7u7qp//phHRUWlKPftt9+qChUqpLGtdu3aqtq1a6vfnzhxQgWoXF1dVbGxsertCxcuVAEqT09P9bZGjRqpChQokOI8mzZtUuno6KjOnDmjsX3FihUqQHXu3DmVSqVS3bx5UwWo+vXrp1Guffv2KkA1ceLED7Y7ICBABahmz56tunPnjgpQn3Pp0qWqXLlyqSIjI1VdunRRmZiYqI8LCQlR6evrqxo0aKBKTExUb1+yZIkKUP38888qlUqliouLU9nY2KjKli2r8VmsWrVKBWh8bults0qlUhUoUEDVpUuXD7Zt7969KkA1depUje0tW7ZUKRQKlZ+fn3oboNLX19fYduvWLRWgWrx48QfPU65cOZWZmdkHyyTXpUsXje/8zJkzKkC1efNmjXKHDx9OsT21a9LNzU1lbGysiomJUW+rXbu2ClBt3LhRvS02NlaVN29eVYsWLT4aY4ECBVSNGjVKc//8+fNVgGrfvn1pxhYXF6cqWbKkql69ehrbTUxMUv3uUmvbhQsXUrRDCCH+q2SYkxA5jJGRkfr/w8LCCA0NpXbt2vj7+xMWFvbR47t166Yxn6JmzZrAu8m6H7Njxw5cXV0pVqwYoaGh6le9evUAOHHiBACHDh0CYODAgRrHZ2RCd4kSJShdujRbt24F3k0Ob9q0aap3hI8dO0ZcXByDBw9GR+f9r8devXphamrKb7/9BsDVq1cJCQmhT58+Gp9F165dMTMzy1Cb0+vQoUMolcoUn82wYcNQqVT8/vvvGtvr16+vvksOULp0aUxNTT/6fYWHh5M7d+5Pii25HTt2YGZmxjfffKPR7goVKpArVy6Ndie/JiMiIggNDaVmzZpERUXh4+OjUW+uXLk05jzo6+tTuXLldF1/H/N3D1pERESqsb1+/ZqwsDBq1qzJ9evX01Vn8uPj4+N5+fIlLi4u5MmTJ911CCFEdibDnITIYc6dO8fEiRO5cOECUVFRGvvCwsJS/DH8T46Ojhrvzc3NAVKMg0/N/fv38fb2xtraOtX9ISEhwLtx5jo6Ohp/BAMULVr0o+dITfv27Zk7dy5Dhgzh/PnzjBkzJtVyjx49SvU8+vr6FCpUSL3/7/8WLlxYo5yenh6FChXS2JbeNqfXo0ePsLe3T/GH/t8rdP0d29/++X3Bu+/sY99XehKOD7l//z5hYWHY2Nikuj95u+/evcu4ceM4fvw44eHhGuX+meA6ODigUCg0tpmbm3P79u0Mx/q3t2/fAmh8tgcPHmTq1KncvHlTY47LP2NIS3R0NB4eHqxbt46nT59qzMdIT/IuhBDZnSQTQuQgDx484Ouvv6ZYsWLMmzeP/Pnzo6+vz6FDh5g/fz5JSUkfrUOpVKa6XfWPyb+pSUpKolSpUmkuv5l8rsHn1K5dO0aPHk2vXr2wtLSkQYMGmXKe1GirzX/L6PdVrFgxbty4wePHjzMUY1JSEjY2NmzevDnV/X8nV2/evKF27dqYmpoyZcoUnJ2dMTQ05Pr164waNSrFNflvrr+PuXPnDgAuLi4AnDlzhiZNmlCrVi2WLVuGnZ0denp6rFu3LsWk/rQMGDCAdevWMXjwYKpWrYqZmRkKhYK2bdum6+dNCCGyO0kmhMhBDhw4QGxsLPv379e4Y/2pQ20+Jq27ts7Ozty6dYuvv/76g3d2CxQoQFJSEg8ePNDoJfD19c1QPI6OjlSvXp2TJ0/St29fdHVT/9VXoEAB9XmS9zDExcUREBBA/fr1Ncrdv39fPVwJ3g1jCQgI0FiGNr1tTq8CBQpw7NgxIiIiNO6g/z0c6O/Y/q3GjRuzdetWfvnlF0aPHv3Jxzs7O3Ps2DGqV6+uMdTnn06ePMnLly/ZvXs3tWrVUm8PCAjIUNwZ9fbtW/bs2UP+/PnVvTy7du3C0NCQI0eOYGBgoC67bt26FMen9d3u3LmTLl26MHfuXPW2mJiYVFcHE0KI/yKZMyFEDvL3Xd1/DrVI7Y+jf8PExCTVIRytW7fm6dOnrF69OsW+6OhoIiMjAdSr8ixatEijzL95qvbUqVOZOHEiAwYMSLNM/fr10dfXZ9GiRRqf0dq1awkLC1Ov3lOxYkWsra1ZsWIFcXFx6nLr169P8UdietucXt9//z2JiYksWbJEY/v8+fNRKBT/akWj5Fq2bEmpUqWYNm0aFy5cSLE/IiKCsWPHpnl869atSUxM5KeffkqxLyEhQf05pXZNxsXFsWzZsn/ZgvSLjo6mU6dOvHr1irFjx6oTA6VSiUKh0Fii9uHDh6muwGViYpJqgqBUKlP0mixevDjFsrdCCPFfJT0TQuQgDRo0QF9fn8aNG+Pm5sbbt29ZvXo1NjY2BAUFfbbzVKhQgV9//ZWhQ4dSqVIlcuXKRePGjenUqRPbt2+nT58+nDhxgurVq5OYmIiPjw/bt2/nyJEjVKxYkbJly9KuXTuWLVtGWFgY1apV488//9R4nsWnql27NrVr1/5gGWtra0aPHs3kyZP57rvvaNKkCb6+vixbtoxKlSqpJ/7q6ekxdepU3NzcqFevHm3atCEgIIB169almDOR3janV+PGjalbty5jx47l4cOHlClThqNHj7Jv3z4GDx6cYp5JRunp6bF7927q169PrVq1aN26NdWrV0dPT4+7d++yZcsWzM3N03zWRO3atXFzc8PDw4ObN2/SoEED9PT0uH//Pjt27GDhwoW0bNmSatWqYW5uTpcuXRg4cCAKhYJNmzZ9lmFLqXn69Cm//PIL8K43wsvLix07dvD8+XOGDRuGm5ubumyjRo2YN28e3333He3btyckJISlS5fi4uKSYo5GhQoVOHbsGPPmzcPe3p6CBQtSpUoV/ve//7Fp0ybMzMwoXrw4Fy5c4NixYx9cllcIIf5TtLWMlBAi86W2NOz+/ftVpUuXVhkaGqqcnJxUM2fOVP38888qQBUQEKAul9bSsDt27NCo7+9lWNetW6fe9vbtW1X79u1VefLkUQEaS4bGxcWpZs6cqSpRooTKwMBAZW5urqpQoYJq8uTJqrCwMHW56Oho1cCBA1WWlpYqExMTVePGjVWPHz/+5KVhP+SfS8P+bcmSJapixYqp9PT0VLa2tqq+ffuqXr9+naLcsmXLVAULFlQZGBioKlasqDp9+nSKz+1T2pyepWFVKpUqIiJCNWTIEJW9vb1KT09PVbhwYdXs2bNVSUlJGuUAlbu7e4rj03selUqlev36tWrChAmqUqVKqYyNjVWGhoaqkiVLqkaPHq0KCgpSl/vn0rB/W7VqlapChQoqIyMjVe7cuVWlSpVSjRw5UvXs2TN1mXPnzqm++uorlZGRkcre3l41cuRI1ZEjR1SA6sSJE+pytWvXVpUoUSLFOdI6d2rtBlSASqFQqExNTVUlSpRQ9erVS3Xp0qVUj1m7dq2qcOHCKgMDA1WxYsVU69atU02cODHFz5WPj4+qVq1aKiMjIxWg/nxfv36t6tatm8rKykqVK1cu1bfffqvy8fH5pO9ACCGyM4VKlUm3f4QQQgghhBBfNJkzIYQQQgghhMgQSSaEEEIIIYQQGSLJhBBCCCGEECJDJJkQQgghhBDiC7N8+XJKly6NqakppqamVK1ald9//129PyYmBnd3dywtLcmVKxctWrQgODj4k88jE7CFEEIIIYT4whw4cAClUknhwoVRqVRs2LCB2bNnc+PGDUqUKEHfvn357bffWL9+PWZmZvTv3x8dHR3OnTv3SeeRZEIIIYQQQogcwMLCgtmzZ9OyZUusra3ZsmULLVu2BMDHxwdXV1cuXLjAV199le46ZZiTEEIIIYQQ/xGxsbGEh4drvGJjYz94TGJiItu2bSMyMpKqVaty7do14uPjqV+/vrpMsWLFcHR05MKFC58Uzxf5BOz4UH9th6AVRvY1tR2CVhQys9N2CFrxPOqVtkPQiqj4D//CFF+WhnnLaTsErfj9+Q1th6AVtiZ5tB2CyEJPX9/Vdghpys5/S3os2cjkyZM1tk2cOJFJkyalKOvp6UnVqlWJiYkhV65c7Nmzh+LFi3Pz5k309fXJkyePRnlbW1ueP3/+SfF8kcmEEEIIIYQQX6LRo0czdOhQjW0GBgapli1atCg3b94kLCyMnTt30qVLF06dOvVZ45FkQgghhBBCiP8IAwODNJOHf9LX18fFxQWAChUqcOXKFRYuXEibNm2Ii4vjzZs3Gr0TwcHB5M2b95PikTkTQgghhBBCJJeUmH1f/6ZZSUnExsZSoUIF9PT0+PPPP9X7fH19CQwMpGrVqp9Up/RMCCGEEEII8YUZPXo0DRs2xNHRkYiICLZs2cLJkyc5cuQIZmZm9OjRg6FDh2JhYYGpqSkDBgygatWqn7SSE0gyIYQQQgghxBcnJCSEzp07ExQUhJmZGaVLl+bIkSN88803AMyfPx8dHR1atGhBbGws3377LcuWLfvk83yRz5nIzjPwM5Os5pSzyGpOIieQ1ZxyFlnNKWfJ1qs5BftqO4Q06dkW1XYIGmTOhBBCCCGEECJDJJkQQgghhBBCZIjMmRBCCCGEECK5pCRtR/CfIT0TQgghhBBCiAyRZEIIIYQQQgiRITLMSQghhBBCiGRUKhnmlF7SMyGEEEIIIYTIEEkmhBBCCCGEEBkiw5yEEEIIIYRITlZzSjfpmRBCCCGEEEJkiCQTQgghhBBCiAyRYU5CCCGEEEIkJ6s5pZv0TAghhBBCCCEyRJIJIYQQQgghRIbIMCchhBBCCCGSS0rUdgT/GdIzIYQQQgghhMgQSSaEEEIIIYQQGSLDnIQQQgghhEhOVnNKtxzfMxEZGcWMBSv4pnkXKtRtSge3oXh6+6r3R0VFM23uMr5u1pEKdZvSpENvft3z20frDY94y9S5S6nTpD3l6jSmUduenD5/Wb3/4JHjfP1DJ6p914pZi1ZpHPs0KJhGbXvyNjLy8zVUfFCH7q04fm0/no/PsePwekqXK5Fm2QaN6rLrj41c9TvBzYdn2HdiM01bfa9Rpnu/jlzwOsoFr6N079tBY1/p8iXYfWwTSqUyU9ryKXr17oSn12lCXnpz/ORuKlQonWbZYq6F2bR5GZ5epwmP9Kefe7cUZVq3aYqX71kePbnB9BljNfY5Oubj+s0/yZ0712dvhxAf8n3nRqw5t5Zd93YzZ99cCpcp8sHyJqYm9PmpDxuubmT3/T2sOLmSCnUrqvfXblaHny+uY6vnNnqM76lxrI2DDStOrsQol1GmtEV8XJee7bh46ygPgq5z4I+tlC1fKs2y7Tu3ZPehjdwNOM/dgPNs27MmRXm3/l25de80t+6dxs29i8a+chVK8fuJ7dni93lObbfQvhzfMzFhxkL8/B/iMWE4NlaWHDhynF6DxrBv80psra2YtXgVl67dwmPCSPLZ2XL+8jWmzl2KjZUldWt+lWqd8fHx9Bo8BgvzPMybOhZbayuePQ8md653f0S9fhPGxBkLmTp2KA758uI+fCKVK5ShTvUqAEyds4TBfbqRy8Qkyz6HnOz7Zt8wesoQJozw4Na1O3R1a8fa7Yv5tmoLXoW+TlH+zetwVsz/Gf/7D4mLj6dug5p4LJrAy9BXnD1xkaLFXRg0qg9uHQajUChYuXk+Z09e5J73A5RKJVPmjGH80GkkJmp3clfzFo2YPmMMgweN5+qVm/Rz78bufRuoUK4+oS9epihvbGTEw4eB7N1zCI+Z41Lst7A0Z/FSD/q6jeBhwGN27F7D6ZMXOHz4OADzFvzExAmziIh4m+ltE+JvNRrXpOf4niwds5R7N31p0qMpU36ZQp86boS9DEtRXldPl582/8Sb0DBm9PHg5fOX2OSz4W34u5s7puamDJg1gAXDFhD86DkT1k/k9vlbXPnzCgB9p/Zjw4z1RL+NztJ2inea/PAdE6eO5Mehk7lxzZOefTqxeddKalX6Hy9DX6UoX7VGJfbtOsTVSzeJiY3FfVAPtuxeRb2qTXkeFIJriSKMGN2fLm3dUShg/bZlnDpxHh+v+yiVSmbMm8jIwZO0/vs8p7ZbZA85umciJjaWY6fOMtS9BxXLlsLRwR73Hh1xdLBX9z7c9PSmacP6VC5fmnx2trRq+j1FXQpp9F780+6DRwkLj2DRjAmUL12CfHa2VCpXmmKFCwHw5NlzcuUyoWH92pRyLUql8mXwf/gYgEN/nERXV5dv6lTP/A9AANCtTwe2/7KX3VsP8OBeABOGexATHUPL9k1SLX/5/DX+OHSSB/cf8vjhUzau2oavlx8VqpQFoFBhJ3y97nPx7FUunLmCr5cfhQo7AdCzfyeuXLiO502vLGpd2voP6MGGdb+yedNOfH38GDxwHNHR0XTq3CrV8tev32b82Bns2nmQ2Ni4FPsLOuUnPDyC3bt+4/r125w+dZEixZwBaNmqMfHx8RzYfyRT2yTEPzXr2YwjW4/w545jPL7/mGWjlxIbHcs3bb5JtXz9Nt+QK09upvWaivdVb0KehHDn0h0eegcAYOuYl6jwKM4eOMP92/fxvHAbB5f8ANRqUouEhAQuHL6QZe0Tmnr168KWjTvZvmUv930f8OPQyURHxdC2Y/NUyw/oPYoNa7dx944PD+4HMHzgBHQUOtSo9e5moUvhgnjfvce5M5c4e/oS3nfv4VK4IAB9B3bj4vmr3LpxJ8val5ac2u5MlZSUfV/ZTI5OJhITEklMTMJAX09ju4GBPtdv3wWgbClXTpy9SPCLUFQqFZev3eJh4FOqVS6fZr0nz16kTElXps1dSq3/taNZxz6s2rBNncE7OtgTExOD9z0/wsIjuOtzj6IuBQkLj2Dx6o2MGdov8xotNOjp6VKiTDHOn7qk3qZSqTh/+jJlK6Y95Ce5qjUrUdC5AFcu3ADgnpcfTs6O2OWzxd4hL07Ojtz3fkB+p3w0b9eYBdOXZ0pbPoWenh5ly5XkxIlz6m0qlYqTJ85RuXK5DNX54MFDjIwMKV2mOObmZpSvUJq7d3zIk8eUceOHMHzopM8TvBDppKuni0spF26dvaneplKpuHn2JkXLF0v1mCr1q+BzzYc+U/uy8domlvyxlFburdDReffP5bOHTzEwMqBQiULkMstF4TJFeOj9EBMzEzoM78jK8SuyomkiFXp6epQuW5wzJ98ncyqVirOnLlKhUpl01WFkbIiuni5v3rzrtfL2uk9BFyfsHezIl9+OQi4F8PH2o4BTftq0/4FZ0xZlSls+RU5tt8g+cvQwJxMTY8qUdGXF+q0UKuCIpUUeDh07xa07PjjmswNgzJC+TJq5iK+bdUJXqUSho2DSqEFULJv2WMQnz57z9PotGjWoy/I5Uwh88oypc5eSkJhIv+4dMDPNzbRxwxjz01xiYmNp/N3XVK9SgfEe82nfojFPg54zYNQkEhIS6dejAw3q1syqjyTHMbfIg66uLqEvNLuBQ0NeUcjFKc3jcuU24Yzn7+jr65OUmMikUTPVCcmD+w+ZN20Z63YuA2Du1KU8uP+Q9TuXMnvyImrUq8qAEb1JSEhg6tg5XP0rCclKlpbm6Orq8iIkVGN7SEgoRYo4Z6jON2/C6dN7BCtXz8XI0IBtW/bw57EzLFk2g1UrN1HAyYFtO1ahp6eLx7RF7Nv7++doihBpMrUwRamr5HXoG43tb0Lf4ODskOoxeR1tKV2tNCf3nmRy10nYOdnTd2pflHq6bFuwlciwSOYPnc+Q+UPRN9Tn+K7j3Dh9nQGzBvLbhoPY5rdl3Nrx6OrpsmX+Fs4fOpfqecTnZ2H59+9zzWGaL168xPmvu+ofM3bSMIKfh6j/MPe758/MnxawbfdqAGZMWYDfPX+27VnD1IlzqVOvBkN/7EdCfAITRntw6fy1z9uodMip7RbZR45OJgA8xg9ngsd86jXriFKpg2sRFxrWr42Xrx8Am3fu5/ZdH5bMnIhdXluu3fRk2txl2FhZUrVS6ndwk1QqLMzzMGnkQJRKJSWKFSYk9CXrtuykX/d3k3Hr165O/drvhzJduXGbe34BjBnSl+9b92DW5FFYWVjQrtcgKpQthaV5nkz/LET6Rb6Nomnd9piYGFO1ZiVGTxnC44dPufzXL9RtG3axbcMudfkf2jQi8m0UN656cuTCLlo06ExeOxvmr5pOvQpNiI+L11ZTPquDB45y8MBR9fvqNSpTsmQxRgybxE3PE3TvOojg4BecOLWXc+cupzo3QwhtUujoEPbyDUt/XEJSUhIPPB9gaWtJ8z7N2bZgKwAXj1zg4pH3d4FLVilJQVcnVk1Yycozq5jTfzavX7xm7v553L10J9W5GSL7cR/ckybNG9KqcVeNoZyb1m1n07rt6vet2jbl7dtIrl25xekrB2lUrw129nlZtmYOVcs2IO4/9vs8p7b7Y1SymlO65fhkwtHBnvVLZxMVHUNkZBTWVhYMG++Bg31eYmJjWbhyAws9xlO7WmUAiroUxOe+P+u37kozmbD+665v8lUOChXIT+jL18THx6OnpzmsKi4ujqlzluIxYQSBT4JITEykUrl3Q2wK5M+H510f6tRIfbK3+Hdev3pDQkICVtYWGtutbCx4EZL2H7oqlYrAgCcAeN+5h3ORgrgN7qpOJpIztzCj//BetG/SmzLlS/LwQSCP/B/zyP8xerq6FHR25J73g8/bsI94+fI1CQkJWNtYaWy3sbEiOPjFZzmHvr4+8+ZPoXevYRRydkJXV8m5s+9WNHvgF0DFimU4/Pvxz3IuIVIT/iqcxIREzK3yaGzPY5WH1y9SLq4A8DrkFQkJiSQlG5f8xO8xFjYW6OrpkhCfoFFeV1+XvtP6Mm/wPOyc7FAqldy59G4s+bOApxQpV5Qrxy4jMt+rl3//PrfU2G5tbZmiF/af3Pp3xX1wD9o264n33XtpljO3yMOQUX1p0agL5SqWxt/vEQH+gQT4B6Knp0shFyd8vO5/lvakV05tt8g+cvScieSMjQyxtrIgLDyC85evUa/mVyQkJJCQkICOQqFRVqnU0fiH5p/KlipB4JNnGmUePn6KtaVFikQCYOX6bdT4qiLFi7qQlJRIQrLVERISEknMhpNtvhTx8QncveVD1VqV1dsUCgVVa1bi5tXb6a5HoaODvr5+qvvG/DSM9Su3EhwUglKpg67e+xxeqavUytJ68fHx3Lxxhzp1qqm3KRQKatepxuXLn2fY1chR7hw7dppbN+++a7fyfbt19XRlSUGR6RLiE/Dz9KN09ffjxhUKBWWql8H3uk+qx3hd9caugB2KZL/37Qvl42XwyxSJBECbAW25dvI6D+48QEepg1L3/XWt1NVFqSP/zGaV+Ph4bt/0okbt9zffFAoFNWpV4dqVW2ke13dgdwaP6EPHlm7cvnn3g+eYPH0Uq5dtJOhZMEodHfT++ftcRzu/z3Niu0X2keN7Js5duoZKpcLJ0YHAJ8+Yu3QtBR0daNaoAXq6ulQsV4q5S9diYGCAfV4brt7wZP/vfzJiYC91HaN/moONlSVD+r5bd7/ND43Yums/MxasoH3LJjx68ozVG3+lQ6uUqwM9CHjE4eOn2bFuCQAFC+RHR0eHXQeOYGVpTkDgY0q6fnhNdPHvrFuxmZmLJ3Hnphe3r9+li1t7jIyN2LX1AACzlkwm+HkIc6cuBcBtUFc8b3rz+OET9PX1qF2/Ok1bfc+kkR4p6q5WuwpOzo6M7D8RgNs3vCjkUoBaX1fDzt6WpMQk/P0eZV1jk1myeC0rVs3hxg1Prl69RT/3bhgbG/PLpp0ArFw9h2fPgpk8cTbwbpJfMVcXAPT19bCzt6VUaVci30bh76/ZhqLFXGje4n/UqPY/AO75PiApKYlOnVsTEvyCIkWcuX4t/cmaEBm1d81ehswdgp/nfe7dvEfTHk0xNDbk2PZjAAyZP5SXz1+yceYGAH7fdIj/dfkfvSb15uD6A9gXtKeVeysOrjuQou78hfNTs3FNBjUcCMATvyeokpL4ps03vH7xGgdnB+7dkru1WWn1sg3MXzad2zfucuO6J736dsLIxIhfN+8BYOHy6QQFhTBjygIA+g3qwfDR/enfaySPA5+pe2sjI6OIiozSqLtmnaoUdHZiUN8xANy6cQfnwgWpW78G9vnsSEpM4oFfQNY1Npmc2u5MJTdy0y3HJxMRbyNZsGIdwS9CMTPNzTe1azDQrQt6uu8+mjmTf2TBivX8OHkWYeER2Oe1YaBbF9o0a6SuIyg4RKP3ws7WmpXzpzFr4Uqad+mHjZUlHVs1pUdHzSU3VSoVk2YtYsSAXhgbGQJgaGDA1LFDmTZ3GXHx8YwZ0g9ba82hKOLzOrT3DywszRk4qg/WNpZ437lHjzYDePnXpGw7h7wkJRs7aWRsxKRZo8hrZ0NMTCz+9x8yot94Du39Q6NeA0MDJswYyZBeo1GpVAAEB4Xw05jZeCyaQFxsPKMGTCQ2JjbrGpvM7l2/YWVlwZhxQ7C1tcLztjctmnVVd4s7ONhr9K7Z2dlw7sL7BzYOGtybQYN7c+b0RRo1bK9R96LF0xnz4zSiot6ttR8TE0tft5HMmT8ZAwN9hg+dSFBQcBa0UuR0Zw+cwczCjA5DO2JubY6/lz8TO03gzV+Tsq3trVElu85Dg0KZ0GkCPSf0ZPGRJbwMfsmBn/eza/muFHX3n9GftT+tITb63c9wXGwcC4YtoM9PfdHT12PlhBW8CpZ5QVlp/57DWFhZMHxMf6xtrLjr6UPHlm7q+Vn2DnYkJanU5Tt3b4OBgT6rNy7QqGfujKXMm7lM/d7Q0IBps8bSt/tw9e/zoGfBjB81nXlLphEXF8fgfmOI0dLv85zabpE9KFR/Xx1fkPhQf22HoBVG9jlz1adCZnbaDkErnkelfBBRThAVL/9o5SQN82ZsqeL/ut+fZ/0qb9mBrUkebYcgstDT1x8eXqVNsffPazuENBkUrvbxQllIqz0ToaGh/Pzzz1y4cIHnz58DkDdvXqpVq0bXrl2xtrbWZnhCCCGEECInktWc0k1rM8OuXLlCkSJFWLRoEWZmZtSqVYtatWphZmbGokWLKFasGFevXv1oPbGxsYSHh2u8YmPlzqUQQgghhBCZTWs9EwMGDKBVq1asWLFCY9UMeDeXoE+fPgwYMIALFy6kUcM7Hh4eTJ48WWPbuBEDmTBy0GePWQghhBBCCPGe1uZMGBkZcePGDYoVK5bqfh8fH8qVK0d0dPQH64mNjU3RE6ET8RQDA4PPFut/hcyZyFlkzoTICWTORM4icyZylmw9Z8LnlLZDSJNBsdraDkGD1nom8ubNy+XLl9NMJi5fvoytre1H6zEwMEiROMTHffghLUIIIYQQQoh/T2vJxPDhw+nduzfXrl3j66+/VicOwcHB/Pnnn6xevZo5c+Z8lnNFRkaxePVG/jx9gVev31CsiDM/DnajlGtRdZkHDwOZv+xnrt70JDExkUJOjiyYNg67vDbqMjfveLNo5QY8vXzQ0dGhWGFnVs6fimGyZCYmNpaa37dh14ZlODrYs3XXAbbsOsCzoGDsbK3p1aUtTRvW14hv0697+HXPbwQFvyBPHlMa1KnB4D7dMDB4/xC0rbsOsG7LTkJfvaaoSyHGDOlLqeJFEVmvXdcWtOvaEgfHdz0i9338WTp3Daf/zL4rP3wO1apXYtDg3pQtVxI7O1vatXHjt4N/fPxAIf5jLGwt6Tq6KxXqVsDAyICgh0EsHL4Av9t+2g5NfGb9h/Sk4f++waVwQWJiYrh6+SbTJ83jgd9DbYeWqXJqu0Xm0Foy4e7ujpWVFfPnz2fZsmUk/vXUZ6VSSYUKFVi/fj2tW7f+LOeaMGMhfv4P8ZgwHBsrSw4cOU6vQWPYt3klttZWBD55Rue+w2n+v29x79kRE2NjHgQEop/sj/mbd7zpM3QcPTu1YcyQviiVSnz9/FM8HfvC5RvY5bXB0cGebXsOsmDFOiaNGkRJ1yJ4evsyacYizHLnok6Nd0+q/O3oCeavWMdPo4dQtlRxHgY+Ydy0eSgUCkYO7A3A78dOMWvxKiaMGEDp4kXZtH0vbkPHcWDraizN83yWz0ik3/NnIcyduoSH/oEoUPBD2/+xbONcmtXrgJ/vl7sssYmJMXc8vdm0cQdbtq3QdjhCZAoTMxNm7Z6F54XbTOo8ifBXYdg72fM27K22QxOZ4KtqldiwZis3b3iiq6vLj+MHsWX3aup81YToqA8Ps/4vy6nt/iSymlO6ZYvnTMTHxxMa+m5okpWVFXp6ev+uvmTPmYiJjaXKN81ZNGMitatVVm9v3X0ANb6qyMDeXRg+wQNdXV1mTBiRZp3tew2maqXyDOjd+YPnHu8xH4s8Zgzp250ObkMpV6o4w/v3VO+fvXg1t7182LR8LgDT5i7D/1EgaxfNSLNMu16DKVmsCGOH9QMgKSmJ+j90pn3LJvTs9D7hkjkT2nP53p/MmryInZv3Zdk5tTlnIjzSX2s9EzJnImfJ6jkTXX7sgmvF4vzYclSWnvefZM6EdlhYmuPpd5bmjTpz6fw1rcaSlbTV7mw9Z8L7hLZDSJOBa11th6BBa0vDJqenp4ednR12dnb/OpH4p8SERBITkzDQ16zXwECf67fvkpSUxOnzV3DKn4/eQ8ZSq1Fb2vUazJ+n3w9Zefn6Dbe9fLEwN6OD21Bq/a8dXd1HcP3WHY06k5KSOHXuMnVrVgXeJUkG+vopzuvpdY/4hAQAypZyxcvXD08vXwAePw3i9IUr1PyqkroOL9/7fFWprLoOHR0dvqpYllt3vD/PhyQyTEdHh0bNGmBsbMSNK7e1HY4Q4l+q/E0V/G7fZ9TyH9l0/RcWHFpIg3bfajsskUVMTXMD8OZ1mJYjyVo5td3i89DqQ+uygomJMWVKurJi/VYKFXDE0iIPh46d4tYdHxzz2fHq9RuioqNZ+8t2BvTqwtC+3Tl76RqDx0zl58UzqFSuNE+eBgGw7OfNDO/fk2KFC7H/9z/pMWg0ezetoED+fADcuusDQOm/5jJUq1yBXQcPU69WVYoXdeGuz312HThCQkICb96EY21lQaMGdXkdFk6nvsNBpSIhMZHWzb6nd5e2ALx+E05iYhKWFuYa7bK0MCcg8ElWfYziH4q4OvPr7+swMNAnKjIa964jeHAvQNthCSH+pbz589Kw4/fsXbOXHUu2U7hMYXpP7k1CfDzHdx7XdngiEykUCiZ7jOLyxev4euec+TE5td0flSTDnNLri08mADzGD2eCx3zqNeuIUqmDaxEXGtavjZevH0lJ70Z51a1Zlc5tfwCgWBFnbnp6sX3vISqVK03SXyPBWjX9nh8aNQDAtYgLF6/dZPfBowzp2w2AE2cuULt6ZXR03nX49OnWjtBXr+jQewgqVFiam9O04df8vHknCp13cy0uX7/N6o2/Mm6YO6VLFCXwyTNmLFzJinVb6NOtfZZ+TiL9Avwe0bRue3LnzsV3Tb5m5uJJdGjaWxIKIf7jFDoK/G77sWnWRgD87/pToGgBGnb4XpKJL9z0OeMo6lqYHxp20nYoWSqntlt8PjkimXB0sGf90tlERccQGRmFtZUFw8Z74GCfF/M8pugqlTg7OWocU8gpP9dvewFgbWkBgHPBf5Qp4Mjz4BD1+xNnL6kTCwBDAwOmjhnKxJEDefnqNdaWFuzY/zsmxkZY5DEDYMnqjTT+th4tm3wHQBHngkTHxDJ55iJ6d2mLeR5TlEodXr56rXHul69eY/WP3gqRdeLjEwgMeNczdPe2D6XKFqdL73ZMGD5dy5EJIf6N1yGveXw/UGPb4/uPqdawupYiEllh6qyx1P+2Ns2/70LQs2Bth5Nlcmq7xeeVLeZMZBVjI0OsrSwIC4/g/OVr1Kv5FXp6epRwLZJiyNDDx0+x/2tZ2Hx2tthYWfLwkWaZR4+fYJfX9q//f0rQ8xCqVko5WVBPV5e8NtYolUoOHztF7epV1L0XMbGx6Ohorgil/GufSqVCT0+P4kULc+nqTfX+pKQkLl27SZmSrv/uAxGfjUJHB32DzzvfRwiR9byvepHP2UFjW75C+Qh5EpLGEeK/buqssXzX6GtaN+nO48Cn2g4ny+TUdqebKin7vrKZHNEzce7SNVQqFU6ODgQ+ecbcpWsp6OhAs7+GLHVr34LhE2ZQsWxJKpcvw9mLVzl17hLrFs8E3o0n7Na+BUvX/kLRwgUpVtiZfYeOEfDoCfOmjgXg+JkLfFWxLEaGhurzPgx8gqf3PUoXL0p4xFs2bNvNff9HTBs3XF2mdvUqbNy2m2JFnCldvBiBT56xePVGalevglKpBKBzmx8YO20uJYoVpmTxovyyfS/RMbE0a/RNVn2EIplh49w59ed5gp48xySXMY1bfEeV6hXo3nqAtkPLVCYmxhRyLqB+7+SUn1KlXXn9KownT55pMTIhPp99a/Yxa89sWrm34uzBsxQpW4Rv23/Hkh+XaDs0kQmmzxlPs5bf0739AN6+jcLaxgqAiPAIYmK+3JXjcmq7RebIFkvDfm7Jl4YFOPznaRasWEfwi1DMTHPzTe0aDHTrQu5cJuoyuw8eYc2m7QSHhOLk6IB7z47U+2tVpr+t2bSdrbsPEB4eQRGXQgzr153yZUoC0LnvcJo0rK8ergTvHoQ3atJMHgY+RVdXSeXyZRjStzsFC7y/65WQkMiqjds4cPhPQl68xNzcjDrVqzCwdxdMc+dSl9uycz/rtuwi9NUrihV2ZvTgPpQuofn0cFkaNmtMWzCeqjUrYWNrRUT4W3y97rNq8UbOn7qUpXFk9dKwNWpW4dDhrSm2b/5lJ33dRmZZHLI0bM6S1UvDAlT6uhKdR3XB3sme4MfB7F2zl6Nbj2RpDLI0bNZIa2nSIf3Gsn3r3iyNJStll3Zn66Vh72Tfh7IalMxeN5NzRDKR2V6/CaNukw4c27tJq/MYJJnIWbT5nAltkmQiZ9FGMpEdSDIhcoJsnUzcztobCJ/CoHT2Wq46R82ZyCxh4RGMGNBLJkQLIYQQQogcJUfMmchsTo4OODk6fLygEEIIIYQQXxBJJoQQQgghhEhGpUrUdgj/GTLMSQghhBBCCJEhkkwIIYQQQgghMkSGOQkhhBBCCJFcNnw4XHYlPRNCCCGEEEKIDJFkQgghhBBCCJEhMsxJCCGEEEKI5JJkmFN6Sc+EEEIIIYQQIkMkmRBCCCGEEEJkiAxzEkIIIYQQIjlZzSndpGdCCCGEEEIIkSGSTAghhBBCCCEyRIY5CSGEEEIIkVxSorYj+M+QngkhhBBCCCFEhkgyIYQQQgghhMgQGeYkhBBCCCFEcrKaU7pJz4QQQgghhBAiQySZEEIIIYQQQmSIDHMSQgghhBAiuSQZ5pRe0jMhhBBCCCGEyBBJJoQQQgghhBAZIsOchBBCCCGESE5Wc0o36ZkQQgghhBBCZMgX2TNhZF9T2yFoRfSzM9oOQSu+Kdtb2yFoxfOoV9oOQWQhW5M82g5BK0699NJ2CCILRcRFazsEIcQn+iKTCSGEEEIIITJMVnNKNxnmJIQQQgghhMgQSSaEEEIIIYQQGSLDnIQQQgghhEhOhjmlm/RMCCGEEEIIITJEkgkhhBBCCCFEhsgwJyGEEEIIIZJRqRK1HcJ/hvRMCCGEEEIIITJEkgkhhBBCCCFEhsgwJyGEEEIIIZKT1ZzSTXomhBBCCCGEEBkiyYQQQgghhBAiQ2SYkxBCCCGEEMmpZJhTeknPhBBCCCGEECJDJJkQQgghhBBCZIgMcxJCCCGEECI5Wc0p3aRnQgghhBBCCJEhkkwIIYQQQgghMkSGOQkhhBBCCJGcrOaUbtIzIYQQQgghhMgQSSaEEEIIIYQQGSLDnIQQQgghhEhOVnNKN+mZEEIIIYQQQmSIJBNCCCGEEEKIDJFkIoeKjIxixoIVfNO8CxXqNqWD21A8vX3V+0NfvWbs1LnUbdKBivWa4TZ0HI8eP/1ovUeOn6Fxu16Ur9uEHzr15fT5yxr7123ZSa1GbanVqC3rt+7S2Hf7rg+tuw8gISHx8zTyEzTr0oRtF37hqN8hlh1YTLGyRdN1XL0mdTj55BhT10zW2N7GrRV7bu5gz80dtO7dUmOfa7lirDy0DKVS+z9+vXp3wtPrNCEvvTl+cjcVKpROs2wx18Js2rwMT6/ThEf608+9W4oyrds0xcv3LI+e3GD6jLEa+xwd83H95p/kzp3rs7dDpE+Xnu24eOsoD4Kuc+CPrZQtXyrNsu07t2T3oY3cDTjP3YDzbNuzJkV5t/5duXXvNLfuncbNvYvGvnIVSvH7ie0olcpMacunkOs8Z8mp33dObXemUSVl31c2o/2/ZoRWTJixkAtXbuAxYTh7Ni2nWuXy9Bo0huAXoahUKgb9OIUnz56zaOYEdqxbgn1eG3oOGkNUdEyadd7w9GLkpBn88L9v2bFuCfVqVmXg6J+47/8QAF+/AJau+YXZU35k1uRRLF61kXsPAgBISEhkyuzFjB/RH13drP3jo27jOvSb0If18zfRq2EfHnj5M/uXGeSxzPPB4/I62NJ3vBu3Lt7W2F7ItSDdhndhSr9p/OQ+nR4ju1GwWEEAlEodhnoMZt7ohSQmavcXQvMWjZg+YwwzPBZRs3pjPD292b1vA1bWlqmWNzYy4uHDQCZNmMXz5yEp9ltYmrN4qQfjxnjwQ5MutGnblO++q6feP2/BT0ycMIuIiLeZ1iaRtiY/fMfEqSOZN3MZ39VphdcdXzbvWomllUWq5avWqMS+XYdo3bg7TRp04NnT52zZvYq8djYAuJYowojR/enXYwTuPUcwYuxAihUvDIBSqWTGvIn8OHQKiYlZf3MgObnOc5ac+n3n1HaL7EGSiRwoJjaWY6fOMtS9BxXLlsLRwR73Hh1xdLDn1z2/8ejxU27d9WH88P6Uci1KwQIOjB/en9jYWA79cTLNen/Zvo/qVSrSvUNLnJ0cGdC7M8WLOLNl5wEAAh49poizE1UqlOWriuUo4lKQgEdPgHc9FhXKlqKUa/p6BD6nVr1b8NvWQxzefoRH9wOZ9+MCYmJi+b7td2keo6Ojw9jFo1k3dwNBgUEa+xydHfH3DuDG+ZtcP3eDB97+ODrnB6BNnzbcunQb31u+qVWbpfoP6MGGdb+yedNOfH38GDxwHNHR0XTq3CrV8tev32b82Bns2nmQ2Ni4FPsLOuUnPDyC3bt+4/r125w+dZEixZwBaNmqMfHx8RzYfyRT2yTS1qtfF7Zs3Mn2LXu57/uAH4dOJjoqhrYdm6dafkDvUWxYu427d3x4cD+A4QMnoKPQoUatrwBwKVwQ77v3OHfmEmdPX8L77j1cCr9LmvsO7MbF81e5deNOlrUvLXKd5yw59fvOqe0W2YMkEzlQYkIiiYlJGOjraWw3MNDn+u27xMXHA6CfbL+Ojg56+nrcuH03zXpv3fWmasWyGtuqVanArbveABR2duLh46cEPQ/h2fNgHj1+ikuhAgQ+ecbeQ38wsFfnz9TC9NPV06VoqSJcO3NdvU2lUnHtzHWKly+e5nGdh3Tkzcs3HNp2OMU+f58AHArlw8beBtt8NuQv6ECA70PsC9jRsM23rJ21LlPa8in09PQoW64kJ06cU29TqVScPHGOypXLZajOBw8eYmRkSOkyxTE3N6N8hdLcveNDnjymjBs/hOFDJ32e4MUn09PTo3TZ4pw5eUG9TaVScfbURSpUKpOuOoyMDdHV0+XNmzAAvL3uU9DFCXsHO/Llt6OQSwF8vP0o4JSfNu1/YNa0RZnSlk8h13nOklO/75za7kyXlJR9X9mMJBM5kImJMWVKurJi/VZCXrwkMTGRA0eOc+uOD6GhryhYID92tjYsXLmesPAI4uPjWfvLdoJDQnnx8lWa9Ya+fI2lhbnGNisLc0JfvgbA2cmRQW5d6TV4DL0Hj2WQW1ecnRyZMnsxQ/t159zlazTr2IeWXd25etMzUz+Dv5lZmKHUVfLqxWuN7a9DX2NhY57qMaUqlaRR24bMGTEv1f2BfoGsmfEzc7bOZPaWmayesZZAv0CGzRjCymmrqFynIuuOrWb14RWUrpL2mPXMZGlpjq6uLi9CQjW2h4SEYmtrnaE637wJp0/vEaxcPZcTp/awbcse/jx2hqnTx7Bq5SYKODlw5vwBLl75nabNGn6OZoh0srDMg66uLqEvXmpsf/HiJdY2VumqY+ykYQQ/D1EnJH73/Jn50wK27V7N1l2rmTFlwbtt8ycydeJc6tSrwZ/n93Lk1E6qVKvw2duUHnKd5yw59fvOqe0W2Yc8ZyKH8hg/nAke86nXrCNKpQ6uRVxoWL82Xr5+6OnqsmD6OCZ4LKB6w9YolTp8VbEcNb+qiOpfnrfND41o80Mj9ft9h/7A2NiIMiVdadyuF9vWLCQ4JJQRE2ZwZOc69PX1/+UZPy8jEyPGLBzF7JHzCHsdnma5/b8cZP8vB9Xvv235DVGRUdy95sWmU+tx+5871nZWTFg6lnbVOhEfF58V4We6gweOcvDAUfX76jUqU7JkMUYMm8RNzxN07zqI4OAXnDi1l3PnLqf441ZkT+6De9KkeUNaNe6qMSRi07rtbFq3Xf2+VdumvH0bybUrtzh95SCN6rXBzj4vy9bMoWrZBsTJdS7+g3Lq951T2y0+nSQTOZSjgz3rl84mKjqGyMgorK0sGDbeAwf7vACUKFaYXRuWEvE2kvj4eCzM89Cu12BKFCucZp1Wlua8fKV5hz/01WusLFO/w//6TRjL121h/dJZeN71pUD+fOpXQmICDx8/pYhzwc/X6FSEvQojMSERC2vNGM2tzHkV8jpF+XwF7LFztMNj3VT1NoWOAoA/Hx6hU+2uPHukOYfCzNyULkM6M6jlEFzLufI44AlPA57yNOApunq6OBRyIMAnIBNal7aXL1+TkJCQ4q60jY0VwcEvPss59PX1mTd/Cr17DaOQsxO6ukrOnX23utcDvwAqVizD4d+Pf5ZziQ979fINCQkJKSZjWltbprib+U9u/bviPrgHbZv1xPvuvTTLmVvkYciovrRo1IVyFUvj7/eIAP9AAvwD0dPTpZCLEz5e9z9Le9JLrvOcJad+3zm13ZkuGw4nyq5kmFMOZ2xkiLWVBWHhEZy/fI16Nb/S2J87lwkW5nl49Pgpd33uU7fGV2nUBGVKuHLx2k2NbReu3KBMCddUy89ctIpOrZuR18aaxKREEhIS1PsSE5NIyoLVjhLiE/D1vEf5GuXV2xQKBRVqlMPruleK8oEPAun2dU96fuumfp0/eoEb52/S81s3Qp6l/MXtPqkvO9bs4kVQKDpKHXR13+fwSqUSpU7W/xjGx8dz88Yd6tSppt6mUCioXacaly/f+CznGDnKnWPHTnPr5l2USh10le/braunmy2WDM0p4uPjuX3Tixq13//8KhQKatSqwrUrt9I8ru/A7gwe0YeOLd24fTPt+VIAk6ePYvWyjQQ9C0apo4OeXrLrXFeJUifrv2+5znOWnPp959R2i+xDeiZyqHOXrqFSqXBydCDwyTPmLl1LQUcHmjVqALx7XoR5HjPsbK257/+QGQtWUK9mVapXeT/2efRPc7CxsmRI33frU3ds3ZRu7iNZv3UXtapV5vdjp7jrc59JowamOP/5y9d59Pgp08cNA6CkaxECHj3hzIUrPA95gY6ODk4FHLLgk4Adq3Yxev5IfG/54n3Tl5Y9m2NoZMjvv76bXD16wShCn4eyesZa4mLjCfB9qHH82/B3S+P9cztAhZrlcSjkgMfgWQD43vLF0SU/letWwsbehqSkJAL9H2dq+9KyZPFaVqyaw40bnly9eot+7t0wNjbml007AVi5eg7PngUzeeJs4N0kv2KuLsC7yfl29raUKu1K5Nso/P0fadRdtJgLzVv8jxrV/gfAPd8HJCUl0alza0KCX1CkiDPXr2kuqSsy1+plG5i/bDq3b9zlxnVPevXthJGJEb9u3gPAwuXTCQoKYcaUBQD0G9SD4aP707/XSB4HPlPf9YyMjCIqMkqj7pp1qlLQ2YlBfccAcOvGHZwLF6Ru/RrY57MjKTGJB35Z2/v2N7nOc5ac+n3n1HaL7EGSiRwq4m0kC1asI/hFKGamufmmdg0GunVB76+75i9evmLW4lW8fPUGa0sLmnz3NX26tdOoIyg4BB2FQv2+XKnizJw0isWrNrBw5XoKOORjkcd4Chdy0jguJjaW6fOWMWfKaHT+uiuf18aa0UP6Mm76fPT19Jg2bhiGBgaZ+yH85cSBk+SxNKPb8K5YWJvj5/WAkZ1G8zr0DQC2+WxQZaC7U99Qn0FTBzCl71RUqnezTV4EhbJo/BJ+nDuCuLh4PAbPIi4m5bJ8WWH3rt+wsrJgzLgh2Npa4XnbmxbNuqqHvTg42JOUrN12djacu/Cb+v2gwb0ZNLg3Z05fpFHD9hp1L1o8nTE/TiMqKhqAmJhY+rqNZM78yRgY6DN86ESCgoKzoJXib/v3HMbCyoLhY/pjbWPFXU8fOrZ0U49ztnewIynp/ayozt3bYGCgz+qNCzTqmTtjKfNmLlO/NzQ0YNqssfTtPlx9nQc9C2b8qOnMWzKNuLg4BvcbQ0xMbOY3MhVynecsOfX7zqntzlTZ8OFw2ZVC9fdv/y+Irn4+bYegFdHPzmg7BK34pmxvbYegFddf+2s7BK2IitfOH6XaZmuSR9shaEVEXLS2Q9CKnHqdG+tlzU0kkT2ER2bff8eiD6a+YmN2YPS/odoOQYPMmRBCCCGEEEJkSLZOJh4/fkz37t0/WCY2Npbw8HCN1xfY2SKEEEIIIbKKth9MJw+t+zxevXrFhg0bPljGw8MDMzMzjZcqKSKLIhRCCCGEECLn0uoE7P37939wv7//x8fSjR49mqFDNceOmVsW+1dxCSGEEEIIIT5Oq8lEs2bNUCgUHxyWpEi2WlBqDAwMMPjHqj8fO0YIIYQQQog0yWpO6abVYU52dnbs3r2bpKSkVF/Xr1/XZnjZmqGhDnltDSmQ3xjngrkwNtZ8YMwfJ8/Ra/AYqjdsTcnqDfG590Bjf1h4BNPnLeN/bXtSoW5T6jfvzPT5y4l4G5nq+d6EhfN1s46UrN6Q8Ii3KfbvO/QHnfoOS9e5AXbsO0TX/iOp8k3zNOvsP3IS9Zt3pnzdJtRp0p4fp8wm5K9lLAGeBgVTsnpDgkwea7zidDJ3FZSuQztz8skxjdfGkz9n6jmzg2rVK/HrjtX4+l0gPNKfRv/7RtshiUzUf0hPfvvzV3wDL3Pr3mnW/rIIZxcnbYeV6eQ6z1ly6vedU9stModWk4kKFSpw7dq1NPd/rNciJ9NRKIiLSyL0Zep/OEfHxFC+dAmG9E19AntI6EtCQl8xvH9P9mxazrSxQzl36RoTPOanWn6CxwKKOBdMM57jZy6qn479sXPDu3Wqa1SpSK/ObdMsU7l8GeZOGc3BrauZP20cj58GMWTctBTlLKKtsYmyV7/0kvTTrPNzCfAJoHm5VurXgB8GZ/o5tc3ExJg7nt4MGzJR26GILPBVtUpsWLOVxg3a0a55L/T0dNmyezVGxkbaDi1TyXWes+TU7zuntltkDq0OcxoxYgSRkanfCQdwcXHhxIkTWRjRf0dUdCJR0Ylp7m/y3dfAu7v3qSlcyIkF08ep3zs62DOwdxd+nDKLhIREdHXf93Rs23OQ8Ldv6dutPWcuXk1RV2xsHOevXGdQn67pOjdApzY/AHD5etpPzezc9gf1/9vntaVnx9YMHD2F+IQE9cP1AHTQQalSplZFpklMTOTVi9dZek5t++PoKf44ekrbYYgs0rGVm8b7wf3G4ul3ltJli3PpfNo3gf7r5DrPWXLq951T2/1JsuGqSdmVVpOJmjVrfnC/iYkJtWvXzqJoRMTbSHKZGGskEg8CHrFi3Ra2rlrA42fPUz3u4rWb2FpZUqhA/kyLLSw8goNHT1C2lKtGIgHwyiAUFCqUSbrkijfFMDHz75zmK5iPnVe3ERcbz93rXqz2WEvIs5BMP68Q2mJqmhuAN6/DtByJEEKI7CRbLw0rss7rN2GsXL+Vlk0aqrfFxcUxYtJMhrn3xC6vTZrHnjhzgTp/DXH63OYtW0ulr5tRvWFrngeHsHjG+y5ZYyNDRgzohXmsJeYxVugnGvDaIJQYZeY+MdfrhjczhsxmZKfRzB+zELv8eVm0ez5GJl/28A+RcykUCiZ7jOLyxev4evtpOxwhhBDZiCQTgreRkfQbMRHngo7069FRvX3BivUUKpCfxt/WS/NYlUrFyXOX1PMlPrdu7VuyY90SVs2fho5Sh9E/zVHPozHPY0aXts3RTzJAP8kA0/g8GCUY81YvPFNi+dvlE1c49dtp/L0DuHLqKj92HkMu01zUbSy9aOLLNH3OOIq6FqZfj+HaDkUIIbKGKin7vrIZSSZyuMjIKNyGjsfE2IiF08drDCG6dO0WR0+cpUytRpSp1Yieg0YDULNRG5as2QSAp5cviYmJlC3lminxmecxw8nRgWqVyzN78o+cuXCFW3d90iyvl6RPoiIhU2JJy9vwSJ74PyGfU74sPa8QWWHqrLHU/7Y2rRp3I+hZ2vOghBBCZC8eHh5UqlSJ3LlzY2NjQ7NmzfD19dUoU6dOHRQKhcarT58+n3Qerc6ZENr1NjIStyHj0NPXY/HMiRgYaK6CNH/aWGLj4tTv73jfY/z0+WxYNof8+eyAd6s41apaGaUy8ydAq5Le9UjExcWnWSZeJx6dLJ6MbWRsiL2THUd3v/x4YSH+Q6bOGst3jb6mVeOuPA58qu1whBBCfIJTp07h7u5OpUqVSEhIYMyYMTRo0AAvLy9MTEzU5Xr16sWUKVPU742NjT/pPJJM/EcpFKCn975jSU9XB597DzAzzY1dXhvCwiMIeh5CSOi7P3ADAp8AYGVpjpWlBW8jI+k9eCzRsbEsnDCCyMgoIiOjgHe9AUqlEkcHe41zvn7zbvhQoQL5Mc2dC4CTZy/i3rOTRrmPnRsg9OUrQl++JvDJMwDuP3iIibERdnltMDPNze27Ptzxvkf50iUwNc3F46dBLF69ifz57Chb8t0Tzvcd+gM9PT0SFO+SixjdaKJ1IzGLM/8cH3Ga+o7rzfljFwl+EoylrSXdhnUhKTGJP/d+2SuPmZgYU8i5gPq9k1N+SpV25fWrMJ789T2KL8f0OeNp1vJ7urcfwNu3UVjbWAEQER5BTEzmPstFm+Q6z1ly6vedU9v9Sb6A1ZwOHz6s8X79+vXY2Nhw7do1atWqpd5ubGxM3rx5M3weheoLfJCDrv6XP9zE0FBJPruUE36bNqzPtHHD2PvbH4ybPi/F/r7dO+DeoyOXr9+m+4BRqdZ9ZOd68tnZptj+9zHnD+/ANHcuAp88o1mnPpw9tB1jI0N1uY+dG2Dp2l9Y/vPmFGWmjhlKs0bfcO9BADMWrMTXz5/omBisLS2oXqUCbl3bYWv97o+afYf+YO3mHQQEvEtWdJP0MInPjVHip2XUn2rC0rGUrlIKU3NTwl6F4Xn5Dmtm/cyzR0GZet5/uv7aP0vPV6NmFQ4d3ppi++ZfdtLXbWSWxREV/+X+IfshtiZ5svR8T1/fTXX7kH5j2b51b5bFERGXuQsq/JNc59plrGeQpefLLt93Vssu7Q6PzNp/xz5F9M6p2g4hTTqNRxAbq/k7wsDAAAODD//8+Pn5UbhwYTw9PSlZsiTwbpjT3bt3UalU5M2bl8aNGzN+/PhP6p2QZOILEv3sTJaeb8O23Vy8coPlc3/K0vP+0zdle2v1/NqS1clEdpFT/8jK6mQiu8jqZCK7yKnXeVYnE0K7JJnImJl3Epg8ebLGtokTJzJp0qQ0j0lKSqJJkya8efOGs2fPqrevWrWKAgUKYG9vz+3btxk1ahSVK1dm9+7d6Y5HhjmJDLO1tqJnpzbaDkMIIYQQ4vPKxsOcRo8ezdChQzW2faxXwt3dnTt37mgkEgC9e7+/IVuqVCns7Oz4+uuvefDgAc7OzumKR5IJkWHffV3r44WEEEIIIcRnk54hTcn179+fgwcPcvr0aRwcHD5YtkqVKsC7IVGSTAghhBBCCJFDqVQqBgwYwJ49ezh58iQFCxb86DE3b94EwM7OLt3nkWRCCCGEEEKI5L6AKcXu7u5s2bKFffv2kTt3bp4/fw6AmZkZRkZGPHjwgC1btvD9999jaWnJ7du3GTJkCLVq1aJ06dLpPo8kE0IIIYQQQnxhli9fDrxbsSm5devW0bVrV/T19Tl27BgLFiwgMjKS/Pnz06JFC8aNG/dJ55FkQgghhBBCiC/MxxZszZ8/P6dOnfrX55FkQgghhBBCiOSy8WpO2Y3Ox4sIIYQQQgghREqSTAghhBBCCCEyRIY5CSGEEEIIkZwMc0o36ZkQQgghhBBCZIgkE0IIIYQQQogMkWFOQgghhBBCJKeSYU7pJT0TQgghhBBCiAyRZEIIIYQQQgiRITLMSQghhBBCiORkNad0k54JIYQQQgghRIZIMiGEEEIIIYTIEBnmJIQQQgghRHIqlbYj+M+QngkhhBBCCCFEhkgyIYQQQgghhMgQGeYkhBBCCCFEcrKaU7pJz4QQQgghhBAiQySZEEIIIYQQQmSIDHMSQgghhBAiORnmlG5fZDJRyMxO2yFohZF9TW2HoBXRz85oOwStcCrcWNshaEVUfKy2Q9CK4Mg32g5BK2xN8mg7BK3Iqdd5efNC2g5BK+5HBmk7BCEyTIY5CSGEEEIIITLki+yZEEIIIYQQIsNUMswpvaRnQgghhBBCCJEhkkwIIYQQQgghMkSGOQkhhBBCCJGMKkml7RD+M6RnQgghhBBCCJEhkkwIIYQQQgghMkSGOQkhhBBCCJGcPLQu3aRnQgghhBBCCJEhkkwIIYQQQgghMkSGOQkhhBBCCJGcPLQu3aRnQgghhBBCCJEhkkwIIYQQQgghMkSGOQkhhBBCCJGcPLQu3aRnQgghhBBCCJEhkkwIIYQQQgghMkSGOQkhhBBCCJGcPLQu3aRnQgghhBBCCJEhkkwIIYQQQgghMkSGOQkhhBBCCJGcDHNKN+mZEEIIIYQQQmSIJBNCCCGEEEKIDJFhTkIIIYQQQiSnkofWpZf0TAghhBBCCCEyRJKJNHTo3orj1/bj+fgcOw6vp3S5EmmWbdCoLrv+2MhVvxPcfHiGfSc207TV9xpluvfryAWvo1zwOkr3vh009pUuX4LdxzahVCozpS3ivcjIKGYsWME3zbtQoW5TOrgNxdPbV70/KiqaaXOX8XWzjlSo25QmHXrz657fPlpveMRbps5dSp0m7SlXpzGN2vbk9PnL6v0Hjxzn6x86Ue27VsxatErj2KdBwTRq25O3kZGfr6Hp1KVnOy7eOsqDoOsc+GMrZcuXSrNs+84t2X1oI3cDznM34Dzb9qxJUd6tf1du3TvNrXuncXPvorGvXIVS/H5iu1znIsvJdZ6zNOvShG0XfuGo3yGWHVhMsbJF0yz7XasGnHxyTON11O+QRpk2bq3Yc3MHe27uoHXvlhr7XMsVY+WhZSiV2v9zSq5zoS0yzCkV3zf7htFThjBhhAe3rt2hq1s71m5fzLdVW/Aq9HWK8m9eh7Ni/s/4339IXHw8dRvUxGPRBF6GvuLsiYsULe7CoFF9cOswGIVCwcrN8zl78iL3vB+gVCqZMmcM44dOIzExUQutzVkmzFiIn/9DPCYMx8bKkgNHjtNr0Bj2bV6JrbUVsxav4tK1W3hMGEk+O1vOX77G1LlLsbGypG7Nr1KtMz4+nl6Dx2Bhnod5U8dia23Fs+fB5M6VC4DXb8KYOGMhU8cOxSFfXtyHT6RyhTLUqV4FgKlzljC4TzdymZhk2ecA0OSH75g4dSQ/Dp3MjWue9OzTic27VlKr0v94GfoqRfmqNSqxb9chrl66SUxsLO6DerBl9yrqVW3K86AQXEsUYcTo/nRp645CAeu3LePUifP4eN1HqVQyY95ERg6eJNe5yFJynecsdRvXod+EPswbvRDvG9607NmC2b/MoFPtbrx5+SbVY96GR9K5dlf1e1Wy4S2FXAvSbXgXRncZh0KhwGPDVK6cvkaATwBKpQ5DPQYzZ9R8EhO1u/KPXOeZQFZzSjftp9LZULc+Hdj+y152bz3Ag3sBTBjuQUx0DC3bN0m1/OXz1/jj0Eke3H/I44dP2bhqG75eflSoUhaAQoWd8PW6z8WzV7lw5gq+Xn4UKuwEQM/+nbhy4TqeN72yqHU5V0xsLMdOnWWoew8qli2Fo4M97j064uhgr+59uOnpTdOG9alcvjT57Gxp1fR7iroU0ui9+KfdB48SFh7BohkTKF+6BPnsbKlUrjTFChcC4Mmz5+TKZULD+rUp5VqUSuXL4P/wMQCH/jiJrq4u39SpnvkfwD/06teFLRt3sn3LXu77PuDHoZOJjoqhbcfmqZYf0HsUG9Zu4+4dHx7cD2D4wAnoKHSoUetdkuVSuCDed+9x7swlzp6+hPfde7gULghA34HduHj+Krdu3Mmy9gkBcp3nNK16t+C3rYc4vP0Ij+4HMu/HBcTExPJ92+/SPkil4tWL1+rX69A36l2Ozo74ewdw4/xNrp+7wQNvfxyd8wPQpk8bbl26je+ttP99yCpynQttkmTiH/T0dClRphjnT11Sb1OpVJw/fZmyFUunq46qNStR0LkAVy7cAOCelx9Ozo7Y5bPF3iEvTs6O3Pd+QH6nfDRv15gF05dnSluEpsSERBITkzDQ19PYbmCgz/XbdwEoW8qVE2cvEvwiFJVKxeVrt3gY+JRqlcunWe/JsxcpU9KVaXOXUut/7WjWsQ+rNmxT37FxdLAnJiYG73t+hIVHcNfnHkVdChIWHsHi1RsZM7Rf5jU6DXp6epQuW5wzJy+ot6lUKs6eukiFSmXSVYeRsSG6erq8eRMGgLfXfQq6OGHvYEe+/HYUcimAj7cfBZzy06b9D8yatihT2iJEWuQ6z1l09XQpWqoI185cV29TqVRcO3Od4uWLp3mckYkR2y5uZvvlLUxdOwWnIgXU+/x9AnAolA8bexts89mQv6ADAb4PsS9gR8M237J21rpMbVN6yHUutE2GOf2DuUUedHV1CX2h2S0YGvKKQi5OaR6XK7cJZzx/R19fn6TERCaNmqlOSB7cf8i8actYt3MZAHOnLuXB/Yes37mU2ZMXUaNeVQaM6E1CQgJTx87h6l9JiPi8TEyMKVPSlRXrt1KogCOWFnk4dOwUt+744JjPDoAxQ/oyaeYivm7WCV2lEoWOgkmjBlGxbNpjT588e87T67do1KAuy+dMIfDJM6bOXUpCYiL9unfAzDQ308YNY8xPc4mJjaXxd19TvUoFxnvMp32LxjwNes6AUZNISEikX48ONKhbM9M/CwvLv6/zlxrbX7x4ifNfd58+ZuykYQQ/D1H/A+Z3z5+ZPy1g2+7VAMyYsgC/e/5s27OGqRPnUqdeDYb+2I+E+AQmjPbg0vlrn7dRQvyDXOc5i5mFGUpdJa9eaA5Hfh36GkeX/KkeE/jgMTOHzcHf2x8TUxPauLViyd5FdPu6By+CQgn0C2TNjJ+Zs3UmAKtnrCXQL5C5W2exctoqKtepSNchnUlISGTxxKXcvuSZ6e38J7nOM0mSrOaUXpJMfCaRb6NoWrc9JibGVK1ZidFThvD44VMu//UDtm3DLrZt2KUu/0ObRkS+jeLGVU+OXNhFiwadyWtnw/xV06lXoQnxcfHaasoXzWP8cCZ4zKdes44olTq4FnGhYf3aePn6AbB5535u3/VhycyJ2OW15dpNT6bNXYaNlSVVK5VLtc4klQoL8zxMGjkQpVJJiWKFCQl9ybotO+nX/d1k+/q1q1O/9vuhTFdu3OaeXwBjhvTl+9Y9mDV5FFYWFrTrNYgKZUthaZ4n0z+Lf8N9cE+aNG9Iq8ZdiY2NU2/ftG47m9ZtV79v1bYpb99Gcu3KLU5fOUijem2ws8/LsjVzqFq2AXFynYtsTK7zL5/XdW+8rnur39+5epeNJ3+mcYf/8fOc9QDs/+Ug+385qC7zbctviIqM4u41LzadWo/b/9yxtrNiwtKxtKvW6T/377dc5+LfkmTiH16/ekNCQgJW1hYa261sLHgR8jKNo951KQYGPAHA+849nIsUxG1wV3UykZy5hRn9h/eifZPelClfkocPAnnk/5hH/o/R09WloLMj97wffN6GCeDdkKP1S2cTFR1DZGQU1lYWDBvvgYN9XmJiY1m4cgMLPcZTu1plAIq6FMTnvj/rt+5KM5mwtjRHV1dXY1WLQgXyE/ryNfHx8ejpaQ6riouLY+qcpXhMGEHgkyASExOpVO7dELoC+fPhedeHOjVSn+z9ubx6+fd1bqnZFmtLXoSEfvBYt/5dcR/cg7bNeuJ9916a5cwt8jBkVF9aNOpCuYql8fd7RIB/IAH+gejp6VLIxQkfr/ufpT1CpEau85wl7FUYiQmJWFiba2w3tzLnVUjKxVNSk5iQyP07fuRzsk91v5m5KV2GdGZQyyG4lnPlccATngY85WnAU3T1dHEo5ECAT8C/bsunkOtcaJvMmfiH+PgE7t7yoWqtyuptCoWCqjUrcfPq7XTXo9DRQV9fP9V9Y34axvqVWwkOCkGp1EFX731Op9RVylJrWcDYyBBrKwvCwiM4f/ka9Wp+RUJCAgkJCegoFBpllUodkj6wqkPZUiUIfPJMo8zDx0+xtrRIkUgArFy/jRpfVaR4UReSkhJJSLYaRkJCIolZsIJEfHw8t296UaP2+6RFoVBQo1YVrl25leZxfQd2Z/CIPnRs6cbtm3c/eI7J00exetlGgp4Fo9TRQe+f17mOXOcic8l1nrMkxCfg63mP8jXez3FTKBRUqFEOr+vpW+RER0eHQsUK8jIk5QpIAO6T+rJjzS5eBIWio9RBVzfZ961UotTJ+j+r5DrPJKqk7PvKZqRnIhXrVmxm5uJJ3Lnpxe3rd+ni1h4jYyN2bT0AwKwlkwl+HsLcqUsBcBvUFc+b3jx++AR9fT1q169O01bfM2mkR4q6q9WugpOzIyP7TwTg9g0vCrkUoNbX1bCztyUpMQl/v0dZ19gc5tyla6hUKpwcHQh88oy5S9dS0NGBZo0aoKerS8VypZi7dC0GBgbY57Xh6g1P9v/+JyMG9lLXMfqnOdhYWTKkbzcA2vzQiK279jNjwQrat2zCoyfPWL3xVzq0Srn614OARxw+fpod65YAULBAfnR0dNh14AhWluYEBD6mpGuRLPksVi/bwPxl07l94y43rnvSq28njEyM+HXzHgAWLp9OUFAIM6YsAKDfoB4MH92f/r1G8jjwGdY2VsC7Z3dERUZp1F2zTlUKOjsxqO8YAG7duINz4YLUrV8D+3x2JCUm8cAva+/eiZxJrvOcZceqXYyePxLfW7543/SlZc/mGBoZ8vuvhwEYvWAUoc9DWT1jLQCdB3fE67o3Tx8+I5epCW37tMbWwZbfth5KUXeFmuVxKOSAx+BZAPje8sXRJT+V61bCxt6GpKQkAv0fZ11jk5HrXGiTJBOpOLT3DywszRk4qg/WNpZ437lHjzYDePnXpGw7h7wkJcsMjYyNmDRrFHntbIiJicX//kNG9BvPob1/aNRrYGjAhBkjGdJrtHod6+CgEH4aMxuPRROIi41n1ICJxMbEZl1jc5iIt5EsWLGO4BehmJnm5pvaNRjo1gW9v+4uzZn8IwtWrOfHybMIC4/APq8NA9260KZZI3UdQcEhGr0XdrbWrJw/jVkLV9K8Sz9srCzp2KopPTq20ji3SqVi0qxFjBjQC2MjQwAMDQyYOnYo0+YuIy4+njFD+mFrbZUFnwTs33MYCysLho/pj7WNFXc9fejY0k09ic/ewY6kZBPQOndvg4GBPqs3LtCoZ+6MpcybuUz93tDQgGmzxtK3+3D1dR70LJjxo6Yzb8k04uLiGNxvDDFynYssINd5znLiwEnyWJrRbXhXLKzN8fN6wMhOo9XLvdrms0GVrPc3t1luhs8aioW1OW/D3uLreR/3poN4dD9Qo159Q30GTR3AlL5T1d/3i6BQFo1fwo9zRxAXF4/H4FnExcShDXKdC21SqJI/neULUcS6orZD0Ar/sCBth6AV0c/OaDsErXAq3FjbIWhFcOQbbYcgspCtSR5th6AVOfU6r2Hjqu0QtOJ+ZM789/vp6w8Pr9KmqJndtB1CmoxHaX9J4uRkzoQQQgghhBAiQ7SeTERHR3P27Fm8vFJOjoqJiWHjxo0fPD42Npbw8HCNV1I2nJwihBBCCCHEl0arycS9e/dwdXWlVq1alCpVitq1axMU9L6rLywsjG7dPtzN5OHhgZmZmcbrddTzzA5dCCGEEEJ8oVRJSdn2ld1oNZkYNWoUJUuWJCQkBF9fX3Lnzk316tUJDAz8+MF/GT16NGFhYRovc+O8mRi1EEIIIYQQArS8mtP58+c5duwYVlZWWFlZceDAAfr160fNmjU5ceIEJiYmH63DwMAAAwMDjW06Cq2P3hJCCCGEEOKLp9VkIjo6WuOBLwqFguXLl9O/f39q167Nli1btBhd+rXr2oJ2XVvi4GgHwH0ff5bOXcPpP89rObIvj6GhDnnM9DHQ10FXV4eg4GiN/SqViqVrNrHzwGEiIiIpV7o444f3p0D+fOoyKzds5fT5K/je90dPT5cLR3amOI+nty8Llq/Dy9cPhUJBSdciDO3Xg2KFC2mUu3LjNj9Omc2fezZx9aYn67bsxMvHjxcvX7HQYzxf16r2yfH1HzkJHz9/Xr1+g2nuXHxVsRxD+3bH5q+nm16+fptNv+7B2DIBhQ4kJUB8lA4JsZmbRPcf0pOG//sGl8IFiYmJ4erlm0yfNI8Hfg8z9bxCZCW5znOWrkM703VoZ41tgX6BdK7TXUsRZQ25ztMh6Ytb7DTTaPUWfrFixbh69WqK7UuWLKFp06Y0aZLyoV/Z0fNnIcyduoQf6neief3OXDx7lWUb5+JStNDHDxafREehIC4uidCXqa9p/fPmHWzeuZ8JIwawZfUCjAwNcRs6jtjY92t/x8cn8G3dmrT5oVGqdURFRdNn6HjsbG3YsmoBG5fNwcTYCLeh44hPSNAoe+LMRepUrwJAdHQMRV0KMXZYvzTjT098lcuXYe6U0Rzcupr508bx+GkQQ8ZNU++/6elFEeeCxIQpiXqlJCFGBwPTJJT6mTuO8qtqldiwZiuNG7SjXfNe6OnpsmX3aoyMjTL1vEJkJbnOc54AnwCal2ulfg34YbC2Q8p0cp2Lz0mrPRM//PADW7dupVOnTin2LVmyhKSkJFasWKGFyD7NiaOazzmYP30Z7bq2oGzFUvj5+mspqi9TVHQiUdGJqe5TqVRs2r6X3l3aUq9mVQCmjx9O7cbt+PPMeb6vXweA/j3fXW97f/sj1Xr8Hz0mLDwC956dsLO1BqBv9w4079yPoOchODrYq8ueOHuRsUPfJQ81q1aiZtVKacae3vg6t/1BfYx9Xlt6dmzNwNFTiE9IQE9Xl95d2gIwd/YOAOKjFSj1VegaqEjMxOcldWzlpvF+cL+xePqdpXTZ4lw6fy3zTixEFpLrPOdJTEzk1YvX2g4jS8l1Lj4nrfZMjB49mkOHUj6y/m/Lli0jKRvOWv8QHR0dGjVrgLGxETeu3NZ2ODnKk2fPCX35mqoVy6m35c5lQuniRbl1xyfd9RR0dCCPmSm7Dx4hPj6emNhYdh84QiGn/NjntVWX8/N/xKvXb6hSoUymxRcWHsHBoycoW8pV/ZTu1CgUKrL68ZOmprkBePM6LGtPLEQWkuv8y5evYD52Xt3GlnObGLt4NDb2NtoOKcvJdZ4KVVL2fWUzWu2Z+JIUcXXm19/XYWCgT1RkNO5dR/DgXoC2w8pRQl+9u7NkaWGusd3SwpzQl+m/62RiYsy6JTMZ+OMUVq7fCkABB3tWzp+Krq5SXe74mQtUr1IBPT29zx7fvGVr2brrANExsZQpUYylsyenWa+uQRI6ehAbkXX3BhQKBZM9RnH54nV8vf2y7LxCZCW5zr98Xje8mTFkNo/9H2NpY0mXIZ1YtHs+3b7uSXRk9Mcr+ALIdS7+LVn26DMJ8HtE07rtafVtV7au38nMxZNwLlJQ22GJDIiJjWWCxwLKlSrO5lXz2LR8Di6FCtBv+ERiYt/P1Thx9iJ1anyVKTF0a9+SHeuWsGr+NHSUOoz+aQ6qVLoelHpJGJgmERuhQ1KiIlNiSc30OeMo6lqYfj2GZ9k5hchqcp1/+S6fuMKp307j7x3AlVNX+bHzGHKZ5qJu49raDi3LyHUu/i3pmfhM4uMTCAx4AsDd2z6UKlucLr3bMWH4dC1HlnNY/XXH/+Wr11hbWai3v3z1mqKFndNdz29HT/I0KJjNK+eho/Mu3541aRTVvmvF8TMX+L5+HV6EvsL73gNqV6ucKfGZ5zHDPI8ZTo4OFHLKT/0fOnPrrg9lS7qqy+joqTA0e5dIJMRk3X2BqbPGUv/b2jT/vgtBz4Kz7LxCZCW5znOmt+GRPPF/Qj6nfB8v/AWQ6/wDZDWndJOeiUyi0NFB3yB9w1/E5+FgnxcrS3MuXrup3vY2MpLbXr6UKVks3fXExMSgo6NAoXh/p1+h0AGFAtVfv1xOnrtI2VKumP01zjQz4/v7nHFx8eptl6/fxsgskbjIrE8kvmv0Na2bdOdx4NMsO68QWUmu85zLyNgQeyc7Xoa81HYomU6uc/G5SM/EZzBsnDun/jxP0JPnmOQypnGL76hSvQLdWw/QdmhfHIUC9PTe//Gsp6uDz70HmJnmxi6vDZ1aN2PVhm0UcMhHPntblqzehI2VJV/XfP+8h6DnIYSFRxAUHEJiYhI+9x4A4Ohgj7GxEVUrl2fusrVMnbuU9i2boEpSseaX7egqlVQu/26y9Ymzl6j7jyFOUVHRBD55pn7/9FmwRmwKheKj8d2+68Md73uUL10CU9NcPH4axOLVm8ifz46yfyUcl6/dwn3kROKjFSTEKlDovEs2VCpAlXlDnabPGU+zlt/Tvf0A3r6NwtrGCoCI8AhiYlJfqleI/xq5znOWvuN6c/7YRYKfBGNpa0m3YV1ISkziz70ntB1appLrXHxOClVqA7H/44pYV8zS801bMJ6qNSthY2tFRPhbfL3us2rxRs6fupSlcfiHBWXp+bTB0FBJPruU62A3bVifaeOGqR8Kt2P/YSLevqV86RKMG+aOk6ODuuzYqXPZ9/uxFHX8vHgmlcuXBuD85essX7cZP/9HKBQKXIs4M7B3F8qUdCUqOoaa37dhz6blGsvEXr5+m+4DRqUZG/DR+O49CGDGgpX4+vkTHRODtaUF1atUwK1rO2ytrT4Yf2IcRL/JvPsDT1/fTXX7kH5j2b51b6ad95+CI99k2bmE9tma5MnS88l1rl01bFw/XugzmrB0LKWrlMLU3JSwV2F4Xr7Dmlk/8+xR1v57ej8ya8+XXa7ztOLIDiIntdN2CGkymbRV2yFokGTiC5ITkonURD878/FCn9EfJ8+xePUG9m9elaXn/Senwo21en5tyal/ZOVUWZ1MZBc59TrP6mQiu8jqZCK7kGQiY7JbMiFzJoT4RMZGhgzt213bYQghhBBCaJ3MmRDiE1WvUkHbIQghhBAiM8lqTukmPRNCCCGEEEKIDJFkQgghhBBCCJEhMsxJCCGEEEKI5FRJ2o7gP0N6JoQQQgghhBAZIsmEEEIIIYQQIkNkmJMQQgghhBDJyWpO6SY9E0IIIYQQQogMkWRCCCGEEEIIkSEyzEkIIYQQQohkVEmymlN6Sc+EEEIIIYQQIkMkmRBCCCGEEEJkiAxzEkIIIYQQIjlZzSndpGdCCCGEEEIIkSGSTAghhBBCCCEyRIY5CSGEEEIIkZwMc0o36ZkQQgghhBBCZIgkE0IIIYQQQogMkWFOQgghhBBCJKeSh9all/RMCCGEEEIIITJEkgkhhBBCCCFEhsgwJyGEEEIIIZKT1ZzSTXomhBBCCCGEEBkiyYQQQgghhBAiQ77IYU7+YUHaDkFkoS4Vhmk7BK14eP+AtkPQCiP7mtoOQSs8C5TRdghaUerRLW2HILLQ/cic+e/39TLW2g5B/INKhjmlm/RMCCGEEEIIITJEkgkhhBBCCCFEhnyRw5yEEEIIIYTIMBnmlG7SMyGEEEIIIYTIEEkmhBBCCCGEEBkiw5yEEEIIIYRILilJ2xH8Z0jPhBBCCCGEECJDJJkQQgghhBBCZIgMcxJCCCGEECI5Wc0p3aRnQgghhBBCCJEhkkwIIYQQQgghMkSGOQkhhBBCCJGcDHNKN+mZEEIIIYQQQmSIJBNCCCGEEEKIDJFhTkIIIYQQQiSjUskwp/SSngkhhBBCCCFEhkgyIYQQQgghhMgQGeYkhBBCCCFEcrKaU7pJz4QQQgghhBAiQySZEEIIIYQQQmSIJBNCCCGEEEIkl6TKvq908vDwoFKlSuTOnRsbGxuaNWuGr6+vRpmYmBjc3d2xtLQkV65ctGjRguDg4E/6qCSZEEIIIYQQ4gtz6tQp3N3duXjxIn/88Qfx8fE0aNCAyMhIdZkhQ4Zw4MABduzYwalTp3j27BnNmzf/pPPIBGwhhBBCCCG+MIcPH9Z4v379emxsbLh27Rq1atUiLCyMtWvXsmXLFurVqwfAunXrcHV15eLFi3z11VfpOo8kE0IIIYQQQiSjysarOcXGxhIbG6uxzcDAAAMDgw8eFxYWBoCFhQUA165dIz4+nvr166vLFCtWDEdHRy5cuJDuZEKGOQkBfNO5IQvPrmS9769M2TsT5zKF0yw7bttPbHm0J8VrxLqx6jKNejdl+bX1LL+2nu97NdE43rlsYaYdnIOOMut+/CIjo5ixYAXfNO9ChbpN6eA2FE/v9+Mmx06dS8nqDTVebkPHfbDOBi26pDimZPWGTJ27VF1m1qJVVPuuFV//0ImDR45rHH/k+BncR078vA0VqTKqVBKHlRNxObsJ1/uHyFW/6kePUejrYj2kMy4n11P07j6cT6zDrOU36v0m1ctR6OhqitzYif3s4aD3/t6UTi5jCh1dja69Taa0R4gP6dKzHRdvHeVB0HUO/LGVsuVLpVm2feeW7D60kbsB57kbcJ5te9akKO/Wvyu37p3m1r3TuLl30dhXrkIpfj+xHaVSmSltSQ+90qXJM306Vjt3YnvyJAY1anz0GMP69bFYswabw4ex2rUL05EjUZiaqvfrV6iA5aZNWP/2G6ZjxoDu+59vhYkJlps2oWNrmyntER/n4eGBmZmZxsvDw+ODxyQlJTF48GCqV69OyZIlAXj+/Dn6+vrkyZNHo6ytrS3Pnz9PdzzSMyFyvK/+V52O47rx89gV+N28R8Pujflx0wSG1e1P+MuwFOXnu81EV//9j06uPLmZcXg+l347D0D+YgVoObQds7tPQ6GAET+PxfP0TR77BqKj1KHH9D6s+XE5SYlJWdbGCTMW4uf/EI8Jw7GxsuTAkeP0GjSGfZtXYmttBUCNryoydcwQ9TF6enofrHPbmoUkJb1vw33/R/QaPIYGdWsCcPLsRX774ySr5k8j8Mkzxk+fT/UqFTDPY0bE20gWrdrAmgXTM6G14p90jAyJ9QkgbOdRHJaNT9cx+RaORtfKnGdjFhD/6Bm61hag81cCrFBgP28kL1ds5+2ZazgsGYN5m+94/ctBAGxGdOPN1kMkPAvJrCYJkaomP3zHxKkj+XHoZG5c86Rnn05s3rWSWpX+x8vQVynKV61RiX27DnH10k1iYmNxH9SDLbtXUa9qU54HheBaoggjRvenS1t3FApYv20Zp06cx8frPkqlkhnzJjJy8CQSExO10Np3FIaGxD94QPShQ+SZOvWj5fVKlsR09Ggili4l9vx5lNbWmA4diunw4YRNmAAKBWbjxxO5eTOxV66QZ/JkjBo3JnrPHgBy9e5N9P79JH3iJF3x+YwePZqhQ4dqbPtYr4S7uzt37tzh7Nmznz0eSSZEjvd9zyac2PYHp3a8u3O+dswKytarQO3WX3Ng+e4U5SPD3mq8r9q4BrHRsepkwt45H4HeD/E67wlAoPcj7J0deOwbyP/cmuFzyQv/236Z3Kr3YmJjOXbqLItmTKRi2Xd33Nx7dOTUuUv8uuc3BvZ+d6dNX08PK0uLdNdrYZ5H4/2aTdvJn8+OSuXencP/0WMqlStFSdcilHQtwoyFK3kS9BzzPGbMW7aWNs0aYZdX7lxnhcjTV4k8fTXd5U1qVsC4cin86nUn6a/rPf7p+8RAaW6KroUZrzcfRBUXT8Sfl9B3dgTAqJwrhqWK8Hzy8s/bCCHSoVe/LmzZuJPtW/YC8OPQyXzdoBZtOzZn6YI1KcoP6D1K4/3wgRP4vvE31Kj1FTt/3Y9L4YJ4373HuTOXAPC+ew+XwgXx8bpP34HduHj+Krdu3Mn0dn1I3OXLxF2+nO7yeiVKkPj8OdG73/37lvT8OVH792PSvj0ACjMzdPLkIWrfPoiLI/bcOXQdHdXH6hUrRsTChZ+/IdlNNh7mlJ4hTcn179+fgwcPcvr0aRwcHNTb8+bNS1xcHG/evNHonQgODiZv3rzprl+GOYkcTamnS8FSztw5e0u9TaVScefsbQqXL5quOuq0qc/FA2eJjX43fvGxbyB2heyxtLfCKp81doXseXwvEBvHvNRu9TXb52zOlLakJTEhkcTEJAz0NXsaDAz0uX77rvr9lRu3qdWoLf9r25MpsxfzJiw83eeIj4/n4NET/NCoAQqFAoCiLoW463OfsPAI7vrcJzY2Fsd89ly/dQcvXz86tGrykVqFtuT+ugoxnvex7NUSlzMbKXR0NTajeqAw0Acg8VUY8cEvMalRHoWhAcYVSxDrGwC6SvJOduf5+MWQlHU9b0LAu97U0mWLc+bkBfU2lUrF2VMXqVCpTLrqMDI2RFdPlzdv3vVKe3vdp6CLE/YOduTLb0chlwL4ePtRwCk/bdr/wKxpizKlLZkp/u5dlDY26FepAoCOuTmGtWsTe/EiAKo3b0gMDcWgYkUwMECvdGkS/P1BqST3kCGEz50rP9//ESqViv79+7Nnzx6OHz9OwYIFNfZXqFABPT09/vzzT/U2X19fAgMDqVr148Nh/yY9EyJHy22eG6WukrBQzeFMYaFvsHfO99HjncsUxrFYAVaPfD9P4JnfE36dtZnRv0wCYNvMX3jm94Qxmyex1WMDpWuXo8XgtiQmJLBx0lp8Lnt91jb9k4mJMWVKurJi/VYKFXDE0iIPh46d4tYdHxzz2QFQ/asK1K9dnXz2tjx+GsTClevpM2w8m1fOS9dY4D9PXyDi7Vuaff9+TH31KhX437f1aNtzEIYGBkwbNwxjI0N+mrOUqWOH8uue39iycz958pgxaeRAXAoVyLTPQHwavfx5MapYgqS4eJ64T0VpbkreSe4ozU0J+nE+AE8HeWA7pje249x4e+oqb3YexcqtNVGXbpMUG0eBbXNQmpvyetN+9fAnITKThWUedHV1CX3xUmP7ixcvcS5cMI2jNI2dNIzg5yHqhMTvnj8zf1rAtt2rAZgxZQF+9/zZtmcNUyfOpU69Ggz9sR8J8QlMGO3BpfPXPm+jMkH8nTuETZ2K2cSJKPT1UejqEnvuHBELFqjLhE2eTG53d3IPGEDsxYtEHzqESfv2xN28iSouDvPFi9ExMyNqzx718CeR/bi7u7Nlyxb27dtH7ty51fMgzMzMMDIywszMjB49ejB06FAsLCwwNTVlwIABVK1aNd2Tr0GSCSH+lTptvibQ+yEPbt3X2P7n5iP8ufmI+n3NFnWJfhvNveu+zD2+lPFNRmBhZ8mAJcMYVMONhLiETI3TY/xwJnjMp16zjiiVOrgWcaFh/dp4+b4bbvV9/TrqskWcC1LEuSANW3fnyo3bfFWx3Efr333wCDW+qoiNtaXGdvceHXHv0VH9ftnPm/mqYll0dXVZuWEbezYu49T5y4yZOoftPy/+PI0V/56ODqhUPBs6i6S3UQCEeKwm3+IxPJ+4FFVsHNHXvHjYYrD6EH2nfJg1q4d/0wE4bZnFqw37eHvqKoUOLSfqyh1ifR9qpy1CpJP74J40ad6QVo27Ehsbp96+ad12Nq3brn7fqm1T3r6N5NqVW5y+cpBG9dpgZ5+XZWvmULVsA+Li4rURfropCxQg94ABRG7YQNyVK+hYWpKrTx9Mhw4lfPZsAOI9PXnVp8/7YxwcMPz2W1716oX5woVE7dpF7KVLWK1bR/ytW+96Lr40X0Dny/Ll74ab1qlTR2P7unXr6Nq1KwDz589HR0eHFi1aEBsby7fffsuyZcs+6TwyzEnkaBGvI0hMSMTMykxju5lVHt68ePPBYw2MDKjauAYnf/3zg+Vym+emxeDWbJi4BpeyRXge8IznD4PwunAHpa4Su4L2/7YZH+XoYM/6pbO5fGwPx3ZvYtuahSQkJOJgn/qYyPz57DDPY0rgk6CP1v3seTAXr96kRePvPljO/9FjDh45zoBenbly4zYVy5bEwjwP39arhZevH5GRURlqm/j8EkJekRD8Up1IAMQ+eIxCRwfdvFapHpP3p/4Ee6xBoaPAsIQL4b+fJfFVGFGXPTGunPZqOkJ8Lq9eviEhIQGrf9zUsLa25EVI6AePdevfFffBPWjfvBfed++lWc7cIg9DRvVl/KjplKtYGn+/RwT4B3L+7GX09HQp5OL0OZqSqUw6dCD+zh2ifv2VBH9/4q5cIWLBAowaNULHIvV5c6bDhvF22TJQKNArUoSYkydRvXlD3K1b6JVJ3xAykfVUKlWqr78TCQBDQ0OWLl3Kq1eviIyMZPfu3Z80XwIkmRA5XGJ8AgGeDyhRvbR6m0KhoET1Uty/7vuBI6FKo2ro6utxds+pD5brOKE7h9Ye4NXzl+godVDqvR82pNRVZukSscZGhlhbWRAWHsH5y9eoVzP1bsznIS94ExaBdTomZO/57Q8szM2oVbVymmVUKhVTZi1i5IBeGBsbkZSYRHzCu96YhL/+myhjcLON6Ote6NpYoDA2VG/Td8qHKjGRhOcp/ygza9mAxLC3vD1+CXTeXd8K3b//qwtZeI2LnCs+Pp7bN72oUfv97zWFQkGNWlW4duVWmsf1HdidwSP60LGlG7dv3k2zHMDk6aNYvWwjQc+CUerooJdsSWSlrhKljvaWiE0vhYFByjkPf69G9dect+QMv/+epPBwYs+fV6/opvh7qVhdXRRaXBZXZA/yG17keIfW7Kdu22+o2aIu9i4OdJ/mhqGxIad2vOtx6DtvIG1GdkxxXJ029bl29BJv30SkWXfJGmWwK2jPHxt+B8D/lh/2zvkoU6c89dp9Q1JiEs8ePMuchiVz7tI1zl68ypNnzzl/+TrdB/xIQUcHmjVqQFRUNHOWrOHWHW+eBgVz8eoNBv44BUcHe6pXKa+uo8fAH9myc79GvUlJSez97Q+aNqyPrm7a/6DsOnAY8zxm1Knx7h/5cqWLc/naLW7d8Wbjr3twdnLENHeuzGm8QGFsiIFrIQxcCwGg72CLgWshdO2sAbAe1hW7WcPU5cMOnCTxTQT2M4ag75Ifo0olsRnVgzc7/0CVbPgHgNLCDKt+bQme8q47PSn8LbF+gVh0bYZR2WIYVy1D9LXMnRckxN9WL9tA+84tadW2KS5FCjFj3gSMTIz4dfO7cf0Ll0/nxwmD1eX7DerBiDEDGNZ/PI8Dn2FtY4W1jRXGJsYp6q5ZpyoFnZ1Yv2YrALdu3MG5cEHq1q9Bhy6tSEpM4oFfQJa0MzmFkRG6Li7ourgAoMybF10XF3Rs3q2Wl6tXL0xHj1aXj71wAYNatTBq0gSlnR16JUuSe+BA4r28SHqpOd9EkScPuTp1ImLRu4nmqrdvSXj4EOOWLdErXhz98uWJ8/TMopZmLVWSKtu+shuZMyFyvIsHz2FqaUrLoW3JY23OI68AZnSeQvhfk7It7a1J+scPr10he4pVLs70DpPSrFfPQJ+uU3qxuP8cVKp3x796/pL1E9fgNrs/8XHxLB+2iPh//HGWGSLeRrJgxTqCX4RiZpqbb2rXYKBbF/R0dUlMTOTegwD2/36M8LeR2FhZUK1yefr36oy+vr66jsdPg3j9jxWeLly5QVBwCD80apDmuUNfvWbVhm38smKeelup4kXp0rY5/UZMxMI8D9PHDUvzePHvGZUsTIHNM9Xvbcf2BuDN7j8IGjUfXRtz9Oyt1ftVUTEEdh2L7YS+FNy9kMQ3EYQfOsOL+RtT1G073o1XP+8mIeT9Gv7PRs3DftZQzDs34dXaXcR43k9xnBCZYf+ew1hYWTB8TH+sbay46+lDx5Zu6knZ9g52Gr/PO3dvg4GBPqs3LtCoZ+6Mpcyb+X7cuKGhAdNmjaVv9+Hq3+dBz4IZP2o685ZMIy4ujsH9xhATo/lU4qygW7QoFskmT+fu3x+A6MOHCZ8xAx1LS5TJHjAXc/gwCiMjjH/4gdz9+pH09i1xN27wduXKFHWbDhhA5PbtGklG2IwZmI0ejXHz5kRt20aC74d78cWXT6H6+6fiC6Kr//FVeMSXo7Vd2sNrvmQbrs3VdghaYWRfU9shaIVngZw5LrnUo7SHp4gvj61JHm2HoBXXy1h/vNAXyPbkSW2HkKY3HeppO4Q05dl8XNshaJCeCSGEEEIIIZLLhsOJsiutJxPe3t5cvHiRqlWrUqxYMXx8fFi4cCGxsbF07NiRevU+nBnGxsYSG6vZrahSqdQPzhJCCCGEEEJkDq1OwD58+DBly5Zl+PDhlCtXjsOHD1OrVi38/Px49OgRDRo04PjxD3fleHh4YGZmpvFSJaU9IVYIIYQQQgjxeWg1mZgyZQojRozg5cuXrFu3jvbt29OrVy/++OMP/vzzT0aMGMGMGTM+WMfo0aMJCwvTeCl0cmdRC4QQQgghxBcnKRu/shmtJhN3795VPzijdevWRERE0LJlS/X+Dh06cPv27Q/WYWBggKmpqcZLhjgJIYQQQgiR+bQ+Z+LvP/x1dHQwNDTEzOz9k4hz585NWFiYtkITIlULz67EOr9Niu1HN/7O+vGrsiyOyMgoFq/eyJ+nL/Dq9RuKFXHmx8FulHItqi7z4GEg85f9zNWbniQmJlLIyZEF08Zhl9eGp0HBfNuya6p1z/1pDN/We79q0rPnwTRu15szv23j2fMQlqzZhJfvfZ49D2HUwN50avNDijq27jrAui07CX31mqIuhRgzpC+lir+Pbce+Q/z2x0m8ff2IjIrm/OEdKZ41ERYewfR5yzh57hI6OjrUr1MdhQK+vDXotM+oUkkse7bAsIQLeraWPO77E2+PXdAoo++cH5sR3TCuXAqFUkmsXyBP+k8jIeiFlqIW4t/pP6QnDf/3DS6FCxITE8PVyzeZPmkeD/weaju0z0qvdGlM2rZFt0gRlFZWvBk3jtizZ9X7FUZG5OrdG4MaNdAxNSUxKIio3buJ3r//A7UK8Y5WkwknJyfu37+Ps7MzABcuXMDR0VG9PzAwEDs7O22FJ0SqxjUZofHU6vxFHBmzZTKXfjuXpXFMmLEQP/+HeEwYjo2VJQeOHKfXoDHs27wSW2srAp88o3Pf4TT/37e49+yIibExDwIC0Td49+yIvDZWnNy/WaPOHft+Z92WXdT8qqLG9uNnLlK5fGmMjY2Ijo3BwT4vDerVYNai1JOn34+dYtbiVUwYMYDSxYuyafte3IaO48DW1Via5wEgJiaWGlUqUqNKRRasWJdqPaMmz+JF6CtWL5hOQkIC46bPx9rKgJAXWb+W+5dOx8iQWJ8AwnYexWHZ+BT79RzzUmDrbMJ2HuXFol9IehuFgUuBFA+xE+K/5KtqldiwZis3b3iiq6vLj+MHsWX3aup81YToqGhth/fZKAwNiX/wgOhDh8gzdWqK/bn69UO/fHnCpk0j8flzDCpWJPeQISSFhr578nUOlB0fDpddaTWZ6Nu3L4l/P8IdKFmypMb+33///aOrOQmR1SJeaT64rUnf5jx/GIT3xbtZFkMSSRw7dZZFMyZSsWwpANx7dOTUuUv8uuc3BvbuwqJVG6hZtRLD3Huoj3N0sFf/v1KpxMrSQqPeP0+f59uva2JsbKSx/cSZCzSo+66nopRrUXXvx4LlqScBG3/dQ8vGDdUPs5swYgCnz19hz8Gj9OzUGkDdm3H5eupDGR88DOTsxav/Z++uw6LK3gCOf4eUMEBASkKxu3vt7u7u7m7X7l67Xdt11bW7W1ERFAQFFQkRURAEZn5/4A+dBRRZYFDez/PMo3Puuee+B4aZOfcUO9ctoWC+3ACMG9qX3sMm8CboE9HR8kafnEIv3CL0wq0Ej5sP7Uzo+Vv4z90Qmxbp/To1QhMixXRo2Vvt+ZB+43ngcYnCRfNz/cptDUWV/D7duMGnGzcSPK5XsCDhx44Ree8eAB8PH8agYUN08uVLt40JkXganTPRp08f6tevn+DxmTNnsm7dulSMSIgfo62rQ8WmlTm/+3SqXleFiuhoJfp6umrp+vp63LnvglKp5MKVmzhkt6HX0PH8Vr8NbXsO4fSFhD8UXNzccXP3pFmD2mrpIe8/cOe+C1Urlk1UbJGRkTx67E7ZUkVj07S0tChbsijOD10TXUfnh65kymgc25AAKFuyGAAZ9DX61pX+KBQYVynFp2cvyb7hd3Jd+xOHvYswrlFO05EJkawyZYpZwCX4bfoaYv3p4UP0K1RAy8wMAN2iRdHOnp1PN29qODLxM5BPZCH+g5K1SmOYyYjze1J3N0pttClSMB+rNu3AP+AN0dHRHDp+BueHbgQGBhH0Npiwjx9Zv203FcuUZM2iGVT/rTxDxk3n5t34ewL2Hz5ODofsFCuUXy394tWb5M7piIV51kTF9jY4hOhoJVlNTdTSs5qaEBj0NtF1DHzzFtMsmdXSdHS0USpVaGvLIgupSTtrFrSNDcnaqyWhF27j3XUC709cwXbFeAxLF/x+AUL8BBQKBVNnjebGtTs8dvXQdDip6v3SpUQ9e4b53r1YnDqFydy5vF+8mMjvLILzS9P0ik0/0WpOGp+ALcTPrGrrGjifu0Owf+K/JCeXWRNHMGnWIqo16YC2thb5cjtRt0ZlHj32QPl5rGfVSuXo1CZmOFHe3Dm59+ARuw8coVSxwmplhUdEcOTkOXp3aRvnOmcuXkt0r4T4NSm0Yhpv709fI2jTAQAiXD0xKJ6PLG3rEXbjoQajEyJ5zJw/gTz5ctG0bkdNh5LqDJs1Qzd/ft6OHYvSzw/dIkXIOGQIyjdv+HT71xnuJVKGNCaESCIzG3MKVizMot5zNXJ9O1trNq2YR9jHcEJDwzA3M2X4xFnYWltikiUTOtra5HSwUzsnh0N27tx/FKesE2cv8TE8gkZ1qqulR0ZGcvn6LXp2ap3ouEyyZEJbW4s3/+qFeBP0FrN/9VZ8i1lWE4KC1YcaREVFo6WlkPkSqSzqbQiqyCgiPLzV0iOe+mBYooCGohIi+UyfO54atSvTrF5nfF/5aTqc1KWnh3GPHgRPnMina9cAiPL0RNfJCcPWraUxIb5LhjkJkUSVW1bj3Zt33D2T8KTV1GBokAFzM1Pehbznyo3bVKtUFl1dXQrky42X9wu1vM98XmJtGXdZ2/2Hj1O1YhlMP6+09H837twnU0Zj8ubKkeh4dHV1yZ8nF9dv3YtNUyqVXL99jyIF8yW6nCIF8xHy/gMubu6xaddvx5QZHpEG+3l/ZZFRfHzwBH1HW7VkfQcbIl/5aygoIZLH9LnjqVO/Oq0adcPH+6Wmw0l1Ch0dFLq6oFR/X1VFR0M63rdLpVSl2UdaIz0TQiSBQqHgt5bVuLj3HMpozXyxvXz9NiqVCgc7W7xfvGLBivU42tnS5PMKSl3bNWfEpNmULFqQ0sWLcOnaLc5fvs7GZXPUyvF+8Yrb9x7yx/xpca5x7tJ1qvxriFNkZCRPvbw//z8Kv4A3uD15iqGhQexqUZ1aN2X8jAUUyJuLgvnzsG33AT6GR9Ckfs3YcgLfBBH45i3eL14B4P70GUaGBlhZWpA5U0ZyOthRsWxJpsxZwqSRA4mMimLmoj/4EBolPRMpQGGYAT37L6t96dlmQz9fDqKD3xPlG0DQun3YLB5D2M0HhF67j/FvJTCuVobnHUZrMGoh/puZ8yfSpEU9urUbyIcPYZhbxExAfh/ynvDwX2cJaoWBAdo2NrHPtS0t0XFyQhkSgtLfn0/37pGxb19CPn0i+vVr9IoWxaB2bd6vWKHBqMXPQqFS/XrbP+no2Xw/k/hltLIqnerXLFSpCGO3TWFYlf689nqV6tcHaDu3MYtXbcQvIJDMmTJSs3JFBvXuTEZjo9g8+w8fZ93W3fj5B+JgZ0v/Hh2oVkl9BZ7FqzZx+MQZTuzdhJaWemdljWad+H3sUMqVKhabltBmdyWLFWLT8i9Dvv7ce5CNf+4jMCiIvLlyMnZIHwoXyBt7fMX6bfyxYXuccqaPGxbb6HgX8p4ZC1dy7tJ1tLQU1KhSgYUr/kqXm9Y9sC+SouUbli6E/fY5cdKD95/Ed/QiADK3qIlZ71boWJrxyesFAUu28+H0tRSNq9Bz5xQtX6Qt2YyypOr1Xr6Nf0nvof3Gs3vHgVSL404R8xQtX7doUUwXL46T/vHYMUJmz0bL1BTjnj3RK1kyZtM6Pz8+HjpE2J49KRpXtnPnUrT8/yKoaWVNh5Ag07/OazoENdKYED89TTQm0oLNtxekaPmPHnvQfdAYLvyzE12dtNOJaWBd6fuZfkEp3ZhIq6Qxkb6kdmMirUjpxkRalaYbE43TcGPi77TVmJA5E0KIeEVHRzN2aN801ZAQQgghRNoi3xKEEPEqlD8PhfLn0XQYQgghhEjDpDEhhBBCCCHEV1SyaGCiyTAnIYQQQgghRJJIY0IIIYQQQgiRJDLMSQghhBBCiK/JMKdEk54JIYQQQgghRJJIY0IIIYQQQgiRJDLMSQghhBBCiK/Iak6JJz0TQgghhBBCiCSRxoQQQgghhBAiSWSYkxBCCCGEEF+TYU6JJj0TQgghhBBCiCSRxoQQQgghhBAiSWSYkxBCCCGEEF+R1ZwST3omhBBCCCGEEEkijQkhhBBCCCFEkkhjQgghhBBCCJEkMmdCCCGEEEKIr8icicSTngkhhBBCCCFEkkhjQgghhBBCCJEkMsxJCCGEEEKIr8gwp8STngkhhBBCCCFEkkhjQgghhBBCCJEkMsxJCCGEEEKIr6kUmo7gp/FLNiayGWXRdAgaMca4mKZD0IgeC/JqOgSNMLCupOkQRCoq9NxZ0yFoxMdXFzUdgkYMKjlG0yFohK1KV9MhaITp3t81HYIQSSbDnIQQQgghhBBJ8kv2TAghhBBCCJFUsppT4knPhBBCCCGEECJJpDEhhBBCCCGESBIZ5iSEEEIIIcRXVEpZzSmxpGdCCCGEEEIIkSTSmBBCCCGEEEIkiQxzEkIIIYQQ4iuymlPiSc+EEEIIIYQQIkmkMSGEEEIIIYRIEhnmJIQQQgghxFdUKlnNKbGkZ0IIIYQQQgiRJNKYEEIIIYQQQiSJDHMSQgghhBDiK7KaU+JJz4QQQgghhBAiSaQxIYQQQgghhEgSGeYkhBBCCCHEV1RKWc0psaRnQgghhBBCCJEk0pgQQgghhBBCJIkMcxJCCCGEEOIrKpWmI/h5SM+EEEIIIYQQIkmkMSGEEEIIIYRIEhnmJIQQQgghxFdkNafEk54JIYQQQgghRJJIYyIBnXu05ZrzCZ763uHQyR0ULV4owbztOrVg/5EtuHhdwcXrCjv/Whcnf+8BXXB+cgHnJxfo3b+z2rFiJQpx9OxutLW1U6QuiWFdJg8NNgyj661lDPTZRo7aJb6Z39AiC7WW9aPD+XkMeL6FSpM7xMmTvVJBOpyfR+9Ha6m5uA9aul/qp5fRgA7n55HRJmuy1+VHrD//gHYrj1B+6g6qztzNkG1neRbw7pvn/H3nKUXHb1V7lJ68XS3P5osuVJ25m6ozd7Pl0iO1Yw98Ami74h+iopXJXh+ROH37dMbjyTU+hDzlyqVDlCpZ9Jv5mzdvwMMH5/kQ8pS7d05Rt041tePDhvbm1QtnXr1wZuiQ3mrHSpcqxvVrRzX6951erVi/jYIV6qo9GrbtmWB+D8/nDBk3nVrNO1OwQl227vorTp7Dx89QvWlHytdpydyla9SOvfT1o36bHnwIDU32uiRF5Y61mX5pOUsfb2PUgRnYF8n5zfzVutVjyunFLHHbxowrK2kxsTM6+rqxx0s1rsiMKytZ4LyB5hM6qZ1ramvOlDOLyWBskCJ1SYzspfPSav1wBt1Yzvjn28ld69ufYwB2ZfPR/Z/pjH6yib7nF1C4xW9qxws0Kc/Aq0sZdn8NNSa2VzuW2daMPmfno5eKdY6OjmbZmi3UbtGFElUbU6dlV1Zt/BPVV7OFA4PeMn76Aqo2ak/Jak3oPWwCz31efrPcvQeP0qnvCMrXaUn5Oi3pMXgsDx49Vsuz8c+9/Fa/Db/Vb8OmHfvUjt13caNVt4FERUUnX2XFT0OGOcWjUdM6TJ4+ijHDpnL39gN69OnI9n2r+a1UA94EBsXJX65iKf7ed4Rb1+8RHhFB/8Hd+XP/GqqVa8xrX3/yFcjNyLED6NymPwoFbNq5kvNnr+D2yB1tbW1mL5zMqCFTiI7W3B+hroE+ga7ePNp9gfprh3w3v7aeDh/fvOfW0r8p2qNO3AwKBbWX9ePWikN4n79P3VWDKNiuGvc3nwSg/NjWPNx2hvcv3yRzTX7MbS9/WpfNQwGbrEQrlSw7cY++m06zf3BDDPR0EzzPWF+XA0Mbxz5XfNUb+uT1W/447czSjlVRAYO2nKWckxW5LE2IilYy/e/rTGxSFh1tactrQsuWjZg/bzL9+o/hxs27DBrYgyP/bCd/wd8ICIj7eixXtiTbt65g/IRZ/HPkFG3bNGXf3vWUKlMHF5fHFCqUjymTR9K4SWcUCgV/H9jEyVPnefjQDW1tbVasmE3fvqM0+vednjk52rNuyczY599q1H2MCMfW2pJa1SrGaSgAvA1+x+TZS5g+fhi2Npb0HzGZ0iWKUKVCGQCmz1/OkD5dMTYySv6K/KASDcrRfEIndkxYi9ddd6p1q8+gLeOZUm0I79+ExMlfqlEFmoxux9aRf/D0zhOyOVrRaX4/VCoV+6ZvwcgkIx3m9GHLiBUEevvTf8MYHl95yMMzdwBo+3t3Dsz5k/APH1O7qrH0DPXxc/XGefd5WqwZ+t38mbOb03rjCO5sP8OBwStxrFCA+nN68MH/LZ4XHmBgYkz9OT05NHw1wd7+tN44gmeXH+Fx5i4AdaZ35eycnXxKxTqv37aHXQf+YcaE4Tg52uPi9oQJMxZhbGxEh5aNUalUDB4zDR0dHZbOmYSxoRFbdu2nx+Bx/L19NYYGGeIt9+ad+9SrWYWiBfOhp6/Hhm176DV0PAe2rSKbuRmPPbxYsW4bK+ZNQaVS0X/kFMqXLk7unI5ERUUzbd4yJo8ehI7Or3PTRIY5JZ58m4lHz36d+XPLXnb/eQD3x08ZM2wqH8PCadOhWbz5B/Yazeb1O3F56MZTdy9GDJqElkKLir+VBcAplyOuLk+4fPE6ly5cx9XlCU65HAHoO6gr167cwvnuw1SrX3yen7vPtXl78Tx2K1H5378I5OKUrbjtu0TE+7hvpAamGTHImokHW04R9OQlXifvYJLLGgDLErmwKJID5/XHkrUOSbGyS3UaF8+JU7Ys5LEyZVqL8vgGh/LoZdxGoxoFmGU0iH1k/erOlFfAO3JZmlA6pxVlclqRyzILXgExH96bL7lQ3CEbBW3NUrJa4huGDu7JuvV/snnLblxd3enXfwxhYR/p2qVNvPkHDuzO8ePnWLBwFW5uHkyeMo+7dx/Sr29XAPLkceLBA1fOnrvMmbOXePDAlTx5nAAYMbwvFy9e49Zt51Srn1Cnra2NWVbT2IdJlswJ5i2ULw8jBvSgXo0q6OnGvZnw4tVrjI2NqFujMoXy5aFU8SJ4PvMB4MjJc+jo6FCzSoUUq8uPqN6jAZd3nubqnnO89njJjvFr+fTxE+VaVY03f44SeXh66zE3D14m6EUArhfvc+vgZRyKxLyWzews+Pg+jNuHr/L8/lMeX3PByskGgJKNKhAdFc294zdSrX7xeXrOmfPz9/D4eOI+x4q3r06wTwCnp2/njccrbm0+ieuRG5TuXhcAEzsLIkLCcD18Dd/7njy/6orZ58+x/I3KoYyM5nEiPzOTy72HrlStVJbK5UtjY5WNWlUrUb508dhehOc+L3F2cWPiiAEUypcHR3tbJo4YQEREBEdOnkuw3DlTRtOmWQPy5s5JDvvsTB0zGKVSybVb9wDweu5D7pwOlClRlLIli5HbyRGv5y+AmB6LEkULUShfnpSuvkijpDHxL7q6uhQump+L567GpqlUKi6dv0aJUkUSVYaBYQZ0dHUIDo4ZLuP6yB1HJwesba2wyW5FDid73Fw9sHfITut2TZk7Y2mK1EWTPr4J4YPfW+x+K4ROBj2sS+ch0NUHLR1tqs7swtkxG1Ap094izh/CPwGQ2VDvm/k+foqi7rz91J67jyFbz+LhFxx7LFc2E54HhuAbHMqrtx94Hvgep2xZ8Hnznr9vP2VAzaIpWAPxLbq6uhQvXpjTZy7GpqlUKk6fuUTZsvEPiShbpoRafoATJ8/F5n/40JVcuRzJnt0aOzsbcuXKgYuLGzly2NO5c2smTZ6bchUS3+X94iVVG7WnTsuujJ4yB9/X/kkuy87WmvDwcFyfePAu5D0ubk/I4+TIu5D3LFu7hXHD+iVj5EmnrauNXcEcuF1+EJumUqlwu/yAHMVzx3uO5+3H2BXKETsUyiy7BQWqFsPlbMxd+ACv1+hl0MO2gAOGmY1wKJyTF27eGGYyouGw1uyatCHlK5bMbIvn4tkl9Rt5nhfuY1M8FwBBXq/RNdAnWwF7MmQ2wqpIDvxdvcmQyZDKw1twbNKmVI+5aMF8XL91j2feMV/k3dw9uXPfhUplSwLwKTISAL2veta1tLTQ1dPl7n2XRF8nPDyCqKhoMmfKCECunA4883mJ72t/Xr3247nPS5xy2OP94hUHjpxkUM9O3ylR/MpkmNO/mGbNgo6ODoH/Gu4QEPCGnJ97E75n/JTh+L32j22QeDzxZM7vi9m5fy0As6ctxuOJJzv/Wsf0yQuoUq0iw8b0IyoyikljZ3H9yu3krZSGHOu7jEqTO1BpSgeen3XGddd5SvRvyIsrrkRHRNJ8/yQMTDNyf+OJ2OFPmqRUqpj3zy2K2pvjlM0kwXwOZpmY0qwcubKZ8CEiki0XXeiy+hj7BjckW2YjclhkZmDNYvTZeAqAQbWKkcMiM703nGRIneJccX/FqtPO6GhrMap+KUo4ZkutKqZ7Zmam6Ojo4O8XqJbu7x9A3jzxjye3tDTHzz9ALc3PLxDLbOYAuLl5MGHiHI4d3QnA+AmzcXPz4PjRnYwZO51ataowaeIwIiOjGDZsEhcvXU+Bmon4FM6fh+njh+NgZ0vgmyBWbthOp34jObD1D4yMDH+4vMyZMjJjwnDG/b6A8IgIGtapToUyJZg4axHtmjfkpe9rBo6eQlRUNP26t6dW1UopUKvvMzbJhLaONiGBwWrpIQHBZMtpHe85Nw9extg0EyP2/I5CAdq6OlzYdoJjK2PmjYSFhLJ5xAq6LBiAbgY9ru2/gOsFZzrM6cP5LcfImt2CvutGoa2jzeHFe7h7NO2/zo3MMxMaqD7kKzTwHRkyGaKjr0t4SBiHhq+i0cK+6GTQ5cG+i3heeED9uT25tfkkWbJb0Gr9cLR0tLm4eD9uR1K+Z6ZHx1aEhoXRsF0vtLW0iFYqGdSrMw1qx8zjcrTPjlU2C5as3sSkkQMxNMjAll1/4ecfSMCb7/S4f2XhHxswNzOlXMliAOR0sGNw7y70HDIOgMG9u5DTwY4eg8cyrF83Lt+4zcr129HR0WbMkD6ULJrwPNOfhWxal3jSmEhm/Yf0oFGzurRs2IWIiE+x6Vs37mbrxt2xz1u2acyHD6HcvunMhZuHqV+tNVbWlqxcN59yRWvx6VOkJsJPVr43n7C7waTY51kcLcnbvCI764yn2d6JOG84zvOzzrQ7NYuX19144+ajwWhh1qEbePgFs6lX7W/mK2JnThE7c7XnzRYfZO8Nd/p/7nVoWSY3Lct8uQN48M5TDPV0KWJnTuNFf7O9bz38Q8IYs+si/4xoit4vNM40PVqzditr1m6Nfd6xY0vef/jAtWu3efTwAmXL18fWxort21bilLscnz59+kZpIrlUKlcq9v95nBwplD8PtZp35tiZizRv+O2/84TUqFyBGpW/DGW6efc+Tzy8GDe0L/VadWfu1NGYmZrStudgShQtRFaTLP+1GqkiV9n81O7flJ0T1+F1zx1zB0taTepK3YHNObosZrKt8/GbOB+/+eWcMvmwyWvHrskbmHZ+KRsGLSEkIJjRB2bhccM13rkZP5vHx2+pDZuyK5MXi7zZOT5pM/0uLOTAwOV8CHhH17+n4X3djbAUrvOxMxc4fOIsc6aMwsnRHjd3T+YsWY2FmSmN69VEV0eHxTMnMGnWYirUbYW2thZlSxajUtmSJPa78bqtuzl66jwbl89FX/9LL33rpvVp3bR+7PO/j5zE0NCAIgXz0bBtT3auW4KffyAjJ83m+N6N6Ol9u4df/DqkMfEvQW+CiYqKwsxcfZUhc/OsBPgHJnBWjN4DutB/SHfaNOmBq8uTBPOZmGZh6Oi+NK/fmWIlC+Pp8RwvT2+8PL3R1dUhh5MDbo/ck6U+aUnV2d249PufoKWFRSEHPA5fJyr8Ey+vuWFTNq9GGxOzDt7gwuMXbOhRi2yZf2zypK62FnmsTfAJeh/v8beh4aw+c58NPWvxwCcQ+6yZsDeLeURFK3keGEIuy4R7QkTyCQwMIioqCots6nNWLCzMee0XEO85r18HkM3CXC0tWzazBPNnzWrCxPFDqVq9OaVLF8Pd3RMPDy88PLzQ1dUld+4cPHzoljwVEj8kU0Zj7LPb4P3iVbKU9+nTJ6bPX8GsSSPxfuFLdHQ0pYoVBsA+uw0PXNyoUrFsslzrR3x4G0J0VDSZzLKopWcyz0JIQHC85zQa1pob+y9wedcZAF499kHfIAPtZ/Xi2PL9aqsFAejo6dDm9x5sGrocCwdLtLW1cb/uCoCf1ysciubiwem03cseGvAOI7NMamlGZpkJDwkjKiLuDT1tPR3qTO/KwaF/YOqQDS1tLbyvx/wtB3n5YlM0J+6n76ZozAtWrKdHh1bUq1EFgNw5HfF97c+6rbtpXK8mAAXy5mLf5hW8/xBKZGQkpiZZaNtzCAXy5vpu+Rv/3Mv6bbtZu3gmeZwSHo3xNvgdf2z8k00r5vLA5TH22W1iH1HRUTzzeUnunIkbzSF+fjJn4l8iIyO5f+8RFSt/+QBQKBRU/K0Mt28mPImy76BuDBnZhw4tenP/3rfHJU6dOZq1K7fg+8oPbS0tdHW/tOm0dbTR1vr17lLnb12Z8OAPeJ28g5Z2zAoJ/18qVltXG4WGVjZSqVTMOniDM4+8WdOtJjamGX+4jGilEo/XwZhljH95wPlHbtGhQj6yZTZCqVQRpfyyJGyUUkV0Gpw78quKjIzkzp37VKtaMTZNoVBQrWpFrl2L/4vPteu3qVatolpajeq/JZh/wfypLFm6lpcvfdHW1kbnq4m8OjraskSsBoWFfcTnpS/mZqbJUt7qTTupWLYk+fM4oVRGE/XVil1RUdFEKzWz/HN0ZDTeDz3JU75gbJpCoSBP+YJ43on/RpeegT7KfzUYlP+PP55FbeoOaM6j8/fwcfFCoa2F1le9q9q6Omj9BKvVvbjjjkOFgmppjpUK8fJO/DfzKg5swtPz93n98FncOuvopMrnWHh4BAot9V+IlpZWnN8dQEZjI0xNsvDc5yUubu5U/U7DdsP2PazetINVC36nYL7459b835yla+jYqgmWFuZEK6OJioqKPRYdrUT5Cyx9rlIq0uwjrZGeiXisXbmZRStncv+uC3fvPKBn344YGBmwa3vM2NElf8zE19ef2dMWA9BvcHdGjB3AgJ6j8PF+hblFzF3P0NAwwkLD1MquVKUcjjkdGNw3Ztyh892H5MzlSNUaFbG2sUIZreSph1fqVfYzXUN9Mjt8GbufKbs5ZvntCA8O5cOrN5Qb3QpjSxNODl0dm8csv13MuUb6GGTNiFl+O6Ijo3jrrn7XzyBrJkoOasy+ZtMAiHgXRtCTlxTtXgfvCw+wrVCAm8sOpkIt45p58AZH73uxuENVjPR1Cfy8MpVxBl0yfG7kTdhzGYtMBgyqXRyA1WfuUyi7GXZZM/L+4yc2X3qEb3AoTUs6xSn/qscrngeG8HvzmGERBWyz8iwghEuPX/L6XSjaWgoczDPFOU+knEVL1rJx/SJu37nPzZt3GTSwJ0ZGBmzavAuAjRuW8OqVL+MnzAZg2bL1nDm9l6FDenPk6Clat2pMiRKF6dNvVJyya1SvRO5cjnTtNhiAW7ecyZsnJ3VqV8XW1proaCWPHz9Nvcqmc/OWr6VKhTJYW2bDP/ANK9ZtQ1tbi3o1KgMw9vf5WJhlZejnlbkiIyN56uX9+f9R+AW8we3JUwwNDbCzVZ9r8NTrOcfOXGDPxuVAzFh1LS0t9h06jllWE7y8fb77hSwlnV53mM4L+uP9wJNn9zyo1r0e+ob6XN1zDoDOC/oT7BfE33N3AHD/9G2qd6/PCxcvvO7GDHNqOKw190/fjrNYhqWTDSUalGNm/dEA+Hm8RKVUUr5VVUICgrHMac0zZ49UrS/EfI6ZOljGPs+S3Zxs+e35GPyBkFdvqDKqNRktTTg0bBUAd7afpmTnmlQb2xbn3edwKF+A/PXLsKvrvDhlm+WyIV+DsqyvNx6ANx6vUClVFGldmdCAd2TNaYWvs2eK17FKhTKs3bwTq2wWODna4/rEgy279tO0fq3YPMfPXMQkS2asspnj7vmM2YtXUa1SOSqU+bLIxL9f++u37Wb5uq3MnTwaG6tsBH6eX2FoYIChofqNsis37vDc5yUzJwwHoGC+3Hg9f8HFqzd57R+AlpYWDva2Kf2jEGmINCbicfCvY5iamTJi3ADMLcxweeBGhxa9YydlW9taofzqzbVTt9bo6+uxdstitXIWzF7BwjkrY59nyKDPjLnj6dttRGyXse8rPyaOnsnC5TP49OkTQ/qNIzw8IuUr+S8WhXPQbM/42Of/34TOdc8FTg1bg1G2LBjbqA8NaXv8y9rt2QrnIE/TCoT4BLC5vPr63r9N7ci9NUcJ/WrFo1PDV1NjYW8Kd6vFnVX/4J8Kb8Lx2XMj5i5dj3Un1NKnNi9P4+IxE3J934Wq7SMR8jGC3w9cI/D9RzIZ6JHPOiube9chp0UWtTLCI6OYfegmc1pXQuvznaRsmY0Y3aAUk/dfQU9Hm2nNy8c2WkTq2LPnIOZmpkyZNAJLS3OcnV2o36AD/p+HMdplt/5yRxa4eu0WHToNYNrUUUz/fTTuHl40b9EdFxf1DZ0yZMjAkiUzaNe+b+zf98uXvgweMpF1axcSEfGJbt2HEB4ennqVTef8/AMZNXkOwSEhmGbJTLHCBdi+ehGmn+cx+Pr5o/XVH7d/YBAtug6Ifb5pxz427dhHyWKF2LT8y6pcKpWKKXOXMnJgz9h1+zPo6zN9/DBmLFjJp8hIxg3tRzZzzS0BffvwVYxNM9FgaCsymWfhheszlnWeyfvAmFUGTW3M1IYuHV22D1QqGg5vQxZLUz68CeHB6dv8PX9HnLLbz+rN3ulb+PQx5rMqMiKSzSNW0mZad3T0ddk1aQPv/N6mTkW/YlU4Bx13TYh9XnNSRwCc91zg8IjVGFtkIbP1lyHM73wC2NV1PjUndaBU19q8fx3EP6PX4XnhQZyy683qzqnftxP5uc5REZEcGr6aOr93QVtPh+OTN/M+Feo8bmhflq3dwvT5Kwh6G4y5mSktG9ejb9d2sXkC3gQxd9ka3gQFY57VlEZ1qtOna1u1cv792t/11z9ERkYxdMIMtXx9u7Wnf/cvm9KGR0Qwc+FK5k8bi5ZWTE+MpYU5Y4f2ZcLMRejp6jJjwnAy6OunRPVFGqVQ/XsgpIapVCoUiv/WhWNjUiCZovm5jDEupukQNKLHoryaDkEjMrb7Q9MhCJHiPr66+P1Mv6BBJcdoOgSNsFUlvFnor2zU7d81HYJG6Jrl0HQICXpaMGmLNKSGnA+PazoENWluUKO+vj6urq6aDkMIIYQQQgjxHRobXzFs2LB406Ojo5k9ezZZs8Z0RS5cuPCb5URERBARoT4sSKVSolCkuXaSEEIIIYQQvxSNNSYWL15MkSJFyJIli1q6SqXC1dUVIyOjRA13mjVrFlOnTlVLM9Y3I5OBRXKGK4QQQggh0gnVz78gVarRWGNi5syZrFmzhgULFlCtWrXYdF1dXTZt2kT+/PkTVc7YsWPj9HLktSuTrLEKIYQQQggh4tLYWKAxY8awa9cu+vbty4gRI4iMTNqOz/r6+mTKlEntIUOchBBCCCGESHkaXZOyVKlS3L59m/79+1OyZEm2b9/+n1dy0oQBQ3tQt0FNnHI5Eh4ezq0b95g5ZSFPPZ5pOrRkZV0mD8V718e8sCPG2Uz4p8ciPI9/2bgrZ52SFOxYHfNCDhiYZGRH7XEEPvLWYMTJY/35B5x28eFZwDv0dbUpYmfOkNrFcTDPHJun+7oT3PbyUzuvRalcTGiS+rvfivj17dOZ4cP6Ymlpzv37jxg8ZCI3b91Ty+P++Cp9+o7i9JmLtGjRkDGjB5I7Vw4CAt6w8o+NLFi4Si1/27ZNGTG8H7mcHHn3LoRjx88yesx0goJilojs3q0dHTu0oECBPADcufOACRNnx7mu0JwV67fxx4btammOdrYc2rEWgIiIT8xbvpajp87zKTKSCqVLMGFEf8xMf61d6xVaChoMaUXpppXIZJ6Fd35BXN17PmbJ2F9I9tJ5Kde7PpaFHMmYzYQ9PRfy5IT6BpS/DWtOsbZV0c9kxItbTzg6fgNvn/klUGLaEx0dzcr12zl84gyBb95ibmZKk3o16d2lbex3rIIV6sZ77rB+3enWvkXs8/NXbrBq45888fBCX1+PkkULsXT2pFSph6YpVT/f91FN0fgC98bGxmzevJmdO3dSo0YNor/aQfRnUbZ8KTav28G9uw/Q0dFhzMTB/Ll/LVXKNuJj2EdNh5dsdA30CXT15tHuC9RfOyTOcR1DfV7deIz7oetUn9cj9QNMIbe9/GldNg8FbLISrVSy7MQ9+m46zf7BDTHQ+7KMYbOSTvSrUTT2eQZd2ek4rWjZshHz502mX/8x3Lh5l0EDe3Dkn+3kL/gbAZ/3jylUKB8mJpk5f+EqdWpXZevmZQweMpGTp86TL28uVv0xl48fw1n5xyYAypcryaYNSxg+YgqH/zmJjbUlK1bMZvWqubRs1ROAypXLsXPX31y9dovw8HBGjujP0SN/UrhoNV69eq2pH4f4FydHe9Yt+bJvzte7lM9ZupoLV2+ycPo4jI2MmLlwJUPGTWfbqgWaCDXF1O7ThN861GTz8BW8cn+BfaEcdJrXj/D3YZzddFTT4SUbPUN9/Fy9cd59nhZrhsY5Xq5PA0p1qc2h4asJ9vGn8vCWtN06htU1RhEdkbQRFKlt/bY97DrwDzMmDMfJ0R4XtydMmLEIY2MjOrRsDMC5g+oN6IvXbjFp1mJqVqkQm3by7CUmz1nC4N5dKFOiCNHR0bh7Pk/Vuoifg8YbE//Xpk0bKlasyO3bt7G3t9d0OD+kQ8veas+H9BvPA49LFC6an+tXbidw1s/n+bn7PD93P8Hjj/dfBiCjreY2akoJK7tUV3s+rUV5qs3cw6OXQZRw/LJreAY9HcwyGvz7dJEGDB3ck3Xr/2Tzlt0A9Os/hnp1q9O1SxvmzlsBQKOGtTl+4hxRUVG0b9+cvw8eZ83arQB4eXkzZ+5yRo7oH9uYKFu2BM+e+bB8xQYAnj3zYe3abYwc0T/2up06D1SLo1fvETRrWo9q1SqybdvelK62SCRtbW3MsprGSX//IZT9h08wd8ooypQoCsDv44fRqF0vnB+6UqRgvlSONOXkKJEb55O3eHj2LgBBLwIo1agi9kWcNBxZ8np6zpmn55wTPF66ex0uLT/Ak5Mxn90Hh/3BkFsryVOrBI8OXUutMP+Tew9dqVqpLJXLlwbAxiobR06e58GjLxtt/vv1fvbiNUoXL0x2GysAoqKimb1kFcP796B5wy/7LeR0/Lm+n4nUkaYmF9ja2tK4cWOMjIw0Hcp/kilTRgCC377TcCQiJXwI/wRAZkM9tfSj97yoMmM3zZccZOnxO3z8FKWJ8MS/6OrqUrx4YU6f+bL5mUql4vSZS5QtWyI2rUGDmhw8FLMRkL6+Xpyd6D9+DCd7dmvs7W0BuHbtNtmzW1O3TswCEhYWZjRvVp+jx04nGIuhoQG6ujq8DQpOruqJZOD94iVVG7WnTsuujJ4yB9/X/gA8euxOVFQUZUt+2RA0h312rLJZ4PzQTVPhpgjP20/IW6EgFo4xXyZt8tmTs2QeXM7d1XBkqSdLdnOMLUx4dsklNi3i/Ude3nuKTfFcGozsxxQtmI/rt+7xzPsFAG7unty570KlsiXjzR8Y9JYLV27QrMGXRoPrEw/8At6gpaWgRZf+VGnUjj7DJ+Lu+Sw1qpAmqFSKNPtIa9JMz8SvQqFQMHXWaG5cu8NjVw9NhyOSmVKpYt4/tyhqb45Tti9jpusWdsDaxBjzjAY8ef2WJcfv8iwwhIXtq2guWAGAmZkpOjo6+PsFqqX7+weQN09OAKytLSlcKB/Hjp0F4MSJ8yyYP4UtWypy9txlnJwcGTo0pgfSyjIbz5+/4MrVW3TsPJA/t/9Bhgz66OrqcujwCQYOGp9gLLNmjufVKz9OnU6fuzqnRYXz52H6+OE42NkS+CaIlRu206nfSA5s/YPAN2/R1dUhU0ZjtXOymmYhMChIQxGnjON/HCBDRgMmn16EKlqJQluLg/N3cvPvS5oOLdUYWWQBIDRQ/UZgaOA7jM2zpH5ASdSjYytCw8Jo2K4X2lpaRCuVDOrVmQa1q8Wb/+DRUxgaGlCj8pchTj6vfAFYuX47owb2xNoqG5t37qfrgNH8s3MdmT/fNBUCpDGR7GbOn0CefLloWrejpkMRKWDWoRt4+AWzqVdttfQWpXPH/j+XpQnmGQ3oteEUPm/ekz2rvOmmdQ0b1OLy5Zu8excCwLr128mZ056/D2xCV1eXkJD3LFu+nsmTRqBUxiw+ni9fLhYtmMr0GYs4cfI8VpYWzJ49gZUrZtOr94g41xg1sj+tWzWies2WcTbaFJpTqVyp2P/ncXKkUP481GremWNnLpJBX+8bZ/5aSjQoR6nGFdk4eCmvnvhgm9+BlpO68M7vLdf2ndd0eOIHHDtzgcMnzjJnyiicHO1xc/dkzpLVWJiZ0rhezTj5/zp8gga1qqL/1etdpVQB0Ktza2pWrQjA9HFDqd60I8fPXKRVk3qpUxnxU5DGRDKaPnc8NWpXplm9zvi++nlWfhCJM+vgDS48fsGGHrXIlvnbQ/EKZY+ZN+ITJI0JTQsMDCIqKgqLbOpzeSwszHntFwBAwwY1OXT4hNrxseNmMn7CbCwtLQgIeEP1ajEfqJ5eMRMQR48ayJWrt2JXeHrwwJXQ0DDOnzvApMlzef15qAzAsKG9GTWyP7XrtOHBA9cUq6v47zJlNMY+uw3eL15RvnQxIiOjCHn/Qa134k1QMGamcedY/Myaju3AiT/+5tahKwC8euxDVhtzavdrkm4aE6H+wQAYmWXmw+f///+536OfZ+LxghXr6dGhFfVqVAEgd05HfF/7s27r7jiNidv3HuLl/YJ508aqpZt/nlOR08EuNk1PTw9bayt8/fxJD1TKtDecKK1KU3MmfmbT546nTv3qtGrUDR/vl5oORyQjlUrFrIM3OPPImzXdamJj+v3GgZtvzNKgMiFb8yIjI7lz5z7VPt9dg5jhiNWqVuTatdsYGRlSpUr52PkSX1Mqlbx69ZrIyEhat27C1au3CAyMGd5iaJghtpfi/6KjlbHl/9+I4X0ZP24I9Rt04PadhBcwEGlDWNhHfF76Ym5mSv48udDR0eH6V0v5ej1/ga+fP0UK5tVckClAz0Af1b+2/FUqlT/lcu1JFewTwAf/tzhUKBCbpmdsgE3RnLy8467ByH5MeHgECi3135uWlhZKlSpO3v2Hj5M/Ty7y5sqhlp4/rxN6erp4ffV9JjIqipe+flhbWqRM4OKnJT0TyWDm/Ik0aVGPbu0G8uFDGOYWMXdA34e8jzOJ82ema6hPZocvqxdlym6OWX47woND+fDqDfpZjMhonRWjz3MJTHLGTOQLC3hHWMDPOxl95sEbHL3vxeIOVTHS1yXwfcxyv8YZdMmgq4PPm/ccdfaiYh4bMhvq4/76LfOP3KKEgwW5LX+tteh/VouWrGXj+kXcvnOfmzfvMmhgT4yMDNi0eRe1a1flibsnz5+/iM2fNasJzZs14PyFK2TIkIHOnVrRonl9qlX/sv764cOnWL1qLr17deLEyXNYWVqwYMFUbty4g69vTM/kyBH9mDJ5BB06DeDZcx+yZTMH4MOHUEJDw1L3hyDiNW/5WqpUKIO1ZTb8A9+wYt02tLW1qFejMhmNjWjWoBZzl60lc6aMGBkZMnPRHxQpmO+XWskJ4MHp29Tp34ygl4G8cn9B9gIOVO/egCt7zmo6tGSla6iPqYNl7PMs2c3Jlt+ej8EfCHn1hhvrj1FhYBOCvF4T7BNA5eEteO8fzOMTP8/KjFUqlGHt5p1YZbPAydEe1ycebNm1n6b1a6nl+xAayomzFxkxoGecMoyNjGjVuB4r12/F0sIMa8tsbPwzZgW6WlUrpUo9xM9DoVLF01T9ydmYFPh+pmT08q1LvOlD+41n944DqRbHGONi38/0H9iUzUezPXEnl7ruucCpYWvI27ISNRf2jnP8+sL93Fi0P8Xi6rEoZe8QFh2/Nd70qc3L07h4Tl4HhzJ+zyU8/IL5GBlFtsxGVMufnZ5VCmGcIeXGXGds90eKlf0r6te3S+ymdc7OLgwZOokbN++yaeNSvL1fMGny3Ni8WbOa8PdfmylYMC8KhYJr124zcdIcbtxUX9mmf7+u9OrVEUcHO4KD33H23GXGjpsZu4eEx5NrODhkjxPLtN8XMO33hSlb4V/Ex1cpO1l9xKRZ3L73kOCQEEyzZKZY4QIM6tUZO1tr4MumdUdOniMyMpLypUswcUT/eJeSTU6DSo5J0fL/Td8oA42Gt6ZIrdJkNMvMO78gbh28zD9L9xIdmXr7P9mqdL+f6T+wK5uPjrsmxEl33nOBwyNWA//ftK4aGTIZ4nPrCccmbCTIK2X3hRl1+/dkKys0NIxla7dw+sJVgt4GY25mSr2aVejbtR26ul9+vnv+PsKcJWs4e3A7GY3jDt2NjIpi8aqNHDp2hoiICArlz8uYwb1xypF8y8PqmuX4fiYNcc2VdueF5HM/oukQ1Ehj4heS0o2JtCqlGxNplTQm/jttbW1evXCmQcMOsit1GpXSjYm0KrUbE2lFSjcm0qrkbEz8TKQxkTRprTEhcyaEEOmWqWkWlixdKw0JIYQQIolkzoQQIt0KCHjDzFlLNB2GEEKINEZWc0o86ZkQQgghhBBCJIk0JoQQQgghhBBJIsOchBBCCCGE+IpSJcOcEkt6JoQQQgghhBBJkqieiYMHDya6wEaNGiU5GCGEEEIIIcTPI1GNiSZNmiSqMIVCQXR06m1uI4QQQgghRHJTyTCnREtUY0KpVKZ0HEIIIYQQQoifjMyZEEIIIYQQQiRJklZzCg0N5fz583h7e/Pp0ye1Y4MGDUqWwIQQQgghhNAElUrTEfw8frgxcffuXerVq0dYWBihoaGYmpoSGBiIoaEhFhYW0pgQQgghhBAinfjhYU5Dhw6lYcOGvH37FgMDA65du8bz588pUaIE8+fPT4kYhRBCCCGEEGnQD/dM3Lt3j9WrV6OlpYW2tjYRERHkyJGDuXPn0rlzZ5o1a5YScQohhBBCCJEqZNO6xPvhngldXV20tGJOs7CwwNvbG4DMmTPj4+OTvNEJIYQQQggh0qwf7pkoVqwYN2/eJFeuXFSuXJlJkyYRGBjI1q1bKViwYErEKIQQQgghhEiDfrhnYubMmVhZWQEwY8YMTExM6Nu3LwEBAaxZsybZAxRCCCGEECI1qVSKNPtIa364Z6JkyZKx/7ewsODYsWPJGpAQQgghhBDi5yCb1gkhhBBCCCGS5Id7JhwdHVEoEu5i8fT0/E8BCSGEEEIIoUmyaV3i/XBjYsiQIWrPIyMjuXv3LseOHWPkyJHJFZcQQgghhBAijfvhxsTgwYPjTV+xYgW3bt36zwEJIYQQQggh/rsLFy4wb948bt++ja+vL3/99RdNmjSJPd6lSxc2b96sdk7t2rV/aE50ss2ZqFu3Lvv27Uuu4oQQQgghhNAIpUqRZh8/IjQ0lCJFirBixYoE89SpUwdfX9/Yx44dO37oGj/cM5GQvXv3YmpqmlzFCSGEEEIIIf6DunXrUrdu3W/m0dfXx9LSMsnXSNKmdV9PwFapVLx+/ZqAgABWrlyZ5ECEEEIIIYQQ3xYREUFERIRamr6+Pvr6+kkq79y5c1hYWGBiYkK1atWYPn06WbNmTfT5CpXqx+arT5kyRa0xoaWlhbm5OVWqVCFv3rw/UlSKKWlVSdMhaMS9N+lzJa1sRlk0HYJGGOkYaDoEjfB856vpEDTi46uLmg5BIy4WGKPpEDSi1tvLmg5BI3JkttJ0CBpxp6O1pkPQCOOFBzUdQoJu2jTVdAgJ+qdnEaZOnaqWNnnyZKZMmfLN8xQKRZw5Ezt37sTQ0BBHR0eePn3KuHHjMDY25urVq2hraycqnh/umfheoEIIIYQQQoiUMXbsWIYNG6aWltReiTZt2sT+v1ChQhQuXJicOXNy7tw5qlevnqgyfngCtra2Nv7+/nHS37x5k+gWjBBCCCGEEOLH6evrkylTJrVHUhsT/5YjRw7MzMzw8PBI9Dk/3DOR0KioiIgI9PT0frQ4IYQQQggh0pQfXTXpV/HixQvevHmDlVXihxwmujGxdOlSIGa81bp16zA2No49Fh0dzYULF9LMnAkhhBBCCCHSuw8fPqj1Mnh5eXHv3j1MTU0xNTVl6tSpNG/eHEtLS54+fcqoUaNwcnKidu3aib5GohsTixYtAmJ6JlatWqU2pElPTw8HBwdWrVqV6AsLIYQQQgghUs6tW7eoWrVq7PP/z7Xo3Lkzf/zxB/fv32fz5s0EBwdjbW1NrVq1+P33339o2FSiGxNeXl4AVK1alf3792NiYpLoiwghhBBCCPGz+KGlTtOwKlWqJDhFAeD48eP/+Ro/PGfi7Nmz//miQgghhBBCiJ/fD6/m1Lx5c+bMmRMnfe7cubRs2TJZghJCCCGEEEKkfT/cmLhw4QL16tWLk163bl0uXLiQLEEJIYQQQgihKUqVIs0+0pofbkx8+PAh3iVgdXV1CQkJSZaghBBCCCGEEGnfDzcmChUqxK5du+Kk79y5k/z58ydLUEIIIYQQQoi074cnYE+cOJFmzZrx9OlTqlWrBsDp06f5888/2bt3b7IHKIQQQgghRGpSpcHhRGnVDzcmGjZsyIEDB5g5cyZ79+7FwMCAIkWKcObMGUxNTVMiRiGEEEIIIUQa9MONCYD69etTv359AEJCQtixYwcjRozg9u3bREdHJ2uAQgghhBBCiLTph+dM/N+FCxfo3Lkz1tbWLFiwgGrVqnHt2rXkjE0IIYQQQohUp0zDj7Tmh3omXr9+zaZNm1i/fj0hISG0atWKiIgIDhw4IJOvhRBCCCGESGcS3TPRsGFD8uTJw/3791m8eDGvXr1i2bJlKRmbEEIIIYQQIg1LdM/E0aNHGTRoEH379iVXrlwpGZMQQgghhBAao0JWc0qsRPdMXLp0iffv31OiRAnKlCnD8uXLCQwMTMnYhBBCCCGEEGlYohsTZcuWZe3atfj6+tK7d2927tyJtbU1SqWSkydP8v79+5SMUwghhBBCCJHG/PBqTkZGRnTr1o1Lly7x4MEDhg8fzuzZs7GwsKBRo0YpEaMQQgghhBCpRqlKu4+0JslLwwLkyZOHuXPn8uLFC3bs2JFcMQkhhBBCCCF+Av+pMfF/2traNGnShIMHDyZHcUIIIYQQQoifQJJ2wBZCCCGEEOJXpZTVnBItWXomfkUtuzTl4I3dXPY6xaZ/VlOgaL5EnVercXVu+V5k/saZaukd+rThxIODnHhwkPa9W6sdK1AsP1uPr0NbWzvZ4hc/pnOPtlxzPsFT3zscOrmDosULJZi3XacW7D+yBRevK7h4XWHnX+vi5O89oAvOTy7g/OQCvft3VjtWrEQhjp7dnSZ+3+27teTM7YM88LnMnmObKFysQIJ5a9Wvyr6TW7jlcZZ7zy7y99ntNG5ZTy1Pt34duProBFcfnaBb3/ZqxwoXL8D+U1vTRL1/daGhYcxevIqazTpTompj2vcexgPXx/HmnTp3GQUr1GXrrr++WWat5p0pWKFunMf0BSti88xduobydVpSvWlHDh8/o3b+8TMX6T9q8n+v3A/IUjYfhbeOpoLzKqr57casbqnvnqPQ0yHH2DaUv7WCKt7bKXdzOVZtq8YeN/mtEGWvLOY3j03kXz4Ahe6X17N2RgPKXllMBluzFKmPSJz09r6mW70FBkMWYDRzJ4ZTt5Ch6zgU5jaJPl+naCWMFx4kQ9dx6uVWaYLh1C0YTt2CbuUmase07HJjMHQhaMnXSCE9E/Gq2agaQ6cMYNboBTy8+4i2PVuybMcCmldsx9s3wQmeZ2VryeBJ/bhz7Z5aulO+nPQZ1Z0hHUejUChYtGUO187f5KmbJ9ra2oybM5wZI+cRHR2dshUT8WrUtA6Tp49izLCp3L39gB59OrJ932p+K9WAN4FBcfKXq1iKv/cd4db1e4RHRNB/cHf+3L+GauUa89rXn3wFcjNy7AA6t+mPQgGbdq7k/NkruD1yR1tbm9kLJzNqyBSN/77rNanJ2GlDmTRyFs63H9Kld1vW715G7XLNCQp8Gyd/8NsQVi3agKf7Mz5FRlK1ViVmLZ3Em8AgLp29Rp78Tgwe3Yfe7YegUChYvX0Rl85d44nrU7S1tZk2fxwTh83QeL3Tg0mzl+Dh+YxZk0ZgYZaVQ8fP0HPwOP7evpps5l++6J46f5n7Lm5YmGX9bpk71y1BqVTGPnf3fE7PIeOoVbUSAOcuXeOfk+dYs2gG3i9eMXHmIiqUKYFJlsy8/xDK0jWbWbd4ZkLFpwgtQ30+uDzj1Z9nKLxpZKLOKbh2KHrmmXEdtoqPXq/Ry5YFheLzFyaFggJ/DOb50r8IOudMwXXDsO5Yg5cbjgOQc0J7Xm4+SfgLWTZdU9Lj+5p2zoJEXv4Hpbc7aGujV68jBr2nEja3P3yK+Oa5ChML9Bp1Jfqpi1q6lpUDenXaE77ud1BAhh4TiX5yF6Xvc9DSQr9FPyL2LIev3hNE+iVNyni0792aA9sPcWjXEbyePGPWqPmEfwynUdv6CZ6jpaXF9BWTWDN/Ay+f+6odc3Cyw/3RU25dvsPNS7fxcH2Kg5MdAB37teXOdWceObulaJ1Ewnr268yfW/ay+88DuD9+yphhU/kYFk6bDs3izT+w12g2r9+Jy0M3nrp7MWLQJLQUWlT8rSwATrkccXV5wuWL17l04TquLk9wyuUIQN9BXbl25RbOdx+mWv0S0rVPe3ZvO8D+HYd4+sSLSSNmEf4xnBbt4l+V7caV25w8co6n7s/wefaSLWt28viRByXKFAUgRy4HHj9y59qlW1y9eJPHjzzIkcsBgB4DOnLz6h0e3HuUSrVLv8IjIjh1/hLD+nenZNFC2Nla0797B+xsrdn11z+x+fwCApm16A/mTB6Fjs7376qammTBLKtp7OP85etkt7GiVLGYXjnP5z6UKlaIgvlyU69mFYyMDHnh+xqAhSvX07pJfawsLVKm0gkIOnMPz9m7CDx6M1H5TasWIUu5/Di3m8XbCw8I9wkg5JY7727G9OroZs2InlkmXm46QejjFwQev41RLlsAMpXMTaaiOfFZeyTF6iO+Lz2+r4WvmULUzTMo/XxQvnpG+I4laJlaoGXr9O0TFVpk6DCcT8d3oHzzWu2QloUNSt9nRHvcJ9r9PspXz1BYxLzWdas2I9rzIUofj5SqUpqgQpFmH2mNNCb+RUdXh7yFc3P94u3YNJVKxY2LtyhcIuGu0h7DuhD05i1/7/gnzjEPN0/scmQnm40FlrbZsMuRnaePvbCxt6Zh63r8MXttitRFfJ+uri6Fi+bn4rmrsWkqlYpL569RolSRRJVhYJgBHV0dgoPfAeD6yB1HJwesba2wyW5FDid73Fw9sHfITut2TZk7Y2mK1OVH6OrqUKBIXq6cvx6bplKpuHLhBkVLFk5UGeUqlcIxpz03r94F4MkjDxxy2mFlkw1rW0scctrh7vqU7A42NGvbkMUz/0iRugh10VHRREcr0dfTVUvX19fjzv2Yu49KpZKx0+bTpV0LnHLY//A1IiMjOXziLE3r10KhiPlgy+OUAxc3d96FvMfFzZ2IiAjsbKy54/yQR489aN8y7S8dbla7JO+dn2I/oDEV7q2i7JXFOE3uiFaGmJ9lZGAIEa+DMK1SGC0DPbKUzcuHR89R6GiTZ24PHo9ckzbXbUwn5H0thsLAKOY/Yd/e/0uvVmtUH4KJun4yzrFo3+domVujyGKGwsQcLXMblL7PUWS1RLdUdT4d3Z4SoYuflAxz+pcsppnR0dEhKEB9eEtQwFscnOL/0C1SuhCN29anXc1u8R5/5v6clbPXsHLnIgBWzFrNM/fnrNi1iKXT/6BclTL0GtGVqMgo5k9ayt1rzslbKZEg06xZ0NHRITDgjVp6QMAbcn7uTfie8VOG4/faP7ZB4vHEkzm/L2bn/phG4uxpi/F44snOv9YxffICqlSryLAx/YiKjGLS2Flcv3L7W8WnCBPT/9db/XUe6B9EDieHBM8zzmjExQdH0dPTQxkdzZTRc2I/uJ+6P2PhjJVs3LsSgAXTV/DU/Rmb9q5g3tSlVKxWjoEjexEVFcX08fO59fnDWiQvIyNDihTMx6pNO8hhb0dW0ywcOXUe54du2NlYAbB+2x60tbXo0LJxkq5x+sJV3n/4QJN6NWPTKpQpQYPa1WjTYzAZ9PWZMWE4hgYZ+H3+CqaPH8auv/7hz70HyZIlM1NGDUpSIyalGdhnI3PpvCgjIrnfdR56ppnIPbs7uibGuA6J+dL4sOcick3rTK7pXXlz6i6+O85iP7AJwZddUEZEUvzQNHRNM/Fi/dHY4U8idcj7GqBQoN+4B9Gej1C+9k4wm5ZjPnTK1CRsweB4j6v8XxDxz1YM+kwDIOKfLaj8X5ChzzQiDm9CO08x9Gq3hehoIg6sRenpEm85In2QxsR/ZGhkwLRlE5gxci7vgt4lmG/flr/Zt+Xv2Of1W9YhLDSMB7cesu/SdjrV7YWFlTkz/5hCozKtiPwUmRrhi/+o/5AeNGpWl5YNuxAR8Sk2fevG3WzduDv2ecs2jfnwIZTbN525cPMw9au1xsrakpXr5lOuaC0+/SS/79APYTSu2g4jI0PKVSrF2GlD8Xn2khufG0Q7N+9j5+Z9sfmbtq5P6Icw7t56wPGr+2heqxOWVhYsWjOTaiUayes8hcyaOIJJsxZRrUkHtLW1yJfbibo1KvPosQcubu5s2/M3ezYsi+1V+FH7Dx+nYtmSWJirz7Xo370D/bt3iH2+csN2ypYsio6ODqs37+SvLSs5f+UG46bPZ/eGZf+pjilBoaUAFbj0XUr0+48AeEzeQsH1w3g8Zh3K8Eje3XjMrTpfJqoa5LDCstVv3Kw+iuJ/T8Vn7VHenLlLmfMLCL7mSuijhL/QibThV3pf02/WBy0rOz4uG/ONTAZkaDeMiN3LITTh3ouoq8eIunos9rlOyWoQ8RHls8cYjl1J2KLhaGUxI0PHEYRN7wnRUclZFY2T2SCJJ42JfwkOekdUVBSm5qZq6abmJrzxfxMnv62DDTZ21izcPDs2Tevz6gbXfM7SvGJ7Xj5/pXZOZtPM9BzelV5NB1CweH68PX3w8XqBj9cLdHR1YoZBuXmmQO3EvwW9CSYqKgqzf30pMjfPSoD/tydR9h7Qhf5DutOmSQ9cXZ4kmM/ENAtDR/elef3OFCtZGE+P53h5euPl6Y2urg45nBxwe+SeLPVJrLdB/6+3+uvczMKUgHhe5/+nUqnw9noBgOvDJ+TM7UjvIV1iP3S/ZmKamQEjetKuUS+KFC/Is6fePPf04bmnD7o6OjjmtOOJ69PkrZgAwM7Wmk0r5hH2MZzQ0DDMzUwZPnEWttaW3HF+SNDbYGo27xSbPzpaybzl69i6+wAn9m3+ZtmvXvtx7dY9Fs+c8M18ns99OHz8DHs3Lmf/PycoWbQgpiZZqF3tNybOXERoaBhGRobJUt/kEuEXTMTroNiGBECo+0sUWlroW2Xlo9frOOfknd8TjylbQEuLjIVz4H/oKsqPnwi+8giTcvmlMZGK0vv7ml6z3mjnL8nHFeNQvUu4vlpZLdHKmo0M3Sd+Sfx8Y8Fo3l+Eze6L6l9zKDDKiF7tNnxcPhYt+9woA16hCvQlOtAXhbbO5zkWz1OiWuInII2Jf4mKjMLt/hNKVyzB+WMXAVAoFJSqWILdG/fHyf/Mw5vWVTqppfUd0xNDI0MWTFyC3yv/OOcMnzqQHWt24+8bQP6iedHR+fJr0NbWRltbprKklsjISO7fe0TFymU5fiRmKUuFQkHF38qwcV3Cu7r3HdSNQcN70b55L+7f+3b37tSZo1m7cgu+r/woUqwgurpf/b51tNHWSv0lBSMjo3BxdqPcb6U5dfQ8EFPvcpVKsW397u+c/YVCSws9Pb14j437fTibVu/Az9efwsXyo/PvessSsSnO0CADhgYZeBfynis3bjOsXzdqVqlI2VLF1PL1HjqBhnWq0aRere+W+dc/JzE1ycxv5UonmEelUjFt7lJGDeyJoaEBymglkVExdy2jPv8bnQZXgXl30w2LhmXRNtQnOixmFRzDnFaoopVE+Mb9cmbVriqRb0MJPH4bncwx49QVnyezK3R1QN7LU1V6fl/Ta9YbnUJlYxoSQX7fzKv0f0HY3AHq59ftAPoGfDqwFlVw3Btp+o17EHn+75hGil0u0Prq66OWNijktZ6eSWMiHttX72LKknE8cnbD5Z4r7Xq2xMDQgEM7Y1bpmLp0PP6vA1kxczWfIj7x9LGX2vnv330AiJMOUOa3ktjlyM7kQTMAeHTPDXsne8pXK0M2awuUymieP5U7Walp7crNLFo5k/t3Xbh75wE9+3bEwMiAXdtj1t1f8sdMfH39mT1tMQD9BndnxNgBDOg5Ch/vV5hbxCy1GRoaRlhomFrZlaqUwzGnA4P7xgyLcL77kJy5HKlaoyLWNlYoo5U89Yj7OkkNG1dtZ86yKTy894j7d1zo3LsdBoYG7NtxCIC5y6fi99qfBdNj9hHoPbgLD+654vPsBXp6ulSuUYHGLesxZdSsOGWXr1wGh5x2jBoQs6/A/buPyOFkz2/Vy2NlnQ1ltBJPD7mLlVIuX7+NSqXCwc4W7xevWLBiPY52tjSpXwtdHR2yZM6kll9HRxszUxMc7W1j07oPGkP138rTrsWXidNKpZID/5ykcd0a31wBat+hY5hkyUyVijErnBUrnJ+VG7bh/NCVi9dukdPBjkwZjZO51nFpG+pj4GgZ+9zAzgLjAvZEBn8g4uUbcoxvi76lKa4DY17jfvsu4TC0OfmW9MNz3m70TDPhNKkDvjvOogxXH7qia5YJh6HNud0g5u5u1LtQQh+/IHuv+gSdd8akUkGeLY57A0qkrPT4vqbfvA86xX/j44YZEPERRcYsAKjCwyAyZvitftshqEKC+PTPFoiKjDOfQvUxFAXEO89CO3dRtMytidixGACltzta2WzQzlscRRZzUCpRBrxMySpqRFpcNSmtksZEPE4ePINJ1iz0GdWdrOamPHHxYGC7EbFrVFvaZEOZhBU79DPoMWrGUMb2mYxKFXO+v28A8yYsZtKisUR+imTyoJlEhH/6TkkiOR386ximZqaMGDcAcwszXB640aFF79hJ2da2Vmq/707dWqOvr8faLYvVylkwewUL56yMfZ4hgz4z5o6nb7cRsb9v31d+TBw9k4XLZ/Dp0yeG9BtHePi31wFPKUcOnMQ0qwmDRvfB3CIrrg+f0L31QN58nrxoZWuJUvXl7rGBoQFT5o7G0sqC8PAIPN2fMbLfRI4cUF8JRD+DPpNmj2Joz7Gx9fbz9ef3cfOYtXQSnyIiGT1wMhEaqnd68P5DKItXbcQvIJDMmTJSs3JFBvXujK5O4t/yfV768vZdiFra1Zt38fXzp2n9hHswAoPesmbzTratWhibVih/Hjq3aUa/kZMxNcnCzAnDf7xSSZCxaE6K/zUl9nmuaTEbSPruPIfr4JXoW5iQwebLvhvRYRHcazWd3DO7Uer4bCLfvsf/4FU8Z++MU3bu6V3x/uMQn/y+7F3waPAK8i/tT/YedfFecZD392QYX2pLj+9ruhViNtkz7K/eAArfsZiomzE97lom5ihVSVhpTFcP/Wa9CN8yDz6fr3r3hoj9a9BvMxiiIgnfsTi20SLSJ4VKlZRXV9pW0qqSpkPQiHtv0uc8i2xGWTQdgkYY6RhoOgSN8Hzn+/1Mv6CPry5qOgSNuFjgGxNJf2G13l7WdAgakSOzlaZD0Ig7Ha01HYJGGC88qOkQEnQiWxtNh5CgWn5xb3BokvRMCCGEEEII8ZW0N6sr7UpTjYnQ0FB2796Nh4cHVlZWtG3blqxZs37znIiICCIi1LsVlSolWjIZSAghhBBCiBSl0W/c+fPnJygoZhyjj48PBQsWZOjQoZw8eZLJkyeTP39+vLy+PTl11qxZZM6cWe3x+oNPaoQvhBBCCCFEuqbRxoSbm1vsMoFjx47F2tqa58+fc+PGDZ4/f07hwoUZP378N8sYO3Ys7969U3tYGmdPjfCFEEIIIcQvSJmGH2lNmhnmdPXqVVatWkXmzJkBMDY2ZurUqbRp8+0JMPr6+ujr66ulyRAnIYQQQgghUp7GGxOKz7suhoeHY2WlvoqDjY0NAQEBmgjrP+k8oD0Dx/fhz7W7WThpmabDEclswNAe1G1QE6dcjoSHh3Prxj1mTlnIU49nmg4tRbXt0py2XVpgaxfzd+ru5smKBeu4cPqKhiNLn6Kjo1m5fjuHT5wh8M1bzM1MaVKvJr27tI19X/3a1LnL2PP3EUYP6kXH1k1j02s178yr1+qbaw7p05UeHVuppd28e58x0+Zx+q+tibp2YNBbFq3cwJUbd3j/IZQSRQsybmhf7LPbAPAu5D0r1m3lyo07+PoFYGKSmWqVyjGwZycyGhsl948rQVnK5sOufyMyFnZE39KU+13mEXj0Zrx588ztiU3nmjyZuIkXa46kWowi5aSH9zXd6i3QKVQOLQsbVJGfUD5zI+LwZlRf7Q2hU7Y2usV/Q8s2J4oMhnwY1xbCQzUYtfiZaLwxUb16dXR0dAgJCeHx48cULFgw9tjz58+/OwE7rclfJC/NOjbiiYuHpkMRKaRs+VJsXreDe3cfoKOjw5iJg/lz/1qqlG3Ex7CPmg4vxbx+5c+C6ct55umNAgVN2zRg5ZYFNKnWHo/H6XNZYk1av20Puw78w4wJw3FytMfF7QkTZizC2NiIDi0bq+U9df4y913csDCL//10QI+OtGhUJ/a5oaFhnDxnL16jSoUyibq2SqVi8Jhp6OjosHTOJIwNjdiyaz89Bo/j7+2rMTTIgH/gG/wDgxgxoAc5HOzw9fNn2rzlBAS+YdGMCcn4k/o2LUN9Prg849WfZyi8aWSC+czqliJTiVxE+AalWmwi5aWH9zXtnAWJvPwPSm930NZGr15HDHpPJWxuf/gUs4CNQk+fKLc74HYH/QadNRxx2iCb1iWeRhsTkydPVntubKy+I+qhQ4eoVOnn2TPCwNCA31dMYsaIuXQfIn+Mv6oOLXurPR/SbzwPPC5RuGh+rl+5raGoUt7ZE+r7HCyauZK2XZpTtGShX+ZD92dy76ErVSuVpXL50gDYWGXjyMnzPHj0WC2fX0Agsxb9weqFM+g3clK8ZRkZGmCW1fSb1zt76Rrjh/VL1LWf+7zE2cWNA1tX4ZTDHoCJIwZQpWE7jpw8R4tGdciVw4HFM780GuxsrRnUqzNjps0lKir6mztsJ6egM/cIOnPvm3n0LE3IPbMbzm1mUHhb+tz34leVHt7XwtdMUX++YwnGv29Dy9YJpacLAJEXYvZ70M5Z8N+nC/Fdaaox8W/z5s1LpUiSx+hZQ7l8+io3Lt6WxkQ6kilTRgCC377TcCSpR0tLi7qNamBoaMDdm/c1HU66VLRgPvYePMoz7xc42Nni5u7JnfsujBrYMzaPUqlk7LT5dGnXIvZLfXzWbdvDqk07sMpmTr2aVenUuqnal3kPz+cEvQ2mTIkiibr2p8hIAPT0dGPL0NLSQldPl7v3XdR6Qb72/kMoxkaGqdaQSBSFggIrBuK98iChj19oOhqRgtLL+5rC4PMwwrD3mg1E/DI0PszpV1GrcXXyFspNp7q9NB2KSEUKhYKps0Zz49odHrv++kPbcufLya6jG9HX1yMs9CP9u4zk6ZNvL98sUkaPjq0IDQujYbteaGtpEa1UMqhXZxrUrhabZ/22PWhra8UZ9vS19i0bky+3E5kzZeTeg0csWb2JwDdBjBr05b3szMWrVChTAl1d3URd29E+O1bZLFiyehOTRg7E0CADW3b9hZ9/IAFv4h8m9Db4Has37aBFo7rJ8eNJNvYDG6OKiubF2qOaDkWkkHT1vqZQoN+4B9Gej1C+9tZ0NGmaUkY5JZo0JpJBNmsLhv8+iP6th/Ep4pOmwxGpaOb8CeTJl4umdTtqOpRU4eXxnMZV25ExozF1GlVnzrIptG/c69f94E3Djp25wOETZ5kzZRROjva4uXsyZ8lqLMxMaVyvJi5u7mzb8zd7NiyLd0L2/3Vu0yz2/3mcHNHV1WHa3GUM6dMFPT09IGaIU9vmDRN9bV0dHRbPnMCkWYupULcV2tpalC1ZjEplS6KKJ4YPoaH0GzmZnI529OveIdl+Rv9VxsKO2Pasx80aozUdikhB6el9Tb9ZH7Ss7Pi4TIbrieQjjYlkkLdwHrKam7LtxLrYNB0dHYqVLUKrrs0ob18dpTItrgws/ovpc8dTo3ZlmtXrjO8rP02HkyoiI6Pw9ooZ6uFy341CRfPTuVdbJo2YqeHI0p8FK9bTo0Mr6tWoAkDunI74vvZn3dbdNK5XkzvODwl6G0zN5p1iz4mOVjJv+Tq27j7AiX2b4y23cP68REVH89LXH0d7WwICg3B98jR2fkRirg1QIG8u9m1ewfsPoURGRmJqkoW2PYdQIG8uteuFhobRe9hEjAwNWDJzIro6aedjKXPZfOiZZaL8nZWxaVo62uSa0onsPetxtdQADUYnkkt6eV/Ta9Yb7fwl+bhiHKp3bzQdjviFpJ137Z/YzYu3aF2lk1rapMVjee7hzebl26Uh8QuaPnc8depXp2XDLvh4v/z+Cb8ohZYWevq6388okl14eAQKLfUeBy0tLZSqmHv/DetUp2ypYmrHew+dQMM61WhSr1aC5bq5P0VLSwtTk5g9f85dvkbRQvnI/HluUGKu/bX/L/P63OclLm7uDOjxpRfvQ2govYdOQFdPl2VzJqOvr5eYqqea13su8PbCA7W0ojvH83rvBXx3nNVQVCKl/Yrva3rNeqNTqGxMQyIofdz8+q+UsppTokljIhmEhX7k6WP17tDwsHCC376Lky5+fjPnT6RJi3p0azeQDx/CMLcwA+B9yHvCwyM0HF3KGT6hP+dPX8H3xWuMjA1p2LwOZSqUoFurgZoOLV2qUqEMazfvxCqbBU6O9rg+8WDLrv00rR/TUMiSORNZMmdSO0dHRxszUxMc7W2BmFWZHri4Uap4EYwMDXB+6MrcpWtoUKtqbOPh7KXrVK1Y9oeuDXD8zEVMsmTGKps57p7PmL14FdUqlaNCmRJATEOi15DxfIyIYMmkkYSGhhEaGgaASZbMaGunziRsbUN9DBwtY58b2FlgXMCeyOAPRLx8Q9TbD2r5lZFRRPgHE/bUN1XiEykrPbyv6Tfvg07x3/i4YQZEfESRMQsAqvAwiIwZmq3ImAVFRhMUZjH7bWhZ2UPER5TBARD2IaGihQCkMSHED+vcPWZX9n3/qA8TGdpvPLt3HNBARKnD1MyUucunYpHNjPchH3j8yJ1urQZy5fx1TYeWLo0b2pdla7cwff4Kgt4GY25mSsvG9ejbtV2iy9DT1eXoqfOs3LCdT58isbHORsfWTencJmZTu7CP4Vy/dY8xg9WXQ07MtQPeBDF32RreBAVjntWURnWq06dr29jjjx4/5f7npWTrte6uVv7xvZuwscr2wz+TpMhYNCfF/5oS+zzXtJiV+Hx3nsN18MoEzhK/ivTwvqZboR4Ahv1nqaWH71hM1M0zMXnK10Wv9pe/T8OBs+PkESIhCpUqnn7pn1xJq59nb4rkdO/Nr7Em9o/KZpRF0yFohJGOgaZD0AjPd+nzjvDHVxe/nymZnTx3mWVrN3Nw+5pUv/b/XSyQPieK1np7WdMhaESOzFaaDkEj7nS01nQIGmG88KCmQ0jQAcvE35hJbU1e/6npENRoaToAIYQQaZOhQQaG9e2m6TCEEEKkYTLMSQghRLz+P79BCCGESIg0JoQQQgghhPiKrMOZeDLMSQghhBBCCJEk0pgQQgghhBBCJIkMcxJCCCGEEOIrSoVsWpdY0jMhhBBCCCGESBJpTAghhBBCCCGSRIY5CSGEEEII8ZVfbkfnFCQ9E0IIIYQQQogkkcaEEEIIIYQQIklkmJMQQgghhBBfkU3rEk96JoQQQgghhBBJIo0JIYQQQgghRJLIMCchhBBCCCG+opQ96xJNeiaEEEIIIYQQSSKNCSGEEEIIIUSSyDAnIYQQQgghvqJExjkllvRMCCGEEEIIIZJEGhNCCCGEEEKIJJFhTkIIIYQQQnxFpekAfiLSMyGEEEIIIYRIEmlMCCGEEEIIIZJEhjkJIYQQQgjxFdm0LvGkZ0IIIYQQQgiRJL9kz4Sxtr6mQ9CIHJmtNB2CSEWe73w1HYJIRVnta2g6BI148/yUpkPQDOtKmo5AI16HBWk6BI2wXp0+6x2yUNMRiOTwSzYmhBBCCCGESCqlpgP4icgwJyGEEEIIIUSSSGNCCCGEEEIIkSQyzEkIIYQQQoivyKZ1iSc9E0IIIYQQQogkkcaEEEIIIYQQIklkmJMQQgghhBBfkU3rEk96JoQQQgghhBBJIo0JIYQQQgghRJLIMCchhBBCCCG+IpvWJZ70TAghhBBCCCGSRBoTQgghhBBCiCSRYU5CCCGEEEJ8RYY5JZ70TAghhBBCCCGSRBoTQgghhBBCiCSRYU5CCCGEEEJ8RSWb1iWa9EwIIYQQQgghkkQaE0IIIYQQQogkkWFOQgghhBBCfEVWc0o86ZkQQgghhBBCJIk0JoQQQgghhBBJIsOchBBCCCGE+IoMc0o86ZkQQgghhBBCJIk0JoQQQgghhBBJIo2JBDTp3IidV7dxwuMIKw8tI2/RPAnmrdOyFudenFJ7nPA4opande+W/HVvD3/d20OrXi3UjuUrlpfVR1aira35X0f7bi05c/sgD3wus+fYJgoXK5Bg3lr1q7Lv5BZueZzl3rOL/H12O41b1lPL061fB64+OsHVRyfo1re92rHCxQuw/9RWtLW1U6QuPyK91lukLz17deTBowv4v3HlzLn9lChROMG8efPlYuv2lTx4dIGQUE/69e8aJ0+r1o159PgSz1/cZebs8WrH7OxsuHPvNBkzGid7PRISGhrG7MWrqNmsMyWqNqZ972E8cH0cezws7CMzFqykepMOlKjamEbte7Hrr3++WeaBf05SsEJdtUfxqo3U8mz8cy+/1W/Db/XbsGnHPrVj913caNVtIFFR0clXUfFNv/rrPCHptd4pRZWGH2mNzJmIR9WGVeg3qQ8Lxy7B9a4rLXo0Z9622XSs3JXgN8HxnvMhJJROlbvEPlepvvy6c+RzpOuIzoztPAGFQsGszdO5eeE2Xm5eaGtrMWzWEOaPXkR0tGZH6NVrUpOx04YyaeQsnG8/pEvvtqzfvYza5ZoTFPg2Tv7gtyGsWrQBT/dnfIqMpGqtSsxaOok3gUFcOnuNPPmdGDy6D73bD0GhULB6+yIunbvGE9enaGtrM23+OCYOm0F0tGY/ZNNrvUX60qx5fWbOHseQwRO5dfMe/fp3Zf/fmylRrAaBAW/i5Dc0MODZM28O/HWEWXMmxDlumtWEZStm0bf3SJ55+bBn/zounLvKsWNnAFi4+HcmT5rL+/cfUrxu/zdp9hI8PJ8xa9IILMyycuj4GXoOHsff21eTzdyMucvWcP22M7MmjcLGKhtXbtxm+oIVWJhlpWqlsgmWa2xkyOEda78kKL5sjfvYw4sV67axYt4UVCoV/UdOoXzp4uTO6UhUVDTT5i1j8uhB6OjIzYPUkB5e5/FJr/UWaYPmb4WnQS17NeefHUc4tvs4z929WThmMeHhEdRrUyfhk1QqggLexj7eBgbHHrLLaYenqxd3r9zjzuW7PHX1xC5ndgBa92mN8/X7PHZ+nEDBqadrn/bs3naA/TsO8fSJF5NGzCL8Yzgt2jWKN/+NK7c5eeQcT92f4fPsJVvW7OTxIw9KlCkKQI5cDjx+5M61S7e4evEmjx95kCOXAwA9BnTk5tU7PLj3KJVql7D0Wm+RvgwY2J3NG3exfeteHrt5MGTQBD5+/EjHTi3jzX/nzn0mjp/Nvr2HiYj4FOe4o0N2QkLes3/fP9y5c58L56+RO29OAFq0bEhkZCSHDh5P0Tp9LTwiglPnLzGsf3dKFi2Ena01/bt3wM7WOrb34d4DVxrXrUHp4oWxscpGy8b1yOOUQ633Ij4KhQKzrKZfHqYmsce8nvuQO6cDZUoUpWzJYuR2csTr+QsgpseiRNFCFMqXcM+2SF6/+us8Iem13iJtkMbEv+jo6pCnUG5uX7wTm6ZSqbh98Q75i+dP8DwDIwN2XtvO7ht/Mn39NBxy28ce83TzwjaHDRbWFmSzsSC7oy1ej59hbW9F3da1WT93Y4rWKTF0dXUoUCQvV85fj01TqVRcuXCDoiUT7ir9WrlKpXDMac/Nq3cBePLIA4ecdljZZMPa1hKHnHa4uz4lu4MNzdo2ZPHMP1KkLj8ivdZbpC+6uroULVaQs2cvx6apVCrOnb1M6dLFklTm06fPMDDIQOEi+TExyUzxEoVxeehGliyZmDBxKCOGTUme4BMpOiqa6Ggl+nq6aun6+nrcue8CQNFC+Th76Rp+AYGoVCpu3HbmmfdLypcu/s2ywz5+pGazzlRv2pGBo6fi4fk89liunA4883mJ72t/Xr3247nPS5xy2OP94hUHjpxkUM9OyV9ZEa/08DqPT3qtd0pTKtLuI62RYU7/ktk0M9o62gQFqA9veRv4Fjun7PGe4/3UhznD5+Pp6olRJiNa927J8gNL6Vq9OwG+gXh7eLNu9gbm75gDwNrZ6/H28GbBjrmsnrGG0lVK0mVoJ6Kiolk2eQX3rz9I8Xr+m4lpFnR0dAgMCFJLD/QPIoeTQ4LnGWc04uKDo+jp6aGMjmbK6DmxX8yfuj9j4YyVbNy7EoAF01fw1P0Zm/auYN7UpVSsVo6BI3sRFRXF9PHzufX5y3hqSq/1FulL1qwm6OjoEOAfqJbu7x9I7tw5k1RmcHAIfXqNZPXaBRhk0Gfnn39x+tRFlq+czZrVW7F3sGXnnjXo6uowa8ZS/j5wNDmqkiAjI0OKFMzHqk07yGFvR1bTLBw5dR7nh27Y2VgBMG5oX6bMWUr1Jh3R0dZGoaVgyujBlCxaKMFyHextmTZ2KHlyOvI+NJRNO/bRoc8wDmxbhaWFOTkd7Bjcuws9h4wDYHDvLuR0sKPH4LEM69eNyzdus3L9dnR0tBkzpM83ryX+m/TwOo9Peq23SDukMZEMHt1x5dEd19jnD2+5sOXcBhq2b8CG+ZsAOLjtMAe3HY7NU7tFTcJCw3C5/Yit5zfRu0F/zK3MmLRiPG3LdyTyU2RqVyNJQj+E0bhqO4yMDClXqRRjpw3F59lLbly5DcDOzfvYufnLhMSmresT+iGMu7cecPzqPprX6oSllQWL1sykWolGUm8hfiKHD53g8KETsc8rVCxNwYJ5GTl8CvcenKVbl8H4+QVw9vwBLl++Ee/Y7eQ0a+IIJs1aRLUmHdDW1iJfbifq1qjMo8ceAGzfe5D7Lm4snzMZK8ts3L73gBkLVmJhlpVypeK/g1u0YD6KFsz35Xmh/DRq14s9B44ysFdMr0PrpvVp3bR+bJ6/j5zE0NCAIgXz0bBtT3auW4KffyAjJ83m+N6N6OnppeBPQSS3tPY6Ty3ptd7ix0lj4l/eBb0jOioaU3MTtXQTMxOC/ONOxo1PdFQ07g89sHGwjvd4ZpNMdB7aicEthpKvWD58vF7w0uslL71eoqOrg20OW7zcvP5zXX7E26BgoqKiMDM3VUs3szAlwD/hNwiVSoW3V8z4YNeHT8iZ25HeQ7rEfqn+molpZgaM6Em7Rr0oUrwgz55689zTh+eePujq6OCY044nrk+Tt2LfkV7rLdKXN2/eEhUVhbmFmVq6hYUZfn4ByXINPT09Fi6aRq+ew8mR0wEdHW0uX7oBwFMPL0qWLMKxo2eS5VoJsbO1ZtOKeYR9DCc0NAxzM1OGT5yFrbUl4RERLFm9mSWzJlK5fGkA8jg54ubuyaYd+xJsTPybro4O+XLnxPvlq3iPvw1+xx8b/2TTirk8cHmMfXab2EdUdBTPfF6SO6djstVZfJFeXuf/ll7rndJk07rEkzkT/xIVGcXjB08oXvHLGFqFQkGJisV4dCdxk2a1tLTIkdeRN/5B8R7vP6Uve9btI8A3EC1tLXR0vrTptLW10dZK/V9LZGQULs5ulPutdGyaQqGgXKVS3Lt1P9HlKLS0ErzrNu734WxavQM/X3+0tbXQ0f2q3jraGlkqNb3WW6QvkZGR3Lv7kCpVysemKRQKKlcpz40byTPMbtTo/pw6dQHney4xr3PtL69zHV2dVH2dGxpkwNzMlHch77ly4zbVKpUlKiqKqKgotBTqA461tbVQKhP/tSE6Ohr3p88wz2oa7/E5S9fQsVUTLC3MiVZGExUV9dW5SpQaXrXvV5beXuf/l17rLdIO6ZmIx541+xi7aBSPnR/jeu8xLXo0I4NBBo7uOgbA2MWjCXwdyNrZ6wHoNKQDj+648vLZK4wzGdGmTyuy2Wbjnx1H4pRdolJxbHPYMmvIXAAeOz/Gzik7pauWwsLaAqVSibenT+pV9isbV21nzrIpPLz3iPt3XOjcux0Ghgbs23EIgLnLp+L32p8F01cA0HtwFx7cc8Xn2Qv09HSpXKMCjVvWY8qoWXHKLl+5DA457Rg1YDIA9+8+IoeTPb9VL4+VdTaU0Uo8PZ7HOS81pNd6i/Rl+bL1rFozn7t3H3DrljP9+nfF0NCQbVv3ArB67XxevfJj6uR5QMykzrz5nADQ09PFyjobhQrnI/RDGJ6e6q/ZPHmdaNa8ARXLNwDgyeOnKJVKOnZqhb9fALlz5+TO7cQ3zpPq8vXbqFQqHOxs8X7xigUr1uNoZ0uT+rXQ1dGhZLFCLFixHn19fawtLbh19wEHj55m5KCesWWM/X0+FmZZGdo3Zt39PzZsp3CBvNjZWvP+Qygb/9zLq9f+NG9YO871r9y4w3Ofl8ycMByAgvly4/X8BRev3uS1fwBaWlo42Num+M8hPUsPr/P4pNd6i7RBGhPxOHvoHFmyZqbriC6Ympvg8egpozqOjV3uNZuNBaqv7mRlzJyREXOHYWpuwod3H3j8wJ3+jQfz3N1brVy9DHoMnj6QaX2nx+5DEeAbyNKJyxmzYCSfPkUya8hcPoXHXaYtNRw5cBLTrCYMGt0Hc4usuD58QvfWA3nzeXKyla0lStWXehsYGjBl7mgsrSwID4/A0/0ZI/tN5MiBk2rl6mfQZ9LsUQztOTa23n6+/vw+bh6zlk7iU0QkowdOJiI8IvUq+5X0Wm+Rvuzf9w9mZqaMmzCUbNnMeHDfleZNusRO2rS1tVa7Q29lZcHlq182dBs8pBeDh/Ti4oVr1K/bTq3spctmMm7MDMLCPgIQHh5B396jmL9oKvr6eowYNhlfX78Ur+P7D6EsXrURv4BAMmfKSM3KFRnUuzO6n3t/508dw+JVmxgzdS7vQt5jbWnBoN6dad3ky3wHXz9/td6LkPcfmDJnKYFBQWTKmJH8eZzYtnoBOR3t1a4dHhHBzIUrmT9tLFqfe5ctLcwZO7QvE2YuQk9XlxkThpNBXz/Ffw7pWXp4nccnvdY7JUkfYuIpVF/vrvaLqGJbQ9MhaMSriGBNhyBSkec7X02HIFKRoW76/BL65vkpTYegEQbWlTQdgkak19d5ehUS6qnpEBK0wK6DpkNI0HDvbZoOQY3MmRBCCCGEEEIkiUYbE3fu3MHL68uqRVu3bqVChQpkz56dihUrsnPnzu+WERERQUhIiNrj6yEpQgghhBBC/AhVGn6kNRptTHTt2pWnT2OWxFy3bh29e/emZMmSjB8/nlKlStGzZ082bNjwzTJmzZpF5syZ1R7e75+lQvRCCCGEEEKkbxqdgO3u7k6uXLkAWLlyJUuWLKFnzy+rapQqVYoZM2bQrVu3BMsYO3Ysw4YNU0trkK9JisQrhBBCCCGE+EKjjQlDQ0MCAwOxt7fn5cuXlC5dWu14mTJl1IZBxUdfXx/9f62OoaWQqSBCCCGEECJplIrv5xExNPqtu27duvzxxx8AVK5cmb1796od3717N05OTpoI7Yd0GdaJcy9OqT22nPv28KxfQdsuzTl4bgd3PM9xx/Mcu45s4Lfq5b9/4k8uvdZbpC/lK5Ri1561PPa4SkioJ/Ub1NR0SACEhoYxe/EqajbrTImqjWnfexgPXB/Hm3fq3GUUrFCXrbv+ivf4p0+faN65PwUr1MXtSdxd6G/evU/1ph0Tfd3x0xdQsEJdtUfvYRPU8jzzfsHA0VOpWK81ZWo2o2Pf4dy47ZyUH4VIBmn1dZ7S0mu9RcrQaM/EnDlzqFChApUrV6ZkyZIsWLCAc+fOkS9fPh4/fsy1a9f466/4PwTSGi83L4a3HRX7PDoqWoPRpI7Xr/xZMH05zzy9UaCgaZsGrNyygCbV2uPxOO0u9/Zfpdd6i/TFyMiQhw9c2bplD3/uXKXpcGJNmr0ED89nzJo0AguzrBw6foaeg8fx9/bVZDM3i8136vxl7ru4YWGWNcGyFqzcgIWZKY894v+7PXvxGlUqlPmh61YsW5Lp44bGPtfV1VUrs/+oKdjZWrN+6Wwy6OuxdfcB+o+azNHdGzBLYFdtkXLS6us8paXXeouUodGeCWtra+7evUu5cuU4duwYKpWKGzducOLECWxtbbl8+TL16tXTZIiJFh0dTVDA29jHu7chmg4pxZ09cZHzpy7z3NOHZ57eLJq5krDQMIqWLKTp0FJUeq23SF9OnjjP79MWcvjQCU2HEis8IoJT5y8xrH93ShYthJ2tNf27d8DO1ppdf33ZgMsvIJBZi/5gzuRR6Ohox1vWxas3uXLjDiMG9EjwemcvXaNqxbKJvi6Anq4uZllNYx+ZM2WMPfY2+B3PfV7So0Mr8jg5Yp/dhqF9uvIxPAL3f+06LFJHWnydp4b0Wu8foUzDj7RG4ztgZ8mShdmzZzN79mxNh/Kf2DjasPfWTj5FROJy5xFrZ63H/5W/psNKNVpaWtRtVANDQwPu3ryv6XBSTXqttxCaEB0VTXS0En099bv9+vp63LnvAoBSqWTstPl0adcCpxz28RVDYNBbpsxZwpJZk8iQIUO8eTw8nxP0NpgyJYrw6VPkd6/7fzfv3ue3+m3IlNGY0iWKMKhXZ7JkzgRAlsyZcLSz5eCx0+TL44Seri67/z6CqUkW8udJ+0N6hRAiPhpvTPwKHt11ZfbQefh4+pDVIiudh3Zk6f5FdK3eg4+hHzUdXorKnS8nu45uRF9fj7DQj/TvMpKnT749af5XkF7rLYQmGRkZUqRgPlZt2kEOezuymmbhyKnzOD90w87GCoD12/agra1Fh5aN4y1DpVIxYcZCWjWpT8F8uXnp6xdvvjMXr1KhTAl0dXXR1dX97nUBKpQtQY3KFbCxzobPS1+WrN5En+ET2b56Idra2igUCtYumcmgMb9TpmYztLQUmGbJwuqFv6v1YAghxM9EGhPJ4MbZm7H/93T1wvWuKzuv/UnVhpU5svOYBiNLeV4ez2lctR0ZMxpTp1F15iybQvvGvX75L9bptd5CaNqsiSOYNGsR1Zp0QFtbi3y5nahbozKPHnvg4ubOtj1/s2fDMhSK+Jdi2b73IKFhYfTo2Oqb1zl76RptmzdM1HX/r16NKrH/z53Tkdw5Hanbqhs3796nbMliqFQqZixYSVaTzGxeOY8M+vrsO3SMAaOmsHPdUszNZM6EEGlFWtwcLq2SNVRTwIeQUF54vsDGwUbToaS4yMgovL1e4HLfjQXTV+Dm8oTOvdpqOqwUl17rLYSm2dlas2nFPG6c+otT+7eyc90SoqKisbW25I7zQ4LeBlOzeSeK/FafIr/V59Vrf+YtX0et5p0BuHHbGeeHbhSv2ogiv9WnXuuYfYxa9xjEuN/nAxAQGITrk6dULl86UddNSHYbK0yyZML7hS8A12/f4/yVG8ybNobihQuQP48TE0cMQF9fn7+PnkqpH5kQIh27cOECDRs2xNraGoVCwYEDB9SOq1QqJk2ahJWVFQYGBtSoUQN3d/cfuob0TKQAA8MMWDtYcWL/G02HkuoUWlro6et+P+MvJr3WWwhNMTTIgKFBBt6FvOfKjdsM69eNmlUqUrZUMbV8vYdOoGGdajSpVwuAsUP6MLBXp9jj/gFv6D1sAvOnjqVQgTwAnLt8jaKF8sU79Ci+6ybktX8Awe/eY/55labw8Agg7l5IWgoFSmVanFYphPjZhYaGUqRIEbp160azZs3iHJ87dy5Lly5l8+bNODo6MnHiRGrXrs2jR48SnFP2b9KYSAZ9J/Tiyqlr+L3wI2u2rHQd3hlltJLTB85qOrQUNXxCf86fvoLvi9cYGRvSsHkdylQoQbdWAzUdWopKr/UW6YuRkSE5cn6ZwOzgkJ1ChfPxNugdL1680lhcl6/fRqVS4WBni/eLVyxYsR5HO1ua1K+Fro5O7GTn/9PR0cbM1ARHe1sArCwt1I4bGhgAMb0IlhbmAJy9dJ2qFcsm+roAYWEfWblhOzWrVMAsqyk+L1+xcOUG7GytqVCmOABFCuYjU0Zjxk1fQJ+u7cigr8feg8d44evHb+XVN20VqSOtvs5TWnqt949Q/iIDnerWrUvdunXjPaZSqVi8eDETJkygceOYeWZbtmwhW7ZsHDhwgDZt2iTqGtKYSAbmVuZMXD6OTCaZeBf0jgc3HtKv0UDeBb3TdGgpytTMlLnLp2KRzYz3IR94/Midbq0GcuX8dU2HlqLSa71F+lKseCGOHNsR+3zWnJjN17Zv20vf3qMSOi3Fvf8QyuJVG/ELCCRzpozUrFyRQb07o6uTPB9nYR/DuX7rHmMG9/6h62ppa/HkqRcHj54i5EMoFmamlC9dnAE9O6GnpweASZbMrFrwO0vXbKb7oDFERUXh5GjPstmTyJsrR7LEL35MWn2dp7T0Wu9fRUREBBEREWpp+vr66Ovr/1A5Xl5evH79mho1asSmZc6cmTJlynD16tVENyYUKpXq12h6faWKbY3vZ/oFvYoI1nQIIhV5vvPVdAgiFRnq/tiHxK/izfPUnUtw8txllq3dzMHta1L1uv9mYF1Jo9fXlPT6Ok+vQkLT7kavM+zbazqEBEV2zcXUqVPV0iZPnsyUKVO+eZ5CoeCvv/6iSZMmAFy5coUKFSrw6tUrrKy+rEzXqlUrFAoFu3btSlQ80jMhhBBCfGZokIFhfROeByGESB/S8iymsWPHMmzYMLW0H+2VSE7SmBBCCCE+q1CmhKZDEEKIb0rKkKb4WFrGrEbn5+en1jPh5+dH0aJFE12OLA0rhBBCCCFEOuPo6IilpSWnT5+OTQsJCeH69euUK1cu0eVIz4QQQgghhBBf+VUmFH/48AEPjy+ba3p5eXHv3j1MTU2xs7NjyJAhTJ8+nVy5csUuDWttbR07ryIxpDEhhBBCCCHEL+jWrVtUrVo19vn/51p07tyZTZs2MWrUKEJDQ+nVqxfBwcFUrFiRY8eOJXqPCZDGhBBCCCGEEL+kKlWq8K2FWxUKBdOmTWPatGlJvoY0JoQQQgghhPhKWl7NKa2RCdhCCCGEEEKIJJHGhBBCCCGEECJJZJiTEEIIIYQQX1EqNB3Bz0N6JoQQQgghhBBJIo0JIYQQQgghRJLIMCchhBBCCCG+ovxltq1LedIzIYQQQgghhEgSaUwIIYQQQgghkkSGOQkhhBBCCPEVGeSUeNIzIYQQQgghhEgSaUwIIYQQQgghkkSGOQkhhBBCCPEVpaYD+IlIz4QQQgghhBAiSaQxIYQQQgghhEgSGeYkhBBCCCHEV2TTusSTngkhhBBCCCFEkkhjQgghhBBCCJEkMsxJCCGEEEKIr8ggp8T7JRsT7qG+mg5BI2YZFtN0CBrR1nmapkMQqcjAupKmQxCpKKt9DU2HoBEfX13UdAgaMajkGE2HoBFLb83WdAhCJJkMcxJCCCGEEEIkyS/ZMyGEEEIIIURSyaZ1iSc9E0IIIYQQQogkkcaEEEIIIYQQIklkmJMQQgghhBBfkU3rEk96JoQQQgghhBBJIo0JIYQQQgghRJLIMCchhBBCCCG+IoOcEk96JoQQQgghhBBJIo0JIYQQQgghRJLIMCchhBBCCCG+IpvWJZ70TAghhBBCCCGSRBoTQgghhBBCiCSRYU5CCCGEEEJ8RSXrOSWa9EwIIYQQQgghkkQaE0IIIYQQQogkkWFOQgghhBBCfEVWc0o86ZkQQgghhBBCJIk0JoQQQgghhBBJIsOchBBCCCGE+IpSVnNKNOmZEEIIIYQQQiSJNCaEEEIIIYQQSSLDnIQQQgghhPiKDHJKPOmZEEIIIYQQQiSJNCYS0LlHW645n+Cp7x0OndxB0eKFEszbrlML9h/ZgovXFVy8rrDzr3Vx8vce0AXnJxdwfnKB3v07qx0rVqIQR8/uRltbO0XqkhgWZfJQddMwWtxeRqeX28heu8Q389vVLUmNHaNpdX8lbdzWUvfgZKwrq9fZsWl5mt9cQmuX1ZSc3F7tmJGtGU0uzkPX2CDZ6/Itt+49oP+oyVRt1J6CFepy+sIVtePjpy+gYIW6ao/ewyZ8t9wd+w5Rq3lnildtRNueQ3jw6LHa8blL11C+TkuqN+3I4eNn1I4dP3OR/qMm//fK/aDQ0DBmL15FzWadKVG1Me17D+OB6+ME8588d5keg8dRqX5rytRsRvteQ7l8/bZansPHz1C9aUfK12nJ3KVr1I699PWjfpsefAgNTZH6iO/r2asjDx5dwP+NK2fO7adEicIJ5s2bLxdbt6/kwaMLhIR60q9/1zh5WrVuzKPHl3j+4i4zZ49XO2ZnZ8Ode6fJmNE42evxo9JbvWs17xznfaxghbpMX7AiwXOOn7lIw7Y9KV61EU079uXClRtqxzf+uZff6rfht/pt2LRjn9qx+y5utOo2kKio6BSpz4+q3LE20y8tZ+njbYw6MAP7Ijm/mb9at3pMOb2YJW7bmHFlJS0mdkZHXzf2eKnGFZlxZSULnDfQfEIntXNNbc2ZcmYxGVLxs8wvIJDRU+dSoW4rSlRtTNOOfXno+kQtz9Nn3gwYNYWytZpTqnoTWncfhO9r/0SVf+TUOQpWqMugMdPU0n+m14BIXdKYiEejpnWYPH0UC+espE6Vljx6+Jjt+1aT1cw03vzlKpbi731HaNWwG41qtefVy9f8uX8NllYWAOQrkJuRYwfQr/tI+vcYycjxg8ibPxcA2trazF44mTHDphEdrbk/Qh1Dfd4+8ub6+M2Jym9RNi++Fx5yuuN8/qk7gddXXKm6aTimBewB0Dcxpty8Htz+/U9OtZuDY7Py2NQoGnt+mZlduDNzF5EfPqZEdRL08WM4eZxyMH54vwTzVCxbknMHt8c+5k4Z/c0yj546z9xla+jbrT17Niwjj5MjvYdN4M3bYADOXbrGPyfPsWbRDIb3687k2Ut4G/wOgPcfQlm6ZjMThvVPtjom1qTZS7h68y6zJo3gr61/UL50cXoOHodfQGC8+W/fe0D50sVYOX8auzcso1TxIvQfNQXXJx4AvA1+x+TZSxjRvwerF03n8PEznLt8Pfb86fOXM6RPV4yNjFKlfkJds+b1mTl7HLNnLaVShYY8eODK/r83Y2aeNd78hgYGPHvmzZRJc3kdz5cQ06wmLFsxiwnjZtG0UWdat2lMnTrVYo8vXPw7kyfN5f37DylWp8RIj/XeuW6J2nvY2sUzAahVtVK8+e8+eMSoKbNp2qA2ezYup1qlcgwa+zvuns8AeOzhxYp125g3bQxzp45m2ZotPHnqBUBUVDTT5i1j4sgB6Oho7obY/5VoUI7mEzrxz5K9zKw/mhePnjNoy3gyZs0Ub/5SjSrQZHQ7/lmyh6k1hrJt9CpKNChH45FtATAyyUiHOX3YP3MrSzvOoEyTShSsVjz2/La/d+fAnD8JT6XPsnch7+nYZzi6OjqsWvA7f29fzYgBPcj0VePV+8UrOvUdgaN9djYun8O+zSvp06Udevp63y3/pa8fC5avo0SRgmrpP9NrILkoUaXZR1ojjYl49OzXmT+37GX3nwdwf/yUMcOm8jEsnDYdmsWbf2Cv0WxevxOXh248dfdixKBJaCm0qPhbWQCccjni6vKEyxevc+nCdVxdnuCUyxGAvoO6cu3KLZzvPky1+sXn1dn73Ju7F59jtxKV/9bkbbj88Q9vnD157+XH3dm7ee/1GtuaxQAwtrcg8n0Yzw5e542zJ35XXMniZAOAQ+NyqKKi8T6auGslp0rlSjGoV2dqVK6QYB49XV3MsprGPjJnyvjNMrfs+osWDevStH4tcjraM2nkQDLo6/PX4RMAeD73oVSxQhTMl5t6NatgZGTIC9/XACxcuZ7WTepjZWmRfJVMhPCICE6dv8Sw/t0pWbQQdrbW9O/eATtba3b99U+854wZ0odu7VtSKF8e7LPbmMn7ZAAAd2RJREFUMKRPF+xtrTl3KabB8OLVa4yNjahbozKF8uWhVPEieD7zAeDIyXPo6OhQs0rCP3eRsgYM7M7mjbvYvnUvj908GDJoAh8/fqRjp5bx5r9z5z4Tx89m397DRER8inPc0SE7ISHv2b/vH+7cuc+F89fInTfmDnCLlg2JjIzk0MHjKVqnxEiP9TY1yaL2Hnb+8nWy21hRqlj8Pezbdv9NhTIl6da+BTkd7BjYqxP5c+fkz72HAPB67kPunA6UKVGUsiWLkdvJEa/nL4CYu9UlihaiUL48qVa/b6neowGXd57m6p5zvPZ4yY7xa/n08RPlWlWNN3+OEnl4eusxNw9eJuhFAK4X73Pr4GUcijgBYGZnwcf3Ydw+fJXn95/y+JoLVp8/y0o2qkB0VDT3jt+It+yUsGH7HiwtzJk+fhiF8ufB1tqSCmVKYGdrHZtn6ZrNVCpXiuH9u5MvtxN2ttZUrVSWrCZZvll2dHQ0o6fOpV/3jthaW6od+5leAyL1SWPiX3R1dSlcND8Xz12NTVOpVFw6f40SpYokqgwDwwzo6OoQ/Pnus+sjdxydHLC2tcImuxU5nOxxc/XA3iE7rds1Ze6MpSlSl1SlUKBrnIGI4JghLO+9XqNtoI9pAXv0shiRtUgO3rp6o5fZkKIjW3B9QuJ6QDTh5t37/Fa/DQ3a9GDavGUEvwtJMG9kZCSPHrtTtlTR2DQtLS3KliyK80NXAPI45cDFzZ13Ie9xcXMnIiICOxtr7jg/5NFjD9q3bJTSVYojOiqa6Ggl+nq6aun6+nrcue+SqDKUSiWhHz/GNrbsbK0JDw/H9YnH57o+IY+TI+9C3rNs7RbGDUu4N0ikLF1dXYoWK8jZs5dj01QqFefOXqZ06WJJKvPp02cYGGSgcJH8mJhkpniJwrg8dCNLlkxMmDiUEcOmJE/w/0F6rffXIiMjOXziLE3r10KhUMSbx9nFlXIli6qllS9TAmeXmPewXDkdeObzv/buOi6qdA3g+G/oEJVOAcHCbtfOdVddu9u1O7C7RV27de3uXnettVsUxUIQAwUBEUVBEJi5f3AXHUFlWWBQnu/9zOfuvHPmnOcdjmfmOW89I+h5CIHPg3kc8Iw8Lk48eRrI3kNH6d+tQzJ7zXjauto4Fnbh3jnvxDKVSsW9c964lMyX7Hv8PX1wLOKS2BXKIpcVhaqX4PaJ6wCEPnyOnoEeDoWcMcphjHNRV57ee4JRdmPqu7dk27jV6V+xj5w4e5FCBfLiPmYqVeq1olmnPuzc/2fi60qlktPnr+Ccy57ug0ZTpV4rWncbmKRLb3KWrtmMmWkOmtb/Kclr38o5IDRDZnP6hJl5TnR0dHgRGqZWHhoahuv/WxO+ZvSEwQQ/D0lMSPzu+zNj8jy27v4dgOmT5uF335+te1YyZfxsqtWohPuI3sTFxjFupAeXznt+afeZUqGeddExMuDxgYS71O9fR3Fu4HIqzu+JtoEe/jvPEnjKm/KzuuKz9gjZcllSY407Ch1tbszZzZM/rmi4Bgkq/lCKWlUrYm9nTcCzIOYvX0vPwWPZtHxOsmNawl9FEB+vxNzMVK3c3MyUh08S7tpULFeKX36qQauuAzDQ12fqmMEYGRowedZipox2Z9ueP9i8cz85c+ZgwrD+5HFxSvd6GhsbUaywG8vWbsHFyRFzs5wcOnaKG7fu4Whvm6J9rN2yi6iod/xUswoAObKbMHXMYEZNnk10TAz1f65JxXKlGOsxlzZN6/Ms6Dn9hk8gLi6e3l3afrbLhUh75uam6OjoEBqi3oUtJOQF+fJ9uT/557x6FUHP7kNZ/vtsDA302bp5D8ePnWHRkumsWL4BJ2cHtu5Yga6uDh5TF7Bv759f32kay6r1/tjx0xd48/Ytjer++NltXoSFJ7mGWZiZ8iIsHABXZ0cG9OhEt4GjABjQoxOuzo50HTAS996dOXfZkyWrNqGjo82IgT0pXfzzYwzTUzbT7GjraBPx4pVaeUToK6xd7ZJ9z5X958hmlp0hOyajUIC2rg6nNx7hryV7AIiKiGTdkMV0mt0XXQM9Lu4+zd3TN2g3oyen1v+FeS4req0chraONgfn7eD6n5eSPU5aeRr4nG17/6BDyyZ069CSW3fv4zF3Gbo6OjSs+yMvw18R9e4dqzZup1+3jrj36szZS54MHDWF1QunU6ZE8uOFrt24xZ6Dh9m5NvlxNd/KOZCWlJoO4BsiyUQa6zOwKw2a1KF5/U5qTeQb1mxnw5rtic+bt2rI27eReF65wekrB6lXoyW2djYsWTmL8sVr8/59rCbCT5XcjcpT1L0xJzvPJTrsw138gL+uqnWbsv6hAKZujlwes57G52Zzps9i3oW+pu7BiYRc9FF7r6bUrVUt8b/zueYmn2tu6rTozJXrN/mhdOruZAL06dKOPl3aJT5fsnoTP5Qujo6ODsvXbWXP+iWcOn+ZUVNmsX31wv9ShRTzGDuEcR5zqdGoHdraWrjly0OdWlW54+P31ff+ceQES1dvYsH08WpN57WqVlTrQnbl+k3u+z1k1KBe1G3RhZkTh2NhZkbrbgMoVbzIV5vdReZ28MARDh44kvi8YqWyFC5cgKGDJ+DlfYLOnQYQHBzKiVN7OXfucpKbNN+qb6neuw8eptIPpbH6zBiRlGrZuB4tG9dLfL7v0FGMjAwpVtiN+q27sXXlfIJDXjB03HQO71yDnt7X++dnBnl/KMhPfRqzdexKHnr5YulsQ4txv1KnX1P+XJgwyPjG4SvcOPzhhlfecm7YF3Bk2/jVTDq1gNX95xMR+orhez3wu3yXN+n4XaZUqihUIC8De3YCwC1fHnz9H7N97yEa1v0RpTKhP331yuXp0KoxAAXyueLlfYftew8lm0xERkYxcvIsJgwfgGnOHJ899vd6Doj/Tro5feJl2Cvi4uKSDM6ztDRPcnfrUz36dqLPwC60adKNu7fvf3Y7U7OcDBrei7HDp1GidFH8/R7z0P8J589eRldXB5c8zmlRlQzh3OAHys/qyumeiwg68/nuMVp6OpSb1omLw1djktsahY4WwRfvEfEgiAj/51iUTN1dwvSWy94W05zZefI0KNnXTXNmR1tbi7CX4WrlYS/DsfjkTt8//B8HcPDw3/Tr1oEr129SunhhzExz8lONKtzx8SMyMirN65EcRwc71i7+jcvH9nBs9wa2rpxPXFx8kr6ynzp07CTjp89n1uRRlC/z+QTr/fv3TJm1mPHD+vPkaRDx8fGUKVGU3E4OOOWyx/v2vbSukviMsLBw4uLisLSyUCu3srIgODg0TY6hp6fHnLmTGNB/NC6uzujoaHPu7GX8fB/ywO8hpUunrJtoWsqq9f5H4PNgLl71omn9n7+4nYW5aZJr2IuX4ViYJ38NC3/1mqVrNjNqUC+8b/vglMsep1z2lC1VjLj4OB4FPEuzOvwbb8MjiI+LJ7tFTrXy7JY5iQh9lex7Gri35PLu05zb9jeBPgHcOHyFfb9t4efejZLtFqajp0OryV3ZPOp3rJxt0NbWxvfSXYL9gwh+GIhz8bzpULMPLM3NcHV2VCtzcc5F0P/PZ9Oc2dHR1v7iNp8KeBbEs6Bg+g6fQLEq9ShWpR77/zrOibMXKValHk+eBiZ5T2Y9B4RmSDLxidjYWG563aFS1R8SyxQKBZWqlMPzyo3Pvq9X/84MHNqTds16cNPry33OJ04bzu9L1hMUGIy2lha6uh8aiLR1tNHW+jZmQ3BuWJ4Kc7pzpvdinh33+uK2RQc04tnJm7y89QgtLS20PuoypKWrjUIrc56Kz0NCefX6DZbmyc/kpaurS8H8ebl01SuxTKlUcsnTi2KF3ZJsr1KpmDRzAcP6dcPIyBBlvJLYuDgA4v7///HKjG1cNTI0wNLCjNcRbzh/2ZMalX/47LaHjp5k7NS5zJw4nKoVyn5xv8vXbqXSD6UpmD8PSmU8cR/NVhYXF5/h9czKYmNj8bp+i2rVKiSWKRQKqlarwOXL19PkGMOG9+HYsdPc8LqNtrYWOtofrms6ujoamfo6q9b7H3v+OIqZaQ6qlP/yv9Vihdy46OmlVnbhynWKFUp6DQOYsWAF7Vs0wsbKknhlfOK1CyA+XokyXjP/tuNj43lyy5/8FT7MRKRQKMhfoTD+15K/wadnqI9SpT47jvKfa1MyQ0zq9G3KnVNeBNx+iEJbC62PZi/S1tVBSzt9v8tKFC3Io/93of3H4yfPEifx0NXVpZBbvsRutv94FPAMu89M9JHbKRd7Nixl59rFiY/qlX6gbMmi7Fy7GFtryyTvyaznQFpSZeL/ZTbSzSkZvy9Zx9wl07h5/TbXr3nTrVd7DI0N2bYpoQ/l/KXTCAoKYfqkeQD0HtCFISP70rfbMAKeBCbeBYuMjCLqk7vMlauVJ7erMwN6JfQ7vHH9Fq55c1O9ViXs7G1Rxit54Pcw4yr7fzpG+pjktk58ns3REtNCjrwPjyQyMIwSI1pgZGvKuQHLgYSuTRXn9eDK+I2EXn+AgWVC02h89Hti36hPkZcjrx3ODcpxsHbCeg2vHwSiUqnI06oq70Jfk8PVlhc3/DOknlFR79TusjwLDObe/QfkyG5CjuwmLFm9iR+rVcTC3IyAZ4HMWbIaRwc7Kpb7MBVgl/4jqFmlAm2aJQyc7tCyMaOnzqZQgbwULpifjdv38i46hkb1kvZR3nXgL0xz5qBapYQf7CWKFmTJ6o3cuHWXMxev4ursqDbFX3o6d8kTlUqFs6MDT54GMnvxKnI7OtCoXm0A5i5dQ8iLMDzGDgESujaNnjKbEQN7UrRgfl6EvQRAX18fk2zq070+ePiYv/4+zY41i4CELystLS12HTiMhbkpD58EUNgt+QGRIn0sWriKZStmcf26N1ev3qB3n18xMjJi44adACz/fRaBgcFMHP8bkPCjpIBbwow2enq62NpZU6SoG5Fvo/D3f6y27/wF8tCk6S9UqvALAPd9HqBUKmnfoQUhwaHky+fKNc+bGVjbD7JqvZVKJXv/OErDOrWSTNc5cvIsrCzMGdQrYQ2Ndi0a8mufYazdsosqFcry57FT3L7ny4Th/ZPs9/zlazwOeMa0MYMBKOyWj4ePn3LmwhWeh4SipaWFs5ND+lfwM46vPEjH2X144u3PIy8/anSpi76RPhd2nASg4+w+vAp+yb6ZWwC4edyTml3q8fT2Qx5eT+jmVN+9JTePe6JSqv9os8ljT6lfyjOtXsJ04cF+z1AplVRoUZ2I0FfYuNrx6MbXu4n+F+1bNqJ9j8GsWLeVn2tWwfuODzv3/8n4YR/+Vr+2acqQcdMpXbwwZUsW4+zFq5w6d4k1C2ckbvPxOaCvr0deF2e14/xzTf+0HDL/OSAyniQTydi/5y/MLMwYMqovllYW3Pa+R7tmPRL7vdo52Cb2SwTo0Lkl+vp6/L5+ntp+Zk9fzJwZSxKfGxjoM3XmaHp1HoLq/3dCggKDGTt8GnMWTeX9+/cM7D2K6OiY9K/kJ8yLufDTzg+LL5WZkNC/32/7ac4PWoGhdU6M7T50FcjbtgZaugldl8pN65RY/s/2Hys/swtXJm4i7l1CveKjYzk3aDnlpnZCW0+HS2PW8+65ehN7erl1z5fO/T6sGzFzYUKsDevUYuzQvtx/8JD9fx4j4m0kVhZmVChbkr7dOqj1/Qx4FkT4RzM81alVlfBXr1m0ciMvXr6kQF5Xls2enKSb04uX4axYt5WNy+YklhUpmJ+OrZrQe+h4zExzJl6cM8Kbt5HMW7aG4NAX5Mhuwo9VK9G/R0d0dRIuCy/CXhIU/GGe/R37/yQuPp4psxerLX7VsE4tpn4Ut0qlYsLMBQzt1w0jQwMADPT1mTLanamzl/A+NpZRg3pjbane9USkr927/sDCwoxRYwZhbW2B9827NG3UKbH7poOD3Yc7soCtrRXnLnyYJnjAwO4MGNidM6cvUq9OG7V9L1g4jVEjphIVlXAjITo6hl49hjFr7kT09fUY4j6eoKDgDKhlUlm13heuXCcoOITG/7858LGg4BC0PurCU6JIQWZMGM7CFeuYv3wtTg72LPAYm+SHZHRMDNPmLGHWpJFo/b812cbKkpGDejFm2lz0dHWZOmYwBvr66Vq3L/E8eIFsZtn5ZVALslvm5OndRyzsOI03LxJmVzSzt0j8/gUSxkWoVNQf3IqcNma8DYvA+7gn+2ZtSbLvth492DllPe///10WGxPLuiFLaDWpCzr6umwbt5rXwen7XVbELT/zPMYyf9lalq3djL2tDcMH9OCXnz6sdVKrakXGDe3Lyg3b8Zi7DGdHB+ZOHUPJj9aO+PQcSKlv4RwQGU+hUqkyX3vJf2RvWkjTIWiEh1HqBwh/y1rfmPT1jcR3w9Aua84CZaQrX85ZSdjjY5oOQSP6lx6h6RA0YsHV6ZoOQSN0LVw0HcJndXZupukQPmv1o52aDkFN5uyoLoQQQgghhMj0NJpM9OvXjzNnzvynfcTExBAREaH2UKm+/YE/QgghhBBCZHYaTSYWL15MtWrVyJcvHzNmzOD58+f/eh8eHh7kyJFD7fEm+stTuAohhBBCCPE5mp6x6VuazUnj3ZyOHDlC3bp1mTVrFo6OjjRs2JCDBw+qDYj7kpEjR/L69Wu1h4mBDOwUQgghhBAivWk8mShSpAjz5s0jMDCQjRs3EhMTQ6NGjciVKxejR4/Gz+/L06zp6+uTPXt2tYdCofFqCSGEEEII8d3LNFPD6urq0qJFC1q0aMGTJ09YvXo1a9euZfr06cR/tNhVZtR3UFfq/PIjefLmJjo6mquXvZg2YQ4P/B5pOrQ0ZVUuP4V61cO8SG6MbEw50XkuAYc9AVDoaFNiWDPsaxQnm5MlsRHvCDp7i2vTtvEu+JVmA/+Xrnp5s2bzTu7c8yM07CXzPcZSs8qHRa9GT5nNvj/VZ1qpWK4Uy+dMSbKv9+/f07rbIHz8/Nm5ZhEF8mXOlb6TExkZxcLf13P89AVehr+iQD5XRgzsQRG3/MC/+xzEt6dCxTIMGNid4iUKY2trTeuWPfjj4FFNh5XuMmu9azftSODzkCTlrZr8Qr9uHVi8cgPnL18jKDgUU9Mc1Khcnn7dOiRZAybweTD1W3fnzB9bCXwewqKVG7jj40vg8xCG9+9O+5aNkxxjy64DrNm8kxcvw8mfx4VRg3pRpGDCdeB1xJsUHdv7rg/zlq7hjo8fCoWCwm75cO/dhQJ5NTubj0JLwS8DW1C2cWWyW+bkdfBLLuw8lTBl7DcsOPQFc5as5uzFq0RHx+DoYMfkUYMS1/eJinrH3KVr+PvMeV69foO9nTVtmzWkZeN6ifuYOHMBF65cJ/TFS4yMDCheuCCDenfGxSmXpqqVoWT0bcplmmTiY46OjkyYMIHx48dz7Fjmnx7vhwplWLdyC17XvdHR0WHE2AFs3v071X5owLuod1/fwTdCx0if8DtP8Nt6muqrBqq/ZqiHWRFnbs7fS/idJ+jlMKLMxPZUX+POobrjNBNwKr17F03+PC40rlebgaOS/2Fc6YfSTBk1KPG5rq5ustvNXrIaKwszfPwyZlG+tDRu+nz8/B/hMW4IVhbmHDj8N90GjGLfpuWJa0Sk9HMQ3x5jYyNued9lw/odbN66TNPhZJjMWu+tK+erdf/19X9Mt4GjqF29MiEvwgh58ZIhfbvi4uxIUHAIk35bROiLMOZOHaO2n7/PXKRsyaIYGRnyLiYaBzsbateoxMwFKz49JAB/HjvFzIUrGDe0H0UL5mfD9r30cB/DgS2/Y26aM0XHjop6R0/3sVSv9ANjBvclPj6exas20MN9DMf2rE9c20YTfurZiCrtfmTd4MUE+j7FqYgLHX7rTfSbKE6s/VNjcf0XryPe0L7nYMqWLMay2ZMxzZmDxwHP1BZEnblwBZc8b+Axbhj2ttacv+zJlNmLsbIwp3rlhEVVC+bPQ73a1bG1tuJ1xBuWrNpI90GjObxjjUZXdheZj0aTCScnpy+ekAqFgh9/TLqKcGbTrnkPtecDe4/G2+8sRYsX5NJ5Tw1FlfYCT9wk8ETyq7nGvnnHsdYz1Mouj1lPvUOTMLYzJzIwLCNCTBOVy5ehcvkyX9xGT1cXC3OzL25z5sIVzl++xrypozlz8WpahpjuomNiOHbqLAumj6d08SIA9OnSjlPnLrFtzx/0794RSNnnIL5NR4+c4uiRU5oOI8Nl1nqbmeZUe75yw3Zy2dtSpkQRFAoF86Z9SBocHezo370jIybNJC4uXm0F7BNnLlC7esJaLUXc8ie2NM5buibZ467ftodm9eskLn43bmg/Tp+/wp6DR+javgV5XZy/emz/xwG8jnhDn67tsbW2BKBX57Y06dCboOchODrY/fcPKJVcSuXjxtGr3DpxHYCXT0Mp06ASTsXyaCym/2r1ph3YWFkyZbR7YpmDnY3aNl7ed2lYpxZlSxYFoHnDuuzY9yfed30Sk4nmDesmbm9va02/7h1p2rE3z4KCNfo3E5mPRgcXPHz4EHNzc02GkC6yZzcB4FX4aw1Holl62Q1RKZW8j4jSdChp7sr1m1Sp14pfWnVl0m8LefXRitiQsNr1hBnz8Rg7BAMDAw1FmXrxcfHExyvR11NvadDX1+PazduJz7/2OQgh0l5sbCwHj5ygcb3aKD6zivGbt5FkMzZSSyQi3rzl2s3bVK/0Q4qPc8fHlx/KFE8s09LS4ofSxblx6+5n3/fpsXM7OpAzR3Z2HzxMbGws0TEx7D5wGBfnXNjZWKcolvTi73mfAhULY5XbFgB7NydcS+fn9snrGo3rvzhx9iKFCuTFfcxUqtRrRbNOfdi5X72VpXgRN06cvUhw6AtUKhWXPW/w6MkzKpQtmew+o95Fs/ePIzjY2SQmhN87pUqVaR+ZTabs5vQtUygUTPQYzuWL1/C5++XB498zLX1dSo5qxcO9F4h9+/109QKo+EMpalWtiL2dNQHPgpi/fC09B49l0/I5aGtro1KpGDN1Di0a1aOwWz6eBQVrOuR/zdjYiGKF3Vi2dgsuTo6Ym+Xk0LFT3Lh1D0f7hC/dr30OQoj0cfz0Bd68fUujusm33Ie/es3ytVto1qCOWvmZC1fI55obK8uU3cQLfxVBfLwSczNTtXJzM1MePnma4mMbGxuxZtEM+o+YxPK1WwBwcrBj+dwpasmOJhxeuhcDE0PGH5+LKl6JQluL/bO2cmXfWY3G9V88DXzOtr1/0KFlE7p1aMmtu/fxmLsMXR0dGv7/nBk1qBcTZiygZqP26Ghro9BSMGH4gMSW6H9s3X2Q2UtW8e5dNLkdHVgxd6p0ZxVJSDKRxqbNGkN+t7w0rtNe06FojEJHm6rL+oFCwaWRazUdTpqrW6ta4n/nc81NPtfc1GnRmSvXb/JD6RJs2rmfyKgourZvobkg04DH2CGM85hLjUbt0NbWwi1fHurUqsodn4Qk+WufgxAifew+eJhKP5RONil4GxlJ76Hjcc3tSO8u7dRe+/vMxRS3SqTG544dHRPDOI95lChSkJkTh6OMV7J2yy56DxnP1lXzMdDXT7eYvqbUL+Up07ASawYsIPB+AA4FnWk+rhOvg8O5uCvzdXdLCaVSRaECeRnYsxMAbvny4Ov/mO17DyUmE5t27ufm7XssmjEeWxtrPL28mTp7CVYW5pQv8+H6Xa92dcqXKUFo2EvWbt7FkHEebFg6G319PU1UTWRSkkykoSkzR1Prp6o0qduRoMBv7250WvgnkTB2MOdoC4/vrlUiObnsbTHNmZ0nT4P4oXQJLnve4Mate5Ss3kBtu5Zd+1Pvx+pMGztEQ5H+O44Odqxd/BtR76KJjIzC0sKMwWM9kvS9/cenn4MQIu0FPg/m4lUvtXEK/4iMjKKH+1iMjQyZP22s2sDm2NhYzl26SrcOLVN8LNOc2dHW1iLsZbhaedjLcCw+aa340rH/OHKSZ0HBbFo+By2thN7VMycMp8LPzfn7zAW1GxMZrfHIdhxZuo+rB84DEOgTgLm9JT/1bvTNJhOW5ma4Ojuqlbk45+LYyXNAQnI3f/k65nuMpWqFsgDkz5Obe77+rN2ySy2ZMMlmjEk2Y5xy2VOsUAEq/Nyc46fPU/fHahlWH03JfJ2JMi9JJtLIlJmj+bleTZrX70TAk2eaDkcj/kkkTHJbc6T5NGLC32o6pAzxPCSUV6/fYPn/gcgjB/akX/cOia+HhIbRw30MsyaOpEih/JoKM9WMDA0wMjTgdcQbzl/2xL1352S3+/RzEEKkvT1/HMXMNAdVypdVK38bGUmPQWPQ1dNl4YzxSe4cX752k+wm2f7VVKy6uroUzJ+XS1e9EqfHViqVXPL0onXTDzdLvnbs6OhotLQUauM7FAotUChQKTX7k03PUB+VSn0SUKVS+dmxKN+CEkUL8uiTbmiPnzzD1sYKgLi4OOLi4tD6pI7a2lpfXDBYpVKhUsH797FpH7T4pkkykQamzRpLo2Z16dymH2/fRmFplTBt5puIN0RHx2g4urSjY6SPSe4Pg+WyOVpiWsiR9+GRRIW8otqK/pgVcebvjrNRaGthYJkDgPev3qKMzdxrhXwsKuodT54GJj5/FhjMvfsPyJHdhBzZTViyehM/VquIhbkZAc8CmbNkNY4OdlQslzBw7Z8L9j+MDA2BhDv3NlbfzsC1c5c8UalUODs68ORpILMXryK3owON6tUmKurdVz8H8W0zNjbCxdUp8bmzcy6KFHUj/OVrnn707+N7k5nrrVQq2fvHURrWqaU21uBtZCTdB47mXUwM88cNJTIyisjIhIkvTHPmQFtbm5NnL1Htky5OsbGxPHj45P//HUdwaBj37j/AyMgwcbaeDi0bM3rqbAoVyEvhgvnZuH0v76JjaFTvxxQfu3zZksxesoopsxfTplkDVEoVKzduR0dbm7Ili6X75/Yl3sc9+blPE14+e0Gg71NyFXKmZpdfOL/jhEbj+i/at2xE+x6DWbFuKz/XrIL3HR927v+T8cP6A5DN2JjSJYowe/Eq9PX1sbOx4up1b/b/eZyh/bsBEPAsiL+On6ZC2ZKY5czB89AXrNqwHX19PSpX+PJshyLrUahUmXBY+H9kb1ooQ4/3LPx2suWDeo9m+5a9GRaHh1H6di2xLu/GTztHJyn3236aG7N30/TSvGTfd7jZVIIvfH7mj/+q9Y1Jabq/y9du0rnf8CTlDevUYuzQvvQfMYl79x8Q8TYSKwszKpQtSd9uHZI0+//jWVAwPzXr9M0tWvfX8dPMW7aG4NAX5Mhuwo9VK9G/R0dMshkTHRPzrz+HtGJoVzld959ZGelmbL/ySpXLceivLUnKN23cSa8ewzI0loyUWeod9jjpGkvnLnnSw30MB7f8jrOjQ2L5565ZAId3rsXe1ppaTToweeQgtS4s/1ybPlW6RBHWLpqZ+Hzzzv2s2byLFy9fUiCvKyMH9qRooQIpPjbA+cvXWLpmE37+j1EoFLjlc6V/944UK+ym9p7+pUd85hNJH/rGBjQY3JJitctiYpGD18Evubr/HH8s2El8Bt4EW3B1epru7+S5S8xftpbHT59hb2tDx1aN1QbFvwh7ybxlazl/+RqvI95gZ2NFs4Z16NCyMQqFgpDQMMZPn8dtHz8i3rzF3CwnpYsVpuevbcnt5PCFI/87uhaaXbTwS9o4JV3AMbPY/HiPpkNQI8nEdyS9k4nMKq2TCZG5STIhsoLkkonUuuPjR5f+Izj9x1aNLhCXEhmdTGQWaZ1MfCskmUidzJZMaHSdCSGEEEKkr/j4eEYO6pXpEwkhxLdJrixCCCHEd6xIwfwUKfjtTf4ghCapZD6nFJOWCSGEEEIIIUSqSDIhhBBCCCGESBXp5iSEEEIIIcRHPr/ihviUtEwIIYQQQgghUkWSCSGEEEIIIUSqSDcnIYQQQgghPqKU2ZxSTFomhBBCCCGEEKkiyYQQQgghhBAiVaSbkxBCCCGEEB+RRetSTlomhBBCCCGEEKkiyYQQQgghhBAiVaSbkxBCCCGEEB+RRetSTlomhBBCCCGEEKkiyYQQQgghhBAiVaSbkxBCCCGEEB9RqWQ2p5SSlgkhhBBCCCFEqkgyIYQQQgghhEgV6eYkhBBCCCHER5SyaF2KScuEEEIIIYQQIlUkmRBCCCGEEEKkinRzEkIIIYQQ4iOyaF3KScuEEEIIIYQQIlUkmRBCCCGEEEKkynfZzclYx1DTIWhE31fnNR2CRuwo2V/TIWiEg5aRpkMQGaiqeUFNh6ARPu+eazoEjTC0q6zpEDTiXeAZTYegEXH7lmg6BI3Q7TJL0yF8lkpmc0oxaZkQQgghhBBCpIokE0IIIYQQQohU+S67OQkhhBBCCJFasmhdyknLhBBCCCGEECJVJJkQQgghhBBCpIp0cxJCCCGEEOIjKpV0c0opaZkQQgghhBBCpIokE0IIIYQQQohUkW5OQgghhBBCfESp6QC+IdIyIYQQQgghhEgVSSaEEEIIIYQQqSLdnIQQQgghhPiIShatSzFpmRBCCCGEEEKkiiQTQgghhBBCiFSRbk5CCCGEEEJ8RCndnFJMWiaEEEIIIYQQqSLJhBBCCCGEECJVpJuTEEIIIYQQH1GppJtTSknLhBBCCCGEECJVJJkQQgghhBBCpIp0cxJCCCGEEOIjMptTyknLhBBCCCGEEN+ZCRMmoFAo1B4FChRI8+NIy4QQQgghhBDfoUKFCnHs2LHE5zo6af/TX5IJIYQQQgghPqLKxN2cYmJiiImJUSvT19dHX18/ybY6OjrY2NikazzSzekz2nZuzt+e+/EOOMeOv9ZStEShz25bu151dh1dz1W/E3g9OsO+E5to2Lyu2jade7fjwp0jXLhzhM692qq9VrRkIXYf24C2tna61OXf6Na9Pd53ThMSdpe/T+6mVKmin922gFteNmxagved00RE+tO7z69JtmnRsiF3fM7y+Ol1pk0frfaao6M917yOY2KSLc3r8W/V7VCPledWsev+bmbtm03eYvm+uL1xdmN6Tu7Juqvr2e27h2Unl1OqeunE16s2qsbqi2vY4r2VLmO7qr3XysGKZSeXY5jNMF3q8m9Ubf8TU84uYoHPRobtnYpTMdcvbl+jc10mHJ/H/HsbmXp+Cc3GdkRHXzfx9TINKzH1/BJm31hN0zEd1N5r5mDJhL/nYZAJ6p1VZdXzPKtez793kZFRTJ+3jB+bdKRU9Ya07eGO912fZLedOHMhhSvWYcO2PV/cZ3x8PAtXrOenZp0oVb0hPzf/lWVrNqtNE7pm806q1GtFlXqtWLtll9r7b96+R4vO/YiLi//vFUyhVRd9abP+NBXmHqL6osMM3H2ZR2Fvv/iefd4BFJ95QO1RdvYfatusu/yA6osOU33RYdZffqD2mndgOK3XnSZOqUzz+oiv8/DwIEeOHGoPDw+PZLf19fXFzs4OFxcX2rZty5MnT9I8HmmZSEbdRj8yctIgxg314IbnLTr1aM2q7Qv5qXxTXr4IT7L9q/AIls1djb/vI97HxlK9dmU8Fowj7MVLzp64SP6CeRgwvCc92g5EoVCwfNNczp68yP27D9DW1mbSrFGMdZ9KfHzGXXyS06RpPaZNH8XAAWO5esWL3n1+Zfe+dZQqUYsXoWFJtjcyNOTRoyfs3XMIjxljkrxuZm7KwsUe9OoxlEcPA9ixeyWnT17gr7/+BmDOvMmMHzeTN2++fNFLb5XqV6br2K4sHrWY+14+NOjSkEkbJ9GzWg9eh71Osr2Org6TN03m1YvXTO/pQdjzMKzsrXgbEQlAdtPs9JvZj3mD5xH8+Dnj1o7n5vkbXDl+BYBeU3qzbvpa3r19l6H1/FSpX8rTdEwHtoz5nYfXfanRuR79149mQo2BvAmLSLJ9mQYVaTS8DRuGLuXBtftY57alw6zeqFQqdk1Zj7GpCe1m9GT9kMW8eBJCn9Uj8Dl/i1t/XwOg9eQu7J2xmWgN1zuryqrneVa9nmcF46bPx8//ER7jhmBlYc6Bw3/TbcAo9m1ajrWlReJ2x06d4+bte1hZmH91n6s27mDb3j+YOmYweXI7cfvefcZMnUu2bMa0a94QH7+HLF65kcW/TUClUtFn6AQqlC1JPtfcxMXFM+m3hYwf3h8dnYxLJj0DwmhZIjeFbHMSr1Sy8PQ9eu24yO7O1TDU+/zPvGx6OuztWj3xuUKhSPzv+yERLD17jwVNy6FCRf9dlymf25K8ltmJUyqZcuQmY38qho6W3JPWhJEjR+Lu7q5WllyrRLly5Vi7di358+cnKCiIiRMnUrlyZW7duoWJiUmaxSNnQTJ+7dmW7Rv3snvLAR7cf8i4IR5Ev4umWZsGyW5/+bwnRw+d5IHvIwIePWP9iq343PGjVLniALjkdcbnji8Xz17lwpkr+NzxwyWvMwBd+7bnyoVreHvdyaDafV7ffl1Yt2YbmzbsxOeeHwP7j+Hdu3e079A82e2vXbvJ2NHT2bXzIDEx75O8nts5FxERb9i96w+uXbvJ6VMXyVcg4c53s+b1iY2N5cD+w+lap5Ro1LURh7cc5viOYwT4BrBk5GJi3sXwY8sfk92+VssfyZbThKndpnD36l1CnoZw69ItHt19CIC1ow1REVGcPXAG35u+eF+4iUOeXABUaVCFuLg4Lvx1IcPq9zk1u/7Cua3HubDjJM/9nrFl9O+8f/ee8i2qJ7u9S6n8PLjqw5X953j5NJS7Z25ydf85nIvlAcDC0Yp3b6LwPHiBxzcf4HPxNrZ57AEo3aAi8XHxeB2+nGH1E+qy6nmeVa/n37vomBiOnTqLe58ulC5eBEcHO/p0aYejgx3b9ny4wx4c+gKPuUuZMX5Yin7ge926S/XKP1C1Qlnsba2pXb0yFcqWxPtOQovHw8cB5HN1plyp4vxQugT58uTm4eOnQEKLRaniRSjilj99Kv0ZS5r/QMMiuchjYUJ+qxxMqlucoIh33AlOepNAjQIsshkkPsyNP/wYffjyLXkts1PWyYJyTglJxMP/t3asu/yAkrnMKWybMx1rpXlKlSrTPvT19cmePbvaI7lkok6dOjRv3pyiRYvy008/cejQIV69esX27dvT9LOSZOITuro6FCpWgPOnLiWWqVQqzp++TPHSn+/y87HylcuQ29WJKxeuA3D/jh/Oro7Y2ltj52CDs6sjvncfkMvZniat6zNv2tJ0qcu/oaurS/EShTlx4lximUql4uSJc5QtWyJV+3zw4BGGhgYULVYQU9MclCxVlNu37pEzZ3bGjB3EEPcJaRP8f6Cjq0OeInm4cdYrsUylUuF11ov8JZOf8aBcrXLc87xHzym9WO+5gUVHF9O8T3O0/n+HJvDRM/QN9XEp5EK2HNnIWywfj+4+wjiHMW2HtGP52GUZUbUv0tbVxrGwC/fOeSeWqVQq7p3zxqVk8l1f/D19cCziktgVyiKXFYWql+D2iYTzPPThc/QM9HAo5IxRDmOci7ry9N4TjLIbU9+9JdvGrU7/iolkZdXzPKtez7OC+Lh44uOV6OvpqpXr6+tx7eZtAJRKJSMnzaJTm2bkcXFK0X6LF3bj0lUvHj1JSBDu+fpz7eZtKv+Q0L0vr6szjwKeEfQ8hMDnwTwOeEYeFyeePA1k76Gj9O/W4Uu7zxBvY+IAyGGg+8Xt3r2Pp86yY/y09CgDd1/G78WbxNfyWprwODySoIgoAl9H8fhlJHksTQgIj2SfdwB9K6X9jEAi/eXMmZN8+fLh5+eXpvuVbk6fMDXLiY6ODi9CX6qVvwh5iUse58++L5uJMWe8/0RPTw9lfDwThs9I/AJ74PuIOVOXsGbnEgBmT1nMA99HrN25mN8mLqBSjfL0G9qduLg4poyexdX/f2llJHNzU3R0dAgNeaFWHhLygnz5vtyP/nNevYqgZ/ehLP99NoYG+mzdvIfjx86waMl0VizfgJOzA1t3rEBXVwePqQvYt/fPtKjKv5LdLDvaOtqEv3ilHvuLVzi4OiT7HhtHa4pWKMrJvSeZ2GkCts529JrSC21dHbbO20Lk60jmus9l0Fx39Az0+HvX31w/fY1+M/vzx7qDWOeyZsyqsejo6rB57mbOHzqX7HHSUzbThHpHfFLviNBXWLvaJfueK/vPkc0sO0N2TEahAG1dHU5vPMJfSxL6IEdFRLJuyGI6ze6LroEeF3ef5u7pG7Sb0ZNT6//CPJcVvVYOQ1tHm4PzdnD9z0vJHkekvax6nmfV63lWYGxsRLHCbixbuwUXJ0fMzXJy6Ngpbty6h6O9LZDQZUlbW4t2zRumeL9d27cgMiqK+m26o62lRbxSSf/uHfnlpxoAuDo7MqBHJ7oNHAXAgB6dcHV2pOuAkbj37sy5y54sWbUJHR1tRgzsSeniRdK+8l+gVKn47fgtitubkscy+2e3czYzZkKdYuS1zM7bmFjWX/Gn08az7OpSDWsTQ1zMTehXuQA9t10EoH+VAriYm9Bj2wUGVnPj/KMQlp27j46WgmE1C1Mq19e7kAnNe/v2LQ8ePKB9+/Zpul9JJtJI5NsoGlZvg7GxEeUrl2HkpEEEPHrG5fOeAGxdt4ut6z4M1Grcsh6Rb6O4ftWbwxd20bR2B2xsrZi7Yho1SjUg9n2spqqSpg4eOMLBA0cSn1esVJbChQswdPAEvLxP0LnTAIKDQzlxai/nzl1OdmxGZqPQ0uJ12CsWj1iEUqnkgfcDzK3NadKzCVvnbQHg4uELXDz8oYtH4XKFye3mzIpxy1l+ZgWz+v5GeGg4s/fP4falW8n2Wc9s8v5QkJ/6NGbr2JU89PLF0tmGFuN+pU6/pvy5MOHcvnH4CjcOX/nwnnJu2BdwZNv41Uw6tYDV/ecTEfqK4Xs98Lt8N9mxGSJzyKrnOcj1/FvhMXYI4zzmUqNRO7S1tXDLl4c6tapyx8eP2/d82bhjHztWL1QbC/A1f/19moNHTjBjwjDy5Hbinq8/M+Yvx8rCjIZ1E7oEtmxcj5aN6yW+Z9+hoxgZGVKssBv1W3dj68r5BIe8YOi46RzeuQY9Pb00r/vneBz1xu/FG9a2rfjF7YrZm1HM3kzteZNVJ9jp9Zg+lRNaHZqXcKZ5CefEbfbfCsBIT4didmY0XPk3m9pXJuRNNCP2e/JHj5roZeA4kYyQeedySrkhQ4ZQv359nJycCAwMZPz48Whra9O6des0PY4kE58If/mKuLg4LCzN1MotrMwIDfn8D12VSsWThwnNondv3cc1X256DOyU+OXzMVOzHPQd0o02DbpTrGRhHj14wmP/AB77B6Cro0NuV0fu332Q5H3pKSwsnLi4OCytLNTKrawsCA4OTZNj6OnpMWfuJLp3G4yLqzM6OtqcO5vQh/6B30NKly7GX3/+nSbHSqmIlxHEx8VjapFTrTynRU7CQ5MOzgQID3lJXFw8yo9msXjqF4CZlRk6ujrExcapba+jp0Ovqb2YM3AOts62aGtrc+vSLQACHz4jX4n8XDmWsWMJ3oYn1Dv7J/XObpmTiNBXyb6ngXtLLu8+zbltCX+jQJ8A9A0NaOvRnb8W7Vab7QQS6t1qclfWDlqElbMN2tra+F66C0Dww0Cci+fF+3jSfx8i7WXV8zyrXs+zCkcHO9Yu/o2od9FERkZhaWHG4LEeONjZcO3GLV6Gv+LHph+6HcXHK/lt0Uo2bN/LkV3rkt3n7MWr6NquBXVrVQMgn2tugp6HsHLD9sRk4mPhr16zdM1m1i6eifdtH5xy2Sc+4uLjeBTwjHyuudOl/p/yOOrN6QfBrG5dEWuTfzeLmq62FvmtcxAQHpns6+FRMSw/d5/VbSrgHRiOk2k2nMwSHnFKFY/DI8n7hZYQoRlPnz6ldevWhIWFYWlpSaVKlbh48SKWlpZpehwZM/GJ2Ng4bt+4R/kqZRPLFAoF5SuXwevqzRTvR6Gl9dm7EaMmD2bt8i0EB4Wgra2Fju6HnE5bR1sjUwrGxsbidf0W1apVSCxTKBRUrVaBy5fTppl+2PA+HDt2mhtetxPqrf2h3jq6Ohqpd1xsHH7efhStWCyxTKFQUKxiMXyu3Uv2PXeu3sXWyVbtbpediz1hwWFJfmABtOzXCs+T13hw6wFa2lpof3T3RltHB20NzIYRHxvPk1v+5K9QOLFMoVCQv0Jh/K/dT/Y9eob6KD9JGBJ/aCZz469O36bcOeVFwO2HKLS10Pq43ro6aGnL5SejZNXzPKtez7MaI0MDLC3MeB3xhvOXPalR+Qfq/1yT3euXsHPt4sSHlYU5v7ZpyvI5Uz+7r+joGBRa6hc0LS2tJNe+f8xYsIL2LRphY2VJvDKeuLgP/zbi45Uo49N/6lSVSoXHUW/+9n3Oipblsc9p9K/3Ea9U4RcagUU2g2Rfn/X3bdqVdsHaxBClSqU2JWycUkW88nu4j//92bp1K4GBgcTExPD06VO2bt2Kq2vquq5/ibRMJGPNsk3MWDiBW153uHntNh17tMHQyJBdWw4AMHPRRIKfhzB7ymIAegzohLfXXQIePUVPT5eqtSrSsHldJgxLOudvharlcHZ1ZFjf8QDcvH4HlzxOVKlZAVs7a5TxSvz9HmdcZT+yaOEqlq2YxfXr3ly9eoPefX7FyMiIjRt2ArD891kEBgYzcfxvQMKg7QJuCTP56OnpYmtnTZGibkS+jcLfX70O+QvkoUnTX6hU4RcA7vs8QKlU0r5DC0KCQ8mXz5Vrnin/ck9Le1fuZdDsQfh5+3Lf6z4NuzTEwMiAY9sTVowcNNedsOdhrJ+RcCfrzw2H+KXjL3Sb0J2Daw9gl9uO5n2ac3DNgST7zpU3F5XrV2ZAnf4APPV7ikqp5MeWPxIeGo6DqwP3b/hmXGU/cnzlQTrO7sMTb38eeflRo0td9I30ubDjJAAdZ/fhVfBL9s1M6NJy87gnNbvU4+nthzy8ntDNqb57S24e90T1yReJTR57Sv1Snmn1hgMQ7PcMlVJJhRbViQh9hY2rHY9upO0AMPFlWfU8z6rX86zg3CVPVCoVzo4OPHkayOzFq8jt6ECjerXR1dEhZw71O+U6OtpYmJmS2+nDOKEu/UdQs0oF2jRLmN2rWsVy/L5uK7bWVuTJ7cTd+36s37abxvVqJzn++cvXeBzwjGljBgNQ2C0fDx8/5cyFKzwPCUVLSwtnp+THJKWlaUe9+fPuM+Y1LoOxng4v3kYDkE1fFwPdhGR2zB/XscpmQP+qbgAsP3efInY5cTQ15k10LOsuPyAo4h2Nizom2f+FR6E8Do9kcr2EyVgK2ebk0cu3nPUP5nlENNpa4Gym+fWi0pryu+jolDEkmUjGob1HMTM3pf/wnlhamXP31n26tOxH2P8H8dk62KBUfcjKDY0MmTBzODa2VkRHx+Dv+4ihvcdyaO9Rtf3qG+gzbvowBnUbmdglJDgohMmjfsNjwTjex8QyvN94YqLVVzXMKLt3/YGFhRmjxgzC2toC75t3adqoU+KgbAcHO7UuD7a2Vpy78GEKvgEDuzNgYHfOnL5IvTpt1Pa9YOE0Ro2YSlRUwpzz0dEx9OoxjFlzJ6Kvr8cQ9/EEBQVnQC2TOnvgDDnMctDWvR2mlqb43/FnfPtxvPr/YFVLO0tUH9X7RdALxrUfR9dxXVl4eBFhwWEcWL2fXUt3Jdl33+l9WTV5JTHvEv6m72PeM2/wPHpO7oWuni7Lxy3jZbBmxol4HrxANrPs/DKoBdktc/L07iMWdpzGmxcJ/drN7C3Uui79uXAXqFTUH9yKnDZmvA2LwPu4J/tmbUmy77YePdg5ZT3v/1/v2JhY1g1ZQqtJXdDR12XbuNW8Dk6+e41IH1n1PM+q1/Os4M3bSOYtW0Nw6AtyZDfhx6qV6N+jI7o6Kf9pE/AsiPDXH8ZujRrUi4W/r2fKrMW8DH+FpYUZzRvWpdev6t9p0TExTJuzhFmTRibOcGZjZcnIQb0YM20uerq6TB0zGINkputMazu8EhLWrlvVp2KeWKc4DYskTNccFPGOj4eORES/Z/Lhm7yIjCG7gS5u1jlY17YSrhbqaw9Ex8Yz/ag3MxqUQuv/O7A2MWR4zcKM//MGetpaTKpbIjFpEVmTQvVpR+fvQD7L0l/f6Dv0POrl1zf6DlU1L6jpEDTCQevfN2V/D34PzPhZgTKDOjapm6L5W+fz7rmmQ9AI/9dBmg5BI94FntF0CBoRt2+JpkPQCMMuszQdwmdVtK+h6RA+69yzjB1f+jXSMiGEEEIIIcRHpJtTyml8BOSiRYvo0KEDW7duBWDDhg0ULFiQAgUKMGrUKLXBTMmJiYkhIiJC7fFxk7UQQgghhBAifWg0mZgyZQqjRo0iKiqKQYMGMWPGDAYNGkTbtm3p2LEjK1euZPLkyV/ch4eHBzly5FB7hEdlzWZxIYQQQgghMpJGuzmtXbuWtWvX0qRJE27cuEGpUqVYt24dbdu2BaBAgQIMGzaMiRMnfnYfI0eOxN3dXa2spEu19AxbCCGEEEJ8x77DIcXpRqPJRGBgIKVLJwyWLlasGFpaWhQvXjzx9ZIlSxIYGPjFfejr66P/yWwJWgqN994SQgghhBDiu6fRZMLGxoY7d+7g6OiIr68v8fHx3Llzh0KFCgFw+/ZtrKysNBliirTu1JTWnZrh4GgLgO89fxbPXsnp4+c1HFn6qlCxDAMGdqd4icLY2lrTumUP/jh49Otv/A6YWZvTaWQnSlUvhb6hPkGPgpg/ZB5+N7/ftRMUWgp+GdiCso0rk90yJ6+DX3Jh56mEKWPFdykrnudZ9XqeWUVGRrHw9/UcP32Bl+GvKJDPlREDe1DELT+xcXEsXLGOMxeu8jQwiGzGxvxQpgSDev6KlaV54j76DpvAPT9/Xoa/IrtJNn4oXQL3Xp3VtgG4cv0mIyb9xvE9G7543H8Urlgn2Zjde3ehc9tmamXv37+ndbdB+Pj5s3PNIgrkS/uFw75k1UVfjt8P4lHYW/R1tSlmZ8rAqgVxNk+6PoRKpaLvzkucexjKnMalqZHXNkNjFd8ejSYTbdu2pUOHDjRs2JDjx48zbNgwhgwZQlhYGAqFgqlTp9KsWbOv70jDngeGMHvKIh75P0GBgsatfmHJ+tk0qtEWPx9/TYeXboyNjbjlfZcN63eweesyTYeTYYxzGDNz90y8L9xkQocJRLx8jZ2zHW9fv9V0aOnqp56NqNLuR9YNXkyg71OcirjQ4bfeRL+J4sTaPzUdnkhjWfU8z6rX88xq3PT5+Pk/wmPcEKwszDlw+G+6DRjFvk3LMTI05I7PA3p0ak3+PC5EvHnD9PnL6Tt8IttXL0jcR9mSxejWoSWWFmYEh4Yxa9FKBo2Zyqblc9SOdeLMRapVLPfV41pbWgBwcv8mtfefuXiVcR7z+LFaxST1mL1kNVYWZvj4aeYc8gwIo2WJ3BSyzUm8UsnC0/foteMiuztXw1BP/afgxqv+qC1KkUXJbE4pp9FkYuLEiRgaGnLhwgW6devGiBEjKFasGMOGDSMqKor69et/dQB2ZnDiiPq82HOnLaF1p6YUL13ku/7yOXrkFEePnNJ0GBmuWa9mvAh6wfwh8xPLggM0s+BeRnIplY8bR69y68R1AF4+DaVMg0o4Fcuj4chEesiq53lWvZ5nRtExMRw7dZYF08dTungRAPp0acepc5fYtucP+nfvyMr509TeM8q9F627DiToeQi2Ngk9Gzq0apz4up2NNV3btaD/yEnExsWpLXB34uxFRrv3TtFxASzMzdSOfeLMRcqWLEoue/U7+WcuXOH85WvMmzqaMxevptGn8+8saf6D2vNJdYtTY9ER7gS/plSuDy0094Jfs+GKP5s7VKbWkqzR00D8dxpNJrS0tBg1apRaWatWrWjVqpWGIvrvtLS0qNOgFkZGhly/clPT4Yh0UPbHclw/dY3hS0dQuFxhwp6HcWjDIY5sOazp0NKVv+d9KrWpiVVuW0IeBmHv5oRr6fzsnLJe06GJdJBVz/OPyfVcs+Lj4omPV6Kvp6tWrq+vx7Wbt5N9z9u3USgUCkxMjJN9/XXEGw4eOUHxIm5qiYSf/2Nehr+iXKlivH8f+6+P++JlOKfPX2bqmMFJyifMmM98j3EYGBh8tc4Z5W1MwrT7OQw+1PFdbByjDl5j5I9FsMiWeWIVmZ8sWpdG8rm5su3PNejr6xEV+Y4+nYby4P5DTYcl0oFNLhvqtKvL3pV72bFoO3mL5aX7xO7Excby987MtSplWjq8dC8GJoaMPz4XVbwShbYW+2dt5cq+s5oOTaSDrHqeg1zPMwtjYyOKFXZj2dotuDg5Ym6Wk0PHTnHj1j0c7ZP244+Jec/cpaupW6sq2YzVk4k5S1axZdcB3kXHUKxQARb/pj5L5N9nLlCxXCl0dXXR1dX9V8cF2P/nMYyMDKlV9UMXJ5VKxZipc2jRqB6F3fLxLChztOwpVSp+O36L4vam5LHMnlg+6+/bFLMzo3peGw1Gl3mopJtTism0R2nkod9jGlZvQ/OfOrFl7U5mLJyAa77cmg5LpAOFloIHtx6wYeZ6/G/7c3jzYY5sOUydtnU1HVq6KvVLeco0rMSaAQuY9stw1g1eTK1u9fmhaVVNhybSQVY9z0Gu55mJx9ghoFJRo1E7SlZvwKYd+6hTqyoKLfWfL7FxcQweOw2VSsXYoX2T7OfXNs3YsWYRK+ZORUtbi5GTZ6lN/Xni7EWqVfrQFSilx/3HnoNH+KV2dfT19RLLNu3cT2RUFF3bt/ivH0Oa8jjqjd+LN8xoUCqx7KTvcy4/DmNozUIajEx8q6RlIo3Exsbx5OFTAG7fvEeR4gXp2L0144ZM+8o7xbcmPCScAN8namUBvgFUqJN00N33pPHIdhxZuo+rBxJmtQn0CcDc3pKfejfi4q6sN3bme5dVz3OQ63lm4uhgx9rFvxH1LprIyCgsLcwYPNYDB7sPd8//SSQCg0NYvWB6klYJANOcOTDNmQNnRwdcnHNRq3EHbty+R/HCboS+eMnd+w+oWqHsvzruPzy9bvHwyVN+mzRSrfyy5w1u3LpHyeoN1Mpbdu1PvR+rM23skP/68fxrHke9Of0gmNWtK2JtYphYfvnJC56+iqTy/L/Uth+y9yolHMxZ1bpCRocqviGSTKQThZYWevq6X99QfHPuXr2DvauDWpm9iz0hT0M0FFHG0DPUR6VSqpUplUoUMuvHdymrnufJkeu55hkZGmBkaMDriDecv+yJe+/OwIdE4klAIKsXTidnjuxf2ROolAktEu/fxwJw8txFihdxI0d2kxQf92O7Dx6mYP68FMjrolY+cmBP+nXvkPg8JDSMHu5jmDVxJEUK5f90N+lKpVIx/dgt/vZ9zspW5bHPaaT2eudyeWhS1FGtrNmaUwypUYiqrlmz25MsWpdykkykgcFj+nDq+HmCnj7HOJsR9Zv+TLmKpejcop+mQ0tXxsZGuLg6JT53ds5FkaJuhL98zdOnX15s8Fu2b+U+Zu75jeZ9mnP24FnyFc/HT21+ZtGIRZoOLV15H/fk5z5NePnsBYG+T8lVyJmaXX7h/I4Tmg5NpIOsep5n1et5ZnXukicqlQpnRweePA1k9uJV5HZ0oFG92sTGxeE+eip37vuxeOZElEolL8JeApAjuwm6urrcvH2PW3fvU7JoIbJnz0bAsyAW/r6BXPa2FC9cAIATZy9RvdIPKT7ux95GRnLkxBmG9O2WJPZ/ZpP6h5FhQktALntbbKws0+wzSolpR7358+4z5jUug7GeDi/eRgOQTV8XA11tLLIZJDvo2ia7YZLEQ4hPSTKRBswszJi5aCJW1ha8iXiLzx1fOrfox/lTlzQdWroqUbIIh/7akvjcY8YYADZt3EmvHsM0FVa6873py7TuU+kwvCOtBrQmOCCY3yf+zqm9JzUdWrraNn41DQa3pNXkrphY5OB18EvObj7KHwt2ajo0kQ6y6nmeVa/nmdWbt5HMW7aG4NAX5Mhuwo9VK9G/R0d0dXR4FhTMibMXAWjWqY/a+1YvnEHZkkUxMNDn2KnzLF61kXfR0Viam1GxXCl6TB6Jnp4eUe+iuXTVixEDeqT4uB/789gpVCqo+2O1dP0c/qsdXo8B6Lr1glr5xDrFaVgklyZCEt8Rheo7bMfJZ1la0yFoxPOol5oOQSOqmhfUdAga4aCVNe8W/R54TtMhaEQdmxKaDkEjfN4913QIGuH/OkjTIWjEu8AzX98oDR09eY6Fv69j/6YVGXrcT8XtW6LR42uKYZdZmg7hs0raVtJ0CJ91LShzzaIoszkJIYQQIksyMjTAvVfScRBCiJSTbk5CCCGEyJIqliv19Y2EEF8kyYQQQgghhBAf+Q5HAaQb6eYkhBBCCCGESBVJJoQQQgghhBCpIt2chBBCCCGE+IgS6eaUUtIyIYQQQgghhEgVSSaEEEIIIYQQqSLdnIQQQgghhPiISro5pZi0TAghhBBCCCFSRZIJIYQQQgghRKpINychhBBCCCE+opRF61JMWiaEEEIIIYQQqSLJhBBCCCGEECJVpJuTEEIIIYQQH5HZnFJOWiaEEEIIIYQQqSLJhBBCCCGEECJVJJkQQgghhBBCpIqMmRBCCCGEEOIjMjVsyknLhBBCCCGEECJVJJkQQgghhBBCpIp0cxJCCCGEEOIjMjVsyknLhBBCCCGEECJVJJkQQgghhBBCpIp0cxJCCCGEEOIjMptTyn2XyUR2HUNNh6ARkXpZs96nwu5oOgSNsDEy03QIIgNl1fM8KjZG0yGIDOSct76mQ9CIR74HNB2CEKkm3ZyEEEIIIYQQqfJdtkwIIYQQQgiRWjKbU8pJy4QQQgghhBAiVSSZEEIIIYQQQqSKdHMSQgghhBDiIzKbU8pJy4QQQgghhBAiVSSZEEIIIYQQQqSKdHMSQgghhBDiIzKbU8pJy4QQQgghhBAiVSSZEEIIIYQQQqSKdHMSQgghhBDiIyqVUtMhfDOkZUIIIYQQQgiRKpJMCCGEEEIIIVJFujkJIYQQQgjxEaXM5pRi0jIhhBBCCCGESBVJJoQQQgghhBCpIt2chBBCCCGE+IhKJd2cUkpaJoQQQgghhBCpIsmEEEIIIYQQIlWkm5MQQgghhBAfkdmcUk5aJoQQQgghhBCpIsmEEEIIIYQQIlWkm5MQQgghhBAfkdmcUk5aJoQQQgghhBCpIsnEZzTv1Jj9l7dz7uEx1v6xnELF3VL0vtoNa3I16Ayz1kxTK2/XsxVHvPdzxHs/bXu0VHutUImCbDi8Em1t7TSLP7U6dm3NxRtHeBB0jQNHt1C8ZJHPbtumQzN2H1rP7Yfnuf3wPFv3rEyyfY++nbhx/zQ37p+mR5+Oaq+VKFWEP09szxT17ta9Pd53ThMSdpe/T+6mVKmin922gFteNmxagved00RE+tO7z69JtmnRsiF3fM7y+Ol1pk0frfaao6M917yOY2KSLc3r8W+17dycvz334x1wjh1/raVoiUKf3bZ2versOrqeq34n8Hp0hn0nNtGweV21bTr3bseFO0e4cOcInXu1VXutaMlC7D62IVP8vbOqrHqei6zle/8ei4yMYvq8ZfzYpCOlqjekbQ93vO/6JL4eFfWOqbOXULNRO0pVb0iDtt3ZtuePL+6zU99hFK5YJ8mj15Bxidus2byTKvVaUaVeK9Zu2aX2/pu379Gicz/i4uLTtrLimyDdnJLxY4MaDJrQF4/hs7l1/Q6tuzVn4ZbZNK3UhvCwV599n62DDQPG9ebaRS+18jxurvQc1oWB7YejUCiYu34GF09d4cE9f7S1tRk1YzBTh/5GfLxm/xE2aPwz46cMY4T7RK57etO1Z3s27VpOlTK/EPbiZZLty1cqw75dh7h6yYvomBj6DOjC5t0rqFG+Ic+DQnArlI+hI/vSsVUfFApYu3UJp06c594dX7S1tZk+ZzzDBk7QeL2bNK3HtOmjGDhgLFeveNG7z6/s3reOUiVq8SI0LMn2RoaGPHr0hL17DuExY0yS183MTVm42INePYby6GEAO3av5PTJC/z1198AzJk3mfHjZvLmzdt0r9uX1G30IyMnDWLcUA9ueN6iU4/WrNq+kJ/KN+Xli/Ak278Kj2DZ3NX4+z7ifWws1WtXxmPBOMJevOTsiYvkL5iHAcN70qPtQBQKBcs3zeXsyYvcv/sAbW1tJs0axVj3qRr/e2dVWfU8F1lLVvgeGzd9Pn7+j/AYNwQrC3MOHP6bbgNGsW/TcqwtLZi5cAWXPG/gMW4Y9rbWnL/syZTZi7GyMKd65R+S3ef8aWOJjY1NfP7q9RuadurNT9UrA+Dj95DFKzey+LcJqFQq+gydQIWyJcnnmpu4uHgm/baQ8cP7o6Pz/dwsUko3pxSTlolktO3Rkr2bDnBg2yEe3n+Ex7BZRL+LpkHrep99j5aWFlMWj2PFrNU8exyk9ppzHkd87zzg6rlrXDnrid/dBzjncQSgfe/WXLt0gzs37qVrnVKiW++ObF6/k+2b9+Lr84AR7hN5FxVNq3ZNkt2+X/fhrFu1ldu37vHA9yFD+o9DS6FFpSoJF6s8eXNz9/Z9zp25xNnTl7h7+z558uYGoFf/X7l4/io3rt/KsPp9Tt9+XVi3ZhubNuzE554fA/uP4d27d7Tv0DzZ7a9du8nY0dPZtfMgMTHvk7ye2zkXERFv2L3rD65du8npUxfJV8AVgGbN6xMbG8uB/YfTtU4p8WvPtmzfuJfdWw7w4P5Dxg3xIPpdNM3aNEh2+8vnPTl66CQPfB8R8OgZ61dsxeeOH6XKFQfAJa8zPnd8uXj2KhfOXMHnjh8ueZ0B6Nq3PVcuXMPb604G1U58Kque5yJr+d6/x6JjYjh26izufbpQungRHB3s6NOlHY4OdomtD17ed2lYpxZlSxbF3taa5g3rkj+Pi1rrxadyZDfBwtws8XHhyjUM9PWpXSMhmXj4OIB8rs6UK1WcH0qXIF+e3Dx8/BRIaLEoVbwIRdzyp/8HIDIlSSY+oaOrQ4Gi+bh0xjOxTKVScfnMVYqW+nwXkK7unXgZFs6+LUmbEv3u+ePokgtreytsHKxxdMnFA5+H2DvZUb9lXZZO/z1d6vJv6OrqUrR4Qc6cvJBYplKpOHvqIqXKFEvRPgyNDNDR1eHVq9cA3L3jS+48ztg52GKfyxaXPE7cu+uHk3MuWrZpzMypC9KlLv+Grq4uxUsU5sSJc4llKpWKkyfOUbZsiVTt88GDRxgaGlC0WEFMTXNQslRRbt+6R86c2RkzdhBD3CekTfD/ga6uDoWKFeD8qUuJZSqVivOnL1O89Oe7vnysfOUy5HZ14sqF6wDcv+OHs6sjtvbW2DnY4OzqiO/dB+RytqdJ6/rMm7Y0Xeoivi6rnucia8kK32PxcfHExyvR19NVK9fX1+PazdsAFC/ixomzFwkOfZHw+8XzBo+ePKNC2ZIpPs7ug0eoU6sqRoYGAOR1deZRwDOCnocQ+DyYxwHPyOPixJOngew9dJT+3TqkXSXFN0e6OX0ip1kOdHR0eBmq3hz6MjQc5zxOyb6nWNkiNGxdjzY/dk729Ue+j1kyfQVLts4FYLHHch75PmbxtrksmLKU8tXK0X3Ir8TFxjFr3AKuX7yRtpVKATPznOjo6CTp7hAaGobr/+/CfM3oCYMJfh6SeCH3u+/PjMnz2Lo7IVmaPmkefvf92bpnJVPGz6ZajUq4j+hNXGwc40Z6cOm855d2ny7MzU3R0dEhNOSFWnlIyAvy5XNN1T5fvYqgZ/ehLP99NoYG+mzdvIfjx86waMl0VizfgJOzA1t3rEBXVwePqQvYt/fPtKjKv2Jq9s/fW/08fxHyEpc8zp99XzYTY854/4menh7K+HgmDJ+RmJA88H3EnKlLWLNzCQCzpyzmge8j1u5czG8TF1CpRnn6De1OXFwcU0bP4ur/kxCR/rLqeS6ylqzwPWZsbESxwm4sW7sFFydHzM1ycujYKW7cuoejvS0Aowb1YsKMBdRs1B4dbW0UWgomDB9A6eKfHzvyMe87Pvj6P2LSyIGJZa7Ojgzo0YluA0cBMKBHJ1ydHek6YCTuvTtz7rInS1ZtQkdHmxEDe6b4WJmZShatSzFJJv4jI2NDJi0cw9ShM3n98vVnt9u1fh+71u9LfF6v+c9ERUbhffUWu85uokOd7ljZWjJt6QQalGtB7PvYz+4rM+ozsCsNmtShef1Oal0iNqzZzoY12xOfN2/VkLdvI/G8coPTVw5Sr0ZLbO1sWLJyFuWL1+b9N1bvzzl44AgHDxxJfF6xUlkKFy7A0MET8PI+QedOAwgODuXEqb2cO3c52T7rmVHk2ygaVm+DsbER5SuXYeSkQQQ8esbl/3+Bbl23i63rPgzMa9yyHpFvo7h+1ZvDF3bRtHYHbGytmLtiGjVKNfjmznOh7ns9z0XW9K18j3mMHcI4j7nUaNQObW0t3PLloU6tqtzx8QNg08793Lx9j0UzxmNrY42nlzdTZy/BysKc8mW+3hK5++Bh8ro6U6Sgerello3r0bLxh+7e+w4dxcjIkGKF3ajfuhtbV84nOOQFQ8dN5/DONejp6aVtxUWmJcnEJ169fE1cXBxmlmZq5WaWpoSFJP0idHC2x97RjjnrpieWaWkl9B67GHCCppXa8uxxoNp7cpjloNvgX+neuC+FSxbkiX8AAQ+fEvDwKTq6OgndoO75p0PtPu9l2Cvi4uKwsDRXK7e0NE9yN/NTPfp2os/ALrRq1JW7t+9/djtTs5wMGt6LpvU6UqJ0Ufz9HvPQ/wkP/Z+gq6uDSx5n7t3xTZP6pFRYWDhxcXFYWlmolVtZWRAcHJomx9DT02PO3El07zYYF1dndHS0OXf2MgAP/B5SunQx/vrz7zQ5VkqFv/zn761+nltYmRGazHn+D5VKxZOHCf1k7966j2u+3PQY2CkxmfiYqVkO+g7pRpsG3SlWsjCPHjzhsX8Aj/0D0NXRIberI/fvPkjbiolkZdXzXGQtWeV7zNHBjrWLfyPqXTSRkVFYWpgxeKwHDnY2RMfEMH/5OuZ7jKVqhbIA5M+Tm3u+/qzdsuuryUTUu2j+PHaKPl3bf3G78FevWbpmM2sXz8T7tg9OuewTH3HxcTwKeEY+15S1Bolvn4yZ+ERcbBz3bt6nbKVSiWUKhYIylUpx0/N2ku0f+T2hZbUOtK3VOfFx+sg5rp67TttanQkODEnynsET+7FlxXZCgkLR0tZCR+dDTqetrY22dsb/WWJjY7npdYdKVT/M9KBQKKhUpRyeVz7f7apX/84MHNqTds16cNMr6efzsYnThvP7kvUEBQajraWFru5H9dbRRlsr42eBiI2Nxev6LapVq5BYplAoqFqtApcvp003nGHD+3Ds2GlueN1GW1sLHe0P9dbR1dHIVKmxsXHcvnGP8lXKJpYpFArKVy6D19WbKd6PQkvrs3efRk0ezNrlWwgOCkmo96d/b5kiNsNk1fNcZC1Z7XvMyNAASwszXke84fxlT2pU/oG4uDji4uLQUijUttXW1kKpVH51n0f+PsP72Fjq/1Tji9vNWLCC9i0aYWNlSbwynri4uMTX4uOVKOO/fqzMTqVSZdpHZiMtE8nYtHwbE+aP4s6Ne9z2ukubbs0xNDLkwNZDAExcMJqQ5y9YPG0572Pe88Dnodr737xOmArx03KAclVK4+iSi/H9pwJwx+seTnmcqFCjHNZ2ViiV8Tx+8CSda5i835esY+6Sady8fpvr17zp1qs9hsaGbNu0B4D5S6cRFBTC9EnzAOg9oAtDRvalb7dhBDwJTLzrGRkZRVRklNq+K1crT25XZwb0SuhveeP6LVzz5qZ6rUrY2duijFfywC/p55URFi1cxbIVs7h+3ZurV2/Qu8+vGBkZsXHDTgCW/z6LwMBgJo7/DUgY5FfALQ8Aenq62NpZU6SoG5Fvo/D3f6y27/wF8tCk6S9UqvALAPd9HqBUKmnfoQUhwaHky+fKNc+U/3hPS2uWbWLGwgnc8rrDzWu36dijDYZGhuzacgCAmYsmEvw8hNlTFgPQY0AnvL3uEvDoKXp6ulStVZGGzesyYZhHkn1XqFoOZ1dHhvUdD8DN63dwyeNElZoVsLWzRhmvxN/vcZL3ifSTVc9zkbVkhe+xc5c8UalUODs68ORpILMXryK3owON6tVGV0eH0iWKMHvxKvT19bGzseLqdW/2/3mcof27Je5j5ORZWFmYM6iX+voxuw8epkbl8uTMkf2zxz9/+RqPA54xbcxgAAq75ePh46ecuXCF5yGhaGlp4ezkkD6VF5mSJBPJOLr/b0zNc9JzWBfMLc24f9uPfm2GJM69b2NvjVL57zNDfQM9hk0dxMie4xMzy5CgUH4bM49xc0cS+z6W8f2nEROddBrGjLB/z1+YWZgxZFRfLK0suO19j3bNeiT2c7ZzsFWrd4fOLdHX1+P39fPU9jN7+mLmzFiS+NzAQJ+pM0fTq/OQxHoHBQYzdvg05iyayvv37xnYexTR0THpX8lk7N71BxYWZowaMwhrawu8b96laaNOic3iDg52and0bG2tOHfhw6xdAwZ2Z8DA7pw5fZF6ddqo7XvBwmmMGjGVqKh3AERHx9CrxzBmzZ2Ivr4eQ9zHExQUnAG1TOrQ3qOYmZvSf3hPLK3MuXvrPl1a9iPs/4OybR1sUKo+1NvQyJAJM4djY2tFdHQM/r6PGNp7LIf2HlXbr76BPuOmD2NQt5GJf+/goBAmj/oNjwXjeB8Ty/B+44nR0N87q8qq57nIWrLC99ibt5HMW7aG4NAX5Mhuwo9VK9G/R0d0/9/LYdbEEcxbtpYRE2fyOuINdjZW9O/RkZaNPox3CAoOSdJ68fDxU67dvM2KuVM/e+zomBimzVnCrEkjE7t021hZMnJQL8ZMm4ueri5TxwzGQF8/HWouMiuFKjO2l/xHpW0razoEjQiKTrogT1bw5v07TYegETZGZl/f6Dvk/zro6xt9h4x0s+aXc1SsJJ1ZibVxTk2HoBGPfA9oOgSN0LVw0XQIn2WZI/OumxH6+vNrhmiCRlsmgoKCWLp0KWfPniUoKAgtLS1cXFxo1KgRnTp1kj62QgghhBBCZGIaG4B99epV3NzcOHToELGxsfj6+lKqVCmMjY0ZMmQIVapU4c2bN1/dT0xMDBEREWqPj7tmCCGEEEIIIdKHxpKJgQMHMmjQIK5evcqZM2dYu3Yt9+/fZ+vWrfj7+xMVFcWYMWO+uh8PDw9y5Mih9nj+NiADaiCEEEIIIb5Hmp6x6VuazUljYyaMjIy4desWLi4J/eWUSiUGBgYEBARgbW3N0aNH6dSpE8+ePfvifmJiYoiJUe9TWy1fHbQUWW/WWxkzkbXImImsRcZMiKxAxkxkLZl5zIRF9nyaDuGzXkR8fi0UTdDYmAkrKyuCgoISk4ng4GDi4uLInj1hOrK8efPy8uXXfxzr6+uj/8msAVkxkRBCCCGEECKjaexXd6NGjejZsyd//fUXJ06coG3btlStWhVDQ0MAfHx8sLe311R4/0nHvm25GnQG90n9NB1Kuuo7qCt/HN+Gz5PL3Lh/mlUbF+Cax1nTYaW7ChXLsG3H7/j4XSAi0p96v/yo6ZAyROtOTdl/cgvX/E9yzf8k2w6tpkrNCl9/o/gmZdXzXGQtmeV7LDIyiunzlvFjk46Uqt6Qtj3c8b77YcaeFy/DGT1lNtUbtKV0jUb0cB/D44CkPTe8bt2lc78RlKnZiHI/NqFj76FEf9J7IzomhjI1G/HkaSChL14ybMIM6rXqSpFKdZk+b1my8R3++wz1W3ejZPUGNG7fi9PnL6u9rlKpWPT7eqo1aEOp6g3pOmBkkvju+PjRdcAoyv/UjIp1WjBhxnwiIyNT+5GlO6VKlWkfmY3GkokpU6ZQsGBB6tevT82aNYmJiWH16tWJrysUCjw8ki6GldkVLFaAJu0bcP+2n6ZDSXc/VCjDupVbqF+7Na2bdENXV4fNu3/H0MhQ06GlK2NjI25532XwoPGaDiVDPQ8MYfaURTSu1Z4mtTpw8exVlqyfTZ78mbeZWqReVj3PRdaSWb7Hxk2fz4Ur1/EYN4Q9G5ZSoWxJug0YRXDoC1QqFQNGTOJp4HMWzBjHjjWLsLOxouuAUUS9i07ch9etu/R0H0OFsiXZ8vt8tq5cQOum9ZOsJ3Hh8nVsbaxwdLDjfWwspjlz0L1jK/LnyZ1sbNe97zBswnQa//ITO9Ysokbl8vQfORlf/0eJ26zetINNO/czbmg/Nv8+D0MDA3q4jyEmJmHdrJDQMLoOGImjgy2bV8xj2ZzJ+D18wsiRI9P+wxQZTuPrTERHRxMXF0e2bNnSbJ+aWmfC0MiQjUdWMWPkbLoM7IjPbV/mjFuYYcfX9JgJM3NTvP3O0qReBy6d98yw42pyzEREpD+tW/bgj4NHv75xGssMYyYu3z/OzIkL2LlpX4YdU8ZMZDxNnucyZiJr0fSYCc18j6nIYatiwfTxVK1QNrG0Red+VPqhNA1+rskvrbuxd8My8rg4AQnjTKvVb0P/Hp1o1uBnANp0G0j5MiXp173DF4821mMuZjlzMKhXZ7XyTn2HUSCPCyMG9lQrHzzWg3fR0Sz5bWJiWZtuA8mf15Xxw/qhUqmo3rAtHVs14dc2zYCEhfWq1m/NlNHu1K1VjR37DrHw9w2c3L8pcbG7+w8e0qRDb44cOYKTk1MqP7v0Y2aSV9MhfNbLN76aDkGNxgcXGBgYpGkioUnDPQZx7vgFLp/JuB/SmUn27CYAvAp/reFIRHrT0tKiXqPaGBkZcv3KTU2HI4QQaUIj32MKiI9Xoq+nq1asr6/HtZu3eR8bC4DeR69raWmhq6fL9Zu3AQgLf8XNOz6YmeagbQ93qvzSmk59hnLtxi21fSqVSk6du0z1yuVTHN6N23cpX7q4WlmFcqW4cfsuAE8Dn/MiLJzypUskvm6SzZiiBfNz49Y9AN6/j0VXVycxkQASV8n29Mycv5k0PWPTtzSbk8aTie9F7YY1KVAkH4umLdd0KBqhUCiY6DGcyxev4XP3++/ilVXlc3Pl+qPT3Hp2nomzRtKn01Ae3H+o6bCEEOI/09j3mEpBscJuLFu7hZDQMOLj4zlw+G9u3LrHixcvye2UC1trK+YvX8vriDfExsayauN2gkNeEBqW0CPh6bOEFtslqzfRrMHPLJ8zGbd8eejyydiFG7cTftwXLZjy1Z1fhIVjbmaqVmZhZsqLsPCE118m/P+n25h/tE25UsUJCwtn9aadxMbG8jriDXOXJnRtDw0NTXEsInOSZCINWNtZMXhyf8b0mcz7//cPzGqmzRpDfre89O4yRNOhiHT00O8xDau3oflPndiydiczFk7ANV/y/WyFEOJbosnvMY+xQ0ClokajdpSs3oBNO/ZRp1ZVFFpa6OroMG/aGB49eUbFOi0oXbMRl6/dpPIPpRPv9P8zKLd5w7o0rlcbt3x5GD6gB86ODuw+eCTxOCfOXKBqxbJqLQQZIY+LE1PHDGbd1t2UrtmIag3aYG9rg4WFBYpPxnSIb4/Gpob9nhQomh9zSzM2HlmZWKajo0OJH4rR4tcmVHCqiVL5/a7KPWXmaGr9VJUmdTsSFBis6XBEOoqNjePJw6cA3L55jyLFC9Kxe2vGDZmm4ciEECL1NP095uhgx9rFvxH1LprIyCgsLcwYPNYDBzsbAAoVyMuudYt58zaS2NhYzExz0rrbQAoVSOjXb2meMIbONbej2n5dnBx5HhyS+PzE2UsM6vXrv4rNwtyUsP+3PvzjxctwLMwTWiIs/t8iEfYyHEuLD2P5wl6Gkz+va+LzerWrU692dV68DMfIwAAUCtZv20OuXLn+VTwZRUnm606UWUnLRBq4cuYqLat1oG2tzomP2153+Wv3UdrW6vzdJxI/16tJiwadCXjy5QUGxfdHoaWFnr7u1zcUQohMKjN9jxkZGmBpYcbriDecv+xJjco/qL1uks0YM9OcPA54xu17vlSvlPC6va01VhbmPHr8VG37xwFPsbWx/v9/PyPoeQjly5Tg3yhWyI2Lnl5qZReuXKdYITcAHOxssDA3VdvmbWQkN+/4UKxwgST7szAzxcjIkL+On0JfX5+KFSv+q3hE5iMtE2kgKvIdD3zU+41HR0XzKvx1kvLvybRZY2nUrC6d2/Tj7dsoLK0sAHgT8Ybo6O93BhZjYyNcXD/MPOHsnIsiRd0If/map08DNRhZ+ho8pg+njp8n6OlzjLMZUb/pz5SrWIrOLb7v9VSyqqx6nousJbN8j5275IlKpcLZ0YEnTwOZvXgVuR0daFSvNpCwzoNpzhzYWlvi6/+I6fOWUaNyeSqWKwUkjPf4tU1TFq/aSP68uSmQ15V9h47x8PFT5kwZDcDfZy7wQ+niGBoYqB373v0HAERFRRP+6jX37j9AV1cH19wJ//7btWjIr32GsXbLLqpUKMufx05x+54vE4b3Tzx2+xaNWLFuK04O9tjbWbPo9w1YWZhTs/KHtYg279xP8SIFMTI04MKV68xevIrBQ4YkLlYsvl0anxo2PWhqatiPLd+14LufGvZZ+O1kywf1Hs32LXszLI6Mnhq2UuVyHPprS5LyTRt30qvHsAyLI6Onhp06byzlK5fBytqCNxFv8bnjy4qF6zl/6lKGxiFTw2aMzHKey9SwWUtGTw2bWb7Hli0byrxlawgOfUGO7Cb8WLUS/Xt0xCSbMQAbd+xjzeadhL18haW5GQ1+rknPX1ujq6veMrxyw3a27D5ARMQb8uVxYXDvzpQsVhiADr2G0KBOrcSpZP9RuGKdJPHY2VhxZNe6xOeH/z7DwhXrePY8GCcHe9x7d6bKR9PYqlQqFq/cwI79f/Hm7VtKFi3EmMF9cHZ0SNxm5ORZnD5/mah378jtlItOrZvStF23//7hpZPsxpl3DaWISH9Nh6BGkonviKbXmdAUTa4zoUmZYZ0JTZBkImuRZCJr0fQ6E5ryyPdAuu4//NVrqjdoy7G9GxLHOGQGuhaZ9we7JBMpJ2MmhBBCCCG+Y68j3jC0X7dMlUiI74eMmRBCCCGE+I45OzqodTkSX6f8/jrupBtpmRBCCCGEEEKkiiQTQgghhBBCiFSRbk5CCCGEEEJ8RCWL1qWYtEwIIYQQQgghUkWSCSGEEEIIIUSqSDcnIYQQQgghPiKzOaWctEwIIYQQQgghUkWSCSGEEEIIIUSqSDcnIYQQQgghPqKSbk4pJi0TQgghhBBCiFSRZEIIIYQQQgiRKtLNSQghhBBCiI/IonUpJy0TQgghhBBCiFSRZEIIIYQQQgiRKtLNSQghhBBCiI/IbE4pJy0TQgghhBBCiFSRZEIIIYQQQgiRKtLNSQghhBBCiI9IN6eUk5YJIYQQQgghRKpIMiGEEEIIIcR3avHixTg7O2NgYEC5cuW4fPlymu5fkgkhhBBCCCE+osrEj39j27ZtuLu7M378eK5du0axYsX46aefCAkJ+Zd7+jxJJoQQQgghhPgOzZkzh27duvHrr79SsGBBli1bhpGREatXr06zY0gyIYQQQgghxDciJiaGiIgItUdMTEyS7d6/f4+npye1atVKLNPS0qJWrVpcuHAh7QJSiTQTHR2tGj9+vCo6OlrToWQoqbfUOyuQeku9swKpt9RbZH7jx49P0vtp/PjxSbZ79uyZClCdP39erXzo0KGqsmXLplk8CpVK5r5KKxEREeTIkYPXr1+TPXt2TYeTYaTeUu+sQOot9c4KpN5Sb5H5xcTEJGmJ0NfXR19fX60sMDAQe3t7zp8/T/ny5RPLhw0bxqlTp7h06VKaxCPrTAghhBBCCPGNSC5xSI6FhQXa2toEBwerlQcHB2NjY5Nm8ciYCSGEEEIIIb4zenp6lCpViuPHjyeWKZVKjh8/rtZS8V9Jy4QQQgghhBDfIXd3dzp27Ejp0qUpW7Ys8+bNIzIykl9//TXNjiHJRBrS19dn/PjxKWp6+p5IvaXeWYHUW+qdFUi9pd7i+9KyZUtCQ0MZN24cz58/p3jx4vz1119YW1un2TFkALYQQgghhBAiVWTMhBBCCCGEECJVJJkQQgghhBBCpIokE0IIIYQQQohUkWRCCCGEEEIIkSqSTKShxYsX4+zsjIGBAeXKlePy5cuaDildnT59mvr162NnZ4dCoWDv3r2aDilDeHh4UKZMGUxMTLCysqJRo0b4+PhoOqx0t3TpUooWLUr27NnJnj075cuX588//9R0WBlu+vTpKBQKBg4cqOlQ0tWECRNQKBRqjwIFCmg6rAzx7Nkz2rVrh7m5OYaGhhQpUoSrV69qOqx05ezsnOTvrVAo6NOnj6ZDS1fx8fGMHTuW3LlzY2hoiKurK5MnTyYrzE3z5s0bBg4ciJOTE4aGhlSoUIErV65oOizxDZJkIo1s27YNd3d3xo8fz7Vr1yhWrBg//fQTISEhmg4t3URGRlKsWDEWL16s6VAy1KlTp+jTpw8XL17k6NGjxMbGUrt2bSIjIzUdWrpycHBg+vTpeHp6cvXqVWrUqEHDhg25ffu2pkPLMFeuXGH58uUULVpU06FkiEKFChEUFJT4OHv2rKZDSnfh4eFUrFgRXV1d/vzzT+7cucPs2bMxNTXVdGjp6sqVK2p/66NHjwLQvHlzDUeWvmbMmMHSpUtZtGgRd+/eZcaMGcycOZOFCxdqOrR017VrV44ePcqGDRvw9vamdu3a1KpVi2fPnmk6NPGtUYk0UbZsWVWfPn0Sn8fHx6vs7OxUHh4eGowq4wCqPXv2aDoMjQgJCVEBqlOnTmk6lAxnamqqWrlypabDyBBv3rxR5c2bV3X06FFV1apVVQMGDNB0SOlq/PjxqmLFimk6jAw3fPhwVaVKlTQdhsYNGDBA5erqqlIqlZoOJV3Vq1dP1blzZ7WyJk2aqNq2bauhiDJGVFSUSltbW3Xw4EG18pIlS6pGjx6toajEt0paJtLA+/fv8fT0pFatWollWlpa1KpViwsXLmgwMpERXr9+DYCZmZmGI8k48fHxbN26lcjISMqXL6/pcDJEnz59qFevntq/8++dr68vdnZ2uLi40LZtW548eaLpkNLd/v37KV26NM2bN8fKyooSJUrw+++/azqsDPX+/Xs2btxI586dUSgUmg4nXVWoUIHjx49z//59AG7cuMHZs2epU6eOhiNLX3FxccTHx2NgYKBWbmhomCVaIEXakhWw08CLFy+Ij49PspqgtbU19+7d01BUIiMolUoGDhxIxYoVKVy4sKbDSXfe3t6UL1+e6OhosmXLxp49eyhYsKCmw0p3W7du5dq1a1mqP3G5cuVYu3Yt+fPnJygoiIkTJ1K5cmVu3bqFiYmJpsNLN/7+/ixduhR3d3dGjRrFlStX6N+/P3p6enTs2FHT4WWIvXv38urVKzp16qTpUNLdiBEjiIiIoECBAmhraxMfH8/UqVNp27atpkNLVyYmJpQvX57Jkyfj5uaGtbU1W7Zs4cKFC+TJk0fT4YlvjCQTQvwHffr04datW1nmTk7+/Pnx8vLi9evX7Ny5k44dO3Lq1KnvOqEICAhgwIABHD16NMldvO/Zx3dmixYtSrly5XBycmL79u106dJFg5GlL6VSSenSpZk2bRoAJUqU4NatWyxbtizLJBOrVq2iTp062NnZaTqUdLd9+3Y2bdrE5s2bKVSoEF5eXgwcOBA7O7vv/u+9YcMGOnfujL29Pdra2pQsWZLWrVvj6emp6dDEN0aSiTRgYWGBtrY2wcHBauXBwcHY2NhoKCqR3vr27cvBgwc5ffo0Dg4Omg4nQ+jp6SXetSpVqhRXrlxh/vz5LF++XMORpR9PT09CQkIoWbJkYll8fDynT59m0aJFxMTEoK2trcEIM0bOnDnJly8ffn5+mg4lXdna2iZJjt3c3Ni1a5eGIspYjx8/5tixY+zevVvToWSIoUOHMmLECFq1agVAkSJFePz4MR4eHt99MuHq6sqpU6eIjIwkIiICW1tbWrZsiYuLi6ZDE98YGTORBvT09ChVqhTHjx9PLFMqlRw/fjzL9CfPSlQqFX379mXPnj38/fff5M6dW9MhaYxSqSQmJkbTYaSrmjVr4u3tjZeXV+KjdOnStG3bFi8vryyRSAC8ffuWBw8eYGtrq+lQ0lXFihWTTPV8//59nJycNBRRxlqzZg1WVlbUq1dP06FkiKioKLS01H8KaWtro1QqNRRRxjM2NsbW1pbw8HAOHz5Mw4YNNR2S+MZIy0QacXd3p2PHjpQuXZqyZcsyb948IiMj+fXXXzUdWrp5+/at2l3Khw8f4uXlhZmZGY6OjhqMLH316dOHzZs3s2/fPkxMTHj+/DkAOXLkwNDQUMPRpZ+RI0dSp04dHB0defPmDZs3b+bkyZMcPnxY06GlKxMTkyTjYYyNjTE3N/+ux8kMGTKE+vXr4+TkRGBgIOPHj0dbW5vWrVtrOrR0NWjQICpUqMC0adNo0aIFly9fZsWKFaxYsULToaU7pVLJmjVr6NixIzo6WePnQf369Zk6dSqOjo4UKlSI69evM2fOHDp37qzp0NLd4cOHUalU5M+fHz8/P4YOHUqBAgW+698tIp1oejqp78nChQtVjo6OKj09PVXZsmVVFy9e1HRI6erEiRMqIMmjY8eOmg4tXSVXZ0C1Zs0aTYeWrjp37qxycnJS6enpqSwtLVU1a9ZUHTlyRNNhaURWmBq2ZcuWKltbW5Wenp7K3t5e1bJlS5Wfn5+mw8oQBw4cUBUuXFilr6+vKlCggGrFihWaDilDHD58WAWofHx8NB1KhomIiFANGDBA5ejoqDIwMFC5uLioRo8erYqJidF0aOlu27ZtKhcXF5Wenp7KxsZG1adPH9WrV680HZb4BilUqiywzKMQQgghhBAizcmYCSGEEEIIIUSqSDIhhBBCCCGESBVJJoQQQgghhBCpIsmEEEIIIYQQIlUkmRBCCCGEEEKkiiQTQgghhBBCiFSRZEIIIYQQQgiRKpJMCCGEEEIIIVJFkgkhhMhkOnXqRKNGjRKfV6tWjYEDB2Z4HCdPnkShUPDq1asMP7YQQohvgyQTQgiRQp06dUKhUKBQKNDT0yNPnjxMmjSJuLi4dD3u7t27mTx5coq2lQRACCFERtLRdABCCPEt+fnnn1mzZg0xMTEcOnSIPn36oKury8iRI9W2e//+PXp6emlyTDMzszTZjxBCCJHWpGVCCCH+BX19fWxsbHBycqJXr17UqlWL/fv3J3ZNmjp1KnZ2duTPnx+AgIAAWrRoQc6cOTEzM6Nhw4Y8evQocX/x8fG4u7uTM2dOzM3NGTZsGCqVSu2Yn3ZziomJYfjw4eTKlQt9fX3y5MnDqlWrePToEdWrVwfA1NQUhUJBp06dAFAqlXh4eJA7d24MDQ0pVqwYO3fuVDvOoUOHyJcvH4aGhlSvXl0tTiGEECI5kkwIIcR/YGhoyPv37wE4fvw4Pj4+HD16lIMHDxIbG8tPP/2EiYkJZ86c4dy5c2TLlo2ff/458T2zZ89m7dq1rF69mrNnz/Ly5Uv27NnzxWN26NCBLVu2sGDBAu7evcvy5cvJli0buXLlYteuXQD4+PgQFBTE/PnzAfDw8GD9+vUsW7aM27dvM2jQINq1a8epU6eAhKSnSZMm1K9fHy8vL7p27cqIESPS62MTQgjxnZBuTkIIkQoqlYrjx49z+PBh+vXrR2hoKMbGxqxcuTKxe9PGjRtRKpWsXLkShUIBwJo1a8iZMycnT56kdu3azJs3j5EjR9KkSRMAli1bxuHDhz973Pv377N9+3aOHj1KrVq1AHBxcUl8/Z8uUVZWVuTMmRNIaMmYNm0ax44do3z58onvOXv2LMuXL6dq1aosXboUV1dXZs+eDUD+/Pnx9vZmxowZafipCSGE+N5IMiGEEP/CwYMHyZYtG7GxsSiVStq0acOECRPo06cPRYoUURsncePGDfz8/DAxMVHbR3R0NA8ePOD169cEBQVRrly5xNd0dHQoXbp0kq5O//Dy8kJbW5uqVaumOGY/Pz+ioqL48ccf1crfv39PiRIlALh7965aHEBi4iGEEEJ8jiQTQgjxL1SvXp2lS5eip6eHnZ0dOjofLqPGxsZq2759+5ZSpUqxadOmJPuxtLRM1fENDQ3/9Xvevn0LwB9//IG9vb3aa/r6+qmKQwghhABJJoQQ4l8xNjYmT548Kdq2ZMmSbNu2DSsrK7Jnz57sNra2tly6dIkqVaoAEBcXh6enJyVLlkx2+yJFiqBUKjl16lRiN6eP/dMyEh8fn1hWsGBB9PX1efLkyWdbNNzc3Ni/f79a2cWLF79eSSGEEFmaDMAWQoh00rZtWywsLGjYsCFnzpzh4cOHnDx5kv79+/P06VMABgwYwPTp09m7dy/37t2jd+/eX1wjwtnZmY4dO9K5c2f27t2buM/t27cD4OTkhEKh4ODBg4SGhvL27VtMTEwYMmQIgwYNYt26dTx48IBr166xcOFC1q1bB0DPnj3x9fVl6NCh+Pj4sHnzZtauXZveH5EQQohvnCQTQgiRToyMjDh9+jSOjo40adIENzc3unTpQnR0dGJLxeDBg2nfvj0dO3akfPnymJiY0Lhx4y/ud+nSpTRr1ozevXtToEABunXrRmRkJAD29vZMnDiRESNGYG1tTd++fQGYPHkyY8eOxcPDAzc3N37++Wf++OMPcufODYCjoyO7du1i7969FCtWjGXLljFt2rR0/HSEEEJ8DxSqz43yE0IIIYQQQogvkJYJIYQQQgghRKpIMiGEEEIIIYRIFUkmhBBCCCGEEKkiyYQQQgghhBAiVSSZEEIIIYQQQqSKJBNCCCGEEEKIVJFkQgghhBBCCJEqkkwIIYQQQgghUkWSCSGEEEIIIUSqSDIhhBBCCCGESBVJJoQQQgghhBCp8j9mLfC8N5j0jAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAANXCAYAAABOkwIqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1QUVxvA4d+ydBSkCyKiYMHejb1ETYyfJZbYe0HF3nuLir33ElsssbcYa+y9i1IUQbEgiAWVXvb7g2RlAygSYYm8zzl7kr1z5857Z8dl79wyCpVKpUIIIYQQQgghPpOOtgMQQgghhBBC/DdJY0IIIYQQQgiRLtKYEEIIIYQQQqSLNCaEEEIIIYQQ6SKNCSGEEEIIIUS6SGNCCCGEEEIIkS7SmBBCCCGEEEKkizQmhBBCCCGEEOkijQkhhBBCCCFEukhjQohsrlatWtSqVUvbYSSjUCiYOHGitsNI1b85b05OTnTu3PmLxqNtEydORKFQaDuMZLLq9S2EEF8LaUwI8R+kUCjS9Dp58mSGxrF582bmz5+focf4mIcPH6rrOmXKlBTztGvXDoVCQY4cOTI5uqyvVq1aabqOMrpRd/78eSZOnMibN28y9Dgf4+TkpK6vjo4OuXLlokSJEvTs2ZNLly79q7KnTZvGnj17vkygQgiRxehqOwAhxOfbuHGjxvsNGzZw9OjRZOmurq6fLOvIkSPpjmPz5s3cuXOHgQMHpruML8HQ0JAtW7YwduxYjfTw8HD27t2LoaGhliLL2saMGUP37t3V769cucLChQsZPXq0xrVTsmTJT5Y1duxYRo4cma44zp8/z6RJk+jcuTO5cuVKVxlfQunSpRkyZAgA7969w9vbm+3bt7Nq1SoGDRrE3Llz01XutGnTaNGiBU2bNv2C0QohRNYgjQkh/oPat2+v8f7ixYscPXo0WXpa6Ovrf6mwtOaHH35g165d3Lp1i1KlSqnT9+7dS0xMDN9//z1//vmnFiPMmurVq6fx3tDQkIULF1KvXr3PHhqkq6uLru5/+09Knjx5kv0bmjFjBm3btmXevHkULFiQ3r17ayk6IYTImmSYkxBfqbVr11KnTh1sbGwwMDCgaNGiLFu2LFm+f44pP3nyJAqFgm3btjF16lQcHBwwNDTk22+/xc/PT2O/33//nUePHqmHhzg5Oam3R0dHM2HCBFxcXDAwMCBv3rwMHz6c6OhojeNHR0czaNAgrK2tyZkzJ40bN+bJkyefVdfKlSuTP39+Nm/erJG+adMmvv/+eywsLFLcb+nSpRQrVgwDAwPs7e1xd3dPcajNypUrcXZ2xsjIiIoVK3LmzJkUy0trndMqPDycIUOGkDdvXgwMDChcuDCzZ89GpVJp5FMoFPTt25c9e/ZQvHhxDAwMKFasGIcOHUrXcZM6c+YMLVu2xNHRUV2nQYMGERkZqZEvpTkTaYlr4sSJDBs2DID8+fOrr6WHDx+q8/z666+UK1cOIyMjLCwsaN26NY8fP04Wa1o/p89hZGTExo0bsbCwYOrUqRrnfvbs2VSpUgVLS0uMjIwoV64cO3bsSHYOwsPDWb9+vbpuf8+XefToEX369KFw4cIYGRlhaWlJy5YtNeouhBBZ3X/7NpIQIlXLli2jWLFiNG7cGF1dXfbv30+fPn1ISEjA3d39k/tPnz4dHR0dhg4dSlhYGDNnzqRdu3bq8eNjxowhLCyMJ0+eMG/ePAD1vISEhAQaN27M2bNn6dmzJ66urnh6ejJv3jzu3bunMX68e/fu/Prrr7Rt25YqVarw559/0rBhw8+ub5s2bfj111+ZPn06CoWC0NBQjhw5wsaNG1P8UT1x4kQmTZpE3bp16d27N76+vixbtowrV65w7tw59PT0AFizZg1ubm5UqVKFgQMH4u/vT+PGjbGwsCBv3rzq8j6nzmmhUqlo3LgxJ06coFu3bpQuXZrDhw8zbNgwnj59qj7nfzt79iy7du2iT58+5MyZk4ULF9K8eXMCAwOxtLT87PP5t+3btxMREUHv3r2xtLTk8uXLLFq0iCdPnrB9+/ZP7v+puJo1a8a9e/fYsmUL8+bNw8rKCgBra2sApk6dyrhx4/jpp5/o3r07L168YNGiRdSoUYMbN26oh0Wl9XNKjxw5cvDjjz+yZs0avLy8KFasGAALFiygcePGtGvXjpiYGLZu3UrLli05cOCA+hreuHEj3bt3p2LFivTs2RMAZ2dnIHFY2fnz52ndujUODg48fPiQZcuWUatWLby8vDA2Nv5XcQshRKZQCSH+89zd3VX//OccERGRLN93332nKlCggEZazZo1VTVr1lS/P3HihApQubq6qqKjo9XpCxYsUAEqT09PdVrDhg1V+fLlS3acjRs3qnR0dFRnzpzRSF++fLkKUJ07d06lUqlUN2/eVAGqPn36aORr27atClBNmDDho/UOCAhQAapZs2ap7ty5owLUx1yyZIkqR44cqvDwcFWnTp1UJiYm6v1CQkJU+vr6qvr166vi4+PV6YsXL1YBql9++UWlUqlUMTExKhsbG1Xp0qU1zsXKlStVgMZ5S2udVSqVKl++fKpOnTp9tG579uxRAaopU6ZopLdo0UKlUChUfn5+6jRApa+vr5F269YtFaBatGjRR4+T1Pbt21WA6sSJE+q0lK4jDw8PlUKhUD169EidNmHChGTXYFrjmjVrlgpQBQQEaOz/8OFDlVKpVE2dOlUj3dPTU6Wrq6tO/5zPKTX58uVTNWzYMNXt8+bNUwGqvXv3qtP+eW5iYmJUxYsXV9WpU0cj3cTEJMXPO6Vze+HCBRWg2rBhwydjFkKIrECGOQnxlTIyMlL/f1hYGKGhodSsWRN/f3/CwsI+uX+XLl005lNUr14dAH9//0/uu337dlxdXSlSpAihoaHqV506dQA4ceIEAAcPHgSgf//+GvunZ0J3sWLFKFmyJFu2bAESJ4c3adIkxbu7x44dIyYmhoEDB6Kj8+FrsEePHpiamvL7778DcPXqVUJCQujVq5fGuejcuTNmZmbpqnNaHTx4EKVSmezcDBkyBJVKxR9//KGRXrduXfUdb0icNG1qapqmz+tjkl5H4eHhhIaGUqVKFVQqFTdu3Pjk/v8mrl27dpGQkMBPP/2kcU5z585NwYIF1ef0cz6n9Pq71+3du3fqtKTn5vXr14SFhVG9enWuX7+epjKT7h8bG8vLly9xcXEhV65caS5DCCG0TYY5CfGVOnfuHBMmTODChQtERERobAsLC/vkjyxHR0eN9+bm5kDij6ZPuX//Pt7e3uqhKv8UEhICJI4Z19HR0fixCVC4cOFPHiMlbdu2Zc6cOQwaNIjz588zevToFPM9evQoxePo6+tToEAB9fa//1uwYEGNfHp6ehQoUEAjLa11TqtHjx5hb29Pzpw5NdL/XmXp79j+9s/PCxI/s7R8Xh8TGBjI+PHj2bdvX7Ky0tIo/Tdx3b9/H5VKlez8/+3voWif8zml1/v37wE0Po8DBw4wZcoUbt68qTEvJq3P24iMjMTDw4O1a9fy9OlTjfkYaTm3QgiRFUhjQoiv0IMHD/j2228pUqQIc+fOJW/evOjr63Pw4EHmzZtHQkLCJ8tQKpUppqv+Mfk3JQkJCZQoUSLVpTT/7Rj21LRp04ZRo0bRo0cPLC0tqV+/foYcJyXaqvPf/s3nlZr4+Hjq1avHq1evGDFiBEWKFMHExISnT5/SuXPnTLmOFAoFf/zxR4rlZOazQ+7cuQOAi4sLkDgxvXHjxtSoUYOlS5diZ2eHnp4ea9euTbYQQGr69evH2rVrGThwIJUrV8bMzAyFQkHr1q3TdG6FECIrkMaEEF+h/fv3Ex0dzb59+zTuDH/uUJtPSe0OrLOzM7du3eLbb7/96F3afPnykZCQwIMHDzR6CXx9fdMVj6OjI1WrVuXkyZP07t071aVK8+XLpz5O0jvXMTExBAQEULduXY189+/fVw9XgsQhKQEBARrL0Ka1zmmVL18+jh07xrt37zTuhvv4+GjElpE8PT25d+8e69evp2PHjur0o0ePftHjfOw6UqlU5M+fn0KFCqW6/+d8Tunx/v17du/eTd68edU9Qzt37sTQ0JDDhw9jYGCgzrt27dpk+6dWvx07dtCpUyfmzJmjTouKitLqw/uEEOJzyZwJIb5Cf9/F/eewiZR+6PwbJiYmKQ7H+Omnn3j69CmrVq1Kti0yMpLw8HAAGjRoAMDChQs18vybp2pPmTKFCRMm0K9fv1Tz1K1bF319fRYuXKhxjtasWUNYWJh6JZ7y5ctjbW3N8uXLiYmJUedbt25dsh98aa1zWv3www/Ex8ezePFijfR58+ahUCjU5y4jpXQdqVQqFixY8EWPY2JiApDsnDZr1gylUsmkSZOS9WSoVCpevnwJfN7n9LkiIyPp0KEDr169YsyYMeqGgVKpRKFQEB8fr8778OHDFFftMjExSTEOpVKZrF6LFi3SKFMIIbI66ZkQ4itUv3599PX1adSoEW5ubrx//55Vq1ZhY2NDUFDQFztOuXLl+O233xg8eDAVKlQgR44cNGrUiA4dOrBt2zZ69erFiRMnqFq1KvHx8fj4+LBt2zYOHz5M+fLlKV26NG3atGHp0qWEhYVRpUoVjh8/rvE8i89Vs2ZNatas+dE81tbWjBo1ikmTJvH999/TuHFjfH19Wbp0KRUqVFA/uExPT48pU6bg5uZGnTp1aNWqFQEBAaxduzbZWPy01jmtGjVqRO3atRkzZgwPHz6kVKlSHDlyhL179zJw4MBk80wyQpEiRXB2dmbo0KE8ffoUU1NTdu7c+a/nYfxTuXLlgMTlhlu3bo2enh6NGjXC2dmZKVOmMGrUKB4+fEjTpk3JmTMnAQEB7N69m549ezJ06NDP+pw+5unTp/z6669AYm+El5cX27dv5/nz5wwZMgQ3Nzd13oYNGzJ37ly+//572rZtS0hICEuWLMHFxYXbt28nq9+xY8eYO3cu9vb25M+fn0qVKvG///2PjRs3YmZmRtGiRblw4QLHjh37V0v5CiFEptPCClJCiC8spaVh9+3bpypZsqTK0NBQ5eTkpJoxY4bql19+SbYEZ2pLw27fvl2jvL+XYV27dq067f3796q2bduqcuXKpQI0lomNiYlRzZgxQ1WsWDGVgYGBytzcXFWuXDnVpEmTVGFhYep8kZGRqv79+6ssLS1VJiYmqkaNGqkeP3782UvDfsw/l4b92+LFi1VFihRR6enpqWxtbVW9e/dWvX79Olm+pUuXqvLnz68yMDBQlS9fXnX69Olk5+1z6pyWpWFVKpXq3bt3qkGDBqns7e1Venp6qoIFC6pmzZqlSkhI0MgHqNzd3ZPtn9bj/C2lpWG9vLxUdevWVeXIkUNlZWWl6tGjh3p516TXQmpLw6Y1rp9//lmVJ08elY6OTrJrdOfOnapq1aqpTExMVCYmJqoiRYqo3N3dVb6+vhplpPVzSkm+fPlUgApQKRQKlampqapYsWKqHj16qC5dupTiPmvWrFEVLFhQZWBgoCpSpIhq7dq1KZ4HHx8fVY0aNVRGRkYqQF33169fq7p06aKysrJS5ciRQ/Xdd9+pfHx8PvtzE0IIbVKoVP9idp4QQgghhBAi25I5E0IIIYQQQoh0kcaEEEIIIYQQIl2kMSGEEEIIIYRIF2lMCCGEEEII8ZVZtmwZJUuWxNTUFFNTUypXrswff/yh3h4VFYW7uzuWlpbkyJGD5s2bExwc/NnHkQnYQgghhBBCfGX279+PUqmkYMGCqFQq1q9fz6xZs7hx4wbFihWjd+/e/P7776xbtw4zMzP69u2Ljo4O586d+6zjSGNCCCGEEEKIbMDCwoJZs2bRokULrK2t2bx5My1atADAx8cHV1dXLly4wDfffJPmMmWYkxBCCCGEEP8R0dHRvH37VuMVHR390X3i4+PZunUr4eHhVK5cmWvXrhEbG0vdunXVeYoUKYKjoyMXLlz4rHi+yidgx4b6azsErTCyr67tELSigJmdtkPQiucRr7QdglZExH78C1N8XRrkLqPtELTij+c3tB2CVtia5NJ2CCITPX19V9shpCor/5b0WLyBSZMmaaRNmDCBiRMnJsvr6elJ5cqViYqKIkeOHOzevZuiRYty8+ZN9PX1yZUrl0Z+W1tbnj9//lnxfJWNCSGEEEIIIb5Go0aNYvDgwRppBgYGKeYtXLgwN2/eJCwsjB07dtCpUydOnTr1ReORxoQQQgghhBD/EQYGBqk2Hv5JX18fFxcXAMqVK8eVK1dYsGABrVq1IiYmhjdv3mj0TgQHB5M7d+7PikfmTAghhBBCCJFUQnzWff2baiUkEB0dTbly5dDT0+P48ePqbb6+vgQGBlK5cuXPKlN6JoQQQgghhPjKjBo1igYNGuDo6Mi7d+/YvHkzJ0+e5PDhw5iZmdGtWzcGDx6MhYUFpqam9OvXj8qVK3/WSk4gjQkhhBBCCCG+OiEhIXTs2JGgoCDMzMwoWbIkhw8fpl69egDMmzcPHR0dmjdvTnR0NN999x1Lly797ON8lc+ZyMoz8DOSrOaUvchqTiI7kNWcshdZzSl7ydKrOQX7ajuEVOnZFtZ2CBpkzoQQQgghhBAiXaQxIYQQQgghhEgXmTMhhBBCCCFEUgkJ2o7gP0N6JoQQQgghhBDpIo0JIYQQQgghRLrIMCchhBBCCCGSUKlkmFNaSc+EEEIIIYQQIl2kMSGEEEIIIYRIFxnmJIQQQgghRFKymlOaSc+EEEIIIYQQIl2kMSGEEEIIIYRIFxnmJIQQQgghRFKymlOaSc+EEEIIIYQQIl2kMSGEEEIIIYRIFxnmJIQQQgghRFIJ8dqO4D9DeiaEEEIIIYQQ6SKNCSGEEEIIIUS6yDAnIYQQQgghkpLVnNIs2/dMhIdHMH3+cuo160S52k1o5zYYT29f9faIiEimzlnKt03bU652Exq368lvu3//ZLlv371nypwl1GrcljK1GtGwdXdOn7+s3n7g8J98+2MHqnzfkpkLV2rs+zQomIatu/M+PPzLVVR8VLuuLfnz2j48H59j+6F1lCxTLNW89RvWZufRDVz1O8HNh2fYe2ITTVr+oJGna5/2XPA6wgWvI3Tt3U5jW8myxdh1bCNKpTJD6vI5evTsgKfXaUJeevPnyV2UK1cy1bxFXAuycdNSPL1O8zbcnz7uXZLl+alVE7x8z/LoyQ2mTR+jsc3RMQ/Xbx4nZ84cX7weQnzMDx0bsvrcGnbe28XsvXMoWKrQR/ObmJrQ6+derL+6gV33d7P85ArK1S6v3l6zaS1+ubiWLZ5b6Tauu8a+Ng42LD+5AqMcRhlSF/Fpnbq34eKtIzwIus7+o1soXbZEqnnbdmzBroMbuBtwnrsB59m6e3Wy/G59O3Pr3mlu3TuNm3snjW1lypXgjxPbssT3eXatt9C+bN8zMX76Avz8H+Ixfig2VpbsP/wnPQaMZu+mFdhaWzFz0UouXbuFx/jh5LGz5fzla0yZswQbK0tqV/8mxTJjY2PpMXA0Fua5mDtlDLbWVjx7HkzOHIk/ol6/CWPC9AVMGTMYhzy5cR86gYrlSlGraiUApsxezMBeXchhYpJp5yE7+6FpPUZNHsT4YR7cunaHzm5tWLNtEd9Vbs6r0NfJ8r95/Zbl837B//5DYmJjqV2/Oh4Lx/My9BVnT1ykcFEXBozohVu7gSgUClZsmsfZkxe55/0ApVLJ5NmjGTd4KvHx2p3c1ax5Q6ZNH83AAeO4euUmfdy7sGvvesqVqUvoi5fJ8hsbGfHwYSB7dh/EY8bYZNstLM1ZtMSD3m7DeBjwmO27VnP65AUOHfoTgLnzf2bC+Jm8e/c+w+smxN+qNapO93HdWTJ6Cfdu+tK4WxMm/zqZXrXcCHsZliy/rp4uP2/6mTehYUzv5cHL5y+xyWPD+7eJN3dMzU3pN7Mf84fMJ/jRc8avm8Dt87e4cvwKAL2n9GH99HVEvo/M1HqKRI1//J4JU4YzcvAkblzzpHuvDmzauYIaFf7Hy9BXyfJXrlaBvTsPcvXSTaKio3Ef0I3Nu1ZSp3ITngeF4FqsEMNG9aVTa3cUCli3dSmnTpzHx+s+SqWS6XMnMHzgRK1/n2fXeousIVv3TERFR3Ps1FkGu3ejfOkSODrY496tPY4O9ureh5ue3jRpUJeKZUuSx86Wlk1+oLBLAY3ei3/adeAIYW/fsXD6eMqWLEYeO1sqlClJkYIFAHjy7Dk5cpjQoG5NSrgWpkLZUvg/fAzAwaMn0dXVpV6tqhl/AgQAXXq1Y9uve9i1ZT8P7gUwfqgHUZFRtGjbOMX8l89f4+jBkzy4/5DHD5+yYeVWfL38KFepNAAFCjrh63Wfi2evcuHMFXy9/ChQ0AmA7n07cOXCdTxvemVS7VLXt1831q/9jU0bd+Dr48fA/mOJjIykQ8eWKea/fv0248ZMZ+eOA0RHxyTbnt8pL2/fvmPXzt+5fv02p09dpFARZwBatGxEbGws+/cdztA6CfFPTbs35fCWwxzffozH9x+zdNQSoiOjqdeqXor567aqR45cOZnaYwreV70JeRLCnUt3eOgdAICtY24i3kZwdv8Z7t++j+eF2zi45AWgRuMaxMXFceHQhUyrn9DUo08nNm/YwbbNe7jv+4CRgycRGRFF6/bNUszfr+cI1q/Zyt07Pjy4H8DQ/uPRUehQrUbizUKXgvnxvnuPc2cucfb0Jbzv3sOlYH4AevfvwsXzV7l1406m1S812bXeGSohIeu+sphs3ZiIj4snPj4BA309jXQDA32u374LQOkSrpw4e5HgF6GoVCouX7vFw8CnVKlYNtVyT569SKnirkyds4Qa/2tD0/a9WLl+q7oF7+hgT1RUFN73/Ah7+467Pvco7JKfsLfvWLRqA6MH98m4SgsNenq6FCtVhPOnLqnTVCoV509fpnT51If8JFW5egXyO+fjyoUbANzz8sPJ2RG7PLbYO+TGydmR+94PyOuUh2ZtGjF/2rIMqcvn0NPTo3SZ4pw4cU6dplKpOHniHBUrlklXmQ8ePMTIyJCSpYpibm5G2XIluXvHh1y5TBk7bhBDB0/8MsELkUa6erq4lHDh1tmb6jSVSsXNszcpXLZIivtUqlsJn2s+9JrSmw3XNrL46BJaurdERyfxz+Wzh08xMDKgQLEC5DDLQcFShXjo/RATMxPaDW3PinHLM6NqIgV6enqULF2UMyc/NOZUKhVnT12kXIVSaSrDyNgQXT1d3rxJ7LXy9rpPfhcn7B3syJPXjgIu+fDx9iOfU15atf2RmVMXZkhdPkd2rbfIOrL1MCcTE2NKFXdl+botFMjniKVFLg4eO8WtOz445rEDYPSg3kycsZBvm3ZAV6lEoaNg4ogBlC+d+ljEJ8+e8/T6LRrWr82y2ZMJfPKMKXOWEBcfT5+u7TAzzcnUsUMY/fMcoqKjafT9t1StVI5xHvNo27wRT4Oe02/EROLi4unTrR31a1fPrFOS7Zhb5EJXV5fQF5rdwKEhryjg4pTqfjlymnDG8w/09fVJiI9n4ogZ6gbJg/sPmTt1KWt3LAVgzpQlPLj/kHU7ljBr0kKq1alMv2E9iYuLY8qY2Vz9qxGSmSwtzdHV1eVFSKhGekhIKIUKOaerzDdv3tKr5zBWrJqDkaEBWzfv5vixMyxeOp2VKzaSz8mBrdtXoqeni8fUhezd88eXqIoQqTK1MEWpq+R16BuN9Dehb3Bwdkhxn9yOtpSsUpKTe04yqfNE7Jzs6T2lN0o9XbbO30J4WDjzBs9j0LzB6Bvq8+fOP7lx+jr9Zvbn9/UHsM1ry9g149DV02XzvM2cP3guxeOIL8/C8u/vc81hmi9evMT5r7vqnzJm4hCCn4eof5j73fNnxs/z2bprFQDTJ8/H754/W3evZsqEOdSqU43BI/sQFxvH+FEeXDp/7ctWKg2ya71F1pGtGxMAHuOGMt5jHnWatkep1MG1kAsN6tbEy9cPgE079nH7rg+LZ0zALrct1256MnXOUmysLKlcIeU7uAkqFRbmuZg4vD9KpZJiRQoSEvqStZt30Kdr4mTcujWrUrfmh6FMV27c5p5fAKMH9eaHn7oxc9IIrCwsaNNjAOVKl8DSPFeGnwuRduHvI2hSuy0mJsZUrl6BUZMH8fjhUy7/9YW6df1Otq7fqc7/Y6uGhL+P4MZVTw5f2Enz+h3JbWfDvJXTqFOuMbExsdqqyhd1YP8RDuw/on5ftVpFihcvwrAhE7npeYKunQcQHPyCE6f2cO7c5RTnZgihTQodHcJevmHJyMUkJCTwwPMBlraWNOvVjK3ztwBw8fAFLh7+cBe4eKXi5Hd1YuX4Faw4s5LZfWfx+sVr5uyby91Ld1KcmyGyHveB3WncrAEtG3XWGMq5ce02Nq7dpn7fsnUT3r8P59qVW5y+coCGdVphZ5+bpatnU7l0fWL+Y9/n2bXen6KS1ZzSLNs3Jhwd7Fm3ZBYRkVGEh0dgbWXBkHEeONjnJio6mgUr1rPAYxw1q1QEoLBLfnzu+7Nuy85UGxPWf931TbrKQYF8eQl9+ZrY2Fj09DSHVcXExDBl9hI8xg8j8EkQ8fHxVCiTOMQmX948eN71oVa1lCd7i3/n9as3xMXFYWVtoZFuZWPBi5DUf+iqVCoCA54A4H3nHs6F8uM2sLO6MZGUuYUZfYf2oG3jnpQqW5yHDwJ55P+YR/6P0dPVJb+zI/e8H3zZin3Cy5eviYuLw9rGSiPdxsaK4OAXX+QY+vr6zJ03mZ49hlDA2QldXSXnziauaPbAL4Dy5Utx6I8/v8ixhEjJ21dviY+Lx9wql0Z6LqtcvH6RfHEFgNchr4iLiychybjkJ36PsbCxQFdPl7jYOI38uvq69J7am7kD52LnZIdSqeTOpcSx5M8CnlKoTGGuHLuMyHivXv79fW6pkW5tbZmsF/af3Pp2xn1gN1o37Y733Xup5jO3yMWgEb1p3rATZcqXxN/vEQH+gQT4B6Knp0sBFyd8vO5/kfqkVXatt8g6svWciaSMjQyxtrIg7O07zl++Rp3q3xAXF0dcXBw6CoVGXqVSR+MPzT+VLlGMwCfPNPI8fPwUa0uLZA0JgBXrtlLtm/IULexCQkI8cUlWR4iLiyc+C062+VrExsZx95YPlWtUVKcpFAoqV6/Azau301yOQkcHfX39FLeN/nkI61ZsITgoBKVSB129D214pa5SK0vrxcbGcvPGHWrVqqJOUygU1KxVhcuXv8ywq+Ej3Dl27DS3bt5NrLfyQ7119XRlSUGR4eJi4/Dz9KNk1Q/jxhUKBaWqlsL3uk+K+3hd9cYunx2KJN/79gXy8DL4ZbKGBECrfq25dvI6D+48QEepg1L3w3Wt1NVFqSN/ZjNLbGwst296Ua3mh5tvCoWCajUqce3KrVT3692/KwOH9aJ9Czdu37z70WNMmjaCVUs3EPQsGKWODnr//D7X0c73eXast8g6sn3PxLlL11CpVDg5OhD45Blzlqwhv6MDTRvWR09Xl/JlSjBnyRoMDAywz23D1Rue7PvjOMP691CXMern2dhYWTKod+K6+61+bMiWnfuYPn85bVs05tGTZ6za8BvtWiZfHehBwCMO/Xma7WsXA5A/X150dHTYuf8wVpbmBAQ+prjrx9dEF//O2uWbmLFoInduenH7+l06ubXFyNiInVv2AzBz8SSCn4cwZ8oSANwGdMbzpjePHz5BX1+PmnWr0qTlD0wc7pGs7Co1K+Hk7MjwvhMAuH3DiwIu+ajxbRXs7G1JiE/A3+9R5lU2icWL1rB85Wxu3PDk6tVb9HHvgrGxMb9u3AHAilWzefYsmEkTZgGJk/yKuLoAoK+vh529LSVKuhL+PgJ/f806FC7iQrPm/6Nalf8BcM/3AQkJCXTo+BMhwS8oVMiZ69fS3lgTIr32rN7DoDmD8PO8z72b92jSrQmGxoYc23YMgEHzBvPy+Us2zFgPwB8bD/K/Tv+jx8SeHFi3H/v89rR0b8mBtfuTlZ23YF6qN6rOgAb9AXji9wRVQgL1WtXj9YvXODg7cO+W3K3NTKuWrmfe0mncvnGXG9c96dG7A0YmRvy2aTcAC5ZNIygohOmT5wPQZ0A3ho7qS98ew3kc+EzdWxseHkFEeIRG2dVrVSa/sxMDeo8G4NaNOzgXzE/tutWwz2NHQnwCD/wCMq+ySWTXemcouZGbZtm+MfHufTjzl68l+EUoZqY5qVezGv3dOqGnm3hqZk8ayfzl6xg5aSZhb99hn9uG/m6daNW0obqMoOAQjd4LO1trVsybyswFK2jWqQ82Vpa0b9mEbu01l9xUqVRMnLmQYf16YGxkCIChgQFTxgxm6pylxMTGMnpQH2ytNYeiiC/r4J6jWFia039EL6xtLPG+c49urfrx8q9J2XYOuUlIMnbSyNiIiTNHkNvOhqioaPzvP2RYn3Ec3HNUo1wDQwPGTx/OoB6jUKlUAAQHhfDz6Fl4LBxPTHQsI/pNIDoqOvMqm8Sunb9jZWXB6LGDsLW1wvO2N82bdlZ3izs42Gv0rtnZ2XDuwocHNg4Y2JMBA3ty5vRFGjZoq1H2wkXTGD1yKhERiWvtR0VF09ttOLPnTcLAQJ+hgycQFBScCbUU2d3Z/WcwszCj3eD2mFub4+/lz4QO43nz16Rsa3trVEmu89CgUMZ3GE/38d1ZdHgxL4Nfsv+XfexctjNZ2X2n92XNz6uJjkz8NxwTHcP8IfPp9XNv9PT1WDF+Oa+CZV5QZtq3+xAWVhYMHd0Xaxsr7nr60L6Fm3p+lr2DHQkJKnX+jl1bYWCgz6oN8zXKmTN9CXNnLFW/NzQ0YOrMMfTuOlT9fR70LJhxI6Yxd/FUYmJiGNhnNFFa+j7PrvUWWYNC9ffV8RWJDfXXdghaYWSfPVd9KmBmp+0QtOJ5RPIHEWUHEbHyRys7aZA7fUsV/9f98TzzV3nLCmxNcmk7BJGJnr7++PAqbYq+f17bIaTKoGCVT2fKRFrtmQgNDeWXX37hwoULPH/+HIDcuXNTpUoVOnfujLW1tTbDE0IIIYQQ2ZGs5pRmWpsZduXKFQoVKsTChQsxMzOjRo0a1KhRAzMzMxYuXEiRIkW4evXqJ8uJjo7m7du3Gq/oaLlzKYQQQgghREbTWs9Ev379aNmyJcuXL9dYNQMS5xL06tWLfv36ceHChVRKSOTh4cGkSZM00sYO68/44QO+eMxCCCGEEEKID7Q2Z8LIyIgbN25QpEiRFLf7+PhQpkwZIiMjP1pOdHR0sp4InXdPMTAw+GKx/lfInInsReZMiOxA5kxkLzJnInvJ0nMmfE5pO4RUGRSpqe0QNGitZyJ37txcvnw51cbE5cuXsbW1/WQ5BgYGyRoOsTEff0iLEEIIIYQQ4t/TWmNi6NCh9OzZk2vXrvHtt9+qGw7BwcEcP36cVatWMXv27C9yrPDwCBat2sDx0xd49foNRQo5M3KgGyVcC6vzPHgYyLylv3D1pifx8fEUcHJk/tSx2OW2Uee5ecebhSvW4+nlg46ODkUKOrNi3hQMkzRmoqKjqf5DK3auX4qjgz1bdu5n8879PAsKxs7Wmh6dWtOkQV2N+Db+tpvfdv9OUPALcuUypX6tagzs1QUDgw8PQduycz9rN+8g9NVrCrsUYPSg3pQoWhiR+dp0bk6bzi1wcEzsEbnv48+SOas5fTzrrvzwJVSpWoEBA3tSukxx7OxsadPKjd8PHP30jkL8x1jYWtJ5VGfK1S6HgZEBQQ+DWDB0Pn63/bQdmvjC+g7qToP/1cOlYH6ioqK4evkm0ybO5YHfQ22HlqGya71FxtBaY8Ld3R0rKyvmzZvH0qVLif/rqc9KpZJy5cqxbt06fvrppy9yrPHTF+Dn/xCP8UOxsbJk/+E/6TFgNHs3rcDW2orAJ8/o2Hsozf73He7d22NibMyDgED0k/yYv3nHm16Dx9K9QytGD+qNUqnE188/2dOxL1y+gV1uGxwd7Nm6+wDzl69l4ogBFHcthKe3LxOnL8QsZw5qVUt8UuXvR04wb/lafh41iNIlivIw8Aljp85FoVAwvH9PAP44doqZi1Yyflg/ShYtzMZte3AbPJb9W1ZhaZ7ri5wjkXbPn4UwZ8piHvoHokDBj63/x9INc2hapx1+vl/vssQmJsbc8fRm44btbN66XNvhCJEhTMxMmLlrJp4XbjOx40TevgrD3sme92HvtR2ayADfVKnA+tVbuHnDE11dXUaOG8DmXauo9U1jIiM+Psz6vyy71vuzyGpOaZYlnjMRGxtLaGji0CQrKyv09PT+XXlJnjMRFR1NpXrNWDh9AjWrVFSn/9S1H9W+KU//np0YOt4DXV1dpo8flmqZbXsMpHKFsvTr2fGjxx7nMQ+LXGYM6t2Vdm6DKVOiKEP7dldvn7VoFbe9fNi4bA4AU+csxf9RIGsWTk81T5seAylepBBjhvQBICEhgbo/dqRti8Z07/ChwSVzJrTn8r3jzJy0kB2b9mbaMbU5Z+JtuL/WeiZkzkT2ktlzJjqN7IRr+aKMbDEiU4/7TzJnQjssLM3x9DtLs4YduXT+mlZjyUzaqneWnjPhfULbIaTKwLW2tkPQoLWlYZPS09PDzs4OOzu7f92Q+Kf4uHji4xMw0Ncs18BAn+u375KQkMDp81dwypuHnoPGUKNha9r0GMjx0x+GrLx8/YbbXr5YmJvRzm0wNf7Xhs7uw7h+645GmQkJCZw6d5na1SsDiY0kA339ZMf19LpHbFwcAKVLuOLl64enly8Aj58GcfrCFap/U0Fdhpfvfb6pUFpdho6ODt+UL82tO95f5iSJdNPR0aFh0/oYGxtx48ptbYcjhPiXKtarhN/t+4xYNpKN139l/sEF1G/znbbDEpnE1DQnAG9eh2k5ksyVXestvgytPrQuM5iYGFOquCvL122hQD5HLC1ycfDYKW7d8cExjx2vXr8hIjKSNb9uo1+PTgzu3ZWzl64xcPQUflk0nQplSvLkaRAAS3/ZxNC+3SlSsAD7/jhOtwGj2LNxOfny5gHg1l0fAEr+NZehSsVy7DxwiDo1KlO0sAt3fe6zc/9h4uLiePPmLdZWFjSsX5vXYW/p0HsoqFTExcfzU9Mf6NmpNQCv37wlPj4BSwtzjXpZWpgTEPgks06j+IdCrs789sdaDAz0iQiPxL3zMB7cC9B2WEKIfyl33tw0aP8De1bvYfvibRQsVZCek3oSFxvLnzv+1HZ4IgMpFAomeYzg8sXr+Hpnn/kx2bXen5Qgw5zS6qtvTAB4jBvKeI951GnaHqVSB9dCLjSoWxMvXz8SEhJHedWuXpmOrX8EoEghZ256erFtz0EqlClJwl8jwVo2+YEfG9YHwLWQCxev3WTXgSMM6t0FgBNnLlCzakV0dBI7fHp1aUPoq1e06zkIFSoszc1p0uBbftm0A4VO4lyLy9dvs2rDb4wd4k7JYoUJfPKM6QtWsHztZnp1aZup50mkXYDfI5rUbkvOnDn4vvG3zFg0kXZNekqDQoj/OIWOAr/bfmycuQEA/7v+5CucjwbtfpDGxFdu2uyxFHYtyI8NOmg7lEyVXestvpxs0ZhwdLBn3ZJZRERGER4egbWVBUPGeeBgnxvzXKboKpU4Ozlq7FPAKS/Xb3sBYG1pAYBz/n/kyefI8+AQ9fsTZy+pGxYAhgYGTBk9mAnD+/Py1WusLS3Yvu8PTIyNsMhlBsDiVRto9F0dWjT+HoBCzvmJjIpm0oyF9OzUGvNcpiiVOrx89Vrj2C9fvcbqH70VIvPExsYRGJDYM3T3tg8lShelU882jB86TcuRCSH+jdchr3l8P1Aj7fH9x1RpUFVLEYnMMGXmGOp+V5NmP3Qi6FmwtsPJNNm13uLLyhJzJjKLsZEh1lYWhL19x/nL16hT/Rv09PQo5loo2ZChh4+fYv/XsrB57GyxsbLk4SPNPI8eP8Eut+1f//+UoOchVK6QfLKgnq4uuW2sUSqVHDp2ippVK6l7L6Kio9HR0VwRSvnXNpVKhZ6eHkULF+TS1Zvq7QkJCVy6dpNSxV3/3QkRX4xCRwd9gy8730cIkfm8r3qRx9lBIy1PgTyEPAlJZQ/xXzdl5hi+b/gtPzXuyuPAp9oOJ9Nk13qnmSoh676ymGzRM3Hu0jVUKhVOjg4EPnnGnCVryO/oQNO/hix1aducoeOnU750cSqWLcXZi1c5de4SaxfNABLHE3Zp25wla36lcMH8FCnozN6Dxwh49IS5U8YA8OeZC3xTvjRGhobq4z4MfIKn9z1KFi3M23fvWb91F/f9HzF17FB1nppVK7Fh6y6KFHKmZNEiBD55xqJVG6hZtRJKpRKAjq1+ZMzUORQrUpDiRQvz67Y9REZF07Rhvcw6hSKJIWPdOXX8PEFPnmOSw5hGzb+nUtVydP2pn7ZDy1AmJsYUcM6nfu/klJcSJV15/SqMJ0+eaTEyIb6cvav3MnP3LFq6t+TsgbMUKl2I79p+z+KRi7UdmsgA02aPo2mLH+jath/v30dgbWMFwLu374iK+npXjsuu9RYZI0ssDfulJV0aFuDQ8dPMX76W4BehmJnmpF7NavR360TOHCbqPLsOHGb1xm0Eh4Ti5OiAe/f21PlrVaa/rd64jS279vP27TsKuRRgSJ+ulC1VHICOvYfSuEFd9XAlSHwQ3oiJM3gY+BRdXSUVy5ZiUO+u5M/34a5XXFw8KzdsZf+h44S8eIm5uRm1qlaif89OmObMoc63ecc+1m7eSeirVxQp6Myogb0oWUzz6eGyNGzmmDp/HJWrV8DG1op3b9/j63WflYs2cP7UpUyNI7OXhq1WvRIHD21Jlr7p1x30dhueaXHI0rDZS2YvDQtQ4dsKdBzRCXsne4IfB7Nn9R6ObDmcqTHI0rCZI7WlSQf1GcO2LXsyNZbMlFXqnaWXhr2TdR/KalA8a91MzhaNiYz2+k0YtRu349iejVqdxyCNiexFm8+Z0CZpTGQv2mhMZAXSmBDZQZZuTNzO3BsIn8OgZNZarjpbzZnIKGFv3zGsXw+ZEC2EEEIIIbKVbDFnIqM5OTrg5Ojw6YxCCCGEEEJ8RaQxIYQQQgghRBIqVby2Q/jPkGFOQgghhBBCiHSRxoQQQgghhBAiXWSYkxBCCCGEEEllwYfDZVXSMyGEEEIIIYRIF2lMCCGEEEIIIdJFhjkJIYQQQgiRVIIMc0or6ZkQQgghhBBCpIs0JoQQQgghhBDpIsOchBBCCCGESEpWc0oz6ZkQQgghhBBCpIs0JoQQQgghhBDpIsOchBBCCCGESCohXtsR/GdIz4QQQgghhBAiXaQxIYQQQgghhEgXGeYkhBBCCCFEUrKaU5pJz4QQQgghhBAiXaQxIYQQQgghhEgXGeYkhBBCCCFEUgkyzCmtpGdCCCGEEEIIkS7SmBBCCCGEEEKkiwxzEkIIIYQQIilZzSnNpGdCCCGEEEIIkS5fZc+EkX11bYegFZHPzmg7BK2oV7qntkPQiucRr7QdgshEtia5tB2CVpx66aXtEEQmehcTqe0QhBCf6atsTAghhBBCCJFusppTmskwJyGEEEIIIUS6SGNCCCGEEEIIkS4yzEkIIYQQQoikZJhTmknPhBBCCCGEECJdpDEhhBBCCCGESBcZ5iSEEEIIIUQSKlW8tkP4z5CeCSGEEEIIIUS6SGNCCCGEEEIIkS4yzEkIIYQQQoikZDWnNJOeCSGEEEIIIUS6SGNCCCGEEEIIkS4yzEkIIYQQQoikVDLMKa2kZ0IIIYQQQgiRLtKYEEIIIYQQQqSLDHMSQgghhBAiKVnNKc2kZ0IIIYQQQgiRLtKYEEIIIYQQQqSLDHMSQgghhBAiKVnNKc2kZ0IIIYQQQgiRLtKYEEIIIYQQQqSLDHMSQgghhBAiKVnNKc2kZ0IIIYQQQgiRLtKYEEIIIYQQQqSLNCayqfDwCKbPX069Zp0oV7sJ7dwG4+ntq94e+uo1Y6bMoXbjdpSv0xS3wWN59PjpJ8s9/OcZGrXpQdnajfmxQ29On7+ssX3t5h3UaNiaGg1bs27LTo1tt+/68FPXfsTFxX+ZSn6Gpp0as/XCrxzxO8jS/YsoUrpwmvar07gWJ58cY8rqSRrprdxasvvmdnbf3M5PPVtobHMtU4QVB5eiVGr/n1+Pnh3w9DpNyEtv/jy5i3LlSqaat4hrQTZuWoqn12nehvvTx71Lsjw/tWqCl+9ZHj25wbTpYzS2OTrm4frN4+TMmeOL10OkTafubbh46wgPgq6z/+gWSpctkWreth1bsOvgBu4GnOduwHm27l6dLL9b387cuneaW/dO4+beSWNbmXIl+OPENpRKZYbU5XPIdZ69ZNfPO7vWO8OoErLuK4vR/q8ZoRXjpy/gwpUbeIwfyu6Ny6hSsSw9Bowm+EUoKpWKASMn8+TZcxbOGM/2tYuxz21D9wGjiYiMSrXMG55eDJ84nR//9x3b1y6mTvXK9B/1M/f9HwLg6xfAktW/MmvySGZOGsGilRu49yAAgLi4eCbPWsS4YX3R1c3cHx+1G9Wiz/herJu3kR4NevHAy59Zv04nl2Wuj+6X28GW3uPcuHXxtkZ6Adf8dBnaicl9pvKz+zS6De9C/iL5AVAqdRjsMZC5oxYQH6/dL4RmzRsybfpopnsspHrVRnh6erNr73qsrC1TzG9sZMTDh4FMHD+T589Dkm23sDRn0RIPxo724MfGnWjVugnff19HvX3u/J+ZMH4m7969z7A6idQ1/vF7JkwZztwZS/m+Vku87viyaecKLK0sUsxfuVoF9u48yE+NutK4fjuePX3O5l0ryW1nA4BrsUIMG9WXPt2G4d59GMPG9KdI0YIAKJVKps+dwMjBk4mPz/ybA0nJdZ69ZNfPO7vWW2QN0pjIhqKiozl26iyD3btRvnQJHB3sce/WHkcHe37b/TuPHj/l1l0fxg3tSwnXwuTP58C4oX2Jjo7m4NGTqZb767a9VK1Unq7tWuDs5Ei/nh0pWsiZzTv2AxDw6DGFnJ2oVK4035QvQyGX/AQ8egIk9liUK12CEq5p6xH4klr2bM7vWw5yaNthHt0PZO7I+URFRfND6+9T3UdHR4cxi0axds56ggKDNLY5Ojvi7x3AjfM3uX7uBg+8/XF0zgtAq16tuHXpNr63fFMqNlP17deN9Wt/Y9PGHfj6+DGw/1giIyPp0LFlivmvX7/NuDHT2bnjANHRMcm253fKy9u379i183euX7/N6VMXKVTEGYAWLRsRGxvL/n2HM7ROInU9+nRi84YdbNu8h/u+Dxg5eBKREVG0bt8sxfz9eo5g/Zqt3L3jw4P7AQztPx4dhQ7VanwDgEvB/Hjfvce5M5c4e/oS3nfv4VIwsdHcu38XLp6/yq0bdzKtfqmR6zx7ya6fd3att8gapDGRDcXHxRMfn4CBvp5GuoGBPtdv3yUmNhYA/STbdXR00NPX48btu6mWe+uuN5XLl9ZIq1KpHLfuegNQ0NmJh4+fEvQ8hGfPg3n0+CkuBfIR+OQZew4epX+Pjl+ohmmnq6dL4RKFuHbmujpNpVJx7cx1ipYtmup+HQe1583LNxzceijZNn+fABwK5MHG3gbbPDbkze9AgO9D7PPZ0aDVd6yZuTZD6vI59PT0KF2mOCdOnFOnqVQqTp44R8WKZdJV5oMHDzEyMqRkqaKYm5tRtlxJ7t7xIVcuU8aOG8TQwRO/TPDis+np6VGydFHOnLygTlOpVJw9dZFyFUqlqQwjY0N09XR58yYMAG+v++R3ccLewY48ee0o4JIPH28/8jnlpVXbH5k5dWGG1OVzyHWevWTXzzu71jvDJSRk3VcWI42JbMjExJhSxV1Zvm4LIS9eEh8fz/7Df3Lrjg+hoa/Iny8vdrY2LFixjrC374iNjWXNr9sIDgnlxctXqZYb+vI1lhbmGmlWFuaEvnwNgLOTIwPcOtNj4Gh6DhzDALfOODs5MnnWIgb36cq5y9do2r4XLTq7c/WmZ4aeg7+ZWZih1FXy6sVrjfTXoa+xsDFPcZ8SFYrTsHUDZg+bm+L2QL9AVk//hdlbZjBr8wxWTV9DoF8gQ6YPYsXUlVSsVZ61x1ax6tBySlZKfcx6RrK0NEdXV5cXIaEa6SEhodjaWqerzDdv3tKr5zBWrJrDiVO72bp5N8ePnWHKtNGsXLGRfE4OnDm/n4tX/qBJ0wZfohoijSwsc6Grq0voi5ca6S9evMTaxipNZYyZOITg5yHqBonfPX9m/DyfrbtWsWXnKqZPnp+YNm8CUybMoVadahw/v4fDp3ZQqUq5L16ntJDrPHvJrp93dq23yDrkORPZlMe4oYz3mEedpu1RKnVwLeRCg7o18fL1Q09Xl/nTxjLeYz5VG/yEUqnDN+XLUP2b8qj+5XFb/diQVj82VL/fe/AoxsZGlCruSqM2Pdi6egHBIaEMGz+dwzvWoq+v/y+P+GUZmRgxesEIZg2fS9jrt6nm2/frAfb9ekD9/rsW9YgIj+DuNS82nlqH2//csbazYvySMbSp0oHYmNjMCD/DHdh/hAP7j6jfV61WkeLFizBsyERuep6ga+cBBAe/4MSpPZw7dznZj1uRNbkP7E7jZg1o2aizxpCIjWu3sXHtNvX7lq2b8P59ONeu3OL0lQM0rNMKO/vcLF09m8ql6xMj17n4D8qun3d2rbf4fNKYyKYcHexZt2QWEZFRhIdHYG1lwZBxHjjY5wagWJGC7Fy/hHfvw4mNjcXCPBdtegykWJGCqZZpZWnOy1ead/hDX73GyjLlO/yv34SxbO1m1i2ZieddX/LlzaN+xcXH8fDxUwo55/9ylU5B2Ksw4uPisbDWjNHcypxXIa+T5c+Tzx47Rzs81k5Rpyl0FAAcf3iYDjU78+yR5hwKM3NTOg3qyIAWg3At48rjgCc8DXjK04Cn6Orp4lDAgQCfgAyoXepevnxNXFxcsrvSNjZWBAe/+CLH0NfXZ+68yfTsMYQCzk7o6io5dzZxda8HfgGUL1+KQ3/8+UWOJT7u1cs3xMXFJZuMaW1tmexu5j+59e2M+8ButG7aHe+791LNZ26Ri0EjetO8YSfKlC+Jv98jAvwDCfAPRE9PlwIuTvh43f8i9Ukruc6zl+z6eWfXeme4LDicKKuSYU7ZnLGRIdZWFoS9fcf5y9eoU/0bje05c5hgYZ6LR4+fctfnPrWrfZNKSVCqmCsXr93USLtw5QalirmmmH/GwpV0+KkpuW2siU+IJy4uTr0tPj6BhExY7SguNg5fz3uUrVZWnaZQKChXrQxe172S5Q98EEiXb7vT/Ts39ev8kQvcOH+T7t+5EfIs+Re3+8TebF+9kxdBoegoddDV/dCGVyqVKHUy/59hbGwsN2/coVatKuo0hUJBzVpVuHz5xhc5xvAR7hw7dppbN++iVOqgq/xQb1093SyxZGh2ERsby+2bXlSr+eHfr0KhoFqNSly7civV/Xr378rAYb1o38KN2zdTny8FMGnaCFYt3UDQs2CUOjro6SW5znWVKHUy//OW6zx7ya6fd3att8g6pGcimzp36RoqlQonRwcCnzxjzpI15Hd0oGnD+kDi8yLMc5lhZ2vNff+HTJ+/nDrVK1O10oexz6N+no2NlSWDeieuT93+pyZ0cR/Oui07qVGlIn8cO8Vdn/tMHNE/2fHPX77Oo8dPmTZ2CADFXQsR8OgJZy5c4XnIC3R0dHDK55AJZwK2r9zJqHnD8b3li/dNX1p0b4ahkSF//JY4uXrU/BGEPg9l1fQ1xETHEuD7UGP/928Tl8b7ZzpAueplcSjggMfAmQD43vLF0SUvFWtXwMbehoSEBAL9H2do/VKzeNEalq+czY0bnly9eos+7l0wNjbm1407AFixajbPngUzacIsIHGSXxFXFyBxcr6dvS0lSroS/j4Cf/9HGmUXLuJCs+b/o1qV/wFwz/cBCQkJdOj4EyHBLyhUyJnr1zSX1BUZa9XS9cxbOo3bN+5y47onPXp3wMjEiN827QZgwbJpBAWFMH3yfAD6DOjG0FF96dtjOI8Dn6nveoaHRxARHqFRdvValcnv7MSA3qMBuHXjDs4F81O7bjXs89iREJ/AA7/M7X37m1zn2Ut2/byza71F1iCNiWzq3ftw5i9fS/CLUMxMc1KvZjX6u3VC76+75i9evmLmopW8fPUGa0sLGn//Lb26tNEoIyg4BB2FQv2+TImizJg4gkUr17NgxTryOeRhocc4ChZw0tgvKjqaaXOXMnvyKHT+uiuf28aaUYN6M3baPPT19Jg6dgiGBgYZexL+cmL/SXJZmtFlaGcsrM3x83rA8A6jeB36BgDbPDao0tHdqW+oz4Ap/ZjcewoqVeJskxdBoSwct5iRc4YRExOLx8CZxEQlX5YvM+za+TtWVhaMHjsIW1srPG9707xpZ/WwFwcHexKS1NvOzoZzF35Xvx8wsCcDBvbkzOmLNGzQVqPshYumMXrkVCIiIgGIioqmt9twZs+bhIGBPkMHTyAoKDgTain+tm/3ISysLBg6ui/WNlbc9fShfQs39Thnewc7EhI+zIrq2LUVBgb6rNowX6OcOdOXMHfGUvV7Q0MDps4cQ++uQ9XXedCzYMaNmMbcxVOJiYlhYJ/RREVFZ3wlUyDXefaSXT/v7FrvDJUFHw6XVSlUf3/7f0V09fNoOwStiHx2RtshaEW90j21HYJWXH/tr+0QtCIiVjs/SrXN1iSXtkPQincxkdoOQSuy63VurJc5N5FE1vA2POv+HYs8kPKKjVmB0f8GazsEDTJnQgghhBBCCJEuWbox8fjxY7p27frRPNHR0bx9+1bj9RV2tgghhBBCiMyi7QfTyUPrvoxXr16xfv36j+bx8PDAzMxM46VKeJdJEQohhBBCCJF9aXUC9r59+z663d//02PpRo0axeDBmmPHzC2L/Ku4hBBCCCGEEJ+m1cZE06ZNUSgUHx2WpEiyWlBKDAwMMPjHqj+f2kcIIYQQQohUyWpOaabVYU52dnbs2rWLhISEFF/Xr1/XZnhZmqGhDrltDcmX1xjn/DkwNtZ8YMzRk+foMXA0VRv8RPGqDfC590Bje9jbd0ybu5T/te5OudpNqNusI9PmLePd+/AUj/cm7C3fNm1P8aoNePvufbLtew8epUPvIWk6NsD2vQfp3Hc4leo1S7XMvsMnUrdZR8rWbkytxm0ZOXkWIX8tYwnwNCiY4lUbEGTyWOMVo5Oxq6B0HtyRk0+Oabw2nPwlQ4+ZFVSpWoHftq/C1+8Cb8P9afi/etoOSWSgvoO68/vx3/ANvMyte6dZ8+tCnF2ctB1WhpPrPHvJrp93dq23yBhabUyUK1eOa9eupbr9U70W2ZmOQkFMTAKhL1P+4RwZFUXZksUY1DvlCewhoS8JCX3F0L7d2b1xGVPHDObcpWuM95iXYv7xHvMp5Jw/1Xj+PHNR/XTsTx0bEteprlapPD06tk41T8WypZgzeRQHtqxi3tSxPH4axKCxU5Pls4i0xibCXv3SS9BPtcwvJcAngGZlWqpf/X4cmOHH1DYTE2PueHozZNAEbYciMsE3VSqwfvUWGtVvQ5tmPdDT02XzrlUYGRtpO7QMJdd59pJdP+/sWm+RMbQ6zGnYsGGEh6d8JxzAxcWFEydOZGJE/x0RkfFERManur3x998CiXfvU1KwgBPzp41Vv3d0sKd/z06MnDyTuLh4dHU/9HRs3X2At+/f07tLW85cvJqsrOjoGM5fuc6AXp3TdGyADq1+BODy9dSfmtmx9Y/q/7fPbUv39j/Rf9RkYuPi1A/XA9BBB6VKmVIRGSY+Pp5XL15n6jG17eiRUxw9ckrbYYhM0r6lm8b7gX3G4Ol3lpKli3LpfOo3gf7r5DrPXrLr551d6/1ZsuCqSVmVVhsT1atX/+h2ExMTatasmUnRiHfvw8lhYqzRkHgQ8IjlazezZeV8Hj97nuJ+F6/dxNbKkgL58mZYbGFv33HgyAlKl3DVaEgAvDIIBYUKZYIuOWJNMYzP+DunefLnYcfVrcREx3L3uherPNYQ8iwkw48rhLaYmuYE4M3rMC1HIoQQIivJ0kvDiszz+k0YK9ZtoUXjBuq0mJgYhk2cwRD37tjltkl13xNnLlDrryFOX9rcpWuo8G1Tqjb4iefBISya/qFL1tjIkGH9emAebYl5lBX68Qa8NgglSpmxT8z1uuHN9EGzGN5hFPNGL8Aub24W7pqHkcnXPfxDZF8KhYJJHiO4fPE6vt5+2g5HCCFEFiKNCcH78HD6DJuAc35H+nRrr06fv3wdBfLlpdF3dVLdV6VScfLcJfV8iS+tS9sWbF+7mJXzpqKj1GHUz7PV82jMc5nRqXUz9BMM0E8wwDQ2F0ZxxrzXe5shsfzt8okrnPr9NP7eAVw5dZWRHUeTwzQHtRtJL5r4Ok2bPZbCrgXp022otkMRQojMoUrIuq8sRhoT2Vx4eARug8dhYmzEgmnjNIYQXbp2iyMnzlKqRkNK1WhI9wGjAKjesBWLV28EwNPLl/j4eEqXcM2Q+MxzmeHk6ECVimWZNWkkZy5c4dZdn1Tz6yXoE6+Iy5BYUvP+bThP/J+QxylPph5XiMwwZeYY6n5Xk5aNuhD0LPV5UEIIIbIWDw8PKlSoQM6cObGxsaFp06b4+vpq5KlVqxYKhULj1atXr886jlbnTAjteh8ejtugsejp67FoxgQMDDRXQZo3dQzRMTHq93e87zFu2jzWL51N3jx2QOIqTjUqV0SpzPgJ0KqExB6JmJjYVPPE6sSik8mTsY2MDbF3suPIrpefzizEf8iUmWP4vuG3tGzUmceBT7UdjhBCiM9w6tQp3N3dqVChAnFxcYwePZr69evj5eWFiYmJOl+PHj2YPHmy+r2xsfFnHUcaE/9RCgXo6X3oWNLT1cHn3gPMTHNil9uGsLfvCHoeQkho4g/cgMAnAFhZmmNlacH78HB6DhxDZHQ0C8YPIzw8gvDwCCCxN0CpVOLoYK9xzNdvEocPFciXF9OcOQA4efYi7t07aOT71LEBQl++IvTlawKfPAPg/oOHmBgbYZfbBjPTnNy+68Md73uULVkMU9McPH4axKJVG8mbx47SxROfcL734FH09PSIUyQ2LqJ0I4nUDccsxvxLnOJU9R7bk/PHLhL8JBhLW0u6DOlEQnwCx/d83SuPmZgYU8A5n/q9k1NeSpR05fWrMJ789TmKr8e02eNo2uIHurbtx/v3EVjbWAHw7u07oqIy9lku2iTXefaSXT/v7Frvz/IVrOZ06NAhjffr1q3DxsaGa9euUaNGDXW6sbExuXPnTvdxFKqv8EEOuvpf/3ATQ0MleeyST/ht0qAuU8cOYc/vRxk7bW6y7b27tsO9W3suX79N134jUiz78I515LGzTZb+9z7nD23HNGcOAp88o2mHXpw9uA1jI0N1vk8dG2DJml9Z9sumZHmmjB5M04b1uPcggOnzV+Dr509kVBTWlhZUrVQOt85tsLVO/FGz9+BR1mzaTkBAYmNFN0EPk9icGMV/Xov6c41fMoaSlUpgam5K2KswPC/fYfXMX3j2KChDj/tP11/7Z+rxqlWvxMFDW5Klb/p1B73dhmdaHBGxX+8P2Y+xNcmVqcd7+vpuiumD+oxh25Y9mRbHu5iMXVDhn+Q61y5jPYNMPV5W+bwzW1ap99vwzP079jkid0zRdgip0mk0jOhoze8IAwMDDAw+/u/Hz8+PggUL4unpSfHixYHEYU53795FpVKRO3duGjVqxLhx4z6rd0IaE1+RyGdnMvV467fu4uKVGyyb83OmHvef6pXuqdXja0tmNyayiuz6IyuzGxNZRWY3JrKK7HqdZ3ZjQmiXNCbSZ8adOCZNmqSRNmHCBCZOnJjqPgkJCTRu3Jg3b95w9uxZdfrKlSvJly8f9vb23L59mxEjRlCxYkV27dqV5nhkmJNIN1trK7p3aKXtMIQQQgghvqwsPMxp1KhRDB48WCPtU70S7u7u3LlzR6MhAdCz54cbsiVKlMDOzo5vv/2WBw8e4OzsnKZ4pDEh0u37b2t8OpMQQgghhPhi0jKkKam+ffty4MABTp8+jYODw0fzVqpUCUgcEiWNCSGEEEIIIbIplUpFv3792L17NydPniR//vyf3OfmzZsA2NnZpfk40pgQQgghhBAiqa9gSrG7uzubN29m79695MyZk+fPnwNgZmaGkZERDx48YPPmzfzwww9YWlpy+/ZtBg0aRI0aNShZsmSajyONCSGEEEIIIb4yy5YtAxJXbEpq7dq1dO7cGX19fY4dO8b8+fMJDw8nb968NG/enLFjx37WcaQxIYQQQgghxFfmUwu25s2bl1OnTv3r40hjQgghhBBCiKSy8GpOWY3Op7MIIYQQQgghRHLSmBBCCCGEEEKkiwxzEkIIIYQQIikZ5pRm0jMhhBBCCCGESBdpTAghhBBCCCHSRYY5CSGEEEIIkZRKhjmllfRMCCGEEEIIIdJFGhNCCCGEEEKIdJFhTkIIIYQQQiQlqzmlmfRMCCGEEEIIIdJFGhNCCCGEEEKIdJFhTkIIIYQQQiSlUmk7gv8M6ZkQQgghhBBCpIs0JoQQQgghhBDpIsOchBBCCCGESEpWc0oz6ZkQQgghhBBCpIs0JoQQQgghhBDpIsOchBBCCCGESEqGOaXZV9mYKGBmp+0QtMLIvrq2Q9CKyGdntB2CVjgVbKTtELQiIjZa2yFoRXD4G22HoBW2Jrm0HYJWZNfrvKx5AW2HoBX3w4O0HYIQ6SbDnIQQQgghhBDp8lX2TAghhBBCCJFuKhnmlFbSMyGEEEIIIYRIF2lMCCGEEEIIIdJFhjkJIYQQQgiRhCpBpe0Q/jOkZ0IIIYQQQgiRLtKYEEIIIYQQQqSLDHMSQgghhBAiKXloXZpJz4QQQgghhBAiXaQxIYQQQgghhEgXGeYkhBBCCCFEUvLQujSTngkhhBBCCCFEukhjQgghhBBCCJEuMsxJCCGEEEKIpOShdWkmPRNCCCGEEEKIdJHGhBBCCCGEECJdZJiTEEIIIYQQSclD69JMeiaEEEIIIYQQ6SKNCSGEEEIIIUS6yDAnIYQQQgghkpJhTmkmPRNCCCGEEEKIdJHGhBBCCCGEECJdZJiTEEIIIYQQSankoXVpJT0TQgghhBBCiHSRxkQq2nVtyZ/X9uH5+BzbD62jZJliqeat37A2O49u4KrfCW4+PMPeE5to0vIHjTxd+7TngtcRLngdoWvvdhrbSpYtxq5jG1EqlRlSF/FBeHgE0+cvp16zTpSr3YR2boPx9PZVb4+IiGTqnKV827Q95Wo3oXG7nvy2+/dPlvv23XumzFlCrcZtKVOrEQ1bd+f0+cvq7QcO/8m3P3agyvctmblwpca+T4OCadi6O+/Dw79cRdOoU/c2XLx1hAdB19l/dAuly5ZINW/bji3YdXADdwPOczfgPFt3r06W361vZ27dO82te6dxc++ksa1MuRL8cWKbXOci08l1nr007dSYrRd+5YjfQZbuX0SR0oVTzft9y/qcfHJM43XE76BGnlZuLdl9czu7b27np54tNLa5linCioNLUSq1/3NKrnOhLTLMKQU/NK3HqMmDGD/Mg1vX7tDZrQ1rti3iu8rNeRX6Oln+N6/fsnzeL/jff0hMbCy161fHY+F4Xoa+4uyJixQu6sKAEb1wazcQhULBik3zOHvyIve8H6BUKpk8ezTjBk8lPj5eC7XNXsZPX4Cf/0M8xg/FxsqS/Yf/pMeA0ezdtAJbaytmLlrJpWu38Bg/nDx2tpy/fI0pc5ZgY2VJ7erfpFhmbGwsPQaOxsI8F3OnjMHW2opnz4PJmSMHAK/fhDFh+gKmjBmMQ57cuA+dQMVypahVtRIAU2YvZmCvLuQwMcm08wDQ+MfvmTBlOCMHT+LGNU+69+rApp0rqFHhf7wMfZUsf+VqFdi78yBXL90kKjoa9wHd2LxrJXUqN+F5UAiuxQoxbFRfOrV2R6GAdVuXcurEeXy87qNUKpk+dwLDB06U61xkKrnOs5fajWrRZ3wv5o5agPcNb1p0b86sX6fToWYX3rx8k+I+79+G07FmZ/V7VZLhLQVc89NlaCdGdRqLQqHAY/0Urpy+RoBPAEqlDoM9BjJ7xDzi47W78o9c5xlAVnNKM+03pbOgLr3ase3XPezasp8H9wIYP9SDqMgoWrRtnGL+y+evcfTgSR7cf8jjh0/ZsHIrvl5+lKtUGoACBZ3w9brPxbNXuXDmCr5efhQo6ARA974duHLhOp43vTKpdtlXVHQ0x06dZbB7N8qXLoGjgz3u3drj6GCv7n246elNkwZ1qVi2JHnsbGnZ5AcKuxTQ6L34p10HjhD29h0Lp4+nbMli5LGzpUKZkhQpWACAJ8+ekyOHCQ3q1qSEa2EqlC2F/8PHABw8ehJdXV3q1aqa8SfgH3r06cTmDTvYtnkP930fMHLwJCIjomjdvlmK+fv1HMH6NVu5e8eHB/cDGNp/PDoKHarVSGxkuRTMj/fde5w7c4mzpy/hffceLgXzA9C7fxcunr/KrRt3Mq1+QoBc59lNy57N+X3LQQ5tO8yj+4HMHTmfqKhofmj9feo7qVS8evFa/Xod+ka9ydHZEX/vAG6cv8n1czd44O2Po3NeAFr1asWtS7fxvZX634fMIte50CZpTPyDnp4uxUoV4fypS+o0lUrF+dOXKV2+ZJrKqFy9Avmd83Hlwg0A7nn54eTsiF0eW+wdcuPk7Mh97wfkdcpDszaNmD9tWYbURWiKj4snPj4BA309jXQDA32u374LQOkSrpw4e5HgF6GoVCouX7vFw8CnVKlYNtVyT569SKnirkyds4Qa/2tD0/a9WLl+q/qOjaODPVFRUXjf8yPs7Tvu+tyjsEt+wt6+Y9GqDYwe3CfjKp0KPT09SpYuypmTF9RpKpWKs6cuUq5CqTSVYWRsiK6eLm/ehAHg7XWf/C5O2DvYkSevHQVc8uHj7Uc+p7y0avsjM6cuzJC6CJEauc6zF109XQqXKMS1M9fVaSqVimtnrlO0bNFU9zMyMWLrxU1su7yZKWsm41Qon3qbv08ADgXyYGNvg20eG/LmdyDA9yH2+exo0Oo71sxcm6F1Sgu5zoW2yTCnfzC3yIWuri6hLzS7BUNDXlHAxSnV/XLkNOGM5x/o6+uTEB/PxBEz1A2SB/cfMnfqUtbuWArAnClLeHD/Iet2LGHWpIVUq1OZfsN6EhcXx5Qxs7n6VyNEfFkmJsaUKu7K8nVbKJDPEUuLXBw8dopbd3xwzGMHwOhBvZk4YyHfNu2ArlKJQkfBxBEDKF869bGnT5495+n1WzSsX5tlsycT+OQZU+YsIS4+nj5d22FmmpOpY4cw+uc5REVH0+j7b6laqRzjPObRtnkjngY9p9+IicTFxdOnWzvq166e4efCwvLv6/ylRvqLFy9x/uvu06eMmTiE4Och6j9gfvf8mfHzfLbuWgXA9Mnz8bvnz9bdq5kyYQ616lRj8Mg+xMXGMX6UB5fOX/uylRLiH+Q6z17MLMxQ6ip59UJzOPLr0Nc4uuRNcZ/AB4+ZMWQ2/t7+mJia0MqtJYv3LKTLt914ERRKoF8gq6f/wuwtMwBYNX0NgX6BzNkykxVTV1KxVnk6D+pIXFw8iyYs4fYlzwyv5z/JdZ5BEmQ1p7SSxsQXEv4+gia122JiYkzl6hUYNXkQjx8+5fJf/8C2rt/J1vU71fl/bNWQ8PcR3LjqyeELO2levyO57WyYt3Iadco1JjYmVltV+ap5jBvKeI951GnaHqVSB9dCLjSoWxMvXz8ANu3Yx+27PiyeMQG73LZcu+nJ1DlLsbGypHKFMimWmaBSYWGei4nD+6NUKilWpCAhoS9Zu3kHfbomTravW7MqdWt+GMp05cZt7vkFMHpQb374qRszJ43AysKCNj0GUK50CSzNc2X4ufg33Ad2p3GzBrRs1Jno6Bh1+sa129i4dpv6fcvWTXj/PpxrV25x+soBGtZphZ19bpaunk3l0vWJketcZGFynX/9vK5743XdW/3+ztW7bDj5C43a/Y9fZq8DYN+vB9j36wF1nu9a1CMiPIK717zYeGodbv9zx9rOivFLxtCmSof/3N9vuc7FvyWNiX94/eoNcXFxWFlbaKRb2VjwIuRlKnsldikGBjwBwPvOPZwL5cdtYGd1YyIpcwsz+g7tQdvGPSlVtjgPHwTyyP8xj/wfo6erS35nR+55P/iyFRNA4pCjdUtmEREZRXh4BNZWFgwZ54GDfW6ioqNZsGI9CzzGUbNKRQAKu+TH574/67bsTLUxYW1pjq6ursaqFgXy5SX05WtiY2PR09McVhUTE8OU2UvwGD+MwCdBxMfHU6FM4hC6fHnz4HnXh1rVUp7s/aW8evn3dW6pWRdrS16EhH50X7e+nXEf2I3WTbvjffdeqvnMLXIxaERvmjfsRJnyJfH3e0SAfyAB/oHo6elSwMUJH6/7X6Q+QqRErvPsJexVGPFx8VhYm2ukm1uZ8yok+eIpKYmPi+f+HT/yONmnuN3M3JROgzoyoMUgXMu48jjgCU8DnvI04Cm6ero4FHAgwCfgX9flc8h1LrRN5kz8Q2xsHHdv+VC5RkV1mkKhoHL1Cty8ejvN5Sh0dNDX109x2+ifh7BuxRaCg0JQKnXQ1fvQplPqKmWptUxgbGSItZUFYW/fcf7yNepU/4a4uDji4uLQUSg08iqVOiR8ZFWH0iWKEfjkmUaeh4+fYm1pkawhAbBi3VaqfVOeooVdSEiIJy7JahhxcfHEZ8IKErGxsdy+6UW1mh8aLQqFgmo1KnHtyq1U9+vdvysDh/WifQs3bt+8+9FjTJo2glVLNxD0LBiljg56/7zOdeQ6FxlLrvPsJS42Dl/Pe5St9mGOm0KhoFy1MnhdT9siJzo6OhQokp+XIclXQAJwn9ib7at38iIoFB2lDrq6ST5vpRKlTub/rJLrPIOoErLuK4uRnokUrF2+iRmLJnLnphe3r9+lk1tbjIyN2LllPwAzF08i+HkIc6YsAcBtQGc8b3rz+OET9PX1qFm3Kk1a/sDE4R7Jyq5SsxJOzo4M7zsBgNs3vCjgko8a31bBzt6WhPgE/P0eZV5ls5lzl66hUqlwcnQg8Mkz5ixZQ35HB5o2rI+eri7ly5RgzpI1GBgYYJ/bhqs3PNn3x3GG9e+hLmPUz7OxsbJkUO8uALT6sSFbdu5j+vzltG3RmEdPnrFqw2+0a5l89a8HAY849Odptq9dDED+fHnR0dFh5/7DWFmaExD4mOKuhTLlXKxaup55S6dx+8Zdblz3pEfvDhiZGPHbpt0ALFg2jaCgEKZPng9AnwHdGDqqL317DOdx4DOsbayAxGd3RIRHaJRdvVZl8js7MaD3aABu3biDc8H81K5bDfs8diTEJ/DAL3Pv3onsSa7z7GX7yp2Mmjcc31u+eN/0pUX3ZhgaGfLHb4cAGDV/BKHPQ1k1fQ0AHQe2x+u6N08fPiOHqQmte/2ErYMtv285mKzsctXL4lDAAY+BMwHwveWLo0teKtaugI29DQkJCQT6P868yiYh17nQJmlMpODgnqNYWJrTf0QvrG0s8b5zj26t+vHyr0nZdg65SUjSMjQyNmLizBHktrMhKioa//sPGdZnHAf3HNUo18DQgPHThzOoxyj1OtbBQSH8PHoWHgvHExMdy4h+E4iOis68ymYz796HM3/5WoJfhGJmmpN6NavR360Ten/dXZo9aSTzl69j5KSZhL19h31uG/q7daJV04bqMoKCQzR6L+xsrVkxbyozF6ygWac+2FhZ0r5lE7q1b6lxbJVKxcSZCxnWrwfGRoYAGBoYMGXMYKbOWUpMbCyjB/XB1toqE84E7Nt9CAsrC4aO7ou1jRV3PX1o38JNPYnP3sGOhCQT0Dp2bYWBgT6rNszXKGfO9CXMnbFU/d7Q0ICpM8fQu+tQ9XUe9CyYcSOmMXfxVGJiYhjYZzRRcp2LTCDXefZyYv9Jclma0WVoZyyszfHzesDwDqPUy73a5rFBlaT3N6dZTobOHIyFtTnvw97j63kf9yYDeHQ/UKNcfUN9Bkzpx+TeU9Sf94ugUBaOW8zIOcOIiYnFY+BMYqJi0Aa5zoU2KVRJn87ylShkXV7bIWiFf1iQtkPQishnZ7QdglY4FWyk7RC0Ijj8jbZDEJnI1iSXtkPQiux6nVezcdV2CFpxPzx7/v1++vrjw6u0KWJGF22HkCrjEdpfkjgpmTMhhBBCCCGESBetNyYiIyM5e/YsXl7JJ0dFRUWxYcOGj+4fHR3N27dvNV4JWXByihBCCCGEEF8brTYm7t27h6urKzVq1KBEiRLUrFmToKAPXX1hYWF06fLxbiYPDw/MzMw0Xq8jnmd06EIIIYQQ4iulSkjIsq+sRquNiREjRlC8eHFCQkLw9fUlZ86cVK1alcDAwE/v/JdRo0YRFham8TI3zp2BUQshhBBCCCFAy6s5nT9/nmPHjmFlZYWVlRX79++nT58+VK9enRMnTmBiYvLJMgwMDDAwMNBI01FoffSWEEIIIYQQXz2tNiYiIyM1HviiUChYtmwZffv2pWbNmmzevFmL0aVdm87NadO5BQ6OdgDc9/FnyZzVnD5+XsuRfX0MDXXIZaaPgb4Ouro6BAVHamxXqVQsWb2RHfsP8e5dOGVKFmXc0L7ky5tHnWfF+i2cPn8F3/v+6OnpcuHwjmTH8fT2Zf6ytXj5+qFQKCjuWojBfbpRpGABjXxXbtxm5ORZHN+9kas3PVm7eQdePn68ePmKBR7j+LZGlc+Or+/wifj4+fPq9RtMc+bgm/JlGNy7KzZ/Pd308vXbbPxtN8aWcSh0ICEOYiN0iIvO2EZ030HdafC/ergUzE9UVBRXL99k2sS5PPB7mKHHFSIzyXWevXQe3JHOgztqpAX6BdKxVlctRZQ55DpPg4SvbrHTDKPVW/hFihTh6tWrydIXL15MkyZNaNw4+UO/sqLnz0KYM2UxP9btQLO6Hbl49ipLN8zBpXCBT+8sPouOQkFMTAKhL1Ne0/qXTdvZtGMf44f1Y/Oq+RgZGuI2eCzR0R/W/o6NjeO72tVp9WPDFMuIiIik1+Bx2NnasHnlfDYsnY2JsRFug8cSGxenkffEmYvUqloJgMjIKAq7FGDMkD6pxp+W+CqWLcWcyaM4sGUV86aO5fHTIAaNnareftPTi0LO+YkKUxLxSklclA4Gpgko9TN2HOU3VSqwfvUWGtVvQ5tmPdDT02XzrlUYGRtl6HGFyExynWc/AT4BNCvTUv3q9+NAbYeU4eQ6F1+SVnsmfvzxR7Zs2UKHDh2SbVu8eDEJCQksX75cC5F9nhNHNJ9zMG/aUtp0bk7p8iXw8/XXUlRfp4jIeCIi41PcplKp2LhtDz07taZO9coATBs3lJqN2nD8zHl+qFsLgL7dE6+3Pb8fTbEc/0ePCXv7DvfuHbCztQagd9d2NOvYh6DnITg62Kvznjh7kTGDExsP1StXoHrlCqnGntb4Orb+Ub2PfW5burf/if6jJhMbF4eeri49O7UGYM6s7QDERipQ6qvQNVARn4HPS2rf0k3j/cA+Y/D0O0vJ0kW5dP5axh1YiEwk13n2Ex8fz6sXr7UdRqaS61x8SVrtmRg1ahQHDyZ/ZP3fli5dSkIWnLX+MTo6OjRsWh9jYyNuXLmt7XCylSfPnhP68jWVy5dRp+XMYULJooW5dccnzeXkd3Qgl5kpuw4cJjY2lqjoaHbtP0wBp7zY57ZV5/Pzf8Sr12+oVK5UhsUX9vYdB46coHQJV/VTulOiUKjI7MdPmprmBODN67DMPbAQmUiu869fnvx52HF1K5vPbWTMolHY2NtoO6RMJ9d5ClQJWfeVxWi1Z+JrUsjVmd/+WIuBgT4R4ZG4dx7Gg3sB2g4rWwl9lXhnydLCXCPd0sKc0Jdpv+tkYmLM2sUz6D9yMivWbQEgn4M9K+ZNQVdXqc7355kLVK1UDj09vS8e39yla9iycz+RUdGUKlaEJbMmpVqurkECOnoQ/S7z7g0oFAomeYzg8sXr+Hr7ZdpxhchMcp1//bxueDN90Cwe+z/G0saSToM6sHDXPLp8253I8MhPF/AVkOtc/Fuy7NEXEuD3iCa129Lyu85sWbeDGYsm4lwov7bDEukQFR3NeI/5lClRlE0r57Jx2WxcCuSjz9AJREV/mKtx4uxFalX7JkNi6NK2BdvXLmblvKnoKHUY9fNsVCl0PSj1EjAwTSD6nQ4J8YoMiSUl02aPpbBrQfp0G5ppxxQis8l1/vW7fOIKp34/jb93AFdOXWVkx9HkMM1B7UY1tR1appHrXPxb0jPxhcTGxhEY8ASAu7d9KFG6KJ16tmH80Glajiz7sPrrjv/LV6+xtrJQp7989ZrCBZ3TXM7vR07yNCiYTSvmoqOT2N6eOXEEVb5vyZ9nLvBD3Vq8CH2F970H1KxSMUPiM89lhnkuM5wcHSjglJe6P3bk1l0fShd3VefR0VNhaJbYkIiLyrz7AlNmjqHudzVp9kMngp4FZ9pxhchMcp1nT+/fhvPE/wl5nPJ8OvNXQK7zj5DVnNJMeiYyiEJHB32DtA1/EV+Gg31urCzNuXjtpjrtfXg4t718KVW8SJrLiYqKQkdHgULx4U6/QqEDCgWqv75cTp67SOkSrpj9Nc40I+P7+5gxMbHqtMvXb2NkFk9MeOY3JL5v+C0/Ne7K48CnmXZcITKTXOfZl5GxIfZOdrwMeantUDKcXOfiS5GeiS9gyFh3Th0/T9CT55jkMKZR8++pVLUcXX/qp+3QvjoKBejpffjxrKerg8+9B5iZ5sQutw0dfmrKyvVbyeeQhzz2tixetREbK0u+rf7heQ9Bz0MIe/uOoOAQ4uMT8Ln3AABHB3uMjY2oXLEsc5auYcqcJbRt0RhVgorVv25DV6mkYtnEydYnzl6i9j+GOEVERBL45Jn6/dNnwRqxKRSKT8Z3+64Pd7zvUbZkMUxNc/D4aRCLVm0kbx47Sv/V4Lh87RbuwycQG6kgLlqBQiexsaFSAaqMG+o0bfY4mrb4ga5t+/H+fQTWNlYAvHv7jqiolJfqFeK/Rq7z7KX32J6cP3aR4CfBWNpa0mVIJxLiEzi+54S2Q8tQcp2LL0mhSmkg9n9cIevymXq8qfPHUbl6BWxsrXj39j2+XvdZuWgD509dytQ4/MOCMvV42mBoqCSPXfJ1sJs0qMvUsUPUD4Xbvu8Q796/p2zJYowd4o6To4M675gpc9j7x7FkZfyyaAYVy5YE4Pzl6yxbuwk//0coFApcCznTv2cnShV3JSIyiuo/tGL3xmUay8Revn6brv1GpBob8Mn47j0IYPr8Ffj6+RMZFYW1pQVVK5XDrXMbbK2tPhp/fAxEvsm4+wNPX99NMX1QnzFs27Inw477T8HhbzLtWEL7bE1yZerx5DrXrmo2rp/O9AWNXzKGkpVKYGpuStirMDwv32H1zF949ihz/57eD8/c42WV6zy1OLKC8IlttB1CqkwmbtF2CBqkMfEVyQ6NiZREPjvz6Uxf0NGT51i0aj37Nq3M1OP+k1PBRlo9vrZk1x9Z2VVmNyayiux6nWd2YyKryOzGRFYhjYn0yWqNCZkzIcRnMjYyZHDvrtoOQwghhBBC62TOhBCfqWqlctoOQQghhBAZSVZzSjPpmRBCCCGEEEKkizQmhBBCCCGEEOkiw5yEEEIIIYRISpWg7Qj+M6RnQgghhBBCCJEu0pgQQgghhBBCpIsMcxJCCCGEECIpWc0pzaRnQgghhBBCCJEu0pgQQgghhBBCpIsMcxJCCCGEECIJVYKs5pRW0jMhhBBCCCGESBdpTAghhBBCCCHSRYY5CSGEEEIIkZSs5pRm0jMhhBBCCCGESBdpTAghhBBCCCHSRYY5CSGEEEIIkZQMc0oz6ZkQQgghhBBCpIs0JoQQQgghhBDpIsOchBBCCCGESEolD61LK+mZEEIIIYQQQqSLNCaEEEIIIYQQ6SLDnIQQQgghhEhKVnNKM+mZEEIIIYQQQqSLNCaEEEIIIYQQ6fJVDnPyDwvSdggiE3UqN0TbIWjFw/v7tR2CVhjZV9d2CFrhma+UtkPQihKPbmk7BJGJ7odnz7/f10tZazsE8Q8qGeaUZtIzIYQQQgghhEgXaUwIIYQQQggh0uWrHOYkhBBCCCFEuskwpzSTngkhhBBCCCFEukhjQgghhBBCCJEuMsxJCCGEEEKIpBIStB3Bf4b0TAghhBBCCCHSRRoTQgghhBBCiHSRYU5CCCGEEEIkJas5pZn0TAghhBBCCCHSRRoTQgghhBBCiHSRYU5CCCGEEEIkJcOc0kx6JoQQQgghhBDpIo0JIYQQQgghRLrIMCchhBBCCCGSUKlkmFNaSc+EEEIIIYQQIl2kMSGEEEIIIYRIFxnmJIQQQgghRFKymlOaSc+EEEIIIYQQIl2kMSGEEEIIIYRIF2lMCCGEEEIIkVSCKuu+0sjDw4MKFSqQM2dObGxsaNq0Kb6+vhp5oqKicHd3x9LSkhw5ctC8eXOCg4M/61RJY0IIIYQQQoivzKlTp3B3d+fixYscPXqU2NhY6tevT3h4uDrPoEGD2L9/P9u3b+fUqVM8e/aMZs2afdZxZAK2EEIIIYQQX5lDhw5pvF+3bh02NjZcu3aNGjVqEBYWxpo1a9i8eTN16tQBYO3atbi6unLx4kW++eabNB1HGhNCCCGEEEIkocrCqzlFR0cTHR2tkWZgYICBgcFH9wsLCwPAwsICgGvXrhEbG0vdunXVeYoUKYKjoyMXLlxIc2NChjkJAdTr2IAFZ1ewzvc3Ju+ZgXOpgqnmHbv1ZzY/2p3sNWztGHWehj2bsOzaOpZdW8cPPRpr7O9cuiBTD8xGR5l5//zCwyOYPn859Zp1olztJrRzG4yn94dxk2OmzKF41QYaL7fBYz9aZv3mnZLtU7xqA6bMWaLOM3PhSqp835Jvf+zAgcN/aux/+M8zuA+f8GUrKlJkVKE4Dism4HJ2I673D5KjbuVP7qPQ18V6UEdcTq6j8N29OJ9Yi1mLeurtJlXLUODIKgrd2IH9rKGg9+HelE4OYwocWYWuvU2G1EeIj+nUvQ0Xbx3hQdB19h/dQumyJVLN27ZjC3Yd3MDdgPPcDTjP1t2rk+V369uZW/dOc+veadzcO2lsK1OuBH+c2IZSqcyQuqSFXsmS5Jo2DasdO7A9eRKDatU+uY9h3bpYrF6NzaFDWO3cienw4ShMTdXb9cuVw3LjRqx//x3T0aNB98O/b4WJCZYbN6Jja5sh9RGf5uHhgZmZmcbLw8Pjo/skJCQwcOBAqlatSvHixQF4/vw5+vr65MqVSyOvra0tz58/T3M80jMhsr1v/leV9mO78MuY5fjdvEeDro0YuXE8Q2r35e3LsGT557nNQFf/wz+dHLlyMv3QPC79fh6AvEXy0WJwG2Z1nYpCAcN+GYPn6Zs89g1ER6lDt2m9WD1yGQnxCZlWx/HTF+Dn/xCP8UOxsbJk/+E/6TFgNHs3rcDW2gqAat+UZ8roQep99PT0Plrm1tULSEj4UIf7/o/oMXA09WtXB+Dk2Yv8fvQkK+dNJfDJM8ZNm0fVSuUwz2XGu/fhLFy5ntXzp2VAbcU/6RgZEu0TQNiOIzgsHZemffIsGIWulTnPRs8n9tEzdK0tQOevBrBCgf3c4bxcvo33Z67hsHg05q2+5/WvBwCwGdaFN1sOEvcsJKOqJESKGv/4PROmDGfk4EncuOZJ914d2LRzBTUq/I+Xoa+S5a9crQJ7dx7k6qWbREVH4z6gG5t3raRO5SY8DwrBtVghho3qS6fW7igUsG7rUk6dOI+P132USiXT505g+MCJxMfHa6G2iRSGhsQ+eEDkwYPkmjLlk/n1ihfHdNQo3i1ZQvT58yitrTEdPBjToUMJGz8eFArMxo0jfNMmoq9cIdekSRg1akTk7t0A5OjZk8h9+0j4zEm64ssZNWoUgwcP1kj7VK+Eu7s7d+7c4ezZs188HmlMiGzvh+6NObH1KKe2J945XzN6OaXrlKPmT9+yf9muZPnDw95rvK/cqBrRkdHqxoS9cx4CvR/idd4TgEDvR9g7O/DYN5D/uTXF55IX/rf9MrhWH0RFR3Ps1FkWTp9A+dKJd9zcu7Xn1LlL/Lb7d/r3TLzTpq+nh5WlRZrLtTDPpfF+9cZt5M1jR4Uyicfwf/SYCmVKUNy1EMVdCzF9wQqeBD3HPJcZc5euoVXThtjlljvXmSH89FXCT19Nc36T6uUwrlgCvzpdSfjreo99+qFhoDQ3RdfCjNebDqCKieXd8UvoOzsCYFTGFcMShXg+admXrYQQadCjTyc2b9jBts17ABg5eBLf1q9B6/bNWDJ/dbL8/XqO0Hg/tP94fmhUj2o1vmHHb/twKZgf77v3OHfmEgDed+/hUjA/Pl736d2/CxfPX+XWjTsZXq+Pibl8mZjLl9OcX69YMeKfPydyV+Lft4Tnz4nYtw+Ttm0BUJiZoZMrFxF790JMDNHnzqHr6KjeV69IEd4tWPDlK5LVZOFhTmkZ0pRU3759OXDgAKdPn8bBwUGdnjt3bmJiYnjz5o1G70RwcDC5c+dOc/kyzElka0o9XfKXcObO2VvqNJVKxZ2ztylYtnCayqjVqi4X958lOjJx/OJj30DsCthjaW+FVR5r7ArY8/heIDaOuanZ8lu2zd6UIXVJTXxcPPHxCRjoa/Y0GBjoc/32XfX7KzduU6Nha/7XujuTZy3iTdjbNB8jNjaWA0dO8GPD+igUCgAKuxTgrs99wt6+467PfaKjo3HMY8/1W3fw8vWjXcvGnyhVaEvObysR5Xkfyx4tcDmzgQJHVmEzohsKA30A4l+FERv8EpNqZVEYGmBcvhjRvgGgqyT3JHeej1sECZnX8yYEJPamlixdlDMnL6jTVCoVZ09dpFyFUmkqw8jYEF09Xd68SeyV9va6T34XJ+wd7MiT144CLvnw8fYjn1NeWrX9kZlTF2ZIXTJS7N27KG1s0K9UCQAdc3MMa9Yk+uJFAFRv3hAfGopB+fJgYIBeyZLE+fuDUknOQYN4O2eO/Pv+j1CpVPTt25fdu3fz559/kj9/fo3t5cqVQ09Pj+PHj6vTfH19CQwMpHLlTw+H/Zv0TIhsLad5TpS6SsJCNYczhYW+wd45zyf3dy5VEMci+Vg1/MM8gWd+T/ht5iZG/ToRgK0zfuWZ3xNGb5rIFo/1lKxZhuYDWxMfF8eGiWvwuez1Rev0TyYmxpQq7srydVsokM8RS4tcHDx2ilt3fHDMYwdA1W/KUbdmVfLY2/L4aRALVqyj15BxbFoxN01jgY+fvsC79+9p+sOHMfVVK5Xjf9/VoXX3ARgaGDB17BCMjQz5efYSpowZzG+7f2fzjn3kymXGxOH9cSmQL8POgfg8enlzY1S+GAkxsTxxn4LS3JTcE91RmpsSNHIeAE8HeGA7uie2Y914f+oqb3YcwcrtJyIu3SYhOoZ8W2ejNDfl9cZ96uFPQmQkC8tc6OrqEvripUb6ixcvcS6YP5W9NI2ZOITg5yHqBonfPX9m/DyfrbtWATB98nz87vmzdfdqpkyYQ6061Rg8sg9xsXGMH+XBpfPXvmylMkDsnTuETZmC2YQJKPT1UejqEn3uHO/mz1fnCZs0iZzu7uTs14/oixeJPHgQk7Ztibl5E1VMDOaLFqFjZkbE7t3q4U8i63F3d2fz5s3s3buXnDlzqudBmJmZYWRkhJmZGd26dWPw4MFYWFhgampKv379qFy5cponX4M0JoT4V2q1+pZA74c8uHVfI/34psMc33RY/b5689pEvo/k3nVf5vy5hHGNh2FhZ0m/xUMYUM2NuJi4DI3TY9xQxnvMo07T9iiVOrgWcqFB3Zp4+SYOt/qhbi113kLO+SnknJ8GP3Xlyo3bfFO+zCfL33XgMNW+KY+NtaVGunu39rh3a69+v/SXTXxTvjS6urqsWL+V3RuWcur8ZUZPmc22XxZ9mcqKf09HB1Qqng2eScL7CABCPFaRZ9Fonk9Ygio6hshrXjxsPlC9i75THsya1sG/ST+cNs/k1fq9vD91lQIHlxFx5Q7Rvg+1Uxch0sh9YHcaN2tAy0adiY6OUadvXLuNjWu3qd+3bN2E9+/DuXblFqevHKBhnVbY2edm6erZVC5dn5iYWG2En2bKfPnI2a8f4evXE3PlCjqWluTo1QvTwYN5O2sWALGenrzq1evDPg4OGH73Ha969MB8wQIidu4k+tIlrNauJfbWrcSei6/NV9D5smxZ4nDTWrVqaaSvXbuWzp07AzBv3jx0dHRo3rw50dHRfPfddyxduvSzjiPDnES29u71O+Lj4jGzMtNIN7PKxZsXbz66r4GRAZUbVePkb8c/mi+neU6aD/yJ9RNW41K6EM8DnvH8YRBeF+6g1FVil9/+31bjkxwd7Fm3ZBaXj+3m2K6NbF29gLi4eBzsUx4TmTePHea5TAl8EvTJsp89D+bi1Zs0b/T9R/P5P3rMgcN/0q9HR67cuE350sWxMM/Fd3Vq4OXrR3h4RLrqJr68uJBXxAW/VDckAKIfPEaho4NubqsU98n9c1+CPVaj0FFgWMyFt3+cJf5VGBGXPTGumPpqOkJ8Ka9eviEuLg6rf9zUsLa25EVI6Ef3devbGfeB3WjbrAfed++lms/cIheDRvRm3IhplClfEn+/RwT4B3L+7GX09HQp4OL0JaqSoUzatSP2zh0ifvuNOH9/Yq5c4d38+Rg1bIiORcrz5kyHDOH90qWgUKBXqBBRJ0+ievOGmFu30CuVtiFkIvOpVKoUX383JAAMDQ1ZsmQJr169Ijw8nF27dn3WfAmQxoTI5uJj4wjwfECxqiXVaQqFgmJVS3D/uu9H9oRKDaugq6/H2d2nPpqv/fiuHFyzn1fPX6Kj1EGp92HYkFJXmalLxBobGWJtZUHY23ecv3yNOtVT7sZ8HvKCN2HvsE7DhOzdvx/FwtyMGpUrpppHpVIxeeZChvfrgbGxEQnxCcTGJfbGxP3133gZg5tlRF73QtfGAoWxoTpN3ykPqvh44p4n/1Fm1qI+8WHvef/nJdBJvL4Vun//Vxcy8RoX2VdsbCy3b3pRreaH7zWFQkG1GpW4duVWqvv17t+VgcN60b6FG7dv3k01H8CkaSNYtXQDQc+CUerooJdkSWSlrhKljvaWiE0rhYFB8jkPf69G9dect6QMf/iBhLdviT5/Xr2im+LvpWJ1dVFocVlckTXIN7zI9g6u3kft1vWo3rw29i4OdJ3qhqGxIae2J/Y49J7bn1bD2yfbr1arulw7con3b96lWnbxaqWwy2/P0fV/AOB/yw975zyUqlWWOm3qkRCfwLMHzzKmYkmcu3SNsxev8uTZc85fvk7XfiPJ7+hA04b1iYiIZPbi1dy6483ToGAuXr1B/5GTcXSwp2qlsuoyuvUfyeYd+zTKTUhIYM/vR2nSoC66uqn/Qdm5/xDmucyoVS3xj3yZkkW5fO0Wt+54s+G33Tg7OWKaM0fGVF6gMDbEwLUABq4FANB3sMXAtQC6dtYAWA/pjN3MIer8YftPEv/mHfbTB6HvkhejCsWxGdGNNzuOokoy/ANAaWGGVZ/WBE9O7E5PePueaL9ALDo3xah0EYwrlyLyWsbOCxLib6uWrqdtxxa0bN0El0IFmD53PEYmRvy2KXFc/4Jl0xg5fqA6f58B3Rg2uh9D+o7jceAzrG2ssLaxwtjEOFnZ1WtVJr+zE+tWbwHg1o07OBfMT+261WjXqSUJ8Qk88AvIlHompTAyQtfFBV0XFwCUuXOj6+KCjk3iank5evTAdNQodf7oCxcwqFEDo8aNUdrZoVe8ODn79yfWy4uEl5rzTRS5cpGjQwfeLUycaK56/564hw8xbtECvaJF0S9blhhPz0yqaeZSJaiy7CurkTkTItu7eOAcppamtBjcmlzW5jzyCmB6x8m8/WtStqW9NQn/+MdrV8CeIhWLMq3dxFTL1TPQp/PkHizqOxuVKnH/V89fsm7Catxm9SU2JpZlQxYS+48fZxnh3ftw5i9fS/CLUMxMc1KvZjX6u3VCT1eX+Ph47j0IYN8fx3j7PhwbKwuqVCxL3x4d0dfXV5fx+GkQr/+xwtOFKzcICg7hx4b1Uz126KvXrFy/lV+Xz1WnlShamE6tm9Fn2AQszHMxbeyQVPcX/55R8YLk2zRD/d52TE8A3uw6StCIeejamKNnb63eroqIIrDzGGzH9yb/rgXEv3nH24NneDFvQ7Kybce58eqXXcSFfFjD/9mIudjPHIx5x8a8WrOTKM/7yfYTIiPs230ICysLho7ui7WNFXc9fWjfwk09KdvewU7j+7xj11YYGOizasN8jXLmTF/C3Bkfxo0bGhowdeYYencdqv4+D3oWzLgR05i7eCoxMTEM7DOaqCjNpxJnBt3ChbFIMnk6Z9++AEQeOsTb6dPRsbREmeQBc1GHDqEwMsL4xx/J2acPCe/fE3PjBu9XrEhWtmm/foRv26bRyAibPh2zUaMwbtaMiK1bifP9eC+++PopVH//q/iK6Op/ehUe8fX4yS714TVfs/XX5mg7BK0wsq+u7RC0wjNf9hyXXOJR6sNTxNfH1iSXtkPQiuulrD+d6Stke/KktkNI1Zt2dbQdQqpybfpT2yFokJ4JIYQQQgghksqCw4myKq03Jry9vbl48SKVK1emSJEi+Pj4sGDBAqKjo2nfvj116ny8ZRgdHU10tGa3okqlUj84SwghhBBCCJExtDoB+9ChQ5QuXZqhQ4dSpkwZDh06RI0aNfDz8+PRo0fUr1+fP//8eFeOh4cHZmZmGi9VQuoTYoUQQgghhBBfhlYbE5MnT2bYsGG8fPmStWvX0rZtW3r06MHRo0c5fvw4w4YNY/r06R8tY9SoUYSFhWm8FDo5M6kGQgghhBDiq5OQhV9ZjFYbE3fv3lU/OOOnn37i3bt3tGjRQr29Xbt23L59+6NlGBgYYGpqqvGSIU5CCCGEEEJkPK3Pmfj7h7+Ojg6GhoaYmX14EnHOnDkJCwvTVmhCpGjB2RVY57VJln5kwx+sG7cy0+IID49g0aoNHD99gVev31CkkDMjB7pRwrWwOs+Dh4HMW/oLV296Eh8fTwEnR+ZPHYtdbhueBgXzXYvOKZY95+fRfFfnw6pJz54H06hNT878vpVnz0NYvHojXr73efY8hBH9e9Kh1Y/Jytiycz9rN+8g9NVrCrsUYPSg3pQo+iG27XsP8vvRk3j7+hEeEcn5Q9uTPWsi7O07ps1dyslzl9DR0aFuraooFPD1rUGnfUYVimPZvTmGxVzQs7Xkce+feX/sgkYefee82AzrgnHFEiiUSqL9AnnSdypxQS+0FLUQ/07fQd1p8L96uBTMT1RUFFcv32TaxLk88Huo7dC+KL2SJTFp3RrdQoVQWlnxZuxYos+eVW9XGBmRo2dPDKpVQ8fUlPigICJ27SJy376PlCpEIq02JpycnLh//z7Ozs4AXLhwAUdHR/X2wMBA7OzstBWeECka23iYxlOr8xZyZPTmSVz6/VymxjF++gL8/B/iMX4oNlaW7D/8Jz0GjGbvphXYWlsR+OQZHXsPpdn/vsO9e3tMjI15EBCIvkHisyNy21hxct8mjTK37/2DtZt3Uv2b8hrpf565SMWyJTE2NiIyOgoH+9zUr1ONmQtTbjz9cewUMxetZPywfpQsWpiN2/bgNngs+7eswtI8FwBRUdFUq1SeapXKM3/52hTLGTFpJi9CX7Fq/jTi4uIYO20e1lYGhLzI/LXcv3Y6RoZE+wQQtuMIDkvHJduu55ibfFtmEbbjCC8W/krC+wgMXPIle4idEP8l31SpwPrVW7h5wxNdXV1GjhvA5l2rqPVNYyIjIrUd3hejMDQk9sEDIg8eJNeUKcm25+jTB/2yZQmbOpX4588xKF+enIMGkRAamvjk62woKz4cLqvSamOid+/exP/9CHegePHiGtv/+OOPT67mJERme/dK88FtjXs34/nDILwv3s20GBJI4NipsyycPoHypUsA4N6tPafOXeK33b/Tv2cnFq5cT/XKFRji3k29n6ODvfr/lUolVpYWGuUeP32e776tjrGxkUb6iTMXqF87saeihGthde/H/GUpNwI2/LabFo0aqB9mN35YP06fv8LuA0fo3uEnAHVvxuXrKQ9lfPAwkLMXr7J19QKKuxYCYPSg3rgNHsvLVzHEx8sX/ZcUfvoq4aevprrdelAnwk9dJWTmL+q02MDnmRGaEBmmfUs3jfcD+4zB0+8sJUsX5dL5a1qK6suLuXyZmMuXU92uX7w4UYcOEXvzJgCRBw5g1KgRuq6u2bYxIdJOq3MmevXqRcOGDVPdPm3aNFavXp2JEQnxeZR6ulT7sSanth3P1OOqUBEfn4CBvp5GuoGBPtdv3yUhIYHT56/glDcPPQeNoUbD1rTpMZDjp1P/o3DX5z4+9/1p9r/vNNLfvnv/f/buO67K8v/j+OvAAQScgCiIiHvkTE1NzZFW6s+RpqZmmtvcO/dIRc29cmWOzJErKzMz995bVBD3QMAJgozz+4O+6EkwJOCgvJ/fx3l8Pdd93df9ueB0OJ9zjZujJ89QrVL5BMUWERHB2fMXKV+2ZGyZlZUV5cuU5MTpcwnu44nT58iYIX1sIgFQvkwpANLZWfStK+0xGEhftSxPL98g58Kvyb//R7xWTyF9jQqWjkwkSWXMGLOBy/17aWuK9dPTp7GrWBErFxcAbEqWxDpnTp4eOmThyOR1oL/IIv9BmQ/ewSGjIzt+Stm7UVpjTYmihZmzaDkBd4OIiorilz+2cuK0D4GBwQTfu0/okyd898MqKpUrw7wpY3j/vXfpOWg0h47FPRKw9tc/yOOVk1LFipiV79p3iAJ5c+Oa1TlBsd27/5CoqGicnbKYlTs7ZSEw+F6C+xgYdA+nzJnMyoxGa6KjTVhba5OFlGTtnBnr9A44d2hMyM4jXP1iCI8278Vj1mAc3in67w2IvAYMBgMjvQdwcP9Rzp/ztXQ4KerR9OlEXr5M1tWrcd2yhSwTJvBo6lQi/mUTnDeapXdseo12c7L4AmyR11m1pjU4sf0o9wMS/iE5qXgP7csw7ylUb/AZ1tZWFC6Qj1o1qnD2vC/Rf8/1rFa5Ap9/GjOdqFCBvBw/dZZV6zdStlRxs7bCwsPZ+Od2OrZu9sJ1tu7an+BRCXkzGaxikrdHf+0neNF6AMLPXcL+7cJkblab0IOnLRidSNIYO3EIBQvn5+NaLS0dSopzaNgQmyJFuDdwINF37mBTogQZevYkOiiIp0fenOlekjyUTIgkkkuOrBStVJwpHSdY5PqeHu4smvUNoU/CCAkJJauLE32GeuPhnp0smTNitLYmr5en2Tl5vHJy9OTZF9ravG03T8LCqffR+2blERER7DlwmPafN01wXFkyZ8Ta2oqgf4xCBAXfw+UfoxUv4+KcheD75lMNIiOjsLIyaL1ECou89xBTRCThvlfNysP9ruFQ+i0LRSWSdEZPGEyND6vQsHYrbt28Y+lwUpatLenbteP+0KE83b8fgMhLl7DJlw+Hpk2VTMi/0jQnkUSq0rg6D4IecGxr/ItWU4KDfTqyujjx4OEj9h48QvXK5bGxseGtwgXwv3rdrO7lazdwz/7itrZrf/2DapXK4fT3Tkv/c/DoSTJmSE+h/HkSHI+NjQ1FCubnwOHjsWXR0dEcOHKcEkULJ7idEkUL8/DRY874XIwtO3Akps2w8FQ4zvsmi4jkyakL2OX2MCu288pBxM0ACwUlkjRGTxjMR3Xep0m9Nly7esPS4aQ4g9GIwcYGos3fV01RUZCG79tlijal2kdqo5EJkUQwGAy817g6u1ZvJzrKMh9s9xw4gslkwsvTg6vXbzJp1nfk9vSgwd87KH3RvBF9h42jTMmivPN2CXbvP8yOPQf4fsZ4s3auXr/JkeOn+XbiqBeusX33Aar+Y4pTREQEfv5X//53JHfuBuFzwQ8HB/vY3aI+b/oxg8dM4q1C+SlapCA/rFrPk7BwGtSpGdtOYFAwgUH3uHr9JgAX/S7j6GCPW3ZXMmXMQF4vTyqVL8OI8dMY1q8bEZGRjJ3yLY9DIjUykQwMDumwzfVsty9bj2zYFc5D1P1HRN66S/CCNeSY+hWhh04Rsv8k6d8rTfrq5bjy2QALRi3y34ydOJQGn9SmTfNuPH4cSlbXmAXIjx4+IizszdmC2mBvj3WOHLHPrbNnx5gvH9EPHxIdEMDT48fJ0LkzD58+Jer2bWxLlsT+ww95NGuWBaOW14XBZHrzbv9ktM3x75XkjdHE7Z0Uv2axyiUY+MMIelftwm3/myl+fYBmE+ozdc733LkbSKaMGahZpRLdO7YiQ3rH2Dprf/2DBUtXcScgEC9PD7q0+4zqlc134Jk6ZxG/bt7K5tWLsLIyH6ys0fBzvh7YiwplS8WWxXezuzKlirFo5rMpXz+u3sD3P64hMDiYQvnzMrBnJ4q/VSj2+KzvfuDbhcteaGf0oN6xSceDh48YM3k223cfwMrKQI2qFZk8a12avGndqVwlkrV9h3eKkWvZ+BfK76/9k1sDpgCQ6ZOauHRsgjG7C0/9r3N32jIe/7U/WeMqduVEsrYvqUs2x8wper0b9+Le0rvXl4NZtXx9isVxtETWZG3fpmRJnKZOfaH8yaZNPBw3DisnJ9K3b49tmTIxN627c4cnv/xC6E8/JWtc2bZvT9b2/4vgj6tYOoR4Oa3bYekQzCiZkNeeJZKJ1GDxkUnJ2v7Z87607f4VO39bgY0x9Qxi2rtX/vdKb6DkTiZSKyUTaUtKJxOpRXInE6lVqk4m6qfiZOLn1JVMaM2EiMQpKiqKgb06p6pEQkRERFIXfUoQkTgVK1KQYkUKWjoMERERScWUTIiIiIiIPMekTQMTTNOcREREREQkUZRMiIiIiIhIomiak4iIiIjI8zTNKcE0MiEiIiIiIomiZEJERERERBJF05xERERERJ6j3ZwSTiMTIiIiIiKSKEomREREREQkUTTNSURERETkeZrmlGAamRARERERkURRMiEiIiIiIomiaU4iIiIiIs/Rbk4Jp5EJERERERFJFCUTIiIiIiKSKEomREREREQkUbRmQkRERETkOVozkXAamRARERERkURRMiEiIiIiIomiaU4iIiIiIs/RNKeE08iEiIiIiIgkipIJERERERFJFE1zEhERERF5nslg6QheGwaTyWSydBBJzWibw9IhiEgyeXJzl6VDsAh798qWDkFEJElFPr1h6RDidadqVUuHEK9s27dbOgQzmuYkIiIiIiKJomlOIiIiIiLP0W5OCaeRCRERERERSRQlEyIiIiIikiia5iQiIiIi8hxTtHZzSiiNTIiIiIiISKIomRARERERkUTRNCcRERERkedoN6eE08iEiIiIiIgkipIJERERERFJFE1zEhERERF5jsmk3ZwSSiMTIiIiIiKSKEomREREREQkUTTNSURERETkOdrNKeE0MiEiIiIiIomiZEJERERERBJF05xERERERJ5jitZuTgmlkQkREREREUkUJRMiIiIiIpIomuYkIiIiIvIck8nSEbw+NDIhIiIiIiKJomRCREREREQSRdOcRERERESeo92cEk4jEyIiIiIikihKJkTkjXH4+Cm69B9OtXotKFqxFn/t3Gt23GQyMXP+EqrWa07pavVp12MgV67dMKvz4OEjBowYT7maDanw4ScM9Z5CaOiTl143PPwpoyfNomKtJpSt8TE9B40mMPieWZtd+g+nbI2P+aR1F85d8DU7f/SkWSxavuY/9l5ERCTlKZkQkTfGkydhFMyXh8F9vozz+MJlP7Fs9QaG9evGj/OnYp8uHR17DyE8/GlsnQEjJ+Drf5X5U8cya8IIjhw/zYgJ01963fHT57J9zwEmjx7EopkTuBsYRM9Bo2OPz1u8gpDQJ/y0cAZlSxVn+Lhn7Z04fY6TZ87TskmD/9Z5ERFJMqZoQ6p9pDZKJkTkjVG5Qlm6d2hFjSoVXzhmMplYumo9HVp9SvXKFSiYLzdjh/YlIDCIv3bFjGD4Xb7K7v2HGflVD4q/VYi3SxRlUK/O/L5lBwF3g+K85qPHIaz9dTP9u7WnXOmSvFUoP18P7s3xU2c5cfocAJcuX6XW+1Xw8vTgk/q18L9yFYCIyEhGfTOTYf26Ym1tnUw/FRERkeSjZEJE0oTrN28TGHSPCmVKxZZlSO9I8SIFOXHaB4gZJciYIT1FCxeIrVO+TCmsrAycPOsTZ7tnz18kMjKS8s+1mydXTtyyuca2WyBfHg4ePUFkZBR7DxyhQN7cQMxISdlSxcyuJyIi8jpRMiEiacL/1jA4O2UxK3d2ykJgUMyxwKB7OGXOZHbcaLQmU4YMZmsgzNoNuoeNjZGMGdL/o93MBAYHA9CuZROsra2p1aQNf+3cy6iBPbly7QYbfv+LTl80Z+SEGXzU+Av6DB3Lo8chSdJfERFJPJMp9T5SG20NKyKSzDKkd2TCiAFmZW26fUWfLm35dfM2rt+8xS/L5zNi3DTmfP8j/bq1t1CkIiIir0YjEyKSJrj8PSIR9I8RhqDge7g4xxxzcc5C8P0HZscjI6N48OhR7PkvtOuchYiISB4+evyPdu/j4uQU5znrfttMhvSOVK9cgUNHT/L+e+9iYzTyQfXKHDp2MlH9ExERsQQlEyKSJni4Z8fFOQv7jxyPLXscEsLJs+cpUbQQACWKFubho8ec8bkYW+fAkeNER5soXqRQnO0WKZgfo9HIgcPP2vW/cp1bdwJi231e8L37zPn+Rwb17gxAdHQ0EZGRAERGRhIVFf1fuyoiIv+RpXds0m5OIiIWEBr6BJ8Lfvhc8APgxs07+Fzw49btAAwGAy2bNGDe4hVs27WfC37+DPp6Eq4uzrxf+V0A8np5Uql8GUaMn8aps+c5evIMY6d8S60aVXDN6gzAnbuB1G3WnlNnzwMxU5ga/t8HTJgxn4NHTnDG5yJDxk6mRNHClCha+IUYx0+bS6tPG5ItqwsApYoX4ZdNW/G7fJXVP/9OqeJFUuJHJSIikiS0ZkJE3hinfS7SptuztQkTZswDoH6tGowZ0oc2LRrz5EkYIyZM59Hjx7xd/C3mTPoaOzvb2HPGD+/PmMmzadt9IFZWBmpUrcignp1jj0dGRuF/9TpPwsJjywZ074iVlRU9B48mIiKCd98pzdC+XV6Ib8+BI1y9cQvvYf1iy5o1qssZn4s0b9+TYkUK0rlNiyT9mYiIiCQng8mUutaFm0wmDIb/NoRjtM2RRNGISGrz5OYuS4dgEfbulS0dgohIkop8esPSIcTLr+iHlg4hXnlP/2HpEMykumlOdnZ2nDt3ztJhiIiIiIjIv7DYNKfevXvHWR4VFcW4ceNwdo6Znzx58uSXthMeHk54eLhZWVKMboiIiIiIyMtZLJmYOnUqJUqUIHPmzGblJpOJc+fO4ejomKCEwNvbm5EjR5qVGazSY7DOmJThioiIiEgaYdLGeglmsTUT48aNY968eSxYsIDq1avHltvY2HDixAmKFEnYjiZxjUxkcS6kkQmRN5TWTIiIvBlS85oJ3yKpd81EvrNaMwHAV199xcqVK+ncuTN9+/YlIiIiUe3Y2dmRMWNGs4cSCRERERGR5GfRrWHLli3LkSNH6NKlC2XKlGHZsmVKBETklYSEhDJj/hL+2rmP4Hv3KVQgL1/17EixwgWBmHtPTPn2e7bu2sv9B4/I4Z6NFp/Up+nHdQB48PARsxYsZe/Bo9y6c5csWTJRvXIFurX/nAzpHc2udfP2Heo268Cu31ZgY2vDgiUr+fn3LQQEBuHl6UHvzm2oVL5MbP2oqChmf7eMXzdvJTDoHlldnGhQuyYdWzfDYDAQERnJjHmL2bXvMNdv3iK9oyPly5aiV6cvYu9rISIiKS/apM+jCWXx+0ykT5+exYsXs2LFCmrUqEFUVJSlQxKR18iwcdPwvXQZ72F9cXVx5pc/ttK+xyB+XjaXbFldmDBjHgeOnMB7WH9yuGVj78EjjJ40C1cXZ6pVLk9AYBABgcH07dqOPF6e3LoTwKhvZnI3MIgpY4aYXWvrrv2883ZxHBzsmTz7O379YxsjBnQnd66c7Dl4hB4Dv+aHuZMoXCAfAN/98BMr1//GmCF9yJc7F2d8LjBkzBTSp3fks8b1CQsL5+x5Pzq2bkbBfHl4+OgR46bNpeuAkaxaON0SP04REZFXkmq2hv300085fPgwa9euJVeuXJYOR0ReA2Hh4WzZsZveXdpSpmQxPD3c6dL2Mzw93Fm57jcAjp86R/1aNXjn7eLkcMtG4/q1KZgvD6fOxdzBOn8eL6aOHULVSuXx9HCnXOmSdO/Qiu17DhAZaf7lxrZd+6haqTwAv2zaSvvPm/Leu++QM4cbn378f1SuUJZFy9fG1j9++hzVKpenyrvvkMMtGx9Uq8y777xtdvfsBdPG8tH775E7lwclihZmUO/OnD1/kVu3A1LiRygiIvKfpJpkAsDDw4P69evj6Oj475VFJM2LiowiKioaO1sbs3I7O1uOnjwDQMlihdm2ez937gZiMpk4eOQEl6/e4N133o633UePQ0jv6IDRaB1b9vDRY46ePEO1v5OJpxER2Nramp1nZ2fLsb+vC1CyaGEOHD7O5avXAfC5eImjJ89Q+bmpUP/0+HEoBoOBDBn0PigiYikmkyHVPlIbi09zEhFJLEdHB0oULcycRcvJk8sTZ6fMbNyygxOnffDM4QbAoF6dGTF+Ou83aInR2hqDlYERA3pQpmSxONu8d/8Bcxct55N6tczKd+07RIG8uWPXMlQsV5olK9ZSpmRRcuZwY//h4/y1Yy9R0c9GM9q1bEJIaCh1m3fA2sqKqOhoundoxf99WJ24hIc/Zcq3C6ldowrp9aWKiIi8BpRMiMhrzXtoX4Z5T6F6g8+wtraicIF81KpRhbPnfQFYtnoDJ8/4MHP8cNyyZ+PI8VOMmTQbVxdnKpQtZdbW45AQvuw3nLy5Pfmy7Wdmx7bu2h87KgHwVY+OjBg/nbrNO2AwQE53NxrUqcm6XzfH1tm0dSe/bt7G+BH9yZc7Fz4XLzF+2lxcXZyoX7umWfsRkZH0GToWk8nE0H5dk/rHJCIikiyUTIjIa83Tw51Fs74h9EkYISGhZHVxos9QbzzcsxMWHs60uYuZ5j2UKu++A0DBfLnxuXiJRcvXmCUTISGhdOw9FEcHe6aNHYqN8dnbY0REBHsOHKb9501jy5yyZGb6uGGEhz/l/sOHuLo4M+XbhXi4Z4+tM2nWd7T7rAm1a1QFoEDe3Ny6HcCCpavMkon/JRI37wSwcPo4jUqIiFiYKTr1TSdKrVLVmgkRkcRysE9HVhcnHjx8xN6DR6heuTyRkZFERkZi9Y8tp62trYiOfnZ708chIXToNRgbGyMzxg/Hzs58LcTBoyfJmCE9hfLneeG6dna2ZMvqQmRUFH9u30O1yhVij4WFhWOwMr+2lZUV0c/dK/R/icTVazdZMHUsmTNl/E8/BxERkZSkkQkRea3tOXAEk8mEl6cHV6/fZNKs78jt6UGDOh9gYzRSplQxJs36Djs7O9yzu3L42Ck2/P4X/bq3B/5OJHoO5kl4ONOG9SMkJJSQkFAAsmTOhLW1Ndt3H4jdxel/Tp7x4c7dIArlz0PA3SBmL/wBk8lEmxafxNapWrEc8xevwC2bK/ly5+LcBV+WrFzLx3U+AGISid6Dx3D2gi+zJowkOjqawKBgADJlzICNjfnCchERkdTGYDI99xXZG8Jom8PSIYhIMnlyc5fZ801/7WTqnO+5czeQTBkzULNKJbp3bBV7w7nAoGCmzlnE3oNHefDwEe7ZXfmkfi0+b/oxBoOBg0dP0qbbgDiv9cfqReRwy0aNhp/z9cBeZtOiDh07ydcTZ3L95m0c7O2pXKHsCzeb++cN9bK6OFG7ZlU6f9EcGxsbbty6w4eftI7z2gtnjOedt4vHPrd3r5zYH5mISKoU+fSGpUOI17n8tS0dQrwKX9xo6RDMKJkQkdfKP5OJ5Hb2vC9tu3/Fzt9WmK2jSGlKJkTkTaNkInFSWzKhNRMiIi8RFRXFwF6dLZpIiIiIpFb66ygi8hLFihSkWJGClg5DRERSkHZzSjiNTIiIiIiISKIomRARERERkUTRNCcRERERkedEmzTNKaE0MiEiIiIiIomSoJGJDRs2JLjBevXqJToYERERERF5fSQomWjQoEGCGjMYDERFRf2XeERERERELMqkaU4JlqBkIjo6OrnjEBERERGR14zWTIiIiIiISKIkajenkJAQduzYwdWrV3n69KnZse7duydJYCIiIiIilmAyWTqC18crJxPHjh2jdu3ahIaGEhISgpOTE4GBgTg4OODq6qpkQkREREQkjXjlaU69evWibt263Lt3D3t7e/bv38+VK1coXbo0EydOTI4YRUREREQkFXrlkYnjx48zd+5crKyssLa2Jjw8nDx58jBhwgRatWpFw4YNkyNOEREREZEUoZvWJdwrj0zY2NhgZRVzmqurK1evXgUgU6ZMXLt2LWmjExERERGRVOuVRyZKlSrFoUOHyJ8/P1WqVGHYsGEEBgaydOlSihYtmhwxioiIiIhIKvTKIxNjx47Fzc0NgDFjxpAlSxY6d+7M3bt3mTdvXpIHKCIiIiKSkkwmQ6p9pDavPDJRpkyZ2H+7urqyadOmJA1IREREREReD7ppnYiIiIiIJMorj0zkzp0bgyH+IZZLly79p4BERERERCxJN61LuFdOJnr27Gn2PCIigmPHjrFp0yb69euXVHGJiIiIiEgq98rJRI8ePeIsnzVrFocPH/7PAYmIiIiIyH+3c+dOvvnmG44cOcKtW7dYt24dDRo0iD3eunVrFi9ebHbOhx9++EpropNszUStWrVYs2ZNUjUnIiIiImIR0SZDqn28ipCQEEqUKMGsWbPirfPRRx9x69at2Mfy5ctf6RqvPDIRn9WrV+Pk5JRUzYmIiIiIyH9Qq1YtatWq9dI6dnZ2ZM+ePdHXSNRN655fgG0ymbh9+zZ3795l9uzZiQ5EREREREReLjw8nPDwcLMyOzs77OzsEtXe9u3bcXV1JUuWLFSvXp3Ro0fj7Oyc4PNfOZmoX7++WTJhZWVF1qxZqVq1KoUKFXrV5pJFSec8lg7BIo4Hpc2dtLI5ZrZ0CBbhaLS3dAgWYe9e2dIhWMSTm7ssHYJF7HrrK0uHYBEf3Ntj6RAsIk8mN0uHYBFHW7pbOgT5h9R4c7j/8fb2ZuTIkWZlw4cPZ8SIEa/c1kcffUTDhg3JnTs3fn5+DBo0iFq1arFv3z6sra0T1MYrJxOJCVRERERERP67gQMH0rt3b7OyxI5KfPrpp7H/LlasGMWLFydv3rxs376d999/P0FtvPICbGtrawICAl4oDwoKSnAGIyIiIiIir87Ozo6MGTOaPRKbTPxTnjx5cHFxwdfXN8HnvPLIhCmeu3iEh4dja2v7qs2JiIiIiKQqr7pr0pvi+vXrBAUF4eaW8CmHCU4mpk+fDoDBYGDBggWkT58+9lhUVBQ7d+5MNWsmRERERETSusePH5uNMvj7+3P8+HGcnJxwcnJi5MiRNGrUiOzZs+Pn50f//v3Jly8fH374YYKvkeBkYsqUKUDMyMScOXPMpjTZ2tri5eXFnDlzEnxhERERERFJPocPH6ZatWqxz/+31qJVq1Z8++23nDx5ksWLF3P//n3c3d354IMP+Prrr19p2lSCkwl/f38AqlWrxtq1a8mSJUuCLyIiIiIi8rqIe1L/66dq1arxLlEA+OOPP/7zNV55zcS2bdv+80VFREREROT198q7OTVq1Ijx48e/UD5hwgQaN26cJEGJiIiIiEjq98rJxM6dO6ldu/YL5bVq1WLnzp1JEpSIiIiIiKVEmwyp9pHavHIy8fjx4zi3gLWxseHhw4dJEpSIiIiIiKR+r5xMFCtWjJUrV75QvmLFCooUKZIkQYmIiIiISOr3yguwhw4dSsOGDfHz86N69eoA/PXXX/z444+sXr06yQMUEREREUlJplQ4nSi1euVkom7duqxfv56xY8eyevVq7O3tKVGiBFu3bsXJySk5YhQRERERkVTolZMJgDp16lCnTh0AHj58yPLly+nbty9HjhwhKioqSQMUEREREZHU6ZXXTPzPzp07adWqFe7u7kyaNInq1auzf//+pIxNRERERCTFRafiR2rzSiMTt2/fZtGiRXz33Xc8fPiQJk2aEB4ezvr167X4WkREREQkjUnwyETdunUpWLAgJ0+eZOrUqdy8eZMZM2YkZ2wiIiIiIpKKJXhk4vfff6d79+507tyZ/PnzJ2dMIiIiIiIWY0K7OSVUgkcmdu/ezaNHjyhdujTlypVj5syZBAYGJmdsIiIiIiKSiiU4mShfvjzz58/n1q1bdOzYkRUrVuDu7k50dDR//vknjx49Ss44RUREREQklXnl3ZwcHR1p06YNu3fv5tSpU/Tp04dx48bh6upKvXr1kiNGEREREZEUE21KvY/UJtFbwwIULFiQCRMmcP36dZYvX55UMYmIiIiIyGvgPyUT/2NtbU2DBg3YsGFDUjQnIiIiIiKvgUTdAVtERERE5E0Vrd2cEixJRibeRI1bf8yGg6vY47+FRb/N5a2ShRN03gf13+fwrV1M/H6sWflnnT5l86kNbD61gRYdm5ode6tUEZb+sQBra+ski19eTat2zdh/YjN+t47yy5/LKfl2sXjrNv/8E9ZuXMIZ/72c8d/LinULXqjfsWtrTlzYyYkLO+nYpZXZsVKli/H7tlWp4vfdok1jth7ZwKlre/hp0yKKl3or3rof1KnGmj+XcNh3G8cv7+Lnbcuo37i2WZ02X37GvrOb2Xd2M206tzA7Vvztt1i7ZWmq6PebLiQklHFT51CzYStKV6tPi469OXXufJx1R06YQdGKtVi6ct1L2/ygUSuKVqz1wmP0pFmxdSZMn8e7HzXm/Y9b8usfW83O/2PrLrr0H/7fO/cKMpcvTPGlA6h4Yg7V76zCpVbZfz3HYGskz8BPeffwLKpeXUaFQzNxa1Yt9niW94pRfu9U3vNdRJGZXTHYPHs9W2ewp/zeqaTzcEmW/kjCpLX3NZv3P8G+5yQcx67AYeQS0n0xCEPWHAk+31iyMuknbyDdF4PM263aAIeRS3AYuQSbKg3Mjll5FsC+12Sw0sdI0chEnGrWq06vEV3xHjCJ08fO0qx9Y2Ysn0SjSs25F3Q/3vPcPLLTY9iXHN1/3Kw8X+G8dOrflp4tB2AwGJiyZDz7dxzCz+cS1tbWDBrfhzH9viEqKip5OyZxqvfxRwwf3Z+veo/k2JFTtOvUkmVr5vJe2f8jKDD4hfoVKpXl5zUbOXzgOGHh4XTp0ZYf186jeoX63L4VQOG3CtBvYFdafdoFgwEWrZjNjm178Tl7EWtra8ZNHk7/niMs/vuu3aAmA0f1Ylg/b04cOU3rjs34btUMPqzQiODAey/Uv3/vIXOmLOTSxcs8jYig2geV8Z4+jKDAYHZv20/BIvnoMaATHVv0xGAwMHfZFHZv38+Fc35YW1szauIghvYeY/F+pwXDxk3D99JlvIf1xdXFmV/+2Er7HoP4edlcsmV99kF3y449nDzjg6uL87+2uWLBNKKjo2OfX7x0hfY9B/FBtcoAbN+9n9/+3M68KWO4ev0mQ8dOoWK50mTJnIlHj0OYPm8xC6aOja/5ZGHlYMfjM5e5+eNWii/ql6Bzis7vhW3WTJzrPYcn/rexzZYZg+HvD0wGA29924Mr09cRvP0ERRf0xr1lDW4s/AOAvENacGPxn4Rd17bplpIW39es8xYlYs9vRF+9CNbW2NZuiX3HkYRO6AJPw196riGLK7b1viDK74xZuZWbF7YftSBswddggHTthhJ14RjRt66AlRV2n3xJ+E8z4bn3BEm7lFLGoUXHpqxf9gu/rNyI/4XLePefSNiTMOo1qxPvOVZWVoyeNYx5Exdy48ots2Ne+Ty5eNaPw3uOcmj3EXzP+eGVzxOAll824+iBE5w94ZOsfZL4tf+yFT8uWc2qH9dz8bwfX/UeyZPQMD79rGGc9bt1GMDi71Zw5rQPfhf96dt9GFYGKyq9Vx6AfPlzc+7MBfbsOsDunQc4d+YC+fLnBqBz9y/Yv/cwJ46dTrH+xeeLTi1Y9cN61i7/Bb8L/gzr603YkzA+aR73rmwH9x7hz43b8bt4mWuXb7Bk3grOn/WldLmSAOTJ78X5sxfZv/sw+3Yd4vxZX/Lk9wKgXdeWHNp3lFPHz6ZQ79KusPBwtuzYTe8ubSlTshieHu50afsZnh7urFz3W2y9O3cD8Z7yLeOH98do/PdvVZ2yZMbF2Sn2sWPPAXLmcKNsqZhRuUtXrlG2VDGKFi5A7ZpVcXR04Pqt2wBMnv0dTRvUwS27a/J0Oh7BW49zadxKAn8/lKD6TtVKkLlCEU409+bezlOEXbvLw8MXeXAoZlTHxjkDti4ZubFoMyHnrxP4xxEc83sAkLFMATKWzMu1+RuTrT/y79Li+1rYvBFEHtpK9J1rRN+8TNjyaVg5uWLlke/lJxqsSPdZH57+sZzooNtmh6xccxB96zJRvieJuniS6JuXMbjGvNZtqjUk6tJpoq/5JleXUgUThlT7SG2UTPyD0cZIoeIFOLDrSGyZyWTi4K7DFC8d/1Bpu96tCQ66x8/Lf3vhmK/PJTzz5CRbDleye2TDM09O/M77kyOXO3Wb1ubbcfOTpS/y72xsbChesgi7tu+LLTOZTOzesZ/SZUskqA17h3QYbYzcv/8AgHNnL5I7nxfuHm7kyOlGnny58DnnSy6vnDRt/jETxkxPlr68ChsbI2+VKMTeHQdiy0wmE3t3HqRkmeIJaqNC5bLkzpuLQ/uOAXDhrC9eeT1xy5ENd4/seOX15OI5P3J65aBhs7pMHfttsvRFzEVFRhEVFY2drY1ZuZ2dLUdPxnz7GB0dzcBRE2nd/BPy5cn1yteIiIjg183b+LjOBxgMMX/YCubLwxmfizx4+IgzPhcJDw/HM4c7R0+c5ux5X1o0Tv1bh7t8WIZHJ/zI1bU+FY/PofzeqeQb3hKrdDE/y4jAh4TfDsapanGs7G3JXL4Qj89ewWC0puCEdpzvNy917tuYRuh9LYbB3jHmH6Evv/+X7QdNMT2+T+SBP184FnXrClZZ3TFkdsGQJStWWXMQfesKBufs2JR9n6e/L0uO0OU1pWlO/5DZKRNGo5Hgu+bTW4Lv3sMrX9x/dEu8U4z6zerQvGabOI9fvniF2ePmMXvFFABmec/l8sUrzFo5hemjv6VC1XJ06PsFkRGRTBw2nWP7TyRtpyReTs6ZMRqNBN4NMiu/ezeIvH+PJvybwSP6cOd2QGxC4nvhEuO/nsqKtTFJ4rhRU/G9cIkV6xYwevgkqlavRO+vviQyIpJhA705sPfIy5pPFlmc/tdv89d5YEAwefJ5xXte+gyO7Dr1O7a2tkRHRTFiwPjYP9x+Fy8zecxsvl89G4BJo2fhd/Eyi1bP4puR06lUvQLd+nUgMjKS0YMncvjvP9aStBwdHShRtDBzFi0nTy5PnJ0ys3HLDk6c9sEzhxsA3/3wE9bWVnzWuH6irvHXzn08evyYBrVrxpZVLFea//uwOp+260E6OzvGDOmDg306vp44i9GDe7Ny3W/8uHoDmTNnYkT/7olKYpKbfa5sZHqnENHhEZz84htsnTJSYFxbbLKk51zPmA+Np9tPIf+oVuQf/QVBW45xa/k2cnVrwP09Z4gOj+DtX0Zh45SR69/9Hjv9SVKG3tcAgwG7+u2IunSW6NtX461mlbswxnI1CZ3UI87jpoDrhP+2FPtOowAI/20JpoDrpOs0ivBfF2FdsBS2HzaDqCjC188n+tKZONuRtEHJxH/k4GjPqBlDGNNvAg+CH8Rbb82Sn1mz5OfY53Uaf0RoSCinDp9mze5lfF6rA65uWRn77QjqlWtCxNOIlAhf/qMuPdtRr2EtGtdtTXj409jypd+vYun3q2KfN/60Po8fh3Dk0Al2HvqVOtWb4uaendkLJlKh5Ac8fU1+3yGPQ6lfrTmOjg5UqFyWgaN6ce3yDQ7+nRCtWLyGFYvXxNb/uGkdQh6HcuzwKf7Yt4ZGH3xOdjdXpswbS/XS9fQ6TybeQ/syzHsK1Rt8hrW1FYUL5KNWjSqcPe/LGZ+L/PDTz/y0cEbsqMKrWvvrH1QqXwbXrOZrLbq0/YwubT+LfT574TLKlymJ0Whk7uIVrFsymx17DzJo9ERWLZzxn/qYHAxWBjDBmc7TiXr0BADf4Uso+l1vzn+1gOiwCB4cPM/hj54tVLXP40b2Ju9x6P3+vP3zSK7N/52grccot2MS9/efI+Rs/B/oJHV4k97X7Bp2wsrNkyczvnpJJXvSNe9N+KqZEBL/6EXkvk1E7tsU+9xYpjqEPyH68nkcBs4mdEofrDK7kK5lX0JHt4eoyKTsisVpNUjCKZn4h/vBD4iMjMQpq5NZuVPWLAQFBL1Q38MrBzk83Zm8eFxsmdXfuxvsv7aNRpVacOPKTbNzMjllon2fL+jwcVeKvl2Eq5eucc3/Otf8r2O0McZMg/K5lAy9k38KDrpPZGQkLv/4UJQ1qzN3A16+iLJj19Z06dmWTxu049yZC/HWy+KUmV4DOtOoTitKlSnOJd8r+F+6iv+lq9jYGMmTzwufsxeTpD8JdS/4f/02f527uDpxN47X+f+YTCau+l8H4NzpC+QtkJuOPVvH/tF9XhanTHTt257m9TpQ4u2iXPa7ypVL17hy6Ro2RiO583py4Zxf0nZMAPD0cGfRrG8IfRJGSEgoWV2c6DPUGw/37Bw9cZrge/ep2ejz2PpRUdF8M3MBS1etZ/OaxS9t++btO+w/fJypY4e8tN6lK9f49Y+trP5+Jmt/20yZkkVxypKZD6u/x9CxUwgJCcXR0SFJ+ptUwu/cJ/x2cGwiARBy8QYGKyvs3Jx54n/7hXMKTWyP74glYGVFhuJ5CPhlH9FPnnJ/71myVCiiZCIFpfX3NduGHbEuUoYnswZhehB/f62cs2PlnI10bYc+K/z7iwXHb9YROq4zpn+socAxA7YffsqTmQOxylWA6Ls3MQXeIirwFgZr499rLK4kR7fkNaBk4h8iIyLxOXmBdyqVZsemXQAYDAbKVirNqu/XvlD/su9Vmlb93Kys81ftcXB0YNLQady5GfDCOX1GdmP5vFUE3LpLkZKFMBqf/Rqsra2xttZSlpQSERHByeNnqVSlPH9sjNnK0mAwUOm9cny/IP67unfu3obufTrQolEHTh5/+fDuyLEDmD97Cbdu3qFEqaLY2Dz3+zZaY22V8lsKRkREcuaEDxXee4ctv+8AYvpdoXJZfvhu1b+c/YzBygpbW9s4jw36ug+L5i7nzq0AipcqgvGf/dYWscnOwT4dDvbpePDwEXsPHqH3l22oWbUS5cuWMqvXsdcQ6n5UnQa1P/jXNtf99idOWTLxXoV34q1jMpkYNWE6/bu1x8HBnuioaCIiY761jPz7/6NS4S4wDw754Fq3PNYOdkSFxuyC45DXDVNUNOG3Xvxw5ta8GhH3Qgj84wjGTDHz1A1/L2Y32BhB7+UpKi2/r9k27IixWPmYRCL4zkvrRgdcJ3RCV/Pza30GdvY8XT8f0/0Xv0izq9+OiB0/xyQpnvnB6rmPj1bWYNBrPS1TMhGHZXNXMmLaIM6e8OHM8XM0b98Yewd7flkRs0vHyOmDCbgdyKyxc3ka/hS/8/5m5z968BjghXKAcu+VwTNPToZ3HwPA2eM+5MqXi3erlyObuyvR0VFc8dM3WSlp/uzFTJk9lpPHznDs6Cnad26JvaM9K5fF7Ls/7dux3LoVwLhRUwH4skdb+g7sStf2/bl29SZZXWO22gwJCSU0JNSs7cpVK5A7rxc9OsdMizhx7DR58+emWo1KuOdwIzoqGj/fF18nKeH7OcsYP2MEp4+f5eTRM7Tq2Bx7B3vWLP8FgAkzR3LndgCTRsfcR6Bjj9acOn6Oa5evY2trQ5UaFanfuDYj+nu/0Pa7VcrhldeT/l1j7itw8thZ8uTLxXvvv4ubezaio6K55KtvsZLLngNHMJlMeHl6cPX6TSbN+o7cnh40qPMBNkYjmTNlNKtvNFrj4pSF3Lk8Ysvadv+K9997l+afPFs4HR0dzfrf/qR+rRov3QFqzS+byJI5E1UrxexwVqp4EWYv/IETp8+xa/9h8np5kjFD+iTu9YusHeywz5099rm9pyvp38pFxP3HhN8IIs/gZthld+Jct5jX+J01u/Hq1YjC077k0jersHXKSL5hn3Fr+Taiw8ynrti4ZMSrVyOO/F/Mt7uRD0IIOX+dnB3qELzjBFkqF+Xy1Be/gJLklRbf1+wadcL49ns8WTgGwp9gyJAZAFNYKETETL+1a9YT08Ngnv62BCIjXlhPYXoSggHiXGdhXaAkVlndCV8+FYDoqxexypYD60JvY8icFaKjib57Izm7aBGpcdek1ErJRBz+3LCVLM6Z6dS/Lc5ZnbhwxpduzfvG7lGdPUc2ohOxY4ddOlv6j+nFwE7DMZlizg+4dZdvhkxl2JSBRDyNYHj3sYSHPf2XliQpbVi3CScXJ/oO6kpWVxfOnPLhs086xi7KdvdwM/t9f96mKXZ2tsxfMtWsnUnjZjF5/OzY5+nS2TFmwmA6t+kb+/u+dfMOQweMZfLMMTx9+pSeXw4iLOzl+4Anl43r/8TJOQvdB3Qiq6sz505foG3TbgT9vXjRzSM70aZn3x7bO9gzYsIAsru5EhYWzqWLl+n35VA2rjffCcQunR3DxvWnV/uBsf2+cyuArwd9g/f0YTwNj2BAt+GEW6jfacGjxyFMnfM9d+4GkiljBmpWqUT3jq2wMSb8Lf/ajVvce/DQrGzfoWPcuhPAx3XiH8EIDL7HvMUr+GHO5NiyYkUK0urThnzZbzhOWTIzdkifV+9UImQomZe3142IfZ5/VMwNJG+t2M65HrOxc81CuhzP7rsRFRrO8SajKTC2DWX/GEfEvUcEbNjHpXErXmi7wOgvuPrtLzy98+zeBWd7zKLI9C7kbFeLq7M28Oi4pvGltLT4vmZTMeYmew5dzBOgsOVTiTwUM+JulSUr0aZE7DRmY4tdww6ELfkG/j7f9CCI8LXzsPu0B0RGELZ8amzSImmTwWRKzKsrdSvjVtnSIVjE8aC0uc4im2NmS4dgEY5Ge0uHYBGXHtz690pvoCc3d1k6BIvY9dZLFpK+wT64t8fSIVhEnkxulg7BIo62dLd0CBaRfvIGS4cQr83ZPrV0CPH64M6LX3BYkkYmRERERESek/pWdaVeqSqZCAkJYdWqVfj6+uLm5kazZs1wdnZ+6Tnh4eGEh5sPK0aborHSYiARERERkWRl0U/cRYoUITg4Zh7jtWvXKFq0KL169eLPP/9k+PDhFClSBH//ly9O9fb2JlOmTGaP24+vpUT4IiIiIiJpmkWTCR8fn9htAgcOHIi7uztXrlzh4MGDXLlyheLFizN48OCXtjFw4EAePHhg9siePmdKhC8iIiIib6DoVPxIbVLNNKd9+/YxZ84cMmXKBED69OkZOXIkn3768gUwdnZ22NnZmZVpipOIiIiISPKzeDJh+Puui2FhYbi5me/ikCNHDu7evWuJsP6TVl1b0G1wJ36cv4rJw2ZYOhxJYl17taPW/9UkX/7chIWFcfjgccaOmIyf72VLh5asmrVuRLPWn+DhGfPf6UWfS8yatICdf+21cGRpU1RUFLO/W8avm7cSGHSPrC5ONKhdk46tm8W+rz5v5IQZ/PTzRgZ070DLph/Hln/QqBU3b5vfXLNnpy9o17KJWdmhYyf5atQ3/LVuaYKuHRh8jymzF7L34FEePQ6hdMmiDOrVmVw5cwDw4OEjZi1Yyt6DR7l15y5ZsmSieuUKdGv/ORnSOyb1jytemcsXxrNLPTIUz41ddidOtv6GwN8PxVm34IT25GhVkwtDF3F93sYUi1GST1p4X7N5/xOMxSpg5ZoDU8RToi/7EP7rYkzP3RvCWP5DbN5+DyuPvBjSOfB4UDMIC7Fg1PI6sXgy8f7772M0Gnn48CHnz5+naNGisceuXLnyrwuwU5siJQrRsGU9LpzxtXQokkzKv1uWxQuWc/zYKYxGI18N7cGPa+dTtXw9noQ+sXR4yeb2zQAmjZ7J5UtXMWDg40//j9lLJtGgegt8z6fNbYkt6bsffmLl+t8YM6QP+XLn4ozPBYaMmUL69I581ri+Wd0tO/Zw8owPri5xv592bdeST+p9FPvcwcHhhTrbdu2nasVyCbq2yWSix1ejMBqNTB8/jPQOjixZuZZ2PQbx87K5ONinIyAwiIDAYPp2bUceL09u3Qlg1DczuRsYxJQxQ5LwJ/VyVg52PD5zmZs/bqX4on7x1nOpVZaMpfMTfis4xWKT5JcW3tes8xYlYs9vRF+9CNbW2NZuiX3HkYRO6AJPYzawMdjaEelzFHyOYvd/rSwcceqgm9YlnEWTieHDh5s9T5/e/I6ov/zyC5Urvz73jLB3sOfrWcMY03cCbXvqP8Y31WeNO5o97/nlYE757qZ4ySIc2HvEQlElv22bze9zMGXsbJq1bkTJMsXemD+6r5Pjp89RrXJ5qrz7DgA53LKx8c8dnDp73qzenbuBeE/5lrmTx/Blv2FxtuXoYI+Ls9NLr7dt934G9/4yQde+cu0GJ874sH7pHPLlyQXA0L5dqVq3ORv/3M4n9T4ifx4vpo59ljR4erjTvUMrvho1gcjIqJfeYTspBW89TvDW4y+tY5s9CwXGtuHEp2Mo/kPavO/FmyotvK+FzRth/nz5NNJ//QNWHvmIvnQGgIidMfd7sM5b9J+ni/yrVJVM/NM333yTQpEkjQHevdjz1z4O7jqiZCINyZgxAwD37z2wcCQpx8rKilr1auDgYM+xQyctHU6aVLJoYVZv+J3LV6/j5emBz8VLHD15hv7d2sfWiY6OZuCoibRu/knsh/q4LPjhJ+YsWo5btqzUrlmNz5t+bPZh3vfSFYLv3adc6RIJuvbTiAgAbG1tYtuwsrLCxtaGYyfPmI2CPO/R4xDSOzqkWCKRIAYDb83qxtXZGwg5f93S0UgySivvawb7v6cRhj6ybCDyxrD4NKc3xQf136dQsQJ8XquDpUORFGQwGBjpPYCD+49y/tybP7WtQOG8rPz9e+zsbAkNeUKX1v3wu/Dy7ZslebRr2YSQ0FDqNu+AtZUVUdHRdO/Qiv/7sHpsne9++Alra6sXpj09r0Xj+hQukI9MGTNw/NRZps1dRGBQMP27P3sv27prHxXLlcbGxiZB186dKydu2VyZNncRw/p1w8E+HUtWruNOQCB3g+KeJnTv/gPmLlrOJ/VqJcWPJ8nk6lYfU2QU1+f/bulQJJmkqfc1gwG7+u2IunSW6NtXLR1NqhatWU4JpmQiCWRzd6XP193p0rQ3T8OfWjocSUFjJw6hYOH8fFyrpaVDSRH+vleoX605GTKk56N67zN+xgha1O/w5v7hTcU2bd3Jr5u3MX5Ef/LlzoXPxUuMnzYXVxcn6teuyRmfi/zw08/8tHBGnAuy/6fVpw1j/10wX25sbIyMmjCDnp1aY2trC8RMcWrWqG6Cr21jNDJ17BCGeU+lYq0mWFtbUb5MKSqXL4Mpjhgeh4TwZb/h5M3tyZdtP0uyn9F/laF4bjza1+ZQjQGWDkWSUVp6X7Nr2AkrN0+ezNB0PUk6SiaSQKHiBXHO6sQPmxfElhmNRkqVL0GTLxrybq73iY5OjTsDy38xesJganxYhYa1W3Hr5h1Lh5MiIiIiueofM9XjzEkfipUsQqsOzRjWd6yFI0t7Js36jnafNaF2jaoAFMibm1u3A1iwdBX1a9fk6InTBN+7T81Gn8eeExUVzTczF7B01Xo2r1kcZ7vFixQiMiqKG7cCyJ3Lg7uBwZy74Be7PiIh1wZ4q1B+1iyexaPHIUREROCUJTPN2vfkrUL5za4XEhJKx95DcXSwZ9rYodgYU8+fpUzlC2PrkpF3j86OLbMyWpN/xOfkbF+bfWW7WjA6SSpp5X3NtmFHrIuU4cmsQZgeBFk6HHmDpJ537dfYoV2HaVr1c7OyYVMHcsX3KotnLlMi8QYaPWEwH9V5n8Z1W3Pt6o1/P+ENZbCywtbO5t8rSpILCwvHYGU+4mBlZUW0Kea7/7ofvU/5sqXMjnfsNYS6H1WnQe0P4m3X56IfVlZWOGWJuefP9j37KVmsMJn+XhuUkGs/73/bvF65doMzPhfp2u7ZKN7jkBA69hqCja0NM8YPx87ONiFdTzG3f9rJvZ2nzMpKrhjM7dU7ubV8m4WikuT2Jr6v2TbsiLFY+ZhEIjhtfPn1X0VrN6cEUzKRBEJDnuB33nw4NCw0jPv3HrxQLq+/sROH0uCT2rRp3o3Hj0PJ6uoCwKOHjwgLC7dwdMmnz5Au7PhrL7eu38YxvQN1G31EuYqladOkm6VDS5OqVizH/MUrcMvmSr7cuTh3wZclK9fycZ2YRCFzpoxkzpTR7Byj0RoXpyzkzuUBxOzKdOqMD2XfLoGjgz0nTp9jwvR5/N8H1WKTh227D1CtUvlXujbAH1t3kSVzJtyyZeXipcuMmzqH6pUrULFcaSAmkejQczBPwsOZNqwfISGhhISEApAlcyasrVNmEba1gx32ubPHPrf3dCX9W7mIuP+Y8BtBRN57bFY/OiKS8ID7hPrdSpH4JHmlhfc1u0adML79Hk8WjoHwJxgyZAbAFBYKETFTsw0ZMmPIkAWDS8z9NqzcckH4E6Lv34XQx/E1LQIomRB5Za3axtyVfc1v5tNEen05mFXL11sgopTh5OLEhJkjcc3mwqOHjzl/9iJtmnRj744Dlg4tTRrUqzMz5i9h9MRZBN+7T1YXJxrXr03nL5onuA1bGxt+37KD2QuX8fRpBDncs9Gy6ce0+jTmpnahT8I4cPg4X/Uw3w45Ide+GxTMhBnzCAq+T1ZnJ+p99D6dvmgWe/zseT9O/r2VbO2mbc3a/2P1InK4ZXvln0liZCiZl7fXjYh9nn9UzE58t1Zs51yP2fGcJW+KtPC+ZlOxNgAOXbzNysOWTyXy0NaYOu/WwvbDZ/99OnQb90IdkfgYTKY4xqVfc2XcXp97UySl40Fvxp7YryqbY2ZLh2ARjkZ7S4dgEZcepM1vhJ/c3PXvlZLYn9v3MGP+YjYsm5fi1/6fXW+lzYWiH9zbY+kQLCJPJjdLh2ARR1u6WzoEi0g/eYOlQ4jX+uwJ/2ImpTW4/aOlQzBjZekAREQkdXKwT0fvzm0sHYaIiKRimuYkIiJx+t/6BhERkfgomRAREREReY724Uw4TXMSEREREZFEUTIhIiIiIiKJomlOIiIiIiLPiTbopnUJpZEJERERERFJFCUTIiIiIiKSKJrmJCIiIiLynDfujs7JSCMTIiIiIiKSKEomREREREQkUTTNSURERETkObppXcJpZEJERERERBJFyYSIiIiIiCSKpjmJiIiIiDwnWvesSzCNTIiIiIiISKIomRARERERkUTRNCcRERERkedEo3lOCaWRCRERERERSRQlEyIiIiIikiia5iQiIiIi8hyTpQN4jWhkQkREREREEkXJhIiIiIiIJIqmOYmIiIiIPEc3rUs4jUyIiIiIiEiivJEjE+mt7SwdgkXkyeRm6RAkBV16cMvSIUgKcs5Vw9IhWETQlS2WDsEy3CtbOgKLuB0abOkQLMJ9btrs98PJlo5AksIbmUyIiIiIiCRWtKUDeI1ompOIiIiIiCSKkgkREREREUkUTXMSEREREXmOblqXcBqZEBERERGRRFEyISIiIiIiiaJpTiIiIiIiz9FN6xJOIxMiIiIiIpIoSiZERERERCRRNM1JREREROQ5umldwmlkQkREREREEkXJhIiIiIiIJIqmOYmIiIiIPEfTnBJOIxMiIiIiIpIoSiZERERERCRRNM1JREREROQ5Jt20LsE0MiEiIiIiIomiZEJERERERBJF05xERERERJ6j3ZwSTiMTIiIiIiKSKEomREREREQkUTTNSURERETkOZrmlHAamRARERERkURRMiEiIiIiIomiZCIeDVrVY8W+H9jsu5HZv8ygUMmC8db9qPEHbL++xeyx2XejWZ2mHRuz7vhPrDv+E006fGJ2rHCpQszdOBtra8v/Olq0aczWIxs4dW0PP21aRPFSb8Vb94M61Vjz5xIO+27j+OVd/LxtGfUb1zar0+bLz9h3djP7zm6mTecWZseKv/0Wa7csxdraOln68irSar8lbWnfoSWnzu4kIOgcW7evpXTp4vHWLVQ4P0uXzebU2Z08DLnEl12+eKFOk6b1OXt+N1euH2PsuMFmxzw9c3D0+F9kyJA+yfsRn5CQUMZNnUPNhq0oXa0+LTr25tS587HHQ0OfMGbSbN5v8Bmlq9WnXosOrFz320vbXP/bnxStWMvs8Xa1emZ1vv9xNe/V+ZT36nzKouVrzI6dPONDkzbdiIyMSrqOyku96a/z+KTVficXUyp+pDZaMxGHanWr8uWwTkweOI1zx87xSbtGfPPDOFpW+YL7QffjPOfxwxA+r9I69rnJ9OzXnadwbr7o24qBrYZgMBjwXjyaQzuP4O/jj7W1Fb29ezJxwBSioiw7Q692g5oMHNWLYf28OXHkNK07NuO7VTP4sEIjggPvvVD//r2HzJmykEsXL/M0IoJqH1TGe/owggKD2b1tPwWL5KPHgE50bNETg8HA3GVT2L19PxfO+WFtbc2oiYMY2nsMUVGW/SObVvstaUvDRnUYO24QPXsM5fCh43zZ5QvW/ryY0qVqEHg36IX6Dvb2XL58lfXrNuI9fsgLx52cszBjljedO/bjsv81flq7gJ3b97Fp01YAJk/9muHDJvDo0eNk79v/DBs3Dd9Ll/Ee1hdXF2d++WMr7XsM4udlc8mW1YUJM+Zx4MgJvIf1J4dbNvYePMLoSbNwdXGmWuXy8bab3tGBX5fPf1ZgeHZr3PO+/sxa8AOzvhmByWSiS78RvPvO2xTIm5vIyChGfTOD4QO6YzTqy4OUkBZe53FJq/2W1MHyX4WnQo07NOK35RvZtOoPrly8yuSvphIWFk7tTz+K/ySTieC792If9wLvxx7yzOvJpXP+HNt7nKN7juF37hKeeXMC0LRTU04cOMn5E+fjaTjlfNGpBat+WM/a5b/gd8GfYX29CXsSxifN68VZ/+DeI/y5cTt+Fy9z7fINlsxbwfmzvpQuVxKAPPm9OH/2Ivt3H2bfrkOcP+tLnvxeALTr2pJD+45y6vjZFOpd/NJqvyVt6dqtLYu/X8mypas57+NLz+5DePLkCS0/bxxn/aNHTzJ08DjWrP6V8PCnLxzP7ZWThw8fsXbNbxw9epKdO/ZToFBeAD5pXJeIiAh+2fBHsvbpeWHh4WzZsZveXdpSpmQxPD3c6dL2Mzw93GNHH46fOkf9WjV45+3i5HDLRuP6tSmYL4/Z6EVcDAYDLs5Ozx5OWWKP+V+5RoG8XpQrXZLyZUpRIF9u/K9cB2JGLEqXLEaxwvGPbEvSetNf5/FJq/2W1EHJxD8YbYwULFaAI7uOxpaZTCaO7DpKkbeLxHuevaM9K/YvY9XBHxn93Si8CuSKPXbJxx+PPDlwdXclWw5Xcub2wP/8ZdxzuVGr6Yd8N+H7ZO1TQtjYGHmrRCH27jgQW2Yymdi78yAly8Q/VPq8CpXLkjtvLg7tOwbAhbO+eOX1xC1HNtw9suOV15OL5/zI6ZWDhs3qMnXst8nSl1eRVvstaYuNjQ0lSxVl27Y9sWUmk4nt2/bwzjulEtWmn99l7O3TUbxEEbJkycTbpYtz5rQPmTNnZMjQXvTtPSJpgk+gqMgooqKisbO1MSu3s7Pl6MkzAJQsVphtu/dz524gJpOJg0dOcPnqDd595+2Xth365Ak1G7bi/Y9b0m3ASHwvXYk9lj+vF5ev3eDW7QBu3r7DlWs3yJcnF1ev32T9xj/p3v7zpO+sxCktvM7jklb7ndyiDan3kdpomtM/ZHLKhLXRmuC75tNb7gXewzNfzjjPuep3jfF9JnLp3CUcMzrStGNjZq6fzhfvt+XurUCu+l5lwbiFTFw+HoD5477jqu9VJi2fwNwx83inahla9/qcyMgoZgyfxckDp5K9n/+UxSkzRqORwLvBZuWBAcHkyecV73npMziy69Tv2NraEh0VxYgB42M/mPtdvMzkMbP5fvVsACaNnoXfxcssWj2Lb0ZOp1L1CnTr14HIyEhGD57I4b8/jKektNpvSVucnbNgNBq5GxBoVh4QEEiBAnkT1eb9+w/p1KEfc+dPwj6dHSt+XMdfW3Yxc/Y45s1dSi4vD1b8NA8bGyPeY6bz8/rfk6Ir8XJ0dKBE0cLMWbScPLk8cXbKzMYtOzhx2gfPHG4ADOrVmRHjp/N+g5YYra0xWBkYMaAHZUoWi7ddr1wejBrYi4J5c/MoJIRFy9fwWaferP9hDtlds5LXy5MeHVvTvucgAHp0bE1eL0/a9RhI7y/bsOfgEWZ/twyj0ZqvenZ66bXkv0kLr/O4pNV+S+qhZCIJnD16jrNHz8U+P334DEu2L6Rui/9j4cRFAGz44Vc2/PBrbJ0PP6lJaEgoZ46cZemORXT8vy5kdXNh2KzBNHu3JRFPI1K6G4kS8jiU+tWa4+joQIXKZRk4qhfXLt/g4N4jAKxYvIYVi58tSPy4aR1CHody7PAp/ti3hkYffE52N1emzBtL9dL11G+R18ivv2zm1182xz6vWOkdihYtRL8+Izh+ahttWvfgzp27bNuxnj17DsY5dzspeQ/tyzDvKVRv8BnW1lYULpCPWjWqcPa8LwDLVm/g5BkfZo4fjlv2bBw5fooxk2bj6uJMhbJxf4NbsmhhShYt/Ox5sSLUa96Bn9b/TrcOMaMOTT+uQ9OP68TW+Xnjnzg42FOiaGHqNmvPigXTuBMQSL9h4/hj9ffY2tom409Bklpqe52nlLTab3l1Sib+4UHwA6Iio3DKmsWsPItLFoIDXlyMG5eoyCgunvYlh5d7nMczZclIq16f0+OTXhQuVZhr/te54X+DG/43MNoY8cjjgb+P/3/uy6u4F3yfyMhIXLI6mZW7uDpxNyD+NwiTycRV/5j5wedOXyBvgdx07Nk69kP187I4ZaJr3/Y0r9eBEm8X5bLfVa5cusaVS9ewMRrJndeTC+f8krZj/yKt9lvSlqCge0RGRpLV1cWs3NXVhTt37ibJNWxtbZk8ZRQd2vchT14vjEZr9uw+CICfrz9lypRg0+9bk+Ra8fH0cGfRrG8IfRJGSEgoWV2c6DPUGw/37ISFhzNt7mKmeQ+lyrvvAFAwX258Ll5i0fI18SYT/2RjNFK4QF6u3rgZ5/F79x/w7fc/smjWBE6dOU+unDliH5FRkVy+doMCeXMnWZ/lmbTyOv+ntNrv5Kab1iWc1kz8Q2REJOdPXeDtSs/m0BoMBkpXKsXZowlbNGtlZUWeQrkJCgiO83iXEZ35acEa7t4KxMraCqPxWU5nbW2NtVXK/1oiIiI5c8KHCu+9E1tmMBioULksxw+fTHA7BiureL91G/R1HxbNXc6dWwFYW1thtHmu30Zri2yVmlb7LWlLREQEx4+dpmrVd2PLDAYDVaq+y8GDSTPNrv+ALmzZspMTx8/EvM6tn73OjTbGFH2dO9inI6uLEw8ePmLvwSNUr1yeyMhIIiMjsTKYTzi2trYiOjrhHxuioqK46HeZrM5OcR4fP30eLZs0ILtrVqKio4iMjHzu3GiiLbxr35ssrb3O/yet9ltSD41MxOGneWsYOKU/50+c59zx83zSriHp7NPx+8pNAAycOoDA24HMH/cdAJ/3/IyzR89x4/JN0md05NNOTcjmkY3flm98oe3Sld/GI48H3j0nAHD+xHk88+XknWplcXV3JTo6mquXrqVcZ5/z/ZxljJ8xgtPHz3Ly6BladWyOvYM9a5b/AsCEmSO5czuASaNnAdCxR2tOHT/HtcvXsbW1oUqNitRvXJsR/b1faPvdKuXwyutJ/67DATh57Cx58uXivfffxc09G9FR0VzyvfLCeSkhrfZb0paZM75jzryJHDt2isOHT/Blly9wcHDgh6WrAZg7fyI3b95h5PBvgJhFnYUK5wPA1tYGN/dsFCtemJDHoVy6ZP6aLVgoHw0b/R+V3v0/AC6c9yM6OpqWnzch4M5dChTIy9EjCU/OE2vPgSOYTCa8PD24ev0mk2Z9R25PDxrU+QAbo5EypYoxadZ32NnZ4Z7dlcPHTrHh97/o1719bBsDv56Iq4szvTrH7Lv/7cJlFH+rEJ4e7jx6HML3P67m5u0AGtX98IXr7z14lCvXbjB2SB8AihYugP+V6+zad4jbAXexsrLCK5dHsv8c0rK08DqPS1rtt6QOSibisO2X7WR2zsQXfVvjlDULvmf96N9yYOx2r9lyuGJ67pusDJky0HdCb5yyZuHxg8ecP3WRLvV7cOXiVbN2bdPZ0mN0N0Z1Hh17H4q7twKZPnQmX03qx9OnEXj3nMDTsBe3aUsJG9f/iZNzFroP6ERWV2fOnb5A26bdCPp7cbKbR3aiTc/6be9gz4gJA8ju5kpYWDiXLl6m35dD2bj+T7N27dLZMWxcf3q1Hxjb7zu3Avh60Dd4Tx/G0/AIBnQbTnhYeMp19jlptd+Stqxd8xsuLk4MGtKLbNlcOHXyHI0atI5dtOnh4W72Db2bmyt79j27oVuPnh3o0bMDu3bup06t5mZtT58xlkFfjSE09AkAYWHhdO7Yn4lTRmJnZ0vf3sO5detOsvfx0eMQps75njt3A8mUMQM1q1Sie8dW2Pw9+jtx5FdMnbOIr0ZO4MHDR7hnd6V7x1Y0bfBsvcOtOwFmoxcPHz1mxPjpBAYHkzFDBooUzMcPcyeRN3cus2uHhYczdvJsJo4aiNXfo8vZXbMysFdnhoydgq2NDWOG9CGdnV2y/xzSsrTwOo9LWu13ctIYYsIZTM/fXe0NUdWjhqVDsIib4fctHYKkoEsPblk6BElBDjZp80No0JUtlg7BIuzdK1s6BItIq6/ztOphyCVLhxCvSZ6fWTqEePW5+oOlQzCjNRMiIiIiIpIoFk0mjh49ir//s12Lli5dSsWKFcmZMyeVKlVixYoV/9pGeHg4Dx8+NHs8PyVFRERERORVmFLxI7WxaDLxxRdf4OcXsyXmggUL6NixI2XKlGHw4MGULVuW9u3bs3Dhwpe24e3tTaZMmcweVx9dToHoRURERETSNosuwL548SL58+cHYPbs2UybNo327Z/tqlG2bFnGjBlDmzZt4m1j4MCB9O7d26zs/wo3SJZ4RURERETkGYsmEw4ODgQGBpIrVy5u3LjBO++8Y3a8XLlyZtOg4mJnZ4fdP3bHsDJoKYiIiIiIJE604d/rSAyLfuquVasW3377LQBVqlRh9erVZsdXrVpFvnz5LBHaK2nd+3O2X99i9liy/eXTs94EzVo3YsP25Ry9tJ2jl7azcuNC3nv/3X8/8TWXVvstacu7Fcuy8qf5nPfdx8OQS9T5v5qWDgmAkJBQxk2dQ82GrShdrT4tOvbm1LnzcdYdOWEGRSvWYunKdXEef/r0KY1adaFoxVr4XHjxLvSHjp3k/Y9bJvi6g0dPomjFWmaPjr2HmNW5fPU63QaMpFLtppSr2ZCWnftw8MiJxPwoJAmk1td5ckur/ZbkYdGRifHjx1OxYkWqVKlCmTJlmDRpEtu3b6dw4cKcP3+e/fv3s25d3H8EUht/H3/6NOsf+zwqMsqC0aSM2zcDmDR6JpcvXcWAgY8//T9mL5lEg+ot8D2ferd7+6/Sar8lbXF0dOD0qXMsXfITP66YY+lwYg0bNw3fS5fxHtYXVxdnfvljK+17DOLnZXPJltUltt6WHXs4ecYHVxfneNuaNHshri5OnPeN+7/bbbv2U7ViuVe6bqXyZRg9qFfscxsbG7M2u/QfgaeHO99NH0c6O1uWrlpPl/7D+X3VQlziuau2JJ/U+jpPbmm135I8LDoy4e7uzrFjx6hQoQKbNm3CZDJx8OBBNm/ejIeHB3v27KF27dqWDDHBoqKiCL57L/bx4N5DS4eU7LZt3sWOLXu4cukaly9dZcrY2YSGhFKyTDFLh5as0mq/JW35c/MOvh41mV9/2WzpUGKFhYezZcduendpS5mSxfD0cKdL28/w9HBn5bpnN+C6czcQ7ynfMn54f4xG6zjb2rXvEHsPHqVv13bxXm/b7v1Uq1Q+wdcFsLWxwcXZKfaRKWOG2GP37j/gyrUbtPusCQXz5SZXzhz06vQFT8LCufiPuw5LykiNr/OUkFb7/SqiU/EjtbH4HbAzZ87MuHHjGDdunKVD+U9y5M7B6sMreBoewZmjZ5nv/R0BNwMsHVaKsbKyola9Gjg42HPs0ElLh5Ni0mq/RSwhKjKKqKho7GzNv+23s7Pl6MkzAERHRzNw1ERaN/+EfHlyxdUMgcH3GDF+GtO8h5EuXbo46/heukLwvfuUK12Cp08j/vW6/3Po2Eneq/MpGTOk553SJejeoRWZM2UEIHOmjOT29GDDpr8oXDAftjY2rPp5I05ZMlOkYOqf0isiEheLJxNvgrPHzjGu1zdcu3QNZ1dnWvVqyfS1U/ji/XY8CXli6fCSVYHCeVn5+/fY2dkSGvKELq374Xfh5Yvm3wRptd8iluTo6ECJooWZs2g5eXJ54uyUmY1bdnDitA+eOdwA+O6Hn7C2tuKzxvXjbMNkMjFkzGSaNKhD0cIFuHHrTpz1tu7aR8VypbGxscHGxuZfrwtQsXxpalSpSA73bFy7cYtpcxfRqc9Qls2djLW1NQaDgfnTxtL9q68pV7MhVlYGnDJnZu7kr81GMEREXidKJpLAwW2HYv996Zw/546dY8X+H6lWtwobV2yyYGTJz9/3CvWrNSdDhvR8VO99xs8YQYv6Hd74D9Zptd8iluY9tC/DvKdQvcFnWFtbUbhAPmrVqMLZ876c8bnIDz/9zE8LZ2AwxL0Vy7LVGwgJDaVdyyYvvc623ftp1qhugq77P7VrVI39d4G8uSmQNze1mrTh0LGTlC9TCpPJxJhJs3HOkonFs78hnZ0da37ZRNf+I1ixYDpZXbRmQiS1SI03h0uttIdqMnj8MITrl66TwyuHpUNJdhERkVz1v86Zkz5MGj0LnzMXaNWhmaXDSnZptd8ilubp4c6iWd9wcMs6tqxdyooF04iMjMLDPTtHT5wm+N59ajb6nBLv1aHEe3W4eTuAb2Yu4INGrQA4eOQEJ0778Ha1epR4rw61m8bcx6hpu+4M+noiAHcDgzl3wY8q776ToOvGJ2cON7JkzsjV67cAOHDkODv2HuSbUV/xdvG3KFIwH0P7dsXOzo6ff9+SXD8yEUnDdu7cSd26dXF3d8dgMLB+/Xqz4yaTiWHDhuHm5oa9vT01atTg4sWLr3QNjUwkA3uHdLh7ubF5bZClQ0lxBisrbO1s/r3iGyat9lvEUhzs0+Fgn44HDx+x9+ARen/ZhppVK1G+bCmzeh17DaHuR9VpUPsDAAb27ES3Dp/HHg+4G0TH3kOYOHIgxd4qCMD2PfspWaxwnFOP4rpufG4H3OX+g0dk/XuXprCwcODFeyFZGQxER6fGZZUi8roLCQmhRIkStGnThoYNG75wfMKECUyfPp3FixeTO3duhg4dyocffsjZs2fjXVP2T0omkkDnIR3Yu2U/d67fwTmbM1/0aUV0VDR/rd9m6dCSVZ8hXdjx115uXb+NY3oH6jb6iHIVS9OmSTdLh5as0mq/JW1xdHQgT95nC5i9vHJSrHhh7gU/4Pr1mxaLa8+BI5hMJrw8Pbh6/SaTZn1Hbk8PGtT5ABujMXax8/8Yjda4OGUhdy4PANyyu5odd7C3B2JGEbK7ZgVg2+4DVKtUPsHXBQgNfcLshcuoWbUiLs5OXLtxk8mzF+Lp4U7Fcm8DUKJoYTJmSM+g0ZPo9EVz0tnZsnrDJq7fusN775rftFVSRmp9nSe3tNrvVxH9hkx0qlWrFrVq1YrzmMlkYurUqQwZMoT69WPWmS1ZsoRs2bKxfv16Pv300wRdQ8lEEsjqlpWhMweRMUtGHgQ/4NTB03xZrxsPgh9YOrRk5eTixISZI3HN5sKjh485f/YibZp0Y++OA5YOLVml1X5L2lLq7WJs3LQ89rn3+Jibry37YTWdO/aP77Rk9+hxCFPnfM+du4FkypiBmlUq0b1jK2yMSfPnLPRJGAcOH+erHh1f6bpW1lZc8PNnw+9bePg4BFcXJ9595226tv8cW1tbALJkzsScSV8zfd5i2nb/isjISPLlzsWMccMolD9PksQvrya1vs6TW1rt95siPDyc8PBwszI7Ozvs7OxeqR1/f39u375NjRo1YssyZcpEuXLl2LdvX4KTCYPJZHozUq/nVPWo8e+V3kA3w+9bOgRJQZce3LJ0CJKCHGxe7Y/EmyLoSsquJfhz+x5mzF/MhmXzUvS6/2TvXtmi17eUtPo6T6sehqTeG72OydXC0iHEK+KL/IwcOdKsbPjw4YwYMeKl5xkMBtatW0eDBg0A2Lt3LxUrVuTmzZu4uT3bma5JkyYYDAZWrlyZoHg0MiEiIvI3B/t09O4c/zoIEUkbUvMqpoEDB9K7d2+zslcdlUhKSiZERET+VrFcaUuHICLyUomZ0hSX7NljdqO7c+eO2cjEnTt3KFmyZILb0dawIiIiIiJpTO7cucmePTt//fVXbNnDhw85cOAAFSpUSHA7GpkQEREREXnOm7Kg+PHjx/j6Pru5pr+/P8ePH8fJyQlPT0969uzJ6NGjyZ8/f+zWsO7u7rHrKhJCyYSIiIiIyBvo8OHDVKtWLfb5/9ZatGrVikWLFtG/f39CQkLo0KED9+/fp1KlSmzatCnB95gAJRMiIiIiIm+kqlWr8rKNWw0GA6NGjWLUqFGJvoaSCRERERGR56Tm3ZxSGy3AFhERERGRRFEyISIiIiIiiaJpTiIiIiIiz4k2WDqC14dGJkREREREJFGUTIiIiIiISKJompOIiIiIyHOi35jb1iU/jUyIiIiIiEiiKJkQEREREZFE0TQnEREREZHnaJJTwmlkQkREREREEkXJhIiIiIiIJIqmOYmIiIiIPCfa0gG8RjQyISIiIiIiiaJkQkREREREEkXTnEREREREnqOb1iWcRiZERERERCRRlEyIiIiIiEiiaJqTiIiIiMhzNMkp4d7IZGJ3wDlLhyApqKRzHkuHIJLsQiPCLR2CRdi7V7Z0CBbx5OYuS4dgEWn1953NMbOlQxBJNE1zEhERERGRRHkjRyZERERERBJLN61LOI1MiIiIiIhIoiiZEBERERGRRNE0JxERERGR5+imdQmnkQkREREREUkUJRMiIiIiIpIomuYkIiIiIvIcTXJKOI1MiIiIiIhIoiiZEBERERGRRNE0JxERERGR5+imdQmnkQkREREREUkUJRMiIiIiIpIomuYkIiIiIvIck/ZzSjCNTIiIiIiISKIomRARERERkUTRNCcRERERkedoN6eE08iEiIiIiIgkipIJERERERFJFE1zEhERERF5TrR2c0owjUyIiIiIiEiiKJkQEREREZFE0TQnEREREZHnaJJTwmlkQkREREREEkXJhAjQuPXHbDi4ij3+W1j021zeKlk4Qed9UP99Dt/axcTvx5qVf9bpUzaf2sDmUxto0bGp2bG3ShVh6R8LsLa2TrL4RSTtCgkJZdzUOdRs2IrS1erTomNvTp07H3s8MPgeg0dPolq9FpSp3oCOvYdw5dqNBLe/cct2ilasRfevRpmVf//jat6r8ynv1fmURcvXmB07ecaHJm26ERkZ9d86JwnWql0z9p/YjN+to/zy53JKvl0s3rrNP/+EtRuXcMZ/L2f897Ji3YIX6nfs2poTF3Zy4sJOOnZpZXasVOli/L5tlf6OCaBkQoSa9arTa0RX5k9axGcftuPCWV9mLJ9EFufMLz3PzSM7PYZ9ydH9x83K8xXOS6f+bRnUaQSDO4+k84D25C2UBwBra2sGje+Dd/+JREXpj6yI/HfDxk1j36FjeA/ry7ql3/LuO2/Tvscg7twNxGQy0eOrUVy/eZvp44fx0/czcc/uSrsegwh9Evavbd+4dYdJMxdQukRRs/Lzvv7MWvAD34z6igkjBzBj3hIu+PkDEBkZxahvZjC0X1eMRn3YTAn1Pv6I4aP7M3n8bD6q2pizp8+zbM1cnF2c4qxfoVJZfl6zkSZ121DvgxbcvHGbH9fOI7ubKwCF3ypAv4Fd+bJtP7q060e/wd0pVCQ/EPN3bNzk4XzVe9Qb/XcsGlOqfaQ2SiYkzWvRsSnrl/3CLys34n/hMt79JxL2JIx6zerEe46VlRWjZw1j3sSF3Lhyy+yYVz5PLp714/CeoxzafQTfc3545fMEoOWXzTh64ARnT/gka59EJG0ICw9ny47d9O7SljIli+Hp4U6Xtp/h6eHOynW/ceXaDU6c8WFo364UK1yQ3Lk8GNq3K+Hh4Wz8c/tL246KimLAyAl82bYlHu7ZzY75X7lGgbxelCtdkvJlSlEgX278r1wHYkYsSpcsRrHCBZOr2/IP7b9sxY9LVrPqx/VcPO/HV71H8iQ0jE8/axhn/W4dBrD4uxWcOe2D30V/+nYfhpXBikrvlQcgX/7cnDtzgT27DrB75wHOnblAvvy5Aejc/Qv27z3MiWOnU6x/kropmZA0zWhjpFDxAhzYdSS2zGQycXDXYYqXfive89r1bk1w0D1+Xv7bC8d8fS7hmScn2XK4kt0jG555cuJ33p8cudyp27Q2346bnyx9EZG0JyoyiqioaOxsbczK7exsOXryDE8jIgCwfe64lZUVNrY2HDt55qVtf/v9jzhlyUSjuh++cCx/Xi8uX7vBrdsB3Lx9hyvXbpAvTy6uXr/J+o1/0r3950nQO0kIGxsbipcswq7t+2LLTCYTu3fsp3TZEglqw94hHUYbI/fvPwDg3NmL5M7nhbuHGzlyupEnXy58zvmSyysnTZt/zIQx05OlL/J60m5OkqZldsqE0Wgk+G6wWXnw3Xt45csV5zkl3ilG/WZ1aF6zTZzHL1+8wuxx85i9YgoAs7zncvniFWatnML00d9SoWo5OvT9gsiISCYOm86x/SeStlMikmY4OjpQomhh5ixaTp5cnjg7ZWbjlh2cOO2DZw43cufKiVs2V6bNXcSwft1wsE/HkpXruBMQyN2g4HjbPXriNOt+/YPVi2bFeTyvlyc9Oramfc9BAPTo2Jq8Xp606zGQ3l+2Yc/BI8z+bhlGozVf9exEmZLxz9+X/8bJOTNGo5HAu0Fm5XfvBpH379GEfzN4RB/u3A6ITUh8L1xi/NdTWbE25suvcaOm4nvhEivWLWD08ElUrV6J3l99SWREJMMGenNg75GXNf9airZ0AK8RJRMir8DB0Z5RM4Ywpt8EHgQ/iLfemiU/s2bJz7HP6zT+iNCQUE4dPs2a3cv4vFYHXN2yMvbbEdQr14SIpxEpEb6IvIG8h/ZlmPcUqjf4DGtrKwoXyEetGlU4e94XG6ORqWOHMMx7KhVrNcHa2oryZUpRuXyZeGdeh4SEMvDriYwY0IMsmTPFe92mH9eh6cfPpoP+vPFPHBzsKVG0MHWbtWfFgmncCQik37Bx/LH6e2xtbZO455IUuvRsR72GtWhctzXh4U9jy5d+v4ql36+Kfd740/o8fhzCkUMn2HnoV+pUb4qbe3ZmL5hIhZIf8FR/x9IsJROSpt0PfkBkZCROWc0XqTllzUJQQNAL9T28cpDD053Ji8fFlllZxcwW3H9tG40qteDGlZtm52RyykT7Pl/Q4eOuFH27CFcvXeOa/3Wu+V/HaGOMmQblcykZeiciaYGnhzuLZn1D6JMwQkJCyeriRJ+h3rHrHN4qlJ81i2fx6HEIEREROGXJTLP2PXmrUP4427t24xY3bt2h64ARsWXR0TGpR4n36vDLj/Px9HA3O+fe/Qd8+/2PLJo1gVNnzpMrZ47YR2RUJJev3aBA3oR9Sy6vJjjoPpGRkbhkdTYrz5rVmbsBgS89t2PX1nTp2ZZPG7Tj3JkL8dbL4pSZXgM606hOK0qVKc4l3yv4X7qK/6Wr2NgYyZPPC5+zF5OkP/L6UTIhaVpkRCQ+Jy/wTqXS7Ni0CwCDwUDZSqVZ9f3aF+pf9r1K06rmc4E7f9UeB0cHJg2dxp2bAS+c02dkN5bPW0XArbsUKVkIo/HZf3bW1tZYW2vpkoj8dw726XCwT8eDh4/Ye/AIvb80n4qZIb0jAFeu3eCMz0W6tmsZZzu5c+Vk3dJvzcpmzFtCSGgoX/XshFu2rC+cM376PFo2aUB216ycPneByMjI2GNRUdFER2nSSHKJiIjg5PGzVKpSnj82bgVi/o5Veq8c3y9YHu95nbu3oXufDrRo1IGTx1++fmbk2AHMn72EWzfvUKJUUWxsnvs7ZrTG2urN27XLlAp3TUqtlExImrds7kpGTBvE2RM+nDl+jubtG2PvYM8vKzYCMHL6YAJuBzJr7Fyehj/F77y/2fmPHjwGeKEcoNx7ZfDMk5Ph3ccAcPa4D7ny5eLd6uXI5u5KdHQUV/yuJnMPReRNtufAEUwmE16eHly9fpNJs74jt6cHDep8AMAfW3eRJXMm3LJl5eKly4ybOofqlStQsVzp2DYGfj0RVxdnenX+Ajs7W/Ln8TK7xv8SkX+WA+w9eJQr124wdkgfAIoWLoD/levs2neI2wF3sbKywiuXR/J0XgCYP3sxU2aP5eSxMxw7eor2nVti72jPymXrAJj27Vhu3Qpg3KipAHzZoy19B3ala/v+XLt6k6yuLkDMFLfQkFCztitXrUDuvF706ByzPubEsdPkzZ+bajUq4Z7DjeioaPx8X/z7J2mHkglJ8/7csJUszpnp1L8tzlmduHDGl27N+xIceA+A7DmyxQ7xvwq7dLb0H9OLgZ2GYzLFnB9w6y7fDJnKsCkDiXgawfDuYwkPe/ovLYmIxO/R4xCmzvmeO3cDyZQxAzWrVKJ7x1bY/D0KejcomAkz5hEUfJ+szk7U++h9On3RzKyNW3cCsDIYXvnaYeHhjJ08m4mjBsZO+czumpWBvTozZOwUbG1sGDOkD+ns7P57RyVeG9ZtwsnFib6DupLV1YUzp3z47JOOsYuy3T3czP6Ofd6mKXZ2tsxfMtWsnUnjZjF5/OzY5+nS2TFmwmA6t+kb+3fs1s07DB0wlskzx/D06VN6fjmIsLDw5O+kpFoG0/9eHW8Qo20OS4cgKaikcx5Lh2ARx4O0zkLkTfXk5i5Lh2AR9u6VLR2CRWRzzGzpECzixr2XT6+ypDZen1g6hHgtvLza0iGY0WRtERERERFJFIsmE926dWPXrv/27Ut4eDgPHz40e7yBgy0iIiIiIqmORZOJWbNmUbVqVQoUKMD48eO5ffv2K7fh7e1NpkyZzB6m6EfJEK2IiIiIpAWmVPy/1Mbi05w2b95M7dq1mThxIp6entSvX59ff/2V6OiEbSM3cOBAHjx4YPYwWGVI5qhFRERERMTiyUSxYsWYOnUqN2/e5IcffiA8PJwGDRqQM2dOBg8ejK+v70vPt7OzI2PGjGYPQyJ2pBARERERkVeTaraGtbGxoUmTJjRp0oSrV6+ycOFCFi1axLhx44iKirJ0eCLxatW1Bd0Gd+LH+auYPGyGpcMRkddMunRWZM5ki52tFUajFbfuPDE7bjKZmLVgKat/2cSjRyGUKl6EoX27kitnzM6FN27dYc6iHzl45ASBQffI6uLE/31YnY6tPsXGxgaAg0dPsnTlOk6dO09ISCieHjn4onkj/u/D6i/EM3vhMq5cu8H44f356eeN/Pbnds6d9yUk9Al7N/1Exgzpzeo/ePiIsZNns33PAaysrKhRtSIDe3TCwcH+la69dOU6cuZwwGg0EB1t4nFIJMH3nqJlkEmva6921Pq/muTLn5uwsDAOHzzO2BGT8fO9bOnQUg3dZjHhLD4yERdPT09GjBiBv78/mzZtsnQ4IvEqUqIQDVvW48KZl4+giYjEx8pg4OnTaAKD4t6rf+Gyn1i2egPD+nXjx/lTsU+Xjo69hxAeHnOPGv8r1zBFmxjWrxvrf5jDgO4dWbV+I1PnLopt4/ipsxTIm5spY4awZvFsGtSpyaDRk9i+58AL19u2ax/VKpUHICwsnErlytD+80/jjX/AyAn4+l9l/tSxzJowgiPHTzNiwvRXuvZvm7cxZc733Lv/lGs3QgkIDCe9oxGnLLav9LOUhCn/blkWL1hO3Q+a0axhe2xsjPy4dj72fyeAIq/CoiMTuXLlwto6/luwGwwGatasmYIRiSScvYM9X88axpi+E2jbs5WlwxGR11TokyhCn8Q9Am8ymVi6aj0dWn1K9coVABg7tC9V6jbjr117qV2jKpXKl6FS+TKx5+TM4Yb/1eusWv8b/bq2B6BDK/NkoGWTBuw9eJQtO/ZQtWK52PJbd+7i63+FSuVj7o7dsunHQMzoQlz8Ll9l9/7DrFgwjaKFCwAwqFdnOvcdRt8u7XDN6pygax8/dY5SxYpw7vweACIjo3gcEomdXfyfESTxPmvc0ex5zy8Hc8p3N8VLFuHA3iMWikpeVxYdmfD398fZ2dmSIYgk2gDvXuz5ax8Hd+mNV0SSx/WbtwkMukeFMqViyzKkd6R4kYKcOO0T73mPQ0LImOHlm5E8DgkhU0bzOtt376dsqeKkd3RMUHwnTp8jY4b0sYkEQPkypbCyMnDy7Mvje/7aJYsV5ux5X+xsYz6WGI0GHOyNhIZGJigO+W8y/v27uH/vgYUjST2iTaZU+0htUuU0J5HU7oP671OoWAFmjp1r6VBE5A0WGHwPAGenLGblzk5ZCAy6F+c5V6/f5MfVG2jSoFa87W76ayenz13g49ofmJVvfW6KU4LiC7qHU+ZMZmVGozWZMmSIjT0h167zQTW6tGtJDnd78ng5kiunI0/Corj/ICLBsUjiGAwGRnoP4OD+o5w/pym78uqUTIi8omzurvT5ujtDunzN07/nLIuIpAZ37gbSsfcQPqhWmU/qxZ1MHDxygqFjJzNiQA/y5ckVW/44JITDx09R9RWSiVcV37UPHj3J/CUruRsYzvUbT7h95wkODtZkyWyTbLFIjLETh1CwcH6+bNvX0qHIayrV7OYk8rooVLwgzlmd+GHzgtgyo9FIqfIlaPJFQ97N9X6C75MiIvIyLn+PSAQFx+zS9D9BwfcomD+vWd2Au0G06fYVJYsVYcSA7nG2d+jYSboMGEH/7h2oX6uG2bFd+w6T18sTt2xZEx6fcxaC75tPjYmMjOLBo0exsSfk2jPnL6Huh9U5eGQxAE8jwGB4SlYXO+7d1+hEchk9YTA1PqxCw9qtuHXzjqXDSVVS32Si1EvJhMgrOrTrME2rfm5WNmzqQK74XmXxzGVKJEQkyXi4Z8fFOQv7jxynUIGY5OFxSAgnz56nycd1YuvduRtIm25fUaRgPkYP6oWV1YsTDw4ePUmX/sPp3bkNjevXfuH4tt37qfb3Iu+EKlG0MA8fPeaMz0XeKpQfgANHjhMdbaJ4kUIJvnZYeDhWVrpHVEoaPWEwH9V5n8Z1W3Pt6g1LhyOvMSUTIq8oNOQJfuf9zcrCQsO4f+/BC+UiIv/GYAAbm2cf/m2MVvhc8CNTxgy4ZXelZZMGzFu8glweOcjhno2Z85fi6uLM+5XfBWISiS+6DsA9uyt9u7bj3nMjBS7OMaMZB4+coEv/4bRo3ICaVSsSGBQccy0bGzJlzEBkZBS79x+mdbNGZrEFBgUTGHSPq9dvAnDR7zKODva4ZXclU8YM5PXypFL5MowYP41h/boRERnJ2CnfUqtGFVyzOifo2gBVKpZjyYq1pHc0EhYehY3RCqcstlqAnUzGThxKg09q06Z5Nx4/DiWrqwsAjx4+Iiws7i2KReKjZEJERMSC7OysyeH2bH9/F2c7PvmiK/Vr1WDMkD60adGYJ0/CGDFhOo8eP+bt4m8xZ9LX2NnF3INh38FjXL1+k6vXb/J+g5ZmbZ/e8zsAP/++hSdh4SxYupIFS1fGHi9TqhiLZk7g8PGT2Nuno0jBfGbnr1y/kW8XLot93qpLPwBGD+pNgzoxW7ePH96fMZNn07b7QKysDNSoWpFBPTvHnvNv1wbo2KoZBoOBaXOWYG1tICraRGhozE3rJOm1ahuzXe+a3xablff6cjCrlq+3QESpT7QmOiWYwWRKhXtM/UdG2xyWDkFSUEnnPJYOwSKOB12ydAgikkye3NyVotcbO+VboqKiGNq3a4pe95/s3Stb9PqWks0xs6VDsIgb985YOoR4Nc/1saVDiNePV9ZZOgQzGpkQERFJ4/LnyUWJooUtHYaIvIaUTIiIiKRxcS2KFknLTJrmlGC6z4SIiIiIiCSKkgkREREREUkUTXMSEREREXmO7hiVcBqZEBERERGRRFEyISIiIiIiiaJpTiIiIiIiz9FN6xJOIxMiIiIiIpIoSiZERERERCRRNM1JREREROQ5umldwmlkQkREREREEkXJhIiIiIiIJIqmOYmIiIiIPEc3rUs4jUyIiIiIiEiiKJkQEREREZFE0TQnEREREZHnmEzazSmhNDIhIiIiIiKJomRCREREREQSRdOcRERERESeE62b1iWYRiZERERERCRRlEyIiIiIiEiiaJqTiIiIiMhzdNO6hNPIhIiIiIiIJIqSCRERERERSZQ3cppTnkxulg7BIm6HBls6BItws8lk6RAsoqx7RUuHYBHzb+6xdAgWUSt7KUuHYBHnn9y2dAgWYe9e2dIhWMSTm7ssHYJFRP4829IhyD+YtJtTgmlkQkREREREEkXJhIiIiIiIJMobOc1JRERERCSxdNO6hNPIhIiIiIiIJIqSCRERERERSRRNcxIREREReY7JpGlOCaWRCRERERERSRQlEyIiIiIikiia5iQiIiIi8pxoSwfwGtHIhIiIiIiIJIqSCRERERERSRRNcxIREREReY5JN61LMI1MiIiIiIhIoiiZEBERERGRRNE0JxERERGR50RrmlOCaWRCREREREQSRcmEiIiIiIgkiqY5iYiIiIg8x2TSNKeE0siEiIiIiIgkipIJERERERFJFE1zEhERERF5jnZzSjiNTIiIiIiIvGFGjBiBwWAwexQqVCjJr6ORCRERERGRN9Bbb73Fli1bYp8bjUn/0V/JhIiIiIjIc0ypeJpTeHg44eHhZmV2dnbY2dm9UNdoNJI9e/ZkjUfTnOLRok1jth7ZwKlre/hp0yKKl3or3rof1KnGmj+XcNh3G8cv7+Lnbcuo37i2WZ02X37GvrOb2Xd2M206tzA7Vvztt1i7ZSnW1tbJ0pdX0b5DS06d3UlA0Dm2bl9L6dLF461bqHB+li6bzamzO3kYcokvu3zxQp0mTetz9vxurlw/xthxg82OeXrm4Ojxv8iQIX2S9+NV1f68Dgv2fMeaC2uZ+PMk8pco8NL6jhkd6fR1JxYfXsLai+uYs30upauViT1epUFVFu7/nuWnVtB2aDuzc109XJmzfS726e2TpS+vokrLDxm9eybTz/9A//VjyFUi70vrV29TmxF/TWWazw+M2TubT4a2wmhnE3u8bP1KjNk7m0knFtJoyOdm5zp5ZGXE1qmkSwX9TqvS6us8rb6fv+lCQkIZN3UONRu2onS1+rTo2JtT587HWXfkhBkUrViLpSvXvbTNqKgoZsxbwoeftKZ0tfp81PgL5nz/o9k2od//uJr36nzKe3U+ZdHyNWbnnzzjQ5M23YiMjPrvHUyg7/ZfpPmSnbw7ZSPVZv5Bz7UHuRz0+KXn/HzqGiUn/GL2eGfSb2Z1Fh/0o9rMP6g28w+WHPQzO3bq5j2aLd5JZHR0kvdH/p23tzeZMmUye3h7e8dZ9+LFi7i7u5MnTx5atGjB1atXkzwejUzEoXaDmgwc1Yth/bw5ceQ0rTs247tVM/iwQiOCA++9UP/+vYfMmbKQSxcv8zQigmofVMZ7+jCCAoPZvW0/BYvko8eATnRs0RODwcDcZVPYvX0/F875YW1tzaiJgxjaewxRUSn35hOXho3qMHbcIHr2GMrhQ8f5sssXrP15MaVL1SDwbtAL9R3s7bl8+Srr123Ee/yQF447OWdhxixvOnfsx2X/a/y0dgE7t+9j06atAEye+jXDh03g0aOXv+klt0p1K9NuaDtmDZrFhePnqde2PqN+GEWnqh15EPTghfpGGyNfL/ua+4EPGNfJm6DbQbjmcOXxwxAAMmbJSLcJ3ZjaZyp3rtxm2KLhnNx7gkN/HQKg8+gvWTxuEU8eP0nRfv5T6f+rQKMhn7N8yHz8j12keps6dF8ymBHVe/Io6OEL9cvWq0iDAc1Z2u9b/I5eIFtuNz6f+CUmk4k1o5fgmCUDn43vxJK+swi8GkCXhV9xfu9pTm89CkCzr9uyfvyPhFm432lVWn2dp9X387Rg2Lhp+F66jPewvri6OPPLH1tp32MQPy+bS7asLrH1tuzYw8kzPri6OP9rm9/98BMr1//GmCF9yJc7F2d8LjBkzBTSp3fks8b1Oe/rz6wFPzDrmxGYTCa69BvBu++8TYG8uYmMjGLUNzMYPqA7RmPKJZNHrgXRtFRu3nLLTFR0NDN2+tD5p/2sbVMVe9v4P+altzWyvl212OcGgyH23xcCHvLtbh+mNyqHCRPd1xykQu6s5M+akcjoaEZvPsnQD0tgtNJ30pYwcOBAevfubVYW16hEuXLlWLRoEQULFuTWrVuMHDmSypUrc/r0aTJkyJBk8ehVEIcvOrVg1Q/rWbv8F/wu+DOsrzdhT8L4pHm9OOsf3HuEPzdux+/iZa5dvsGSeSs4f9aX0uVKApAnvxfnz15k/+7D7Nt1iPNnfcmT3wuAdl1bcmjfUU4dP5tCvYtf125tWfz9SpYtXc15H196dh/CkydPaPl54zjrHz16kqGDx7Fm9a+Ehz994Xhur5w8fPiItWt+4+jRk+zcsZ8ChWK++f6kcV0iIiL4ZcMfydqnhGjQrgF/LP+Dv37awrWL15g9cBbhT8Kp2bRmnPVrNK1J+swZGNN+NOcOnyPgegCnD5zm8jl/ALJ5Zif0YSi7f9nFxZMXObXvJB75cgLwXr33iIyMZN+mfSnWv/i83+7/2LPiL/b9tJ3bvjdYPng+T588pUKTanHWz1O6IH6Hz3Nowx6Cr9/l3K6THN6wB68S+QBw8XTlyaNQjvy6jysn/Ti//wxu+XIAUKZeRaIiozj+x8EU65+YS6uv87T6fv6mCwsPZ8uO3fTu0pYyJYvh6eFOl7af4enhzsp1z75hv3M3EO8p3zJ+eP8EfcA/fvoc1SqXp8q775DDLRsfVKvMu++8zamzMSMe/leuUSCvF+VKl6R8mVIUyJcb/yvXgZgRi9Ili1GscMHk6XQ8ZjcuT/1iOcnnkoGCrpkYVbsktx4+4eydF78kMGMAl/TpYh/Ojs8+jPoHPyZ/1oy8k8uFcrlikgj/v0c7Fh/04+2czhR1y5yMvbK8aJMp1T7s7OzImDGj2SOuZKJWrVo0btyY4sWL8+GHH7Jx40bu37/PqlWrkvRnpWTiH2xsjLxVohB7dxyILTOZTOzdeZCSZeKf8vO8CpXLkjtvLg7tOwbAhbO+eOX1xC1HNtw9suOV15OL5/zI6ZWDhs3qMnXst8nSl1dhY2NDyVJF2bZtT2yZyWRi+7Y9vPNOqUS16ed3GXv7dBQvUYQsWTLxduninDntQ+bMGRkytBd9e49ImuD/A6ONkXzF8nFi9/HYMpPJxPHdxyn4dtw7HpSrUQ6fIz50Gt2ZJUeWMvPPWTTu0hirv7+huXn5Bnb2duR5Kw/pM6Unf4kCXD53GcdMjrTo+xlzh85Jia69lLWNNZ5F8+Cz51RsmclkwmfPKfK8HffUl0tHzuNZLE/sVCiXnK68Va0UZ7bFvM7v+t/GNp0tHm954ZDJEa/iebnucxWHjI7U7d2UlcMWJn/HJE5p9XWeVt/P04KoyCiioqKxs7UxK7ezs+XoyTMAREdHM3DURFo3/4R8eXIlqN2SRQtz4PBxLl+NSRB8Ll7i6MkzVC4fM70vf14vLl+7wa3bAdy8fYcr126QL08url6/yfqNf9K9/ecvaz5FPA6PBCBTOpuX1nvyNIpac7bw4bd/0nPtQXwDH8Uey581A1fuhXDrYSg3H4RyJTiEfFkzcO1eCD+fukbXSkm/I5Akv8yZM1OgQAF8fX2TtF1Nc/qHLE6ZMRqNBN4NNisPDAgmTz6veM9Ln8GRXad+x9bWluioKEYMGB/7B8zv4mUmj5nN96tnAzBp9Cz8Ll5m0epZfDNyOpWqV6Bbvw5ERkYyevBEDv/9RyslOTtnwWg0cjcg0Kw8ICCQAgVePo8+PvfvP6RTh37MnT8J+3R2rPhxHX9t2cXM2eOYN3cpubw8WPHTPGxsjHiPmc7P639Piq68koxOGbE2WnMv8L557IH38cjrEec52T2zUfzd4mxfv52RrUfg5uVO59GdsbYxsmLqckIehDCl9xR6TemNbTpbtq7ZyrGdR+k2oTu/Lf6VbDmzMeS7oRhtjPw45Uf2btwT53WSU/osMf1++I9+P7x7n2x53eM859CGPaR3ykjfn77GYABrGyM7f9jMptkxc5BDH4awuO8sWk/qik06W/av3cm5nSf4bHwndizZhHNOVzov6I+10Zpfp/7Esd8PxHkdSXpp9XWeVt/P0wJHRwdKFC3MnEXLyZPLE2enzGzcsoMTp33wzOEGxExZsra24rPG9RPcbruWTQgJDaVu8w5YW1kRFR1N9w6t+L8PqwOQ18uTHh1b077nIAB6dGxNXi9P2vUYSO8v27Dn4BFmf7cMo9Gar3p2okzJYknf+ZeINpn45q/TlMyRhXxZM8Zbz8vJkRG1SpA/a0Yeh0ew5NAlWv+wmzVtq5Itgz15nDPQrXIhOq3cD0D39wqRxzkDHVfuo2fVwuy9HMCcPRcwWhno/35RSuf89ylkYnmPHz/Gz8+Pli1bJmm7SiaSSMjjUOpXa46jowMVKpdl4KheXLt8g4N7jwCwYvEaVix+tlDr46Z1CHkcyrHDp/hj3xoaffA52d1cmTJvLNVL1yPiaYSlupKkfv1lM7/+sjn2ecVK71C0aCH69RnB8VPbaNO6B3fu3GXbjvXs2XMwzrUZqY3ByooHQfeZ9dVMoqOj8Tvlh3M2Zxp2asiKqcsB2P/HPvb/8WyKR9FyRcld2It5w+Yyd9c8Jnb9hnt37zFpw2TOHDgd55z11CZ/+SJ82OVjVgxdgP/xi2T1yk6TYV9Qq1sjfp8R89o+8cchTvxx6Nk55QqTo5AnK4cvZNSO6SzsPo2Hd+8zYL03vgfPxbk2Q1KHtPo6B72fvy68h/ZlmPcUqjf4DGtrKwoXyEetGlU4e96XMz4X+eGnn/lp4QyztQD/ZtPWnfy6eRvjR/QnX+5c+Fy8xPhpc3F1caJ+7ZgpgU0/rkPTj+vEnvPzxj9xcLCnRNHC1G3WnhULpnEnIJB+w8bxx+rvsbW1TfK+x8f7z1P4Bj5iUYuKL61XIocTJXI4mT1v+N02Vh+/QpfKMaMOjUt50biUV2ydDaev4WBrpIS7E/UXCyXlFwAARbpJREFUbGVZy8oEPArjqw1H+K3j+9im4DqRlJB693JKuL59+1K3bl1y5crFzZs3GT58ONbW1jRr1ixJr6Nk4h/uBd8nMjISl6xOZuUurk7cDYj/g67JZOKqf8yw6LnTF8hbIDcde7aO/ePzvCxOmejatz3N63WgxNtFuex3lSuXrnHl0jVsjEZy5/Xkwjm/F85LTkFB94iMjCSrq4tZuaurC3fu3E2Sa9ja2jJ5yig6tO9DnrxeGI3W7NkdM4fez9efMmVKsOn3rUlyrYR6GPyQqMgosrhkNivP7JKZe3dfXJwJcC8gmMjIKKKf28Xiuu81nFydMNoYiYyINKtvtDXSeUxnJvecjJuXG9bW1pw+cBqAm/43KFCqIIe2pOxagsf3Yvqd8R/9zpg1Mw/v3o/znHq9m3Jw7U72rIz5Hd08fw07+3S08O7ApplrzXY7gZh+f/p1Oxb1momrV3asra25eOAcAHf8b+JVMj+n/nrxvw9Jemn1dZ5W38/TCk8PdxbN+obQJ2GEhISS1cWJPkO98XDPztETpwm+d5+ajZ5NO4qKiuabmQtYumo9m9csjrPNSbO+o91nTahdoyoABfLm5tbtABYsXRWbTDzv3v0HfPv9jyyaNYFTZ86TK2eO2EdkVCSXr92gQN7cydL/f/L+8xQ7/e6wsFlFsmV4tV3UbKytKJgtE9fuhcR5/F5oOHP3XGBh83c5dfMeubKk5//bu++wKK4ugMO/pRex0KQJCDZsqFhiizUmxlhiYsWIvWHFbqwxiiaa2Hs31tg1JrbYuyiKqAhiF8GOgiCw+/3BF3SDRkJYBtnzPs8+yd6ZvXPuMu7s2VvGzTr1kazWcPNJHEX/oSdEKOPOnTu0adOGR48eYWdnR40aNThx4gR2dnZZehyZM/E3SUnJhJ6/QtWPK6eVqVQqqtasRPCZCxmuR2Vg8M5fI0aMH8iy+WuIjorB0NAAI+PXOZ2hkaEiSwomJSURfO4itWtXSytTqVTUql2NU6eyppt+yFB/9u49xPng0NR2G75ut5GxkSLtTk5KJiIkgrLVvdPKVCoV3tW9CTt75a2vuXTmMo5ujlq/djl5OPMo+lG6L1gArfq0JujAWa5dvIaBoQGGb/x6Y2hkhKECq2GkJKVw62IkxauVTitTqVQUr1aayLNX3/oaE3NT1H9LGNK+aL7lh7+Gvb/i0sFgbodeR2VogMGb7TY2wsBQPn6yi76e5/r6ea5vLMzNsLO15lnsc46dCqJuzY9o/Fk9Nq2Yw4Zls9Me9rY2dGz7FfN/mvDOuhISElEZaH+gGRgYpPvs+8vkGQv4pmUzHOztSFGnkJz8+t9GSooadYrul07VaDQE7gnhz/D7LGhVFef8Fv+6jhS1hogHsdjmMXvr9il/htKuogcFrcxRazRaS8ImqzWkqHPD7/i5z9q1a7l37x6JiYncuXOHtWvX4umZuaHr/0R6Jt5i6bxVTJ45lovBl7hwNhS/7m0xtzBn45rtAPwwaxzR92OY+v1sALr360BI8GVu37iDiYkxtepXp2mLzxk7JP2av9VqVcHd05UhvccAcOHcJTyKuPFxvWo4OhVEnaImMuJm9jX2DbNmLmbegimcOxfCmTPn6eXfEQsLC35ZuQGA+QuncO9eNOPG/AikTtou4ZW6ko+JiTGOTgUpU9aLuBfxREZqt6F4iSI0/+oLalT7AoCrYddQq9V8074lMdEPKFbMk7NBGb+4Z6Uti7YwYOoAIkLCuRp8laadm2JmYcbe9al3jBzwcwCP7j9ixeTUX7J+X7mTL/y+oOvYbuxYth2nwk608G/BjqXb09VdqGghajauSb+GfQG4E3EHjVrNJ60+4cmDJ7h4unD1fHj2NfYN+xbtwG+qP7dCIrkRHEHdzp9jamHK8V8PAOA31Z+n0Y/Z+kPqkJYL+4Ko17kRd0Kvc/1c6jCnxgGtuLAvCM3fLiQORZzx+aIqExsNBSA64i4atZpqLesQ++ApDp5O3DiftRPAxD/T1/NcXz/P9cHRk0FoNBrcXV24deceU2cvprCrC80aNcDYyIj8+bR/KTcyMsTWugCF3V7PE+rcdxj1Pq5G269TV/eqXb0KC5evxbGgPUUKu3H5agQr1m3iy0YN0h3/2Kmz3Lx9l4kjBwJQ2qsY12/e4fDx09yPeYCBgQHubm+fk5SVJu4J4ffLd5n2ZSUsTYx4+CIBgDymxpgZpyazI387h30eM/rW8gJg/tGrlHHKj2sBS54nJLH81DWiYl/yZVnXdPUfv/GAm0/iGN8odTGWUo75ufH4BUcio7kfm4ChAbhbK3+/qKymzhUDnbKHJBNvsXPLHqxtCtB3aA/s7G24fPEqnVv14dH/J/E5ujig1rzOys0tzBn7w1AcHO1JSEgkMvwGg3uNYueWPVr1mpqZMnrSEAZ0HZ42JCQ6KobxI34kcMZoXiUmMbTPGBITtO9qmF02bfwNW1trRowcQMGCtoRcuMxXzTqkTcp2cXHSGvLg6GjP0eOvl+Dr178b/fp34/ChEzRq2Far7hkzJzJi2ATi41PXnE9ISKRn9yFM+XkcpqYmDAoYQ1RUdDa0Mr0j2w+TzzofvgHtKGBXgMhLkYz5ZjRP/z9Z1c7JDs0b7X4Y9ZDR34ymy+guzNw1i0fRj9i+ZBsb525MV3fvSb1ZPH4RiS9T/6avEl8xbeA0eozvibGJMfNHz+NxtDLzRIJ2HCePdV6+GNCSvHb5uXP5BjP9JvL8Yeq4dmtnW62hS7/P3AgaDY0Htia/gzUvHsUSsi+IrVPWpKvbN7A7G75fwav/tzspMYnlg+bQ+rvOGJkas270Ep5Fv314jdANfT3P9fXzXB88fxHHtHlLiX7wkHx5rfikVg36dvfD2CjjX21u343iybPXc7dGDOjJzIUr+H7KbB4/eYqdrTUtmn5Oz47a17SExEQm/jSHKd8NT1vhzMHejuEDejJy4s+YGBszYeRAzN6yXGdW+zU4NWHtslZ7KeZxDcvRtEzqcs1RsS95c+pIbMIrxu+6wMO4RPKaGeNVMB/LfWvgaat974GEpBQm7QlhchMfDP5fQUErc4bWK82Y389jYmjAd5+XT0tahH5Saf4+0DkXKGZX8f075UL34x+/f6dcqJZNSaVDUISLwb/vys4NFt7L/lWBcoKGDplbovlDF/byvtIhKCLyWZTSISji5b3DSoegiOStc5QOQRHmnacoHcI7VXeuq3QI73T0bvbOL30f6ZkQQgghhBDiDTLMKeMUnwE5a9Ys2rdvz9q1awFYuXIlJUuWpESJEowYMUJrMtPbJCYmEhsbq/V4s8taCCGEEEIIoRuKJhPff/89I0aMID4+ngEDBjB58mQGDBiAr68vfn5+LFq0iPHjx/9jHYGBgeTLl0/r8SReP7vFhRBCCCGEyE6KDnNatmwZy5Yto3nz5pw/fx4fHx+WL1+Or68vACVKlGDIkCGMGzfunXUMHz6cgIAArbIKHrV1GbYQQgghhMjFcuGUYp1RNJm4d+8eFSumTpb29vbGwMCAcuXKpW2vUKEC9+7d+8c6TE1NMf3bagkGKsVHbwkhhBBCCJHrKZpMODg4cOnSJVxdXQkPDyclJYVLly5RqlQpAEJDQ7G3t1cyxAxp0+Er2nT4GhdXRwDCr0Qye+oiDu07pnBkulWteiX69e9GufKlcXQsSJtW3fltx573vzAXsC5oQ4fhHfCp44OpuSlRN6KYPmgaERdy770TVAYqvujfkspf1iSvXX6eRT/m+IaDqUvGilxJH89zff08z6ni4uKZuXAF+w4d5/GTp5Qo5smw/t0p41WcpORkZi5YzuHjZ7hzL4o8lpZ8VKk8A3p0xN7OJq2O3kPGciUiksdPnpLXKg8fVSxPQM9OWvsAnD53gWHf/ci+zSv/8bh/KV294VtjDujVmU6+X2uVvXr1ijZdBxAWEcmGpbMoUSzrbxz2TxafCGff1ShuPHqBqbEh3k4F6F+rJO426e8PodFo6L3hJEevP+CnLytSt6hjtsYqPjyKJhO+vr60b9+epk2bsm/fPoYMGcKgQYN49OgRKpWKCRMm8PXXX7+/IoXdvxfD1O9ncSPyFipUfNn6C+asmEqzur5EhEUqHZ7OWFpacDHkMitX/MrqtfOUDifbWOaz5IdNPxBy/AJj248l9vEznNydePHshdKh6dSnPZrxcbtPWD5wNvfC7+BWxoP2P/Yi4Xk8+5f9rnR4Iovp63mur5/nOdXoSdOJiLxB4OhB2NvasH3Xn3TtN4Ktq+ZjYW7OpbBrdO/QhuJFPIh9/pxJ0+fTe+g41i+ZkVZH5QredG3fCjtba6IfPGLKrEUMGDmBVfN/0jrW/sMnqF29ynuPW9DOFoAD21Zpvf7wiTOMDpzGJ7Wrp2vH1DlLsLe1JixCmXMo6PYjWpUvTCnH/KSo1cw8dIWev55gU6famJtofxX85UwkWjel0FOymlPGKZpMjBs3DnNzc44fP07Xrl0ZNmwY3t7eDBkyhPj4eBo3bvzeCdg5wf7d2uti/zxxDm06fEW5imVy9cVnz+6D7Nl9UOkwst3XPb/mYdRDpg+anlYWfVuZG+5lJw+fYpzfc4aL+88B8PjOAyo1qYGbdxGFIxO6oK/nub5+nudECYmJ7D14hBmTxlCxXBkA/Du34+DRk6zb/Bt9u/mxaPpErdeMCOhJmy79ibofg6ND6siG9q2/TNvu5FCQLu1a0nf4dyQlJ2vd4G7/kRN8G9ArQ8cFsLWx1jr2/sMnqFyhLIWctX/JP3z8NMdOnWXahG85fOJMFr07/86cFh9pPf/u83LUnbWbS9HP8Cn0uofmSvQzVp6OZHX7mtSfox8jDcR/p2gyYWBgwIgRI7TKWrduTevWrRWK6L8zMDCgYZP6WFiYc+70BaXDETpQ+ZMqnDt4lqFzh1G6Smke3X/EzpU72b1ml9Kh6VRk0FVqtK2HfWFHYq5H4ezlhmfF4mz4foXSoQkd0Nfz/E3yea6slOQUUlLUmJoYa5Wbmppw9kLoW1/z4kU8KpUKKyvLt25/FvucHbv3U66Ml1YiERF5k8dPnlLFx5tXr5L+9XEfPn7CoWOnmDByYLrysZOnMz1wNGZmZu9tc3Z5kZi67H4+s9dtfJmUzIgdZxn+SRls8+ScWEXOJzetyyLFvDxZ9/tSTE1NiI97iX+HwVy7el3psIQOOBRyoGG7z9myaAu/zlpPUe+idBvXjeSkJP7ckLPuSpmVds3dgpmVOWP2/YwmRY3K0IBtU9ZyeusRpUMTOqCv5znI53lOYWlpgXdpL+YtW4OHmys21vnZufcg5y9ewdU5/Tj+xMRX/Dx3CZ/Xr0UeS+1k4qc5i1mzcTsvExLxLlWC2T9qrxL55+HjVK/ig7GxMcbGxv/quADbft+LhYU59Wu9HuKk0WgYOeEnWjZrRGmvYtyNyhk9e2qNhh/3XaSccwGK2OVNK5/yZyjeTtbUKeqgYHQ5h0aGOWWYLHuURa5H3KRpnba0+LQDa5ZtYPLMsXgWK6x0WEIHVAYqrl28xsofVhAZGsmu1bvYvWYXDX0/Vzo0nfL5oiqVmtZgab8ZTPxiKMsHzqZ+18Z89FUtpUMTOqCv5znI53lOEjhqEGg01G3Wjgp1mrDq1600rF8LlYH215ek5GQGjpqIRqNh1ODe6erp2PZrfl06iwU/T8DA0IDh46doLf25/8gJatd4PRQoo8f9y+Ydu/miQR1MTU3SylZt2EZcfDxdvmn5X9+GLBW4J4SIh8+Z3MQnrexA+H1O3XzE4HqlFIxMfKikZyKLJCUlc+v6HQBCL1yhTLmS+HVrw+hBE9/zSvGheRLzhNvht7TKboffplrD9JPucpMvh7dj99ytnNmeuqrNvbDb2Djb8WmvZpzYqH9zZ3I7fT3PQT7PcxJXFyeWzf6R+JcJxMXFY2drzcBRgbg4vf71/K9E4l50DEtmTErXKwFQIH8+CuTPh7urCx7uhaj/ZXvOh16hXGkvHjx8zOWr16hVrfK/Ou5fgoIvcv3WHX78brhW+amg85y/eIUKdZpolbfq0pdGn9Rh4qhB//Xt+dcC94Rw6Fo0S9pUp6CVeVr5qVsPufM0jprT/9Daf9CWM5R3sWFxm2rZHar4gEgyoSMqAwNMTI3fv6P44Fw+cwlnTxetMmcPZ2LuxCgUUfYwMTdFo1FrlanValSy6keupK/n+dvI57nyLMzNsDA341nsc46dCiKgVyfgdSJx6/Y9lsycRP58ed9TE2jUqT0Sr14lAXDg6AnKlfEiX16rDB/3TZt27KJk8aKUKOqhVT68fw/6dGuf9jzmwSO6B4xkyrjhlClV/O/V6JRGo2HS3ov8GX6fRa2r4pzfQmt7pypFaF7WVavs66UHGVS3FLU89XPYk9y0LuMkmcgCA0f6c3DfMaLu3McyjwWNv/qMKtV96NSyj9Kh6ZSlpQUenm5pz93dC1GmrBdPHj/jzp1/vtngh2zroq38sPlHWvi34MiOIxQrV4xP237GrGGzlA5Np0L2BfGZf3Me333IvfA7FCrlTr3OX3Ds1/1KhyZ0QF/Pc339PM+pjp4MQqPR4O7qwq0795g6ezGFXV1o1qgBScnJBHw7gUtXI5j9wzjUajUPHz0GIF9eK4yNjbkQeoWLl69SoWwp8ubNw+27UcxcuJJCzo6UK10CgP1HTlKnxkcZPu6bXsTFsXv/YQb17pou9r9Wk/qLhXlqT0AhZ0cc7O2y7D3KiIl7Qvj98l2mfVkJSxMjHr5IACCPqTFmxobY5jF766Rrh7zm6RIPIf5OkoksYG1rzQ+zxmFf0JbnsS8IuxROp5Z9OHbwpNKh6VT5CmXY+ceatOeBk0cCsOqXDfTsPkSpsHQu/EI4E7tNoP1QP1r3a0P07WgWjlvIwS0HlA5Np9aNWUKTga1oPb4LVrb5eBb9mCOr9/DbjA1KhyZ0QF/Pc339PM+pnr+IY9q8pUQ/eEi+vFZ8UqsGfbv7YWxkxN2oaPYfOQHA1x38tV63ZOZkKlcoi5mZKXsPHmP24l94mZCAnY011av40H38cExMTIh/mcDJM8EM69c9w8d90+97D6LRwOef1Nbp+/Bf/Rp8E4Aua49rlY9rWI6mZQopEZLIRVSaXNiPU8yuotIhKOJ+/GOlQ1BELZuSSoegCBcD/fy1aOG9o0qHoIiGDuWVDkERYS/vKx2CIiKfRSkdgiJe3jv8/p2y0J4DR5m5cDnbVi3I1uP+XfLWOYoeXynmnacoHcI7VXCsoXQI73Q2KmetoiirOQkhhBBCL1mYmxHQM/08CCFExskwJyGEEELopepVfN6/kxDiH0kyIYQQQgghxBty4SwAnZFhTkIIIYQQQohMkWRCCCGEEEIIkSkyzEkIIYQQQog3qJFhThklPRNCCCGEEEKITJFkQgghhBBCCJEpMsxJCCGEEEKIN2hkmFOGSc+EEEIIIYQQIlMkmRBCCCGEEEJkigxzEkIIIYQQ4g1quWldhknPhBBCCCGEECJTJJkQQgghhBBCZIoMcxJCCCGEEOINsppTxknPhBBCCCGEECJTJJkQQgghhBBCZIokE0IIIYQQQohMkTkTQgghhBBCvEGWhs046ZkQQgghhBBCZIokE0IIIYQQQohMkWFOQgghhBBCvEGWhs046ZkQQgghhBBCZIokE0IIIYQQQohMkWFOQgghhBBCvEFWc8q4XJlM5DUyVzoERcSZ6Ge7Dz66pHQIinCwsFY6BJGN9PU8j09KVDoEkY3cizZWOgRF3AjfrnQIQmSaDHMSQgghhBBCZEqu7JkQQgghhBAis2Q1p4yTngkhhBBCCCFEpkgyIYQQQgghhMgUGeYkhBBCCCHEG2Q1p4yTngkhhBBCCCFEpkgyIYQQQgghhMgUGeYkhBBCCCHEG2Q1p4yTngkhhBBCCCFEpkgyIYQQQgghhMgUGeYkhBBCCCHEGzQatdIhfDCkZ0IIIYQQQgiRKZJMCCGEEEIIITJFhjkJIYQQQgjxBrWs5pRh0jMhhBBCCCGEyBRJJoQQQgghhBCZIsOchBBCCCGEeINGI8OcMkp6JoQQQgghhBCZIsmEEEIIIYQQIlNkmJMQQgghhBBvkNWcMk56JoQQQgghhBCZIsmEEEIIIYQQIlNkmJMQQgghhBBvkNWcMk56JoQQQgghhBCZIsnEO7To8CXbTq3n6PW9LPttPqXKeWXodQ2a1uNM1GGmLJ2oVd6uR2t2h2xjd8g2fLu30tpWqnxJVu5ahKGhYZbFn1l+Xdpw4vxurkWdZfueNZSrUOad+7Zt/zWbdq4g9PoxQq8fY+3mRen27967A+evHuL81UN09/fT2lbepwy/71+fI9rdtds3hFw6RMyjy/x5YBM+PmXfuW8Jr6KsXDWHkEuHiI2LpJd/x3T7tGzVlEthR7h55xwTJ32rtc3V1ZmzwfuwssqT5e34t3w7teDPoG2E3D7Kr38so2z5Uu/ct0GjOmzcs4IzEfsJvnGYrftX0bTF51r7dOrVjuOXdnP80m469fTV2la2Qik27V2ZI/7e+kpfz3OhX3L7dSwuLp5J0+bxSXM/fOo0xbd7ACGXw9K2x8e/ZMLUOdRr1g6fOk1p4tuNdZt/+8c6O/QeQunqDdM9eg4anbbP0tUb+LhRaz5u1JplazZqvf5C6BVadupDcnJK1jZWfBBkmNNbfNKkLgPG9iZw6FQunrtEm64tmLlmKl/VaMuTR0/f+TpHFwf6je7F2RPBWuVFvDzpMaQz/b8Zikql4ucVkzlx8DTXrkRiaGjIiMkDmTD4R1JSlP1H2OTLzxjz/RCGBYzjXFAIXXp8w6qN8/m40hc8evg43f5Va1Ri68adnDkZTEJiIv79OrN60wLqVm3K/agYvEoVY/Dw3vi19kelgmVr53Bw/zGuXArH0NCQST+NYUj/sYq3u/lXjZg4aQT9+43izOlgevl3ZNPW5fiUr8/DB4/S7W9hbs6NG7fYsnkngZNHpttubVOAmbMD6dl9MDeu3+bXTYs4dOA4f/zxJwA/TRvPmNE/8Pz5C5237Z983uwThn83gNGDAzkfdJEO3duweP1MPq36FY8fPkm3/9Mnscz7eQmR4Td4lZREnQY1CZwxmkcPH3Nk/wmKlyxCv6E96O7bH5VKxfxVP3PkwAmuXr6GoaEh300ZwaiACYr/vfWVvp7nQr/ow3Vs9KTpRETeIHD0IOxtbdi+60+69hvB1lXzKWhnyw8zF3Ay6DyBo4fg7FiQY6eC+H7qbOxtbahT86O31jl94iiSkpLSnj999pyvOvTi0zo1AQiLuM7sRb8w+8exaDQa/AePpVrlChTzLExycgrf/TiTMUP7YmSUe34sUsswpwyTnom38O3eii2rtrN93U6uX71B4JApJLxMoEmbRu98jYGBAd/PHs2CKUu4ezNKa5t7EVfCL13jzNGznD4SRMTla7gXcQXgm15tOHvyPJfOX9FpmzKiay8/Vq/YwPrVWwgPu8awgHG8jE+gdbvmb92/T7ehLF+8ltCLV7gWfp1BfUdjoDKgxsepH1ZFihbmcuhVjh4+yZFDJ7kcepUiRQsD0LNvR04cO8P5cxezrX3v0rtPZ5YvXceqlRsIuxJB/74jefnyJd+0b/HW/c+evcCobyexccMOEhNfpdte2L0QsbHP2bTxN86evcChgycoVsITgK9bNCYpKYnt23bptE0Z0bGHL+t/2cKmNdu5dvU6owcFkvAyga/bNnnr/qeOBbFn5wGuhd/g9o27rFiwlrBLEfhUKQeAR1F3wi6Fc+LIGY4fPk3YpQg8iroD0KX3N5w+fpaQ4EvZ1Drxd/p6ngv9ktuvYwmJiew9eIQA/85ULFcGVxcn/Du3w9XFKa33ITjkMk0b1qdyhbI4OxakRdPPKV7EQ6v34u/y5bXC1sY67XH89FnMTE1pUDc1mbh+8zbFPN2p4lOOjyqWp1iRwly/eQdI7bHwKVeGMl7Fdf8GiBxJkom/MTI2okTZYpw8HJRWptFoOHX4DGV93j0EpEtABx4/esLWNem7EiOuROLqUYiCzvY4uBTE1aMQ18Ku4+zmRONWnzN30kKdtOXfMDY2pmy5khw+cDytTKPRcOTgCXwqeWeoDnMLM4yMjXj69BkAly+FU7iIO04ujjgXcsSjiBtXLkfg5l6IVm2/5IcJM3TSln/D2NiYcuVLs3//0bQyjUbDgf1HqVy5fKbqvHbtBubmZpT1LkmBAvmo4FOW0ItXyJ8/LyNHDWBQwNisCf4/MDY2opR3CY4dPJlWptFoOHboFOUqvnvoy5uq1qxEYU83Th8/B8DVSxG4e7ri6FwQJxcH3D1dCb98jULuzjRv05hpE+fqpC3i/fT1PBf6RR+uYynJKaSkqDE1MdYqNzU14eyFUADKlfFi/5ETRD94mPr9Jeg8N27dpVrlChk+zqYdu2lYvxYW5mYAFPV058btu0Tdj+He/Whu3r5LEQ83bt25x5ade+jbtX3WNVJ8cGSY09/kt86HkZERjx9od4c+fvAE9yJub32Nd+UyNG3TiLafdHrr9hvhN5kzaQFz1v4MwOzA+dwIv8nsdT8z4/u5VK1dhW6DOpKclMyU0TM4d+J81jYqA6xt8mNkZJRuuMODB4/w/P+vMO/z7diBRN+PSfsgj7gayeTx01i7KTVZmvTdNCKuRrJ28yK+HzOV2nVrEDCsF8lJyYweHsjJY0H/VL1O2NgUwMjIiAcxD7XKY2IeUqyYZ6bqfPo0lh7dBjN/4VTMzUxZu3oz+/YeZtacSSyYvxI3dxfW/roAY2MjAifMYOuW37OiKf9KAeu//t7a5/nDmMd4FHF/5+vyWFlyOOR3TExMUKekMHbo5LSE5Fr4DX6aMIelG+YAMPX72VwLv8GyDbP5cdwMatStSp/B3UhOTub7b6dw5v9JiNA9fT3PhX7Rh+uYpaUF3qW9mLdsDR5urthY52fn3oOcv3gFV2dHAEYM6MnYyTOo1+wbjAwNURmoGDu0HxXLvXvuyJtCLoURHnmD74b3TyvzdHelX/cOdO0/AoB+3Tvg6e5Kl37DCejViaOngpizeBVGRoYM698jw8fKyTRy07oMk2TiP7KwNOe7mSOZMPgHnj1+9s79Nq7YysYVW9OeN2rxGfFx8YScucjGI6to37Ab9o52TJw7liZVWpL0KumddeVE/v270KR5Q1o07qA1JGLl0vWsXLo+7XmL1k158SKOoNPnOXR6B43qtsLRyYE5i6ZQtVwDXn1g7X6XHdt3s2P77rTn1WtUpnTpEgweOJbgkP106tCP6OgH7D+4haNHT711zHpOFPcinqZ12mJpaUHVmpUY/t0Abt+4y6n/X0DXLt/I2uWvJ+Z92aoRcS/iOXcmhF3HN/JVg/Y4ONrz84KJ1PVp8sGd50Jbbj3PhX76UK5jgaMGMTrwZ+o2a4ehoQFexYrQsH4tLoVFALBqwzYuhF5h1uQxODoUJCg4hAlT52Bva0PVSu/vidy0YxdFPd0pU1J72FKrLxvR6svXw7237tyDhYU53qW9aNymK2sXTSc65iGDR09i14almJiYZG3DRY4lycTfPH38jOTkZKztrLXKre0K8Cgm/YXQxd0ZZ1cnflo+Ka3MwCB19NiJ2/v5qoYvd2/e03pNPut8dB3YkW5f9qZ0hZLcirzN7et3uH39DkbGRqnDoK5E6qB17/b40VOSk5OxtbPRKrezs0n3a+bfde/dAf/+nWndrAuXQ6++c78C1vkZMLQnXzXyo3zFskRG3OR65C2uR97C2NgIjyLuXLkUniXtyahHj56QnJyMnb2tVrm9vS3R0Q+y5BgmJib89PN3dOs6EA9Pd4yMDDl65BQA1yKuU7GiN3/8/meWHCujnjz+6++tfZ7b2lvz4C3n+V80Gg23rqeOk7188SqexQrTvX+HtGTiTQWs89F7UFfaNumGd4XS3Lh2i5uRt7kZeRtjIyMKe7py9fK1rG2YeCt9Pc+FftGX65irixPLZv9I/MsE4uLisbO1ZuCoQFycHEhITGT6/OVMDxxFrWqVAShepDBXwiNZtmbje5OJ+JcJ/L73IP5dvvnH/Z48fcbcpatZNvsHQkLDcCvknPZITknmxu27FPPMWG+Q+PDJnIm/SU5K5sqFq1Su4ZNWplKpqFTDhwtBoen2vxFxi1a12+Nbv1Pa49Duo5w5eg7f+p2IvheT7jUDx/VhzYL1xEQ9wMDQACOj1zmdoaEhhobZ/2dJSkriQvAlatR6vdKDSqWixsdVCDr97mFXPft2ov/gHrT7ujsXgtO/P28aN3EoC+esIOpeNIYGBhgbv9FuI0MMDbJ/FYikpCSCz12kdu1qaWUqlYpatatx6lTWDMMZMtSfvXsPcT44FENDA4wMX7fbyNhIkaVSk5KSCT1/haofV04rU6lUVK1ZieAzFzJcj8rA4J2/Po0YP5Bl89cQHRWT2u6//71lidhso6/nudAv+nYdszA3w87Wmmexzzl2Koi6NT8iOTmZ5ORkDFQqrX0NDQ1Qq9XvrXP3n4d5lZRE40/r/uN+k2cs4JuWzXCwtyNFnUJycnLatpQUNeqU9x8rp9NoNDn2kdNIz8RbrJq/jrHTR3Dp/BVCgy/TtmsLzC3M2b52JwDjZnxLzP2HzJ44n1eJr7gWdl3r9c+fpS6F+PdygCofV8TVoxBj+k4A4FLwFdyKuFGtbhUKOtmjVqdw89otHbfw7RbOWc7PcyZy4Vwo586G0LXnN5hbmrNu1WYAps+dSFRUDJO+mwZAr36dGTS8N727DuH2rXtpv3rGxcUTHxevVXfN2lUp7OlOv56p4y3Pn7uIZ9HC1KlfAydnR9Qpaq5FpH+/ssOsmYuZt2AK586FcObMeXr5d8TCwoJfVm4AYP7CKdy7F824MT8CqZP8SngVAcDExBhHp4KUKetF3It4IiNvatVdvEQRmn/1BTWqfQHA1bBrqNVqvmnfkpjoBxQr5snZoIx/ec9KS+etYvLMsVwMvsSFs6H4dW+LuYU5G9dsB+CHWeOIvh/D1O9nA9C9XwdCgi9z+8YdTEyMqVW/Ok1bfM7YIYHp6q5Wqwrunq4M6T0GgAvnLuFRxI2P61XD0akg6hQ1kRE3071O6I6+nudCv+jDdezoySA0Gg3uri7cunOPqbMXU9jVhWaNGmBsZETF8mWYOnsxpqamODnYc+ZcCNt+38fgvl3T6hg+fgr2tjYM6Kl9/5hNO3ZRt2ZV8ufL+87jHzt1lpu37zJx5EAASnsV4/rNOxw+fpr7MQ8wMDDA3c1FN40XOZIkE2+xZ9ufFLDJT48hnbGxs+ZqaAR92g5KW3vfwbkgavW/zwxNzUwYMmEAw3uMScssY6Ie8OPIaYz+eThJr5IY03ciiQnpl2HMDts2/4G1rTWDRvTGzt6W0JArtPu6e9o4ZycXR612t+/UClNTExaumKZVz9RJs/lp8py052Zmpkz44Vt6dhqU1u6oe9GMGjqRn2ZN4NWrV/TvNYKEhETdN/ItNm38DVtba0aMHEDBgraEXLjMV806pHWLu7g4af2i4+hoz9Hjr1ft6te/G/36d+PwoRM0athWq+4ZMycyYtgE4uNfApCQkEjP7kOY8vM4TE1NGBQwhqio6GxoZXo7t+zB2qYAfYf2wM7ehssXr9K5VR8e/X9StqOLA2rN63abW5gz9oehODjak5CQSGT4DQb3GsXOLXu06jU1M2X0pCEM6Do87e8dHRXD+BE/EjhjNK8SkxjaZwyJCv299ZW+nudCv+jDdez5izimzVtK9IOH5MtrxSe1atC3ux/G/x/lMGXcMKbNW8awcT/wLPY5Tg729O3uR6tmr+c7REXHpOu9uH7zDmcvhLLg5wnvPHZCYiITf5rDlO+Gpw3pdrC3Y/iAnoyc+DMmxsZMGDkQM1NTHbRc5FQqTU7sL/mPKjrWVDoERUQlpL8hjz54/uql0iEowsHC+v075UKRz6Lev1MuZGGsnxfn+CRJOvVJQcv8SoegiBvh25UOQRHGth5Kh/BOdvly7n0zHjx79z1DlKBoz0RUVBRz587lyJEjREVFYWBggIeHB82aNaNDhw4yxlYIIYQQQogcTLEJ2GfOnMHLy4udO3eSlJREeHg4Pj4+WFpaMmjQID7++GOeP3/+3noSExOJjY3Verw5NEMIIYQQQgihG4olE/3792fAgAGcOXOGw4cPs2zZMq5evcratWuJjIwkPj6ekSNHvreewMBA8uXLp/W4/+J2NrRACCGEEELkRkqv2PQhreak2JwJCwsLLl68iIdH6ng5tVqNmZkZt2/fpmDBguzZs4cOHTpw9+7df6wnMTGRxETtMbW1izXEQKV/q97KnAn9InMm9IvMmRD6QOZM6JecPGfCNm8xpUN4p4ex774XihIUmzNhb29PVFRUWjIRHR1NcnIyefOmLkdWtGhRHj9+/5djU1NTTP+2aoA+JhJCCCGEEEJkN8W+dTdr1owePXrwxx9/sH//fnx9falVqxbm5uYAhIWF4ezsrFR4/4lfb1/ORB0m4Ls+SoeiU70HdOG3fesIu3WK81cPsfiXGXgWcVc6LJ2rVr0S635dSFjEcWLjImn0xSdKh5Qt2nT4im0H1nA28gBnIw+wbucSPq5X7f0vFB8kfT3PhX7JKdexuLh4Jk2bxyfN/fCp0xTf7gGEXH69Ys/Dx0/49vup1GniS8W6zegeMJKbt9OP3Ai+eJlOfYZRqV4zqnzSHL9eg0n42+iNhMREKtVrxq0793jw8DFDxk6mUesulKnxOZOmzXtrfLv+PEzjNl2pUKcJX37Tk0PHTmlt12g0zFq4gtpN2uJTpyld+g1PF9+lsAi69BtB1U+/pnrDloydPJ24uLjMvmU6p9Zocuwjp1Esmfj+++8pWbIkjRs3pl69eiQmJrJkyZK07SqVisDA9DfDyulKepeg+TdNuBoaoXQoOvdRtUosX7SGxg3a0KZ5V4yNjVi9aSHmFuZKh6ZTlpYWXAy5zMABY5QOJVvdvxfD1O9n8WX9b2hevz0njpxhzoqpFCmec7upRebp63ku9EtOuY6NnjSd46fPETh6EJtXzqVa5Qp07TeC6AcP0Wg09Bv2HXfu3WfG5NH8unQWTg72dOk3gviXCWl1BF+8TI+AkVSrXIE1C6ezdtEM2nzVON39JI6fOoejgz2uLk68SkqiQP58dPNrTfEihd8a27mQSwwZO4kvv/iUX5fOom7NqvQdPp7wyBtp+yxZ9SurNmxj9OA+rF44DXMzM7oHjCQxMfW+WTEPHtGl33BcXRxZvWAa834aT8T1WwwfPjzr30yR7RS/z0RCQgLJycnkyZMny+pU6j4T5hbm/LJ7MZOHT6Vzfz/CQsP5afTMbDu+0nMmrG0KEBJxhOaN2nPyWFC2HVfJOROxcZG0adWd33bsef/OWSwnzJk4dXUfP4ybwYZVW7PtmDJnIvspeZ7LnAn9ovScCWWuYxryOWqYMWkMtapVTitt2akPNT6qSJPP6vFFm65sWTmPIh5uQOo809qN29K3ewe+bvIZAG279qdqpQr06db+H482KvBnrPPnY0DPTlrlHXoPoUQRD4b176FVPnBUIC8TEpjz47i0srZd+1O8qCdjhvRBo9FQp6kvfq2b07Ht10DqjfVqNW7D998G8Hn92vy6dSczF67kwLZVaTe7u3rtOs3b92L37t24ubll8r3THWurokqH8E6Pn4crHYIWxScXmJmZZWkioaShgQM4uu84pw5n3xfpnCRvXisAnj55pnAkQtcMDAxo1KwBFhbmnDt9QelwhBAiSyhyHVNBSooaUxNjrWJTUxPOXgjlVVISACZvbDcwMMDYxJhzF0IBePTkKRcuhWFdIB++3QP4+Is2dPAfzNnzF7XqVKvVHDx6ijo1q2Y4vPOhl6lasZxWWbUqPpwPvQzAnXv3efjoCVUrlk/bbpXHkrIli3P+4hUAXr1KwtjYKC2RANLukh0UlDO/Mym9YtOHtJqT4slEbtGgaT1KlCnGrInzlQ5FESqVinGBQzl14ixhl3P/EC99VczLk3M3DnHx7jHGTRmOf4fBXLt6XemwhBDiP1PsOqZR4V3ai3nL1hDz4BEpKSls3/Un5y9e4eHDxxR2K4RjQXumz1/Gs9jnJCUlsfiX9UTHPOTBo9QRCXfupvbYzlmyiq+bfMb8n8bjVawInf82d+F8aOqX+7IlM35354ePnmBjXUCrzNa6AA8fPUnd/jj1v3/fx+aNfar4lOPRoycsWbWBpKQknsU+5+e5qUPbHzx4kOFYRM4kyUQWKOhkz8DxfRnpP55X/x8fqG8mThlJca+i9Oo8SOlQhA5dj7hJ0zptafFpB9Ys28DkmWPxLPb2cbZCCPEhUfI6FjhqEGg01G3Wjgp1mrDq1600rF8LlYEBxkZGTJs4khu37lK9YUsq1mvGqbMXqPlRxbRf+v+alNui6ed82agBXsWKMLRfd9xdXdi0Y3facfYfPk6t6pW1egiyQxEPNyaMHMjytZuoWK8ZtZu0xdnRAVtbW1R/m9MhPjyKLQ2bm5QoWxwbO2t+2b0orczIyIjyH3nTsmNzqrnVQ63OvXfl/v6Hb6n/aS2af+5H1L1opcMROpSUlMyt63cACL1whTLlSuLXrQ2jB01UODIhhMg8pa9jri5OLJv9I/EvE4iLi8fO1pqBowJxcXIAoFSJomxcPpvnL+JISkrCukB+2nTtT6kSqeP67WxS59B5FnbVqtfDzZX70TFpz/cfOcmAnh3/VWy2NgV49P/eh788fPwEW5vUngjb//dIPHr8BDvb13P5Hj1+QvGinmnPGzWoQ6MGdXj4+AkWZmagUrFi3WYKFSr0r+LJLmpy3nCinEp6JrLA6cNnaFW7Pb71O6U9QoMv88emPfjW75TrE4nPGtWjZZNO3L71zzcYFLmPysAAE1Pj9+8ohBA5VE66jlmYm2Fna82z2OccOxVE3ZofaW23ymOJdYH83Lx9l9Ar4dSpkbrd2bEg9rY23Lh5R2v/m7fv4OhQ8P//f5eo+zFUrVSef8O7lBcngoK1yo6fPod3KS8AXJwcsLUpoLXPi7g4LlwKw7t0iXT12VoXwMLCnD/2HcTU1JTq1av/q3hEziM9E1kgPu4l18K0x40nxCfw9MmzdOW5ycQpo2j29ed0atuHFy/isbO3BeB57HMSEnLvCiyWlhZ4eL5eecLdvRBlynrx5PEz7ty5p2BkujVwpD8H9x0j6s59LPNY0Pirz6hS3YdOLXP3/VT0lb6e50K/5JTr2NGTQWg0GtxdXbh15x5TZy+msKsLzRo1AFLv81Agfz4cC9oRHnmDSdPmUbdmVapX8QFS53t0bPsVsxf/QvGihSlR1JOtO/dy/eYdfvr+WwD+PHycjyqWw9zMTOvYV65eAyA+PoEnT59x5eo1jI2N8Cyc+u+/XcumdPQfwrI1G/m4WmV+33uQ0CvhjB3aN+3Y37RsxoLla3FzccbZqSCzFq7E3taGejVf34to9YZtlCtTEgtzM46fPsfU2YsZOGhQ2s2KxYdL8aVhdUGppWHfNH/jjFy/NOzdJ6FvLR/Q61vWr9mSbXFk99KwNWpWYecfa9KVr/plAz27D8m2OLJ7adgJ00ZRtWYl7Ava8jz2BWGXwlkwcwXHDp7M1jhkadjskVPOc1kaVr9k99KwOeU6Nm/eYKbNW0r0g4fky2vFJ7Vq0Le7H1Z5LAH45detLF29gUePn2JnY02Tz+rRo2MbjI21e4YXrVzPmk3biY19TrEiHgzs1YkK3qUBaN9zEE0a1k9bSvYvpas3TBePk4M9uzcuT3u+68/DzFywnLv3o3FzcSagVyc+fmMZW41Gw+xFK/l12x88f/GCCmVLMXKgP+6uLmn7DB8/hUPHThH/8iWF3QrRoc1XfNWu639/83Qkr2XOvYdSbFyk0iFokWQiF1H6PhNKUfI+E0rKCfeZUIIkE/pFkgn9ovR9JpRyI3y7Tut/8vQZdZr4snfLyrQ5DjmBsW3O/cIuyUTGyZwJIYQQQohc7Fnscwb36ZqjEgmRe8icCSGEEEKIXMzd1UVryJF4P3XuG7ijM9IzIYQQQgghhMgUSSaEEEIIIYQQmSLDnIQQQgghhHiDRm5al2HSMyGEEEIIIYTIFEkmhBBCCCGEEJkiw5yEEEIIIYR4g6zmlHHSMyGEEEIIIYTIFEkmhBBCCCGEEJkiw5yEEEIIIYR4g0aGOWWY9EwIIYQQQgghMkWSCSGEEEIIIUSmyDAnIYQQQggh3iA3rcs46ZkQQgghhBBCZIokE0IIIYQQQohMkWFOQgghhBBCvEFWc8o46ZkQQgghhBBCZIokE0IIIYQQQohMkWFOQgghhBBCvEGGOWWc9EwIIYQQQgghMkWSCSGEEEIIIXKp2bNn4+7ujpmZGVWqVOHUqVNZWr8kE0IIIYQQQrxBk4Mf/8a6desICAhgzJgxnD17Fm9vbz799FNiYmL+ZU3vJsmEEEIIIYQQudBPP/1E165d6dixIyVLlmTevHlYWFiwZMmSLDuGJBNCCCGEEEJ8IBITE4mNjdV6JCYmptvv1atXBAUFUb9+/bQyAwMD6tevz/Hjx7MuII3IMgkJCZoxY8ZoEhISlA4lW0m7pd36QNot7dYH0m5pt8j5xowZk27005gxY9Ltd/fuXQ2gOXbsmFb54MGDNZUrV86yeFQajax9lVViY2PJly8fz549I2/evEqHk22k3dJufSDtlnbrA2m3tFvkfImJiel6IkxNTTE1NdUqu3fvHs7Ozhw7doyqVaumlQ8ZMoSDBw9y8uTJLIlH7jMhhBBCCCHEB+JticPb2NraYmhoSHR0tFZ5dHQ0Dg4OWRaPzJkQQgghhBAilzExMcHHx4d9+/allanVavbt26fVU/FfSc+EEEIIIYQQuVBAQAB+fn5UrFiRypUrM23aNOLi4ujYsWOWHUOSiSxkamrKmDFjMtT1lJtIu6Xd+kDaLe3WB9JuabfIXVq1asWDBw8YPXo09+/fp1y5cvzxxx8ULFgwy44hE7CFEEIIIYQQmSJzJoQQQgghhBCZIsmEEEIIIYQQIlMkmRBCCCGEEEJkiiQTQgghhBBCiEyRZCILzZ49G3d3d8zMzKhSpQqnTp1SOiSdOnToEI0bN8bJyQmVSsWWLVuUDilbBAYGUqlSJaysrLC3t6dZs2aEhYUpHZbOzZ07l7Jly5I3b17y5s1L1apV+f3335UOK9tNmjQJlUpF//79lQ5Fp8aOHYtKpdJ6lChRQumwssXdu3dp164dNjY2mJubU6ZMGc6cOaN0WDrl7u6e7u+tUqnw9/dXOjSdSklJYdSoURQuXBhzc3M8PT0ZP348+rA2zfPnz+nfvz9ubm6Ym5tTrVo1Tp8+rXRY4gMkyUQWWbduHQEBAYwZM4azZ8/i7e3Np59+SkxMjNKh6UxcXBze3t7Mnj1b6VCy1cGDB/H39+fEiRPs2bOHpKQkGjRoQFxcnNKh6ZSLiwuTJk0iKCiIM2fOULduXZo2bUpoaKjSoWWb06dPM3/+fMqWLat0KNmiVKlSREVFpT2OHDmidEg69+TJE6pXr46xsTG///47ly5dYurUqRQoUEDp0HTq9OnTWn/rPXv2ANCiRQuFI9OtyZMnM3fuXGbNmsXly5eZPHkyP/zwAzNnzlQ6NJ3r0qULe/bsYeXKlYSEhNCgQQPq16/P3bt3lQ5NfGg0IktUrlxZ4+/vn/Y8JSVF4+TkpAkMDFQwquwDaDZv3qx0GIqIiYnRAJqDBw8qHUq2K1CggGbRokVKh5Etnj9/rilatKhmz549mlq1amn69eundEg6NWbMGI23t7fSYWS7oUOHamrUqKF0GIrr16+fxtPTU6NWq5UORacaNWqk6dSpk1ZZ8+bNNb6+vgpFlD3i4+M1hoaGmh07dmiVV6hQQfPtt98qFJX4UEnPRBZ49eoVQUFB1K9fP63MwMCA+vXrc/z4cQUjE9nh2bNnAFhbWyscSfZJSUlh7dq1xMXFUbVqVaXDyRb+/v40atRI6995bhceHo6TkxMeHh74+vpy69YtpUPSuW3btlGxYkVatGiBvb095cuXZ+HChUqHla1evXrFL7/8QqdOnVCpVEqHo1PVqlVj3759XL16FYDz589z5MgRGjZsqHBkupWcnExKSgpmZmZa5ebm5nrRAymyltwBOws8fPiQlJSUdHcTLFiwIFeuXFEoKpEd1Go1/fv3p3r16pQuXVrpcHQuJCSEqlWrkpCQQJ48edi8eTMlS5ZUOiydW7t2LWfPntWr8cRVqlRh2bJlFC9enKioKMaNG0fNmjW5ePEiVlZWSoenM5GRkcydO5eAgABGjBjB6dOn6du3LyYmJvj5+SkdXrbYsmULT58+pUOHDkqHonPDhg0jNjaWEiVKYGhoSEpKChMmTMDX11fp0HTKysqKqlWrMn78eLy8vChYsCBr1qzh+PHjFClSROnwxAdGkgkh/gN/f38uXryoN7/kFC9enODgYJ49e8aGDRvw8/Pj4MGDuTqhuH37Nv369WPPnj3pfsXLzd78ZbZs2bJUqVIFNzc31q9fT+fOnRWMTLfUajUVK1Zk4sSJAJQvX56LFy8yb948vUkmFi9eTMOGDXFyclI6FJ1bv349q1atYvXq1ZQqVYrg4GD69++Pk5NTrv97r1y5kk6dOuHs7IyhoSEVKlSgTZs2BAUFKR2a+MBIMpEFbG1tMTQ0JDo6Wqs8OjoaBwcHhaISuta7d2927NjBoUOHcHFxUTqcbGFiYpL2q5WPjw+nT59m+vTpzJ8/X+HIdCcoKIiYmBgqVKiQVpaSksKhQ4eYNWsWiYmJGBoaKhhh9sifPz/FihUjIiJC6VB0ytHRMV1y7OXlxcaNGxWKKHvdvHmTvXv3smnTJqVDyRaDBw9m2LBhtG7dGoAyZcpw8+ZNAgMDc30y4enpycGDB4mLiyM2NhZHR0datWqFh4eH0qGJD4zMmcgCJiYm+Pj4sG/fvrQytVrNvn379GY8uT7RaDT07t2bzZs38+eff1K4cGGlQ1KMWq0mMTFR6TB0ql69eoSEhBAcHJz2qFixIr6+vgQHB+tFIgHw4sULrl27hqOjo9Kh6FT16tXTLfV89epV3NzcFIooey1duhR7e3saNWqkdCjZIj4+HgMD7a9ChoaGqNVqhSLKfpaWljg6OvLkyRN27dpF06ZNlQ5JfGCkZyKLBAQE4OfnR8WKFalcuTLTpk0jLi6Ojh07Kh2azrx48ULrV8rr168THByMtbU1rq6uCkamW/7+/qxevZqtW7diZWXF/fv3AciXLx/m5uYKR6c7w4cPp2HDhri6uvL8+XNWr17NgQMH2LVrl9Kh6ZSVlVW6+TCWlpbY2Njk6nkygwYNonHjxri5uXHv3j3GjBmDoaEhbdq0UTo0nRowYADVqlVj4sSJtGzZklOnTrFgwQIWLFigdGg6p1arWbp0KX5+fhgZ6cfXg8aNGzNhwgRcXV0pVaoU586d46effqJTp05Kh6Zzu3btQqPRULx4cSIiIhg8eDAlSpTI1d9bhI4ovZxUbjJz5kyNq6urxsTERFO5cmXNiRMnlA5Jp/bv368B0j38/PyUDk2n3tZmQLN06VKlQ9OpTp06adzc3DQmJiYaOzs7Tb169TS7d+9WOixF6MPSsK1atdI4OjpqTExMNM7OzppWrVppIiIilA4rW2zfvl1TunRpjampqaZEiRKaBQsWKB1Stti1a5cG0ISFhSkdSraJjY3V9OvXT+Pq6qoxMzPTeHh4aL799ltNYmKi0qHp3Lp16zQeHh4aExMTjYODg8bf31/z9OlTpcMSHyCVRqMHt3kUQgghhBBCZDmZMyGEEEIIIYTIFEkmhBBCCCGEEJkiyYQQQgghhBAiUySZEEIIIYQQQmSKJBNCCCGEEEKITJFkQgghhBBCCJEpkkwIIYQQQgghMkWSCSGEEEIIIUSmSDIhhBA5TIcOHWjWrFna89q1a9O/f/9sj+PAgQOoVCqePn2a7ccWQgjxYZBkQgghMqhDhw6oVCpUKhUmJiYUKVKE7777juTkZJ0ed9OmTYwfPz5D+0oCIIQQIjsZKR2AEEJ8SD777DOWLl1KYmIiO3fuxN/fH2NjY4YPH66136tXrzAxMcmSY1pbW2dJPUIIIURWk54JIYT4F0xNTXFwcMDNzY2ePXtSv359tm3bljY0acKECTg5OVG8eHEAbt++TcuWLcmfPz/W1tY0bdqUGzdupNWXkpJCQEAA+fPnx8bGhiFDhqDRaLSO+fdhTomJiQwdOpRChQphampKkSJFWLx4MTdu3KBOnToAFChQAJVKRYcOHQBQq9UEBgZSuHBhzM3N8fb2ZsOGDVrH2blzJ8WKFcPc3Jw6depoxSmEEEK8jSQTQgjxH5ibm/Pq1SsA9u3bR1hYGHv27GHHjh0kJSXx6aefYmVlxeHDhzl69Ch58uThs88+S3vN1KlTWbZsGUuWLOHIkSM8fvyYzZs3/+Mx27dvz5o1a5gxYwaXL19m/vz55MmTh0KFCrFx40YAwsLCiIqKYvr06QAEBgayYsUK5s2bR2hoKAMGDKBdu3YcPHgQSE16mjdvTuPGjQkODqZLly4MGzZMV2+bEEKIXEKGOQkhRCZoNBr27dvHrl276NOnDw8ePMDS0pJFixalDW/65ZdfUKvVLFq0CJVKBcDSpUvJnz8/Bw4coEGDBkybNo3hw4fTvHlzAObNm8euXbveedyrV6+yfv169uzZQ/369QHw8PBI2/7XkCh7e3vy588PpPZkTJw4kb1791K1atW01xw5coT58+dTq1Yt5s6di6enJ1OnTgWgePHihISEMHny5Cx814QQQuQ2kkwIIcS/sGPHDvLkyUNSUhJqtZq2bdsyduxY/P39KVOmjNY8ifPnzxMREYGVlZVWHQkJCVy7do1nz54RFRVFlSpV0rYZGRlRsWLFdEOd/hIcHIyhoSG1atXKcMwRERHEx8fzySefaJW/evWK8uXLA3D58mWtOIC0xEMIIYR4F0kmhBDiX6hTpw5z587FxMQEJycnjIxef4xaWlpq7fvixQt8fHxYtWpVunrs7OwydXxzc/N//ZoXL14A8Ntvv+Hs7Ky1zdTUNFNxCCGEECDJhBBC/CuWlpYUKVIkQ/tWqFCBdevWYW9vT968ed+6j6OjIydPnuTjjz8GIDk5maCgICpUqPDW/cuUKYNarebgwYNpw5ze9FfPSEpKSlpZyZIlMTU15datW+/s0fDy8mLbtm1aZSdOnHh/I4UQQug1mYAthBA64uvri62tLU2bNuXw4cNcv36dAwcO0LdvX+7cuQNAv379mDRpElu2bOHKlSv06tXrH+8R4e7ujp+fH506dWLLli1pda5fvx4ANzc3VCoVO3bs4MGDB7x48QIrKysGDRrEgAEDWL58OdeuXePs2bPMnDmT5cuXA9CjRw/Cw8MZPHgwYWFhrF69mmXLlun6LRJCCPGBk2RCCCF0xMLCgkOHDuHq6krz5s3x8vKic+fOJCQkpPVUDBw4kG+++QY/Pz+qVq2KlZUVX3755T/WO3fuXL7++mt69epFiRIl6Nq1K3FxcQA4Ozszbtw4hg0bRsGCBenduzcA48ePZ9SoUQQGBuLl5cVnn33Gb7/9RuHChQFwdXVl48aNbNmyBW9vb+bNm8fEiRN1+O4IIYTIDVSad83yE0IIIYQQQoh/ID0TQgghhBBCiEyRZEIIIYQQQgiRKZJMCCGEEEIIITJFkgkhhBBCCCFEpkgyIYQQQgghhMgUSSaEEEIIIYQQmSLJhBBCCCGEECJTJJkQQgghhBBCZIokE0IIIYQQQohMkWRCCCGEEEIIkSmSTAghhBBCCCEy5X/DKUUcv8ffFgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "073a89a2", + "metadata": {}, + "outputs": [], "source": [ "cm_analysis(true_labels, pred_clean_clean, \"Clean Model on Clean Data\")\n", "cm_analysis(true_labels, pred_clean_tainted, \"Clean Model on Tainted Data\")\n", @@ -1139,6 +1011,7 @@ }, { "cell_type": "markdown", + "id": "267208ff", "metadata": {}, "source": [ "

\n", @@ -1148,18 +1021,22 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "29690755", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**3.1 Answer:**\n", "\n", - "Your answer here!" + "The clean model on the clean dataset predicted 5s least accurately, with some confusion with 6s and 3s. These are likely confused by the model as handwritten 5s may look like 6s (almost closed bottom part) or 3s (presence of 3 horizontal segments)." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "ba56b808", "metadata": { "tags": [ "solution" @@ -1169,11 +1046,12 @@ "**3.1 Answer from 2023 Students**\n", "\n", "5 is the least accurately predicted digit. It is most confused with 6 or 3.\n", - "Handwriting creates fives that look like sixes or threes. " + "Handwriting creates fives that look like sixes or threes." ] }, { "cell_type": "markdown", + "id": "82d1cba3", "metadata": {}, "source": [ "

\n", @@ -1183,18 +1061,22 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "cc035f15", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**3.2 Answer**\n", "\n", - "Your answer here!" + "The tainted model on tainted data is generally better than the clean model on clean data. Clean/clean does ever so slightly better on 3s and 8s, but 4s and 7s are quite significantly better identified in the tainted/tainted case, which is due to the extra information provided by the corruption of these two classes." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "0aafabb4", "metadata": { "tags": [ "solution" @@ -1208,6 +1090,7 @@ }, { "cell_type": "markdown", + "id": "dd6ca1dd", "metadata": {}, "source": [ "

\n", @@ -1217,18 +1100,22 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "5550a081", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**3.3 Answer:**\n", "\n", - "Your answer here!" + "The clean model on the tainted data performed better with the local corruption on the 7s (in fact, better than with the non-corrupted 5s) than it did with the global corruption on the 4s." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "ce131527", "metadata": { "tags": [ "solution" @@ -1239,13 +1126,13 @@ "\n", "Local corruption vs Global corruption: Global corruption WINS (aka is harder)!\n", "\n", - "It is harder to predict on the global corruption because it affects the whole image, and this was never seen in the training. \n", + "It is harder to predict on the global corruption because it affects the whole image, and this was never seen in the training.\n", "It adds (structured) noise over the entire four." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "c231d586", "metadata": {}, "source": [ "

\n", @@ -1255,18 +1142,22 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "751a2905", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**3.4 Answer:**\n", "\n", - "Your answer here!" + "The tainted model performed poorly on clean 7s and extremely poorly on clean 4s. Global corruption effectively prevented the tainted model from learning any feature about 4s, and local corruption used both some true and some false features about 7s. Ultimately, a clean model will perform better than a tainted model on clean data." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "52c169b9", "metadata": { "tags": [ "solution" @@ -1277,16 +1168,16 @@ "\n", "Clean 7s vs clean 4s: 4 WINS! (aka is worse)\n", "\n", - "Global corruptions are more detrimental when testing on the clean data. This is because the training images are *more* different from each other. \n", + "Global corruptions are more detrimental when testing on the clean data. This is because the training images are *more* different from each other.\n", "\n", - "Tainted model on clean data vs clean model on tainted data: Clean model WINS! (is better on tainted data than tained model on clean data) \n", + "Tainted model on clean data vs clean model on tainted data: Clean model WINS! (is better on tainted data than tainted model on clean data)\n", "\n", - "The clean model still has useful signal to work with in the tainted data. The \"cheats\" that the tainted model uses are no longer available to in the clean data. " + "The clean model still has useful signal to work with in the tainted data. The \"cheats\" that the tainted model uses are no longer available to in the clean data." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "a676ba72", "metadata": {}, "source": [ "

\n", @@ -1298,6 +1189,7 @@ }, { "cell_type": "markdown", + "id": "e9a5583c", "metadata": {}, "source": [ "

\n", @@ -1311,8 +1203,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "c30d4df6", "metadata": {}, "source": [ "### Part 4: Interpretation with Integrated Gradients\n", @@ -1320,8 +1212,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "2784e751", "metadata": {}, "source": [ "\n", @@ -1330,10 +1222,9 @@ }, { "cell_type": "code", - "execution_count": 27, - "metadata": { - "tags": [] - }, + "execution_count": null, + "id": "7403b38f", + "metadata": {}, "outputs": [], "source": [ "from captum.attr import IntegratedGradients\n", @@ -1364,8 +1255,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "3f1881d0", "metadata": {}, "source": [ "Next we provide a function to visualize the output of integrated gradients, using the function above to actually run the algorithm." @@ -1373,7 +1264,8 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, + "id": "1ef66e49", "metadata": {}, "outputs": [], "source": [ @@ -1384,11 +1276,11 @@ "\n", " # Transpose integrated gradients output\n", " attr_ig = np.transpose(attr_ig[0].cpu().detach().numpy(), (1, 2, 0))\n", - " \n", + "\n", " # Transpose and normalize original image:\n", " original_image = np.transpose((test_input[0].detach().numpy() * 0.5) + 0.5, (1, 2, 0))\n", "\n", - " # This visualises the attribution of labels to pixels\n", + " # This visualises the attribution of labels to pixels\n", " figure, axis = plt.subplots(nrows=1, ncols=2, figsize=(4, 2.5), width_ratios=[1, 1])\n", " viz.visualize_image_attr(attr_ig, \n", " original_image, \n", @@ -1411,70 +1303,54 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "3587e26e", "metadata": {}, "source": [ - "To start examining the results, we will call the `visualize_integrated_gradients` with the tainted and clean models on the tainted and clean sevens. \n", + "To start examining the results, we will call the `visualize_integrated_gradients` with the tainted and clean models on the tainted and clean sevens.\n", "\n", "The visualization will show the original image plus an overlaid attribution map that generally signifies the importance of each pixel, plus the attribution map only. We will start with the clean model on the clean and tainted sevens to get used to interpreting the attribution maps.\n" ] }, { "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAECCAYAAADpdjDfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCJUlEQVR4nO2dd3xU5fL/P5vNlnRCTygJCQiY0IxKJ8JFUJp8qSJS/CnEgooXwYJfEcHrBRVBBBEvgkJQihQrXAtN5V6VLqC0gCBNWjrZZHd+f4RddvfME/ak7cJ33vfycjM7+5znPOXMnp05MwYiIgiCIAiCjwT5uwOCIAjC9YUYDkEQBEEXYjgEQRAEXYjhEARBEHQhhkMQBEHQhRgOQRAEQRdiOARBEARdiOEQBEEQdCGGQxAEQdCFGI4bmPj4eIwcOdLf3QhI7rjjDtxxxx2l+uz1PK4jR45EfHy8v7shXOeI4bgOOXz4MNLS0pCQkACr1YrIyEi0b98es2bNQn5+vr+75zNHjx6FwWCAwWDA1KlTWZ2hQ4fCYDAgPDy8knt3fZGVlYXJkyejRYsWCA8PR0hICJKTk/HMM8/g5MmT/u6ez7ivCe7fqFGj/N1FAUCwvzsg6OOLL77AwIEDYbFYMHz4cCQnJ8Nms+H777/H+PHjsXfvXsyfP9/f3dSF1WrFRx99hBdeeMFDnpubi7Vr18JqtfqpZ9cHR44cQdeuXfHHH39g4MCBGD16NMxmM3bv3o0FCxZg9erVOHDggL+76RM1atTA4sWLNfJ169YhPT0d3bp180OvBG/EcFxHZGRk4N5770VcXBy+++47xMTEuN577LHHcOjQIXzxxRd+7GHp6NGjB1atWoVdu3ahRYsWLvnatWths9lw11134bvvvvNjDwOXoqIi9OvXD2fOnMHGjRvRoUMHj/dfeeUVTJs2zU+9009YWBjuv/9+jXzRokWIjIxE7969/dArwRv5qeo6Yvr06cjJycGCBQs8jIaThg0b4sknnyyxjUuXLmHs2LGoV68eLBYLGjZsiGnTpsHhcHjovf7662jXrh2qVauGkJAQpKSkYOXKlZr2DAYDxowZgzVr1iA5ORkWiwVJSUlYt26dz+fVtm1bNGjQAEuXLvWQp6en46677kLVqlXZz82dOxdJSUmwWCyIjY3FY489hkuXLmn05s+fj8TERISEhOD222/Hli1b2PYKCgowadIkNGzYEBaLBfXq1cOECRNQUFDg87m4k5ubi3HjxrnGunHjxnj99dfhnZC6LGP4ySefYNeuXZg4caLGaABAZGQkXnnllRLbcDgcmDlzJpKSkmC1WlGrVi2kpaXh4sWLHnpr165Fz549ERsbC4vFgsTEREyZMgV2u91D74477kBycjL27duHzp07IzQ0FHXq1MH06dOveT4cp06dwoYNG9CvXz+5+wwUSLhuqFOnDiUkJPisHxcXRyNGjHD9nZubS82bN6dq1arR888/T/PmzaPhw4eTwWCgJ5980uOzdevWpUcffZTefvttmjFjBt1+++0EgD7//HMPPQDUokULiomJoSlTptDMmTMpISGBQkND6dy5cyX2LyMjgwDQa6+9Rs8//zzVr1+fHA4HERH99ddfFBwcTB999BGNGDGCwsLCPD47adIkAkBdu3al2bNn05gxY8hoNNJtt91GNpvNpfevf/2LAFC7du3orbfeorFjx1KVKlUoISGBUlNTXXp2u526detGoaGhNHbsWHr33XdpzJgxFBwcTPfcc0+J48rhcDioS5cuZDAY6KGHHqK3336bevfuTQBo7Nix5TaG9913HwGgP/74o0Q9JyNGjKC4uDgP2UMPPUTBwcE0atQomjdvHj3zzDMUFhamGcu+ffvSoEGD6LXXXqN33nmHBg4cSADo6aef9mgvNTWVYmNjqV69evTkk0/S3LlzqUuXLgSAvvzyS5/66c6MGTMIAH399de6PytUDGI4rhMyMzMJgOYiVhLeF7gpU6ZQWFgYHThwwEPv2WefJaPR6HHxycvL89Cx2WyUnJxMXbp08ZADILPZTIcOHXLJdu3aRQBo9uzZJfbP3XD8+uuvBIC2bNlCRERz5syh8PBwys3N1RiOs2fPktlspm7dupHdbnfJ3377bQJA77//vqvPNWvWpJYtW1JBQYFLb/78+QTAw3AsXryYgoKCXMd3Mm/ePAJAP/zwg0vmi+FYs2YNAaCpU6d6yAcMGEAGg8FjvMoyhq1ataKoqKgSddzxNhxbtmwhAJSenu6ht27dOo3ce00QEaWlpVFoaChdvnzZJUtNTSUA9OGHH7pkBQUFVLt2berfv7/PfXWSkpJCMTExHnMt+Bf5qeo6ISsrCwAQERFR6jZWrFiBjh07Ijo6GufOnXP969q1K+x2OzZv3uzSDQkJcb2+ePEiMjMz0bFjR2zfvl3TbteuXZGYmOj6u3nz5oiMjMSRI0d87ltSUhKaN2+Ojz76CACwdOlS3HPPPQgNDdXofvPNN7DZbBg7diyCgq4u4VGjRiEyMtLl5/nll19w9uxZPPzwwzCbzS69kSNHIioqSjM2TZs2RZMmTTzGpkuXLgCADRs2+HwuAPDll1/CaDTiiSee8JCPGzcORISvvvrKQ17aMczKyirzmoiKisKdd97pcd4pKSkIDw/3OG/3NZGdnY1z586hY8eOyMvLw2+//ebRbnh4uIevwmw24/bbb9e1JgDgwIED2LZtG+69916PuRb8izjHrxMiIyMBFG/Y0nLw4EHs3r0bNWrUYN8/e/as6/Xnn3+OqVOnYufOnR6/8RsMBs3n6tevr5FFR0drfiO/Fvfddx/eeOMNPPXUU/jxxx/x/PPPs3rHjh0DADRu3NhDbjabkZCQ4Hrf+d9GjRp56JlMJiQkJHjIDh48iP379/s0Nr5w7NgxxMbGai7qTZs29eibk9KOoV4D7c3BgweRmZmJmjVrsu+7n/fevXvxwgsv4LvvvnN9kXGSmZnp8XfdunU1ayU6Ohq7d+/W1b/09HQAxWHZQuAghuM6ITIyErGxsfj1119L3YbD4cCdd96JCRMmsO/fdNNNAIAtW7agT58+6NSpE+bOnYuYmBiYTCYsXLhQ48AGAKPRyLZHOqsSDxkyBM899xxGjRqFatWqVWropcPhQLNmzTBjxgz2/Xr16lXo8Us7hk2aNMGOHTtw/PjxUvXR4XCgZs2argu0N05DeunSJaSmpiIyMhIvv/wyEhMTYbVasX37djzzzDOa4IryWhNLly5F48aNkZKSoutzQsUihuM6olevXpg/fz62bt2Ktm3b6v58YmIicnJy0LVr1xL1PvnkE1itVqxfvx4Wi8UlX7hwoe5j6qF+/fpo3749Nm7ciEceeQTBwfzyjIuLAwD8/vvvHncONpsNGRkZrvNz6h08eND1kxMAFBYWIiMjwyP0NzExEbt27cLf/vY39q5KL3Fxcfjmm2+QnZ3tcdfh/EnH2bey0rt3b3z00UdYsmQJnnvuOd2fT0xMxDfffIP27dt7/BTlzcaNG3H+/HmsWrUKnTp1cskzMjJK1W9f+O9//4tDhw7h5ZdfrrBjCKVDfjS8jpgwYQLCwsLw0EMP4cyZM5r3Dx8+jFmzZik/P2jQIGzduhXr16/XvHfp0iUUFRUBKP62aDAYPMIsjx49ijVr1pT9JK7B1KlTMWnSJDz++ONKna5du8JsNuOtt97y+Aa7YMECZGZmomfPngCAW2+9FTVq1MC8efNgs9lceosWLdKE7Q4aNAh//vkn3nvvPc3x8vPzkZubq+s8evToAbvdjrfffttD/uabb8JgMODuu+/W1Z6KAQMGoFmzZnjllVewdetWzfvZ2dmYOHGi8vODBg2C3W7HlClTNO8VFRW5xsl5B+E+3jabDXPnzi3jGahx3t3ed999FXYMoXTIHcd1RGJiIpYuXYrBgwejadOmHk+O//jjj1ixYkWJOZTGjx+PTz/9FL169cLIkSORkpKC3Nxc7NmzBytXrsTRo0dRvXp19OzZEzNmzMBdd92F++67D2fPnsWcOXPQsGFD3b9R6yU1NRWpqakl6tSoUQPPPfccJk+ejLvuugt9+vTB77//jrlz5+K2225zOWVNJhOmTp2KtLQ0dOnSBYMHD0ZGRgYWLlyo8XEMGzYMy5cvx8MPP4wNGzagffv2sNvt+O2337B8+XKsX78et956q8/n0bt3b3Tu3BkTJ07E0aNH0aJFC/z73//G2rVrMXbsWA9HeFkwmUxYtWoVunbtik6dOmHQoEFo3749TCYT9u7di6VLlyI6Olr5LEdqairS0tLw6quvYufOnejWrRtMJhMOHjyIFStWYNasWRgwYADatWuH6OhojBgxAk888QQMBgMWL16s+6cnX7Hb7Vi2bBnatGlTbmMllCN+jOgSSsmBAwdo1KhRFB8fT2azmSIiIqh9+/Y0e/Zsj7BILmw0OzubnnvuOWrYsCGZzWaqXr06tWvXjl5//XWPmP0FCxZQo0aNyGKxUJMmTWjhwoWuZyfcAUCPPfaYpo++hKy6h+OWBPccB1Fx+G2TJk3IZDJRrVq16JFHHqGLFy9q9ObOnUsNGjQgi8VCt956K23evJlSU1M9wnGJisN3p02bRklJSWSxWCg6OppSUlJo8uTJlJmZqevciIrH+qmnnqLY2FgymUzUqFEjeu2111zPqjgpyxg6uXjxIr344ovUrFkzCg0NJavVSsnJyfTcc8/RqVOnXHrccxxExSHKKSkpFBISQhEREdSsWTOaMGECnTx50qXzww8/UJs2bSgkJIRiY2NpwoQJtH79egJAGzZscOmlpqZSUlKS5hiqY3M4w4Hfeustn/SFysVAVEFfGQRBEIQbEvFxCIIgCLoQwyEIgiDoQgyHIAiCoAsxHIIgCIIu/Go4XnrppVI/bLVo0SIYDAYcPXq0fDvlhrMa2aJFiyrsGHopS8nTysK7tKpzrn755ZdKOf71MEbXG9x+i4+PR69evSrl+Bs3boTBYMDGjRsr5XiVxfV6XqUyHHv37sX999+POnXquGohDB06FHv37i3v/gllxG63IzY2FgaDQZNYz8ncuXNZ47hv3z689NJLFWqcS0sg960ymDt3LgwGA1q3bs2+X9L4qOY7EAjUvhERFi9ejE6dOqFKlSoIDQ1Fs2bN8PLLL+t+OPSGQG/87ieffEJms5lq165NEydOpH/961/0wgsvUExMDJnNZlq1apXPbRUWFlJ+fr7eLhARUVFREeXn52ti4ssT53MGCxcurLBj6IV7/qAk/v3vfxMAio+Pp6FDh7I6SUlJbJsrVqzQxOj7wuXLlz2eCVm4cCEBoJ9//llXOyVRUt8KCgo80qjfiLRr147i4+MJAB08eFDzfknjo5rvkuD2W1xcHPXs2VNv10tE1Te73U75+fl+Sa1eVFREgwYNIgDUsWNHevPNN+ndd9+l+++/n4KCgig5OZlOnz5dqrY3bNhQqj3mb3TdcRw+fBjDhg1DQkICdu/ejalTp+LBBx/ElClTsHv3biQkJGDYsGHXzNbptNDBwcGlruhlNBphtVrLJa/QjcySJUtwyy234KmnnsKaNWsq7NsRESE/Px8AYLFYYDKZKuQ4vmA2mz3SqN9oZGRk4Mcff8SMGTNQo0YNZYLC8sC5Xvy934KCgmC1Wv2SWn369OlYvnw5nn76aWzevBljx47F6NGjsXjxYqxZswb79u0rMWPDDYkeK5OWlkYAaPPmzez7mzZtIgCUlpbmkjmfNt67dy8NGTKEqlSpQi1btvR4z528vDx6/PHHqVq1ahQeHk69e/emEydOEACaNGmSS8/5LTYjI8Mlc34D2rJlC912221ksVioQYMG9MEHH3gc4/z58zRu3DhKTk6msLAwioiIoLvuuot27tzpoefrHYev7Tm/XSxbtoymTp1KderUIYvFQl26dGG/Nb777ruUkJBAVquVbrvtNuUTzyry8vIoIiKCpk+fTqdOnaKgoCBNwZ64uDgC4PEvNTXVNb7e/5zfjJxjvW7dOkpJSSGLxUJvvvmm6z33J56dbW3atIlGjx5NVatWpYiICBo2bBhduHDBoz/e8+zeT2eb1+obN0Znzpyh//f//h/VrFmTLBYLNW/enBYtWuSh4/4ku3PszWYz3XrrrfTTTz/5NOaVwZQpUyg6OpoKCgrokUceoUaNGnm8X9L4qObb/XMbN26kRx55hGrUqEFVqlTxeI/bb+vXr6cWLVqQxWKhpk2b0ieffOLRH26fc22W1DfVN/Ply5fTLbfcQlarlapVq0ZDhw6lEydOeOg4Mw+cOHGC7rnnHgoLC6Pq1avTuHHjqKioqMSxzsvLo+joaLrpppuosLCQ1XnggQcIAG3dulUzNte6Fnmf14svvkjBwcF09uxZzXFGjRpFUVFRpf6VpjzRZb4/++wzxMfHo2PHjuz7nTp1Qnx8vKuQjjsDBw5EXl4e/vGPf2DUqFHKY4wcORKzZ89Gjx49MG3aNISEhLiS1vnCoUOHMGDAANx555144403EB0djZEjR3r4X44cOYI1a9agV69emDFjBsaPH489e/YgNTUVJ0+e9PlYpW3vn//8J1avXo2nn34azz33HP7zn/9o6g0sWLAAaWlpqF27NqZPn4727dujT58+OH78uM/9+vTTT5GTk4N7770XtWvXxh133KH5djpz5kzUrVsXTZo0weLFi7F48WJMnDgRnTp1chUhev75513vOetJAMXZaYcMGYI777wTs2bNQsuWLUvsz5gxY7B//3689NJLGD58ONLT09G3b1/d+Y586Zs7+fn5uOOOO7B48WIMHToUr732GqKiojBy5Eg2KeTSpUvx2muvIS0tDVOnTsXRo0fRr18/FBYW6upnRZGeno5+/frBbDZjyJAhOHjwIH7++WfX+yWNj2q+3Xn00Uexb98+vPjii3j22WdL7MvBgwcxePBg3H333Xj11VcRHByMgQMH4uuvv9Z9Xr70zZ1FixZh0KBBMBqNePXVVzFq1CisWrUKHTp00CSxtNvt6N69O6pVq4bXX38dqampeOONNzB//vwS+/T999/j4sWLuO+++5TZmocPHw6guIaNO75ci7wZNmwYioqKsGzZMg+5zWbDypUr0b9//8Cou+6rhbl06ZJPpUv79OlDACgrK4uIrn7bGDJkiEbX+5vItm3b2JrMI0eO9PmOA153RGfPniWLxULjxo1zyS5fvqz5rTQjI4MsFgu9/PLLHjL4cMfha3vObxdNmzb1+A1+1qxZBID27NlDRPpKnpZEr169qH379h6f577NlMbH4RzrdevWse9xdxwpKSkevo/p06cTAFq7dq1L5j3PqjZL6pv3HcfMmTMJAC1ZssQls9ls1LZtWwoPD3etVed8V6tWzeNOaO3atQSAPvvsM82xKptffvnFo/62w+GgunXramrGl8bH4ZynDh06aL6Jl7Tf3O8wMjMzKSYmhlq1auWS+XrHUVLfvL+ZO/dIcnKyxzfwzz//nADQiy++6JKNGDGCAHjsRaLisrspKSmaY7njXDurV69W6ly4cIEAUL9+/VwyX69F3J1U27ZtqXXr1h7HWLVqVUD5Qny+43BWnrtWmUrn+94Vwh5++OFrHmPdunUAir/xuFNSim1vbr75Zo87oho1aqBx48YefheLxeL6rdRut+P8+fMIDw9H48aN2dKo10Jvew888IDHb/DO/jr7qKfkqYrz589j/fr1GDJkiEvWv39/GAwGLF++XPc5cjRo0ADdu3f3WX/06NEevg9nzY0vv/yyXPqj4ssvv0Tt2rU9xsJkMuGJJ55ATk4ONm3a5KE/ePBgREdHu/72nh9/kp6ejlq1aqFz584AiisyDh48GB9//LFHGvyyMGrUKGUhJm9iY2PxP//zP66/IyMjMXz4cOzYsQOnT58ul/5wOPfIo48+6vENvGfPnmjSpAn7q4f3Nahjx47XnFNfrnuqa54v1yKO4cOH47///S8OHz7skqWnp6NevXrXzBxdWfhsOJyDc63SpaqBbtCgwTWPcezYMQQFBWl0GzZs6Gs3fSrB6XA48Oabb6JRo0awWCyoXr06atSogd27d2tKYPqC3va8++i8SDn7qKfkqYply5ahsLAQrVq1wqFDh3Do0CFcuHABrVu3Ljdnqi9z6o73+YSHhyMmJqbCQ2qPHTuGRo0aaRyrvpZx9Z4ff2G32/Hxxx+jc+fOyMjIcM1r69atcebMGXz77bflchw989qwYUONw9xZSbIi51VVPhgororoPadWq1VTFtiX0ry+XPdU17zSlgMePHgwLBaLa59mZmbi888/x9ChQwMmGMhnwxEVFYWYmJhr1mPYvXs36tSp46qR7aSk6mLliS8lK//xj3/g73//Ozp16oQlS5Zg/fr1+Prrr5GUlKQpgekLetsrr7KaJeFcdO3bt0ejRo1c/77//nts3bq1XL49V9acAii3b9O+UBnzUxq+++47nDp1Ch9//LHHnA4aNAgAyu0LQXnPq+piFwhzei2cXy5Kuu4537v55pt9Oua11lF0dDR69erlms+VK1eioKDAVWcmENBVyKlXr15477338P3336NDhw6a97ds2YKjR48iLS2tVJ2Ji4uDw+FARkaGx7fTQ4cOlao9FStXrkTnzp2xYMECD/mlS5dQvXp1v7enp+QphzNcc8yYMZpbW4fDgWHDhmHp0qV44YUXAKg3dnl/uzl48KDrJxYAyMnJwalTp9CjRw+XLDo6WuPYtNlsOHXqVKn7FhcXh927d8PhcHjcdZR3GdeKJj09HTVr1sScOXM0761atQqrV6/GvHnzEBISUuL4lOe8Hjp0CETk0eaBAwcAFD9ZDly9Y7t06RKqVKni0vO+K9DTN/fywe57xCkrrznt0KEDqlSpgqVLl2LixImsMfjwww8BoFyfoh8+fDjuuece/Pzzz0hPT0erVq2QlJRUbu2XFV1RVePHj0dISAjS0tJw/vx5j/cuXLiAhx9+GKGhoRg/fnypOuP8vdy7HOXs2bNL1Z4Ko9GosforVqzAn3/+GRDt6Sl5yuH8pjJhwgQMGDDA49+gQYOQmprq8e00LCyMbTcsLAwAfDqmL8yfP98jMumdd95BUVGRRxnVxMREbN68WfM572+nevrWo0cPnD592iNSpaioCLNnz0Z4eHjA/G5cEvn5+Vi1ahV69eqlmdMBAwZgzJgxyM7Oxqeffgqg5PFRzXdpOHnyJFavXu36OysrCx9++CFatmyJ2rVrA4Crgp/7vObm5uKDDz4odd9uvfVW1KxZE/PmzUNBQYFL/tVXX2H//v26IjFLIjQ0FE8//TR+//13NsLriy++wKJFi9C9e3e0adOmXI4JAHfffTeqV6+OadOmYdOmTQF1twHovONo1KgRPvjgAwwdOhTNmjXDgw8+iAYNGuDo0aNYsGABzp07h48++qjUpR5TUlLQv39/zJw5E+fPn0ebNm2wadMm1zeY8vqm1KtXL7z88st44IEH0K5dO+zZswfp6ek++w8quj09JU850tPT0bJlS9SrV499v0+fPnj88cexfft23HLLLUhJScE777yDqVOnomHDhqhZsya6dOmCli1bwmg0Ytq0acjMzITFYkGXLl1Qs2bNUp2XzWbD3/72NwwaNMhV6rVDhw7o06ePS+ehhx7Cww8/jP79++POO+/Erl27sH79es2dm56+jR49Gu+++y5GjhyJbdu2IT4+HitXrsQPP/yAmTNnXjPgIxD49NNPkZ2d7TFW7rRp08b1MODgwYNLHB/VfJeGm266CQ8++CB+/vln1KpVC++//z7OnDmDhQsXunS6deuG+vXr48EHH8T48eNhNBrx/vvvo0aNGvjjjz882vO1byaTCdOmTcMDDzyA1NRUDBkyBGfOnMGsWbMQHx+Pp556qlTnw/Hss89ix44dmDZtGrZu3Yr+/fsjJCQE33//PZYsWYKmTZuyRrAsmEwm3HvvvXj77bdhNBo9AjsCgtKEYu3evZuGDBlCMTExZDKZqHbt2jRkyBBXOKk7zlC8v/76S/meO7m5ufTYY49R1apVKTw8nPr27Uu///47AaB//vOfLr2SHkjyxjs88/LlyzRu3DiKiYmhkJAQat++PW3dulWjpycc15f2nKF3K1as8Pi86ji+ljx1xxnS/L//+79KnaNHjxIAeuqpp4iI6PTp09SzZ0+KiIjQhPu+9957lJCQQEajkX0AkONaDwBGR0dTeHg4DR06lM6fP+/xWbvdTs888wxVr16dQkNDqXv37nTo0CG2jKqqb6oHAB944AGqXr06mc1matasmWa8SyplC0WYcGXRu3dvslqtlJubq9QZOXIkmUwmOnfuHBGpx0c13yWlhrnWA4DNmzd3lRn2Xt9ExeuydevWZDabqX79+jRjxgy2TVXfVA8ALlu2jFq1akUWi4WqVq1a4gOA3qjChDnsdjstXLiQ2rdvT5GRkWS1WikpKYkmT55MOTk5Gn1fr0UlpRz56aefCAB169bNpz5WJtdF6didO3eiVatWWLJkieZBOUEQhBuRXbt2oWXLlvjwww8xbNgwf3fHg4Crx+HMd+TOzJkzERQUhE6dOvmhR4IgCJXPe++9h/DwcPTr18/fXdGgy8dRGUyfPh3btm1D586dERwcjK+++gpfffUVRo8erfzNXhAE4Ubhs88+w759+zB//nyMGTPGFegQSATcT1Vff/01Jk+ejH379iEnJwf169fHsGHDMHHiRGWuGEEQhBuF+Ph4nDlzBt27d8fixYsDMngj4AyHIAiCENgEnI9DEARBCGzEcAiCIAi68IvTwOFw4OTJk4iIiAiYpF3CjQkRITs7G7GxsX6pHsch61+oTCpiD/jFcJw8eVIipIRK5fjx46hbt66/uwFA1r/gH8pzD/jFcDijBNIeewIWi8XjvSDmGxgnA4AiJvOsytXPNaFqV8+XQFUbDqYjDh1hCEYd7QJAoV07Fmaj4tsF07Rd0TnuG3FwEN+3wiI+s7ApWNsP1fE4qUOha2ba9dYtKCjA3LdnBVRkirMvu3/PQESEZxZpIzO2wYp5LCjUZpfVs/65Y5Uk51D1rYhZj0U6NoBq7XLrHAAu27RjEWrhL2/cWNgUazeIGQsLs+4AIL+Az/YbYtEmRlQdjxuhIoVueIhJI+P2YHZ2Fpo2jCvXPeAXw+G8GFksljIZDqMYjqv9CADDEWQMPMPhJJB+EnL2JSIiUlN+oKyGQ7XGuCm7kQyHiTEcYToMR4Hi4syNhcpwBCsMR2gZDYfqC1mEj4bDSXnugcD40VcQBEG4bhDDIQiCIOjCr49iGw0GzU8y3C2j6taZ+/1Rz81YkZ2/dQ42+n4Ln8/cIgNAiFl7e8r9tKDSVf3kovopzhLse4Uz9o5V8RWC+ylO1QfVzxa+tgvwP2Gp7rC5n+281wS3RgIFkzEIJq8xy7pcpNGzBPu+Tg06fg69XMj/rGE18fNoMWnX2IUcG6MJVA03a2RZ+b7rqn5yUa097mcb1cxz60n18xO351V94PaxCu95d6Ln+sf9HMj9LMzJyorccQiCIAi6EMMhCIIg6EIMhyAIgqALMRyCIAiCLvzqHHeQNu6cc/ipn2nQylS+UDaGWYfTFQAcRVq5lXEYAryTS+Xk5Q6nCnknNtIb4E7Gpoh557qhCgjgAghUuiqnoR6HNz9Nvs+/3evZHlXcfyBQ5CDNsw2cY1r1TAM3rqpnbDgHq2oOVM/Y5DKO+6hQrVMaALLyCzUy1d7kAkFUz3yo9ibXi5wCbX+L+6HtiCogoIAJILAqnOCqceMc/cqAH279K9KEcGNUUKQ95zzFOJQFueMQBEEQdCGGQxAEQdCFGA5BEARBF2I4BEEQBF2I4RAEQRB04deoKhYmMMHGZMEFFOkwFM2ykUSq9OCKVCRGJpqooIhPI8JGsSiiI7hIEVWEhgpick0os+MyKCNsSDv2qq4ppklfRA8zFqrIqGBmPL0/ror0CliY/uYqomK4cXWQIpULI1emB1ek0bEwkUfZTPQUwGcuDlIcj5tfVfZYFQ6jduDCFdlxOVTrkYuq4lJ9FMsVEV/cWOiIaFPNPxfRya33itgDcschCIIg6EIMhyAIgqALMRyCIAiCLsRwCIIgCLrwq3Pc7iCNM4hzGqly13Oo/ECcI1zldFWWlGVc7JyDFuDroatSdXDOSFXflLn5HVq5atw4B5yeErjKGhc6HH6qJrjz485N1a63U9ahY+1UNoVFDo0TmFunqjoPXBodVUoOzpGqcrqq1g13PK5GB8DXnlGl6riYq3Wwq/rGOd1Vx1ONm41Lo6Oj5oVqH6vWP+foVx2PG09VWVuu3XCr9pJeqKNOiK8E7q4SBEEQAhIxHIIgCIIuxHAIgiAIuhDDIQiCIOhCDIcgCIKgC79GVRkM2kf9ucgNVcQPMREkXFEYALjMREeoCkRxaS8AwM7EbKlSg3ARHapIKS5SRBUdpkp3wIV0OBQ5QPi2VUcsWwoQgI+UCgr2PYrLpCOKyzuajYtuCxSCDNroMi5iLVgR5cStdbsi7cVFm00jU6Wk0ZPuQ6UbHaYtraRKZRJm0e4VVXSYqg3uulGYz0dm6cnAwV1j8hR9UBV14/a3iTlngN/fIYp2ucvXZSa6jIs4KytyxyEIgiDoQgyHIAiCoAsxHIIgCIIuxHAIgiAIuvCrczzIYNA4vjlnlC5nVgnH8iZf4TRSpVxQpfvg4JzmKmc85140KdIaWIP5KeMcdlwdAICvq6DK2a+nLoieWijKNphGVOPOOWa9dVWBFYFAsDFIs9a48eb2hAqVJremL+RqHeYAEKaoY6FK98HBzY06lYm216GKNBlRIVqnOwCcy9GeSwSTfgMAIkO0ctU652rzqOZDz7VHhS9pdJzkFjB7nrlu6Llu+YrccQiCIAi6EMMhCIIg6EIMhyAIgqALMRyCIAiCLsRwCIIgCLrwa1QVDNCE3HDFklRpFDipKnKDSz3RLDmZ1U1s2oyV/3n+gkYWF2VldXft2q2RFRbksbrnmXaDFOk7VGPBRV5YFNEYXACJKqqEi9IoLOJ1jYpIMK5ojSqlBBeBUqToGxct4p2GQ5WCJiBg1j93TgWFvqeOURUv4lJRqKJ1Dp7JYeV/5mrXb7ebaiuOp+1zVCgfEWVk5kgVVagaCy6CShVVxa0nVeoULrqLi2YC+GhFgE9FokodxKWXURVy4saoiLk+qK4ZZUHuOARBEARdiOEQBEEQdCGGQxAEQdCFGA5BEARBF2I4BEEQBF34N6qKIZiL4lFEBTApbpBn44u3cNFWMc3bsLqn7WZWnmsN1ci27PmN1R157/0a2fzPd7K6fbvW0MiqKCJQzmRdZuU5hdrzvqlGBKu7/c9LGlndiBBWt1qEdiy2/Hac1b18bC8rP3nypEamTL/ETKoqNxAXgeIdlWVXRNkFKlY2iodf09z6P5ddwOpy+ac+2vUnq7vlwHlWfvxklkb24Gf/ZHU3rpyqkd0x4RNW94c3Bmpk8TW0ew0Adp/IZOVn8rX7otfNMazuop+OaWRt61RldW+K0e6hj3by6//hdgmsnEMV7BfExMqpIgNDmTkNNjIRY4pIu7Jwfe0qQRAEwe+I4RAEQRB0IYZDEARB0IUYDkEQBEEXfnWOBwcZNOko2EI+qkIojNkzku+pCv7ctonVrVuHd6plnzytkVULj2R19+/9VSPr3bY+q5scrz3eX+e0aUgAIMvGOw3r1NQ60w/lFLK6TROiNLL9J/njpdTX9rle3Xqs7sqv8ln5sT9OaGQGVXEZZv5VaWQKmbQN3n5EmyK1QyBgNRk16SjYQj7KAkhamc3O62bmadfC6NZxrO7YToms/BJT+GnvfS1ZXc5xu+ylnqxuQq0wjSyL6S8AfLL/LCu/ra62jZf+fYDVbVdfu/4/3qvd2wAwtZ5Wd+St/LhtOfgXK7+lXrRGpkrPw5U948YSAPKYoAkunQqnV1bkjkMQBEHQhRgOQRAEQRdiOARBEARdiOEQBEEQdCGGQxAEQdBFwKUc4dJLqAr5cPIQpmgKABiDtNE1x/84yuoePZrByrkoFlXqjKP7dmpk4WF8Wo9tNWtpZKdPn2J1a9eOZeWnfCzqAgC/FWojVrIzL7K6m0O1qVNS4mqyuqYivlCVgRm4fEUxHKtZ+13GyESaAHzRJ7tXwS5VupJAgIg0/ePSS6gK+XDFmaLD+HQ5XNEmVbSOqqhROFMY6bZ4PlUHdx6JNbWRTwAf+VY1nD+Pyd0asXJu3/e+mV9jXAqj7k35glRzfzyikQ1MrsPqNovVRmABQBATQXg+WxuhBgBVwrTRkaqiVmzRL2buVEXayoLccQiCIAi6EMMhCIIg6EIMhyAIgqALMRyCIAiCLvzqHM+32eEweDqwOIePyjnOpSIhLmeFQpdLQwLwjkQAsDOOVlL0jZNmZvPO45zcoxrZ+Ry+rsLp8zmsnOtziEURKMCMxc03N2V1WydoHfff7T7E6v6+fx8r55ytpmDe4WdgHOEq/zYXrGAJ9jpne/nXIigvLuYWosjoGahgYeaRc4IDfCoWVTAAl7aES0MC8E5wgE/xYlcEYHDSgst86gtu7e49oa39AUCTosUJ12eulgwARDBtqNzHw2/Rptz5eJc2hQ4APHAbn4qEG+cwxd7kAj5Uvm3uWhkZwtTxKeRr+5QFueMQBEEQdCGGQxAEQdCFGA5BEARBF2I4BEEQBF2I4RAEQRB04deoKoOBj4zxhos0AfhICC4qBwBymGImQQqzWWTjo61CzdrhyrPzES98Ogw+PCIrX9tGniKSRhHwAotJezLeRbKchIZqUz+0u6Mbq3smSxvdde637axubi4fNcZNiSpSqsihHXtjkCIyimkj32vcCmz8OAYCQYbif9ciQjHp3BBy6w4ATmVe1shUqSwKFGuveoRFI/srj4/+49aeTRGBdeKCtgDYuXy+3SoOPlIqMlQbOaSKwOLSoRw+w0crnszSjtvg5nzKkUJFqhZuSlSRUtzYq6I8uT10kSm2lZ3DpzcpC3LHIQiCIOhCDIcgCIKgCzEcgiAIgi7EcAiCIAi68Ktz3BJs1KSI4JyjDoUnlXMwcbn9AcDMOI9V6RK4R/kBIJdxsKt02dQBBt/z4qvaVTm8ueOpUrU0a5mikdWpWYXVPXYmUyPLuniB1TUpnHhFjINa1Tcr04Zq/jmnY6hXKgcjAjflSESISZMignOOqoIquDHMzufTekSEaLe63pQ7XKCEWeFgD2ZSnNgdvNOda8Fi5OdN5fDm9oUqVQs3RgmKWiHZTJqUMEUdE9X6v8w4zVV9i2JShhQprmncNaI6k2bFTHxAQVmQOw5BEARBF2I4BEEQBF2I4RAEQRB0IYZDEARB0IUYDkEQBEEXfo2qoiv/uxaqqBJN0R4AheAjELioIxvxuqoucYVz1FFVWlmRQ5EChInSUI2KqsgOl5YlPp4vLGOOT9bIzmfzaQm+/WKVRvbXX38pesfDRelYFakxuGJZShhV78+r1k4gQETKwkvuFChSWXAROEEGPlqHizrKURRWUqUBCjVr95sqAos7nuo8qkdqU5moIuliqlhZOZeWRRXl9I9vtYXIBifHsLrJdSM1siDFnudSmaj6Fs2kSAH4qFCDYkK4IeKKpnGysiJ3HIIgCIIuxHAIgiAIuhDDIQiCIOhCDIcgCIKgCzEcgiAIgi78G1VF2sgALkqJSV9V/HkmrCZYkTuHi66xMvmrnP3i4Nq+rMr3w0Zg8e0WMTmzVH1TRYpwXbZU4wvOnMsu1MgW7f2Z1c07cYI5liJ3kiL3FzeeqrHg5p8rwgXwkXIhZs+GfSkU5i8cpM23xkUpFSrGlYs8Uq0bLqKpiiKyRxWIxrV9KU+7lgAgnIkUVBWO4vZQlKJv3rnInHBj8f3Bc6zu7j8uaWQHTmezukuG3aKRqSLh8hXXAu7aoypOx+3vM0wRLoDPB1Y1TDtuqsjPsiB3HIIgCIIuxHAIgiAIuhDDIQiCIOhCDIcgCIKgC786x4MMBo2Dk3O8qhycvNOVVzYwcj3tqlD5nTiHmIEtWQOYg7VyVcEmFUXMdwCjwjl+/LjWaRh2Zj+re65A6/xUjbFq3CyMU7VQUZyGK+sToijew3/aUOLfgYQxyKAZS87xqloKnBNb5YDmxlC1/lXOcU5dtRY4ZzwXzAAA4YzD22rSV3zoIuOk/+bIeVb3l58zNLK9s/qzuplM0SdV8SrVuHGOfq4oHABwIQFVw/ix4A7HjbFq3MuC3HEIgiAIuhDDIQiCIOhCDIcgCIKgCzEcgiAIgi7EcAiCIAi6CLhCTnYmvYKqWAyHqnAPF1hg52veqKNNmLZVkUR2pkgUVwgK4AutBCtSK3DjAwB1kltqZM0b1md1j5zaoZFd/PM4q8tFROmN0uDSQaja8KWwl6sNZji9o7XU0Vv+hyvkVMCkrVAV7+JQFe3hop+KinzfKwCfUka1/i8XaTdXGJOGBACymYJSIUzRKIAfHwDYeOSsRpZUK5TVbdMmQSNTRaOFMftQGbmpGLgiZg2qoia5qDrVjuD6nGfTjns+IysrcschCIIg6EIMhyAIgqALMRyCIAiCLsRwCIIgCLoIuHocQYzTSOWA4xyfKrctl+e+UFHoQ1XTw8Y6Wn1PP6By1HJ9UzmP6ycmsvL8Ko01srrh/PRWvXhAI7MpHPfc2CvPQ9EG51TVk7ZEHayglXkHUpA9cL8b2R2kCebg1p4qlQXn9FStfy7AJLeAd5qqHNO5TPoZ1eRwQSp5ijQbnAOaqzUBABdz+fof/7t4p0b289S7WN3eSbEamao+Bjf2Kmezaty4eiOqgB/ueKqUM9y+4gIpHLbyv8wH7q4SBEEQAhIxHIIgCIIuxHAIgiAIuhDDIQiCIOhCDIcgCIKgi4Ar5MRFLimCnNiADlVkD1c4RRXZk2fjo4a4SAhVxEO+jStIxSsbGXlISAir26pDF/54wdr0CkcOH2J1T5w4oZGpUrVwKRDMijHmivcAfPRHkeJ4XBoFZVoXpo0gg2ffuDQxgUKwMUgTPcStU2VhJWY5qdJ6nM28rJFx0XwAcC67gJVzETuq1BkXcpmIR8X65/asat52/nmJlT/Qo4lGplqnHFzaE1U/9KROAfioqsuFfGRWKBOZpdqbNh+jFQsV+7IsyB2HIAiCoAsxHIIgCIIuxHAIgiAIuhDDIQiCIOjCzylHtPUIOEumJ8WFyqkWzBRvUDmdVA6/AtahpcrNr5VZzSo7rVXuO3AIq1mzVi1W/te5cxrZuk0bWV2uZoOqzkcRk9eDTKwqChVtcA52VXoGLo2IKZgfYzYti7dIX+mQSsXhIM165QIlVCkuOEeqyhFqMWl1VbU7OF0AyMzTpvtQOby5LRQdxi8cLlDiNOPMB4DEauGsvG6kNpjEqlhjnPNfVeeDc2KrghW4WhgAf02qGm5mdbk9xKVkAYBgRpfdEhWwB+SOQxAEQdCFGA5BEARBF2I4BEEQBF2I4RAEQRB0IYZDEARB0IVfo6pggCbqhYttUBVW4uSq9BQFRdqIBy69BVBSOgytnVUWJGJkquJM1apV08gaJ9RndS/k2Fj5z99v0MjOnNVGWqk6xwSdFcuJKyzke7oQgC/Kw0W5AXykm2pOVWPvjiGAw6oMBm3Ei505WauJHysuakgVVcilw1BFtvHRg3wUlyoCi1sjquJMxiCtbmw0n3Ln4OkcVt6otjbaKleRAoRbT6prjMnBFIBTRHly4wPw86caNzbiUTGnXPEpTlMV+VYW5I5DEARB0IUYDkEQBEEXYjgEQRAEXYjhEARBEHQhhkMQBEHQhV+jquwO0kQMFDERC6roDy76SZVzKdyqbUOVn0aVq4pDFfFjYSIpoqKiWN2+A7R5qbi8QADw0w/a6CkA+O333zUyVTSFnbTnrYrc4Wr9qKLOuIJNxW1rx57Y+A8+uksVVcKdnmY9ccmvAgRbkUMTRcPlpaqmyGvE5VFSrenaURaNTLXGVBE/3GpSzU1kiPbSwuUsA4ATF/I1MlU+qAY1tAXLVP1QRd1xUVFRoXweLatJ266qYJkqp1gVpm09kYmqnGJcNBqnq4qSKwtyxyEIgiDoQgyHIAiCoAsxHIIgCIIuxHAIgiAIuvCrc9xkDNKk8eAK2ajSRnCOW5Vjm3NGqZxnZq5h8E41Lg0JwDuQGye3ZHXzjFrHZZTCP3/06FFWzp2LylHKOcJVDjgOlUM0zMIvJ27cVOlXOAeqKlUF62D0FimcrIFAiNmoCfzg1pNqrLh55AIRAD7oRLXOw638PHLO31DFnHOOe1W6nO0nL2pkt8RGs7oquHPJyudTjnCO8BxFehIO1V6pGandxwCQW6BtW7mmmb2lKkjlc3qeCtgDcschCIIg6EIMhyAIgqALMRyCIAiCLsRwCIIgCLoQwyEIgiDowq9RVYVFDgQZPSMUTEx0RLYiOoKL/lA9ys9FeagiogpVj/gz6QBUEUbx9bWFmDp3bMcfj7T9UNSKUUZIcJFLXNoTgI+8KDQo0oUw86E6Z3UaBW0bqtoyhUzaEm7uAD6CyBHIYVRe5BfYEVzgeW5hzJr+k0nJAQC1q1g1MtXcXMzVRjSpouDyCvjx5taTMh0GM8HVI/ioIy6CilsHgDrFTx4T8cWlPVG1oUoXEhWijcBSnbNq7LnIM1VWI+48LjFzBwBVwrSpaPgkMuWP3HEIgiAIuhDDIQiCIOhCDIcgCIKgCzEcgiAIgi786hw3GAyamhFcqg6zwsmbZ2Me5ecKOoB3pKrqSqicvA7GR6+qK1GvfpxG9u43h1ndglNHNbLEFo1YXZuNd5RxtTCK7LzDj6tvYlGkn2CzvSgce6qx55yJKsc9NyVlSQFjVwRABAKGIAOCvLykXCBAhMLJez67QCNT1dKIZhypqqADLu0FwO8XVY0Nbr81fmIVq5u1bZNG9ujkMazuS91uYuVcep3LipQ7VcO0Du9IxgkO8EEcqsAO1dhz6UxU9T84B7sqBUwek8qEc8TbFClLykLg7ipBEAQhIBHDIQiCIOhCDIcgCIKgCzEcgiAIgi7EcAiCIAi68GtUFQcXsKCK+DEzETOqiCguEoJLiwAAqmwfXDqACEXEAxexMrRTIqt74VyERvbJsnReNzOHlXPFfkzBivAPBpUm1y753qyyH6rIHa4Ql+pwXCoTm1eklfffgQ53rqqIHy5liCrtBZfigts/AFCkSD9zjoniio0OYXXPM0WbvnqhO6sbbu2pkdWK4tOTnFMUg+LWTZiFjybyjuQEAIMiOpIruKQaYxVcP1RpjbhrnaqQFzf/OUykFRd9VVbkjkMQBEHQhRgOQRAEQRdiOARBEARdiOEQBEEQdOFX53hQUPE/dzjfth5nlCodANeGyumkcppXYdIEqJzxm7ds0ci2/7SV1eVScqjSbKgCBbxTVwDqseD6rEq/YtbRrgpuiFR1FYyqQgVsu1zD1/g7gDAZDTB51Xjh1qmq/gN3/qrx49pQ6arWXlz1UI1MtTe5vjWO1QaBAHxKDs4pDQCRimAUro6PaikVMQETqvQrXLt61ijAp9FRBYdwx1MdjRt7PXutLMgdhyAIgqALMRyCIAiCLsRwCIIgCLoQwyEIgiDowi/OcafjrKBA+yRqWR055eEcV8E5xVTOcVuB1tlWAN4Bxzkuya54qlfxJLQe5zjfrsLJyfRD+XS+wo3H6VeUc7zQ6zxsV9aYqm6EP3D2JTs7S/Met065J53d23GnPJzjquN5O/IBtXM8m3nKPMTAP/WdyzjHHTb+0lTAZG8AgGAdznGOy4p2qVAbEKPag6px48aoopzj+cx5ZGdnAyjfPeAXw+E8kbmzZ/nj8ML/QbKzsxEVFeXvbgC4uv6bJGqLfQlCRVGee8BAfvgq5nA4cPLkSURERCittCCUB0SE7OxsxMbGIkhRobCykfUvVCYVsQf8YjgEQRCE65fA+AomCIIgXDeI4RAEQRB0IYZDEARB0IUYDkEQBEEXYjgEQRAEXYjhEARBEHTht7Tqly9fhs3GP0kqCOWJ2WyG1Wr1dzc8kPUvVCblvQf8YjguX76MBg0a4PTp0/44vPB/jNq1ayMjIyNgjIesf6GyKe894BfDYbPZcPr0aRzO+AORkZEgEK7835XDiEBXX5OzHg9dfe3Sd74DV9Eedxm5yZxPOha3cfWYHjK3z9EVifOz3p9z5mByXGnAQ+bx+WK5sy8OutImOfWunqPrc1TcLrnpuvpC2j556zmuvHCQ+5iR9rzIOUZebZD7+Cvec58f55gTaV9TyXJWRlfyAZHDbRKdr+nqa6cuce8DBfm5eP35EbDZbAFjOJzr/8CRPxAREXl1PcBtvjzmk4qLAV2ZT8eV+XIQ4IBznt3XhFcbTLse68w17lf17SDXsZy6diI4HM7+FP/t/Lzd+TkiVx4mu5uOna58xnH1HOwOgt1x5fWV94gAu+OKPnD1fUdxuw4U53myO4rXS/H75Dp/l/xKP+jKZ50ychSfj8Ph7NuVdh2er3FFxyV3nqvDcbVdO4EcTrnzNcFBjquviwfsyueuvoZ7u266ztfkcAAOe/E6dtivTI796muH/er7dm9dNx1yAIWXcXrfB+W6B/xaATAyMrLcDYe3zOPiB/f2rh6Tk2kusFdkDjed0hgOgtsmd21K9w3u9p6zH66NXjbD4X4h8jQEbmPrbRy8j+n1X7j18VoGovSGQ2UYnFe7a7wfoERERiKyBMNxde5KMByueVYbCU7GGQ73NpwXeucx3A2HwwfD4XztMhyOq4bDTmrD4dJxaA2HU6YyHA4HIeiKPIiuGg5vmVPX4GUsPF8DBjcdg0vmcL2G/ern4GY44GYArlja4v+6vabiwYbhihHxfg2N4XC4GQvyNBwGO69jKJaRg0/KWBbEOS4IgiDoQgyHIAiCoAsxHIIgCIIuxHAIgiAIuvCrczwrq7gCWnk6x+El83Dwwr29q8f0kLl9jnOOu39Ooqrcxs7bye3+mkqWs7Lyiqq6nMeuvUAgOyvr2o5tuoZzHKRpQ6Kqrp+oquIIKud/Kyiqyl7+zwv5rXRseHg4EhvU98fhhf9jhIeHuwxUIOBc/zclyPoXKofy3gN+MRwGgwE5OTk4fvw4IiMj/dGF646srCzUq1dPxkwnznELpEp7sv5Lh+yB0lEReyAgnuMQfEfG7MZB5rJ0yLj5H3GOC4IgCLoQwyEIgiDowi+Gw2KxYNKkSbBYLP44/HWJjFnpCMRxC8Q+XQ/IuJWOihg3AwVSuIkgCIIQ8MhPVYIgCIIuxHAIgiAIuhDDIQiCIOhCDIcgCIKgCzEcgiAIgi4qzHDMmTMH8fHxsFqtaN26NX766acS9VesWIEmTZrAarWiWbNm+PLLLyuqawGLnjFbtGgRDAaDx79AKY1amWzevBm9e/dGbGwsDAYD1qxZc83PbNy4EbfccgssFgsaNmyIRYsWlXu/ZP2XDtkD+vDX+q8Qw7Fs2TL8/e9/x6RJk7B9+3a0aNEC3bt3x9mzZ1n9H3/8EUOGDMGDDz6IHTt2oG/fvujbty9+/fXXiuheQKJ3zIDi1AunTp1y/Tt27Fgl9jgwyM3NRYsWLTBnzhyf9DMyMtCzZ0907twZO3fuxNixY/HQQw9h/fr15dYnWf+lQ/aAfvy2/qkCuP322+mxxx5z/W232yk2NpZeffVVVn/QoEHUs2dPD1nr1q0pLS2tIroXkOgds4ULF1JUVFQl9e76AACtXr26RJ0JEyZQUlKSh2zw4MHUvXv3cuuHrP/SIXugbFTm+i/3Ow6bzYZt27aha9euLllQUBC6du2KrVu3sp/ZunWrhz4AdO/eXal/o1GaMQOAnJwcxMXFoV69erjnnnuwd+/eyujudU1FrzVZ/6VD9kDlUF5rrdwNx7lz52C321GrVi0Pea1atXD69Gn2M6dPn9alf6NRmjFr3Lgx3n//faxduxZLliyBw+FAu3btcOLEicro8nWLaq1lZWUhPz+/zO3L+i8dsgcqh/Ja/35Nqy6UnrZt26Jt27auv9u1a4emTZvi3XffxZQpU/zYM0GoHGQP+I9yv+OoXr06jEYjzpw54yE/c+YMateuzX6mdu3auvRvNEozZt6YTCa0atUKhw4dqogu3jCo1lpkZCRCQkLK3L6s/9Ihe6ByKK/1X+6Gw2w2IyUlBd9++61L5nA48O2333p8O3Cnbdu2HvoA8PXXXyv1bzRKM2be2O127NmzBzExMRXVzRuCil5rsv5Lh+yByqHc1ppez70vfPzxx2SxWGjRokW0b98+Gj16NFWpUoVOnz5NRETDhg2jZ5991qX/ww8/UHBwML3++uu0f/9+mjRpEplMJtqzZ09FdC8g0TtmkydPpvXr19Phw4dp27ZtdO+995LVaqW9e/f66xT8QnZ2Nu3YsYN27NhBAGjGjBm0Y8cOOnbsGBERPfvsszRs2DCX/pEjRyg0NJTGjx9P+/fvpzlz5pDRaKR169aVW59k/ZcO2QP68df6rxDDQUQ0e/Zsql+/PpnNZrr99tvpP//5j+u91NRUGjFihIf+8uXL6aabbiKz2UxJSUn0xRdfVFTXAhY9YzZ27FiXbq1atahHjx60fft2P/Tav2zYsIEAaP45x2rEiBGUmpqq+UzLli3JbDZTQkICLVy4sNz7Jeu/dMge0Ie/1r/U4xAEQRB0IbmqBEEQBF2I4RAEQRB0IYZDEARB0IUYDkEQBEEXYjgEQRAEXYjhEARBEHQhhkMQBEHQhRgOQRAEQRdiOARBEARdiOEQBEEQdCGGQxAEQdDF/wcZ/liG2lOZ7QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAECCAYAAADpdjDfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABAnUlEQVR4nO2deWBURbb/v51Od2eHQAIEBELCalgNiqwBhkXZ9IECEUF8CKjgDAzioPgEhNEBEVGEERwEhaAssrjCOMqmMKMim4BsJihCQPbsS/d5f0A36b6nQle2bpjz+f18E6pP161bVbdP3z7fe46JiAiCIAiC4CUBvh6AIAiCcHMhjkMQBEHQQhyHIAiCoIU4DkEQBEELcRyCIAiCFuI4BEEQBC3EcQiCIAhaiOMQBEEQtBDHIQiCIGghjuMmJzY2FsOHD/f1MPySzp07o3PnziV67604r1OnToXJZPL1MAyUZp0E3yCOw085fvw4Ro8ejbi4OAQFBSEiIgLt27fH66+/jpycHF8Pz2vS0tJgMplgMpkwY8YM1mbIkCEwmUwICwur4NH5P507d3bNX3H/TZ06tVzHsWPHDkydOhWXLl0q1+OoKLqPuP9Gjhzpk3H9txLo6wEIRj799FM8+OCDsNlsGDZsGJo2bYr8/Hx8/fXXmDhxIg4cOIBFixb5ephaBAUF4f3338fzzz/v1p6VlYUNGzYgKCjIRyPzbyZPnozHHnvM9e/vvvsOb7zxBp577jk0adLE1d68efMb9vX8889j0qRJJRrHjh07MG3aNAwfPhyVK1cuUR+lITo6GsuWLTO0b9y4ESkpKejRo0eFj+m/GXEcfkZqaioGDx6MunXr4quvvkJMTIzrtTFjxuDYsWP49NNPfTjCktGrVy+sXbsWe/fuRYsWLVztGzZsQH5+Pu655x589dVXPhyhf9K9e3e3fwcFBeGNN95A9+7dtX/eCQwMRGDgzXnJh4aG4uGHHza0L126FBEREejbt68PRvXfi/xU5WfMmjULmZmZWLx4sZvTcFK/fn386U9/KraPS5cuYdy4cahduzZsNhvq16+PmTNnwuFwuNnNnj0b7dq1Q9WqVREcHIzExESsWbPG0J/JZMLYsWOxfv16NG3aFDabDQkJCdi4caPX59W2bVvUq1cPK1ascGtPSUnBPffcgypVqrDvW7BgARISEmCz2VCzZk2MGTOG/blk0aJFiI+PR3BwMO666y5s376d7S8vLw9TpkxB/fr1YbPZULt2bTzzzDPIy8vz+lyKkpWVhQkTJrjmulGjRpg9ezY8k06XxRyq2L59Ox588EHUqVPHdU7jx483/KTJxTi8GdfUqVMxceJEAEC9evVcPw+lpaW5bJYvX47ExEQEBwejSpUqGDx4MH799VfDWL1dJ284ffo0Nm/ejP79+8sda0VDgl9Rq1YtiouL89q+bt269Mgjj7j+nZWVRc2bN6eqVavSc889R2+99RYNGzaMTCYT/elPf3J772233UZPPvkkvfnmmzRnzhy66667CAB98sknbnYAqEWLFhQTE0PTp0+nuXPnUlxcHIWEhNC5c+eKHV9qaioBoFdeeYWee+45qlOnDjkcDiIi+v333ykwMJDef/99euSRRyg0NNTtvVOmTCEA1K1bN5o3bx6NHTuWzGYz3XnnnZSfn++y+8c//kEAqF27dvTGG2/QuHHjqHLlyhQXF0dJSUkuO7vdTj169KCQkBAaN24cLVy4kMaOHUuBgYF03333FTuvHA6Hg7p27Uomk4kee+wxevPNN6lv374EgMaNG1dmc1iU1atXEwDavHmzq+2pp56iXr160UsvvUQLFy6kESNGkNlspgceeICdT91x7d27l5KTkwkAvfbaa7Rs2TJatmwZZWZmEhHRjBkzyGQy0aBBg2jBggU0bdo0ioqKotjYWLp48aLrWN6uk7fMmTOHANAXX3yh/V6hdIjj8CMuX75MAAwfYsXh+QE3ffp0Cg0NpSNHjrjZTZo0icxmM/3yyy+utuzsbDeb/Px8atq0KXXt2tWtHQBZrVY6duyYq23v3r0EgObNm1fs+Io6jh9//JEA0Pbt24mIaP78+RQWFkZZWVkGx3H27FmyWq3Uo0cPstvtrvY333yTANA777zjGnO1atWoZcuWlJeX57JbtGgRAXD7QFq2bBkFBAS4ju/krbfeIgD0zTffuNq8cRzr168nADRjxgy39gceeIBMJpPbfJVmDovCOQ7PdSQievnll8lkMtGJEydcbSrH4c24XnnlFQJAqampbu9PS0sjs9lMf/3rX93a9+/fT4GBga52nXXylsTERIqJiXHbH0LFID9V+RFXrlwBAISHh5e4j9WrV6Njx46IjIzEuXPnXP9169YNdrsd27Ztc9kGBwe7/r548SIuX76Mjh074ocffjD0261bN8THx7v+3bx5c0RERODnn3/2emwJCQlo3rw53n//fQDAihUrcN999yEkJMRg+69//Qv5+fkYN24cAgKub9ORI0ciIiLCFef5/vvvcfbsWTz++OOwWq0uu+HDh6NSpUqGuWnSpAkaN27sNjddu3YFAGzevNnrcwGAzz77DGazGX/84x/d2idMmAAiwueff+7WXhZzyFF0HbOysnDu3Dm0a9cORITdu3ff8P2lGdfatWvhcDgwcOBAtzmtUaMGGjRo4JpTnXXyhiNHjmDXrl0YPHiw2/4QKoabM1J2ixIREQEAyMjIKHEfR48exb59+xAdHc2+fvbsWdffn3zyCWbMmIE9e/a4/cbPaf3r1KljaIuMjMTFixe1xvfQQw/h1Vdfxfjx47Fjxw4899xzrN2JEycAAI0aNXJrt1qtiIuLc73u/N8GDRq42VksFsTFxbm1HT16FIcOHfJqbrzhxIkTqFmzpsHRO9VOzrE5Kas59OSXX37BCy+8gI8++sjQ1+XLl2/4/tKM6+jRoyAiw/w7sVgsAPTWyRtSUlIAXJVyCxWPOA4/IiIiAjVr1sSPP/5Y4j4cDge6d++OZ555hn29YcOGAK4GVPv164dOnTphwYIFiImJgcViwZIlSwwBbAAwm81sf6RZeTg5ORnPPvssRo4ciapVq1aojNLhcKBZs2aYM2cO+3rt2rXL9fhlNYdFsdvt6N69Oy5cuIC//OUvaNy4MUJDQ/Hbb79h+PDhBkFEWY/L4XDAZDLh888/Z/spr2dzVqxYgUaNGiExMbFc+heKRxyHn9GnTx8sWrQIO3fuRNu2bbXfHx8fj8zMTHTr1q1Yuw8//BBBQUHYtGkTbDabq33JkiXax9ShTp06aN++PbZs2YInnnhCKQ+tW7cuAODw4cNu30jz8/ORmprqOj+n3dGjR10/OQFAQUEBUlNT3aS/8fHx2Lt3L/7whz+UyRPUdevWxb/+9S9kZGS43XX89NNPbmMrT/bv348jR47g3XffxbBhw1ztX3zxRZkeRzVf8fHxICLUq1fP9aWEQ2edbsR//vMfHDt2DC+++KLX7xHKFvlx0M945plnEBoaisceewxnzpwxvH78+HG8/vrryvcPHDgQO3fuxKZNmwyvXbp0CYWFhQCufss0mUyw2+2u19PS0rB+/frSn8QNmDFjBqZMmYKnnnpKadOtWzdYrVa88cYbbt98Fy9ejMuXL6N3794AgNatWyM6OhpvvfUW8vPzXXZLly41yHYHDhyI3377DW+//bbheDk5OcjKytI6j169esFut+PNN990a3/ttddgMplw7733avVXEpzf8ovOEREVu0dKQmhoKAAY5rR///4wm82YNm2a4Q6FiHD+/HkAeut0I5x3xA899JDmWQhlhdxx+Bnx8fFYsWIFBg0ahCZNmrg9Ob5jxw6sXr262BxKEydOxEcffYQ+ffpg+PDhSExMRFZWFvbv3481a9YgLS0NUVFR6N27N+bMmYN77rkHDz30EM6ePYv58+ejfv362LdvX7meY1JSEpKSkoq1iY6OxrPPPotp06bhnnvuQb9+/XD48GEsWLAAd955p+thMIvFghkzZmD06NHo2rUrBg0ahNTUVCxZssTw2/nQoUOxatUqPP7449i8eTPat28Pu92On376CatWrcKmTZvQunVrr8+jb9++6NKlCyZPnoy0tDS0aNEC//znP7FhwwaMGzfOLeBcXjRu3Bjx8fF4+umn8dtvvyEiIgIffvhhqeMmnjh/Epo8eTIGDx4Mi8WCvn37Ij4+HjNmzMCzzz6LtLQ03H///QgPD0dqairWrVuHUaNG4emnn9Zap+Kw2+1YuXIl7r777gqZX0GBb8Rcwo04cuQIjRw5kmJjY8lqtVJ4eDi1b9+e5s2bR7m5uS47TjaakZFBzz77LNWvX5+sVitFRUVRu3btaPbs2W7PPyxevJgaNGhANpuNGjduTEuWLFFKNseMGWMYozeS1aJy3OLgnuMguiq/bdy4MVksFqpevTo98cQTbs8GOFmwYAHVq1ePbDYbtW7dmrZt20ZJSUkGmWd+fj7NnDmTEhISyGazUWRkJCUmJtK0adPo8uXLWudGdHWux48fTzVr1iSLxUINGjSgV155xfWsipPSzGFRODnuwYMHqVu3bhQWFkZRUVE0cuRIl6R2yZIlLrvSru306dOpVq1aFBAQYJDmfvjhh9ShQwcKDQ2l0NBQaty4MY0ZM4YOHz7s1oe366Ri48aNBIDeeOMNr+yF8sFEVIrInCAIgvBfh8Q4BEEQBC3EcQiCIAhaiOMQBEEQtBDHIQiCIGjhU8dRmlKWS5cuNaR2LmucVceWLl1absfQ5WYos+lZdtW5Vt9//32FHP9mmKObDe56i42NRZ8+fSrk+Fu2bIHJZMKWLVsq5HgVxc16XiVyHAcOHMDDDz+MWrVqueokDBkyBAcOHCjr8QmlxG63o2bNmq60EBwLFixgnePBgwcxderUcnXOJcWfx1YRLFiwACaTCW3atGFfL25+VOvtD/jr2IgIy5YtQ6dOnVC5cmWEhISgWbNmePHFF7UfHL0l0NXvfvjhh2S1WqlGjRo0efJk+sc//kHPP/88xcTEkNVqpbVr13rdV0FBAeXk5OgOgYiICgsLKScnx6CXL0uczyAU1cL7Gh3NOxHRP//5TwJAsbGxNGTIENYmISGB7ZN7ZsAbcnNz3Z4XWbJkCQGg7777Tquf4ihubHl5eW6pu29F2rVrR7GxsQSAjh49ani9uPlRrXdxcNdb3bp1qXfv3rpDLxbV2Ox2O+Xk5PgkhXphYSENHDiQAFDHjh3ptddeo4ULF9LDDz9MAQEB1LRpU0pPTy9R35s3by7RNeZrtO44jh8/jqFDhyIuLg779u3DjBkzMGLECEyfPh379u1DXFwchg4desN0zE4PHRgYWOLKXWazGUFBQWWSc+hWZvny5bjjjjswfvx4rF+/vty+HRGRq+KczWZzZUX1BVar1S11961GamoqduzYgTlz5iA6OtqVKbY8cO4XX19vAQEBCAoK8kkK9VmzZmHVqlV4+umnsW3bNowbNw6jRo3CsmXLsH79ehw8eLDYbA63JDpeZvTo0QSAtm3bxr6+detWAkCjR492tTmfVj1w4AAlJydT5cqVqWXLlm6vFSU7O5ueeuopqlq1KoWFhVHfvn3p5MmTBICmTJnisnN+iy369KrzG9D27dvpzjvvJJvNRvXq1aN3333X7Rjnz5+nCRMmUNOmTSk0NJTCw8PpnnvuoT179rjZeXvH4W1/zm8XK1eupBkzZlCtWrXIZrNR165d2W+NCxcupLi4OAoKCqI777xT+ynb7OxsCg8Pp1mzZtHp06cpICCAUlJS3Gzq1q1LANz+S0pKcs2v53/Ob0bOud64cSMlJiaSzWaj1157zfVa0aeOnX1t3bqVRo0aRVWqVKHw8HAaOnQoXbhwwW08nutcdJzOPm80Nm6Ozpw5Q//7v/9L1apVI5vNRs2bN6elS5e62RR9yt0591arlVq3bk3ffvutV3NeEUyfPp0iIyMpLy+PnnjiCWrQoIHb68XNj2q9i75vy5Yt9MQTT1B0dDRVrlzZ7TXuetu0aRO1aNGCbDYbNWnShD788EO38XDXOddncWNTfTNftWoV3XHHHRQUFERVq1alIUOG0MmTJ91snFkJTp48Sffddx+FhoZSVFQUTZgwgQoLC4ud6+zsbIqMjKSGDRtSQUEBa/Poo48SANq5c6dhbm70WeR5Xi+88AIFBgbS2bNnDccZOXIkVapUqcS/0pQlWu77448/RmxsLDp27Mi+3qlTJ8TGxrqK7BTlwQcfRHZ2Nl566SWMHDlSeYzhw4dj3rx56NWrF2bOnIng4GBXQjtvOHbsGB544AF0794dr776KiIjIzF8+HC3+MvPP/+M9evXo0+fPpgzZw4mTpyI/fv3IykpCadOnfL6WCXt729/+xvWrVuHp59+Gs8++yz+/e9/G+oKLF68GKNHj0aNGjUwa9YstG/fHv369WPrOKv46KOPkJmZicGDB6NGjRro3Lmz4dvp3Llzcdttt6Fx48ZYtmwZli1bhsmTJ6NTp06uAkXPPfec6zVnrQngauba5ORkdO/eHa+//jpatmxZ7HjGjh2LQ4cOYerUqRg2bBhSUlJw//33a6cV92ZsRcnJyUHnzp2xbNkyDBkyBK+88goqVaqE4cOHs8kAV6xYgVdeeQWjR4/GjBkzkJaWhv79+6OgoEBrnOVFSkoK+vfvD6vViuTkZBw9ehTfffed6/Xi5ke13kV58skncfDgQbzwwguYNGlSsWM5evQoBg0ahHvvvRcvv/wyAgMD8eCDD5YoO683YyvK0qVLMXDgQJjNZrz88ssYOXIk1q5diw4dOhgSJ9rtdvTs2RNVq1bF7NmzkZSUhFdffRWLFi0qdkxff/01Ll68iIceekiZydmZlfiTTz5xa/fms8iToUOHorCwECtXrnRrz8/Px5o1azBgwAD/qK/urYe5dOmSV2VN+/XrRwDoypUrRHT920ZycrLB1vObyK5du9h6zcOHD/f6jgMed0Rnz54lm81GEyZMcLXl5uYafitNTU0lm81GL774olsbvLjj8LY/57eLJk2auP0G//rrrxMA2r9/PxGVXZnNPn36UPv27d3ez32bKUmMwznXGzduZF/j7jgSExPdYh+zZs0iALRhwwZXm+c6q/osbmyedxxz584lALR8+XJXW35+PrVt25bCwsJce9W53lWrVnW7E9qwYQMBoI8//thwrIrm+++/JxSps+1wOOi2224z1JMvSYzDuU4dOnQwfBMv7noreodx+fJliomJoVatWrnavL3jKG5snt/MnddI06ZN3b6Bf/LJJwSAXnjhBVfbI488QgDcrkUiolatWlFiYqLhWEVx7p1169YpbS5cuEAAqH///q42bz+LuDuptm3bUps2bdyOsXbtWr+KhXh9x+GsSnejsqbO151lUJ08/vjjNzzGxo0bAVz9xlOU4tJve3L77be73RFFR0ejUaNGbnEXm83m+q3Ubrfj/PnzCAsLQ6NGjdiyqTdCt79HH33U7Td453idYyyLMpvnz5/Hpk2bkJyc7GobMGAATCYTVq1apX2OHPXq1UPPnj29th81apRb7MNZj+Ozzz4rk/Go+Oyzz1CjRg23ubBYLPjjH/+IzMxMbN261c1+0KBBiIyMdP3bc318SUpKCqpXr44uXboAuFonY9CgQfjggw/cUuSXhpEjRyqLO3lSs2ZN/M///I/r3xERERg2bBh2796N9PT0MhkPh/MaefLJJ92+gffu3RuNGzdmf/Xw/Azq2LHjDdfUm8891WeeN59FHMOGDcN//vMfHD9+3NWWkpKC2rVr3zCrdEXhteNwTs6NypqqJrpevXo3PMaJEycQEBBgsK1fv763w/SqDKbD4cBrr72GBg0awGazISoqCtHR0di3b59XpTY90e3Pc4zODynnGMuizObKlStRUFCAVq1a4dixYzh27BguXLiANm3alFkw1Zs1LYrn+YSFhSEmJqbcJbUnTpxAgwYNDIFVb0u8eq6Pr7Db7fjggw/QpUsXpKamuta1TZs2OHPmDL788ssyOY7OutavX98QMHcWdCrPdVWVFgauppr3XNOgoCBDyWBvyuN687mn+swraUneQYMGwWazua7Ty5cv45NPPsGQIUP8RgzkteOoVKkSYmJiblirYd++fahVq5arfraT4ODgko1QE2/KYL700kv485//jE6dOmH58uXYtGkTvvjiCyQkJHhVatMT3f7Ko4SoJ85N1759ezRo0MD139dff42dO3eWybfnilpTAGX2bdobKmJ9SsJXX32F06dP44MPPnBb04EDBwJAmX0hKOt1VX3Y+cOa3gjnl4viPvecr91+++1eHfNG+ygyMhJ9+vRxreeaNWuQl5fnqkHjD2gVcurTpw/efvttfP311+jQoYPh9e3btyMtLQ2jR48u0WDq1q0Lh8OB1NRUt2+nx44dK1F/KtasWYMuXbpg8eLFbu2XLl1CVFSUz/srbZlNp1xz7Nixhltbh8OBoUOHYsWKFXj++ecBqC/ssv52c/ToUddPLACQmZmJ06dPo1evXq62yMhIQ2AzPz8fp0+fLvHY6tati3379sHhcLjddVRkideyICUlBdWqVcP8+fMNr61duxbr1q3DW2+9heDg4GLnpyzX9dixYyAitz6PHDkC4OqT5cD1O7ZLly6hcuXKLjvPuwKdsRUtLVz0GnG2ldWadujQAZUrV8aKFSswefJk1hm89957AFCmT9EPGzYM9913H7777jukpKSgVatWSEhIKLP+S4uWqmrixIkIDg7G6NGjXSUhnVy4cAGPP/44QkJCMHHixBINxvl7+YIFC9za582bV6L+VJjNZoPXX716NX777Te/6K+0ZTad31SeeeYZPPDAA27/DRw4EElJSW7fTkNDQ9l+VeVCS8qiRYvclEl///vfUVhY6FZiNT4+Htu2bTO8z/Pbqc7YevXqhfT0dDelSmFhIebNm4ewsDC/+d24OHJycrB27Vr06dPHsKYPPPAAxo4di4yMDHz00UcAip8f1XqXhFOnTmHdunWuf1+5cgXvvfceWrZsiRo1agCAq1Jf0XXNysrCu+++W+KxtW7dGtWqVcNbb72FvLw8V/vnn3+OQ4cOaSkxiyMkJARPP/00Dh8+zCq8Pv30UyxduhQ9e/bE3XffXSbHBIB7770XUVFRmDlzJrZu3epXdxuA5h1HgwYN8O6772LIkCFo1qwZRowYgXr16iEtLQ2LFy/GuXPn8P7775e4pGNiYiIGDBiAuXPn4vz587j77ruxdetW1zeYsvqm1KdPH7z44ot49NFH0a5dO+zfvx8pKSlaJSzLs7/SltlMSUlBy5YtUbt2bfb1fv364amnnsIPP/yAO+64A4mJifj73/+OGTNmoH79+qhWrRq6du2Kli1bwmw2Y+bMmbh8+TJsNhu6du2KatWqlei88vPz8Yc//AEDBw50lYHt0KED+vXr57J57LHH8Pjjj2PAgAHo3r079u7di02bNhnu3HTGNmrUKCxcuBDDhw/Hrl27EBsbizVr1uCbb77B3Llzbyj48Ac++ugjZGRkuM1VUe6++27Xw4CDBg0qdn5U610SGjZsiBEjRuC7775D9erV8c477+DMmTNYsmSJy6ZHjx6oU6cORowYgYkTJ8JsNuOdd95BdHQ0fvnlF7f+vB2bxWLBzJkz8eijjyIpKQnJyck4c+YMXn/9dcTGxmL8+PElOh+OSZMmYffu3Zg5cyZ27tyJAQMGIDg4GF9//TWWL1+OJk2asE6wNFgsFgwePBhvvvkmzGazm7DDLyiJFGvfvn2UnJxMMTExZLFYqEaNGpScnOySkxbFKcX7/fffla8VJSsri8aMGUNVqlShsLAwuv/+++nw4cMEgP72t7+57Ip7IMkTT3lmbm4uTZgwgWJiYig4OJjat29PO3fuNNjpyHG96c8pvVu9erXb+1XHKUmZTaek+f/+7/+UNmlpaQSAxo8fT0RE6enp1Lt3bwoPDzfIfd9++22Ki4sjs9nMPgDIcaMHACMjIyksLIyGDBlC58+fd3uv3W6nv/zlLxQVFUUhISHUs2dPOnbsGFvKVDU21QOAjz76KEVFRZHVaqVmzZoZ5ru4MrdQyIQrir59+1JQUBBlZWUpbYYPH04Wi4XOnTtHROr5Ua13calhbvQAYPPmzV0liD33N9HVfdmmTRuyWq1Up04dmjNnDtunamyqBwBXrlxJrVq1IpvNRlWqVCn2AUBPVDJhDrvdTkuWLKH27dtTREQEBQUFUUJCAk2bNo0yMzMN9t5+FhWXcuTbb78lANSjRw+vxliR3BSlY/fs2YNWrVph+fLlhgflBEEQbkX27t2Lli1b4r333sPQoUN9PRw3/K4ehzPfUVHmzp2LgIAAdOrUyQcjEgRBqHjefvtthIWFoX///r4eigGtGEdFMGvWLOzatQtdunRBYGAgPv/8c3z++ecYNWqU8jd7QRCEW4WPP/4YBw8exKJFizB27FiX0MGf8Lufqr744gtMmzYNBw8eRGZmJurUqYOhQ4di8uTJylwxgiAItwqxsbE4c+YMevbsiWXLlvmleMPvHIcgCILg3/hdjEMQBEHwb8RxCIIgCFr4JGjgcDhw6tQphIeH+03SLuHWhIiQkZGBmjVr+qR6HIfsf6EiKY9rwCeO49SpU6KQEiqUX3/9FbfddpuvhwFA9r/gG8ryGvCJ43CqBB4f8yfYbDa31ziHGKD4VuZwGOP6hUwbAHBdqPpVfQlU2bNjYzQHOjIEcwB/LNX52e3G9kCz9+enTArMzhtvqhgaApk32BXG3Byp9BuWQONm8TTNy8vD/Hn+lVbEOZYfj6QhPNw9izS3Zsq9wKx5fiG/kNyaB5r5b5+q9VWNg4NbX9X+4NbXZuEzy+YW8Bl18wuM5x1k5fvgTqOAmUtAMW+a12YQcy55ivPgtjr3OQcAwTZjv5xpRsYVNIqrU6bXgE8ch/P23GazlbnjMN/ijkN1fuI41O8Hyj7Tb2lwjiU8PMJQfqC0jiNPw3FYbkLHYVV84OYxjiP4FnEcqmslxEvH4aQsrwH/+NFXEARBuGkQxyEIgiBo4dNHsQMCjD9NcbeMzC8SAADurkx1G8n95KK6BTRr3NKpflO2MoPOUdyecreyyp9cFOPgjqdzZ2pSzDHXh2psASbvf37SGZvOT3ye/frRL1QGAs0mw09T2fnGPWJTXADctKhsuXlQ/ayl7sPYSWZuIWsbyvyMciWrgLEEKoVYDG2qa1O1nGFBxo8ynZ/WVHuX/VlX+ZMs387+pK4Ym+q8vYXrV2cevEXuOARBEAQtxHEIgiAIWojjEARBELQQxyEIgiBo4ds85QRDhM/CBXJUsR0mjhSgCARxAVaFjF35TIMdxhe4oDTAB811nhtRBcm450MAPgBWYFdo+pkJVWUi4LpQCRBIMW/EhnG9x6x4HoV7jsFzLksbbCxPiIz7MpgRSqgC/Ny5qZ7d4aZBFQRXPdOQX2gMhHNBaQDIyDEGwlVBWq5ZJTpRPSthsxg7yc7jA/dckN+iscc4MQsAFBQqnrEqZQJym4VfJ+7ZFe7zTzWXpUHuOARBEAQtxHEIgiAIWojjEARBELQQxyEIgiBoIY5DEARB0MKnqio7kXeKA5VJKVJRAMVk3VV0zCqXFIoFVt2izA5qbNNVA3FqK1X2Ux3sjKzKoZsdV6FY4eBUMw6FyodTW3kq4kopaClXCuwOpfLNG/hULvwJc8olnay7AJ+NOEuRcoTLTKtaC65dVwlUyMxjiM37jzdVBmZOuVQYwI9Ndc1yqihVploubTw3BlW/nCKuPJSFcschCIIgaCGOQxAEQdBCHIcgCIKghTgOQRAEQQufBse5lAtcwE6npoIqDsTV2FAFJpWpQZhUHZZA3pbrWxWMzCs0BsSUtaMV+Ve4Uh+qdChasTIuVYvCVLVO3Fyo5phLZ6LI5MAGcT0D8apUKv6Aw0GGwCVXMlWnnIIqJYc10NhvliIlhyqlDBfQDVWkHOHSfaj242UmPYmqzodq33B1TFTpUHSCxVzM3GZsAqDe/znM2FT13rk0MLmKXD65XJ11JmCuSqdSGvz4shIEQRD8EXEcgiAIghbiOARBEAQtxHEIgiAIWojjEARBELTwqarKZDIqEbjUGYEmlTqIkTwoBBN5bGEl3laVcoGYQk6qjBHBVuOYVQWiOLWVSoGlKhbDKV5UyixOVKJS0nBzbM/nbVVj5tQmquJM3PFUahVuzJ5zrJpzfyAgwGSYMy51Bqe0Anh1kCqtxxVGuaRac06tAwAORh2kKvpUJdRiaFNdV5ySKF+hwMrOY+SDAAICjHOkUmZx86YqasXZqq4rlWqMm+ZgKz/33PFUn1MWRkHFzbFq3kuD3HEIgiAIWojjEARBELQQxyEIgiBoIY5DEARB0MKnwfEAk8mQQsBRytzxpIiOcwEmVRBQ9Yg+F4A2B6iOx/ShqJXgYNKIBCpyZViD2Gb2XFTBz2AmiKeadm49VMFqVToUbk1UaR906qZwgWRVnQN/JNAcYEg9wdV30TkjVjACfi9cyjYGzAEghKmlAajFD+zxmJQapEidwV2yQQpBQLgijQh3LlaNPlSpWrj1CFDMg7K+D7MmKlEB17UqPUkuI1bQWaPSIHccgiAIghbiOARBEAQtxHEIgiAIWojjEARBELQQxyEIgiBo4VNVFQenCijUyBuhUhVwXSQkJLC28U2ase1pZ88Z2mqH82VdDh86YGgryM1mbc+fv2BoC1CsjEqNxKU7UKmqOOGNSs1mYRQdyvVQpUYoZTUl1Tlz6hZPBYtKZecPEBHIY7zcOuZyVboUqFJncCoelQLtp/QMvv2Csf0PcdVYW+46jAg2piEBADOzvqq9q0r3wRVtUimzuO2kSssRYjP2q1oPlaAv1Grsw3Pdr/fhfeogz6JlAH+tqJR2pUHuOARBEAQtxHEIgiAIWojjEARBELQQxyEIgiBoIY5DEARB0MKnqiqCMU0Np8ZwKEQlnIpBmX+K6Te66V2s7VnwCaGyrEYF1Xc/HWVt/3fwUEPb+98cZ20H3xtsaOPUHABwWZFfiMu1Ex1uZW13n7pkaIuLDGNtubw+P6als7YnD+1m20+fPmVoUyk9uHxXKlu2AJbH+81+nLuK2/8WRhWlyqPECY9U+aeCGYXRkl2/sLY/pF1i2w8dMaoKx381m7X9Zt1Lhrbkv3/J2n7+dJKhLUqhVjx9KZdt567722uFs7aLv00ztHWPr87axlQ2fhb8J9WoggSAzg2j2XYOpVKQWdMCRbU4TkHH5cvilJGlRe44BEEQBC3EcQiCIAhaiOMQBEEQtBDHIQiCIGjh0+C42WTyKnipyljBBVJVKUfymQDT73u2s7bVa9Rg221nzhraLGF8AO7HH/cb2no1q8va1r/NGFQ7d+Eia2uNMAbSAT6AnHoph7VtFhdpaDt54RJr27hWLUNbndq1Wdt1mXyqipO//WZoUxW94ZpVa8oFGD33RCnrgpUrVnMArF4ELlWFxbg55FKWAEBWXqGh7c8d4/kDduKb85gA9P7HeIEJlw5j2ei2rG3NSOOezmbGC6iD/5yAYOZXx1jbdrUrG9q+/Nl4bQNAckvjXlcFwfecuMS2J9wWYWhTFWfi0uio0sjkMalIuM9TVSC+NMgdhyAIgqCFOA5BEARBC3EcgiAIghbiOARBEAQtxHEIgiAIWvhUVWUyGVU0nAJAVYfEQUZVgUqlwglz0tJSWdvUVL6dLzLFD+7EwT2GttAQXhFVrbox3cHZM3xaj2rVY9h2NlWFIlXB/nyjMiXjMq/iihz8qKGtYc2qrK25kC9UxcGpfAC++A6n0AEA7uw8C+SoCub4AwEBJoOKhivaoyqyVWA35uIJU6Sq4QojKedVMWWVQoyFmFrHGhV6AIy5VIo5Xm6+8TyCrXwRpsY1eRVjKHPeLepUYm0LmDnuUD+Ktf3ipzOGtnb1+P3fpJZRPaXi7JU8tr0yM8dBFv4zzVsFlWr/lAa54xAEQRC0EMchCIIgaCGOQxAEQdBCHIcgCIKghU+D4/mFDpjM7oEq7pF7ndz1KrjAtqpfkyIdBmevGgPXdUYWHzzOZILxl7L41ArpF/i0HlyqCVWAkQtc3n777axpXHVj8PNfe/kaJAcP/si2c/PGBfMBPuWIKr7N2XruH7MiIOsPZOYUwGRxX2duXrjUEgAf8FaFQbn9wQXiAf4aVNlzYwCAQrtxJKpaOVwXh37j97lNESjm6sZUCePr0ZgZAYbqs6B1beP+X7HnJGs74i4+pVAOE/wPtfHXJjcXqv3PrRMnQMhTzFlpkDsOQRAEQQtxHIIgCIIW4jgEQRAELcRxCIIgCFqI4xAEQRC08LuUI5wsRKWM0fF6uflGRYeqQJQqTQWnUuIUE4Ceiisrz9gHV3jq6tj4QVuZlVQVSwoJDTW0tevSg7XNYZQwFw/vZm2zs/nCUToJD7j0COZAhTKK6bigkIr9tz/BpRzhzkmlJOJSTqg0ZBcYlZ4qBYhKxRMZakyHcVGh/uNUXHkF/LXye0a+oS1DkZLG7uDVSJyqSlUsidtjR9MzWVtuKh5uxRcyU2X20NmBnBrNZvFeusl9lmQzbaVF7jgEQRAELcRxCIIgCFqI4xAEQRC0EMchCIIgaOHT4LjFHACLRwBLpx5HIfMCV6MDACxMgJULRAHF1A1ggnuqADSXDsChOBEuzYCqXy7ormpX1QppcUeioS06kq8lkJeba2i7ePE8a6sYMvvtxK6YCxOjWFDNG3c4QyDZ4b/fjUJsgYY6Ejr1OHILjftRteZcigtO+ACo6z9cyjYGwlX7kbuGCuwKWy51hqJfLugO8KlauOsV4AUt0RE21pYbhkqsoIITMajELxamb1VdHW6GIoKZj/SCsv+Y99+rShAEQfBLxHEIgiAIWojjEARBELQQxyEIgiBoIY5DEARB0MKnqioHkUExwyloHLyogFVKOcj7wj0mE69AUaUOCGQUP0olEfNCgaLfICaViUpJFKIoAMOpTWLr8oVlQuo1N7SpiuysXb3S0Pb72d9ZWyXMHFkV6SC40zYpEmk4mGQO3uwnf6HQ7jAoZjgFTYFC/ccppVSqKg5VETJVapwgpgCSjsovm3iVU2UmlUmBQkkUpVA/6aQcmfe1sXDagIQY1rZ2lWBDm0rxqFT/MebceAF+7lWF5bjjce9XrWdpkDsOQRAEQQtxHIIgCIIW4jgEQRAELcRxCIIgCFqI4xAEQRC08KmqisioouGUS4VQ5Woxqg0CFEoprpoKd6yrffBdcPmnCpjcQgAQwOTq4d4P8KoHWyCvnuKULQCvsIioxhecyWHELRu/3cfa/nrypKGNFKVpVOofNteSYpk4NY4q5xCHbh4hX2J3kGHt+fXlz59T2yhSObFqNdVeUuWJ4vJBZeXyBZcCGaWgKgdcPlNsKyLYqLQCgMohfDunRjtw8hJreybTmHPro5/SWdsx7eoZ2lTqqWxFUTfuM0Il9uPUkZeZHGEq2FxV5cDNc5UJgiAIfoE4DkEQBEELcRyCIAiCFuI4BEEQBC18Ghw3mYyP43OBJ1XKCa4YkMoTcoFpla0qcMWmw1CkA+AC3lxBFwAwM0FDs0UvrYGDOZvcSjV420xjcabLR35gbfPyjcFPlXhABReEVaVB4OZTVbyHmwvPdBCq9BD+gDnAZBADcClDVOfApeVQ7TEusB2o2kuK/c+tmUrwkccEhFVpZjyLuQFAZChvq9o3mUyQ/oMDfMD71IVsQ9u07g1YWy7grRIPqIgMtRrauPkB+PkMU6QnYdefeb8qLUxpkDsOQRAEQQtxHIIgCIIW4jgEQRAELcRxCIIgCFqI4xAEQRC08KmqKsBkMihGOFWJKlWBTtEnpVRKw5Q7no6tSt1QyKTqCDDpqUriWyQa2nq0aMjabvp2r6HtJJNaBOCLZanShWh9C1EIPVhRkOJ4nALLcy65ufUXOFVVAVNQK0iRRoXbC6rzNSkKI3GoVFWcike1/7kUICp1XA5zzirlUr5CjbTr5EVD25BmfHGmf/5sLESmuja5FDZK1SXfzKIS+3HjUF3zfHoe4/yoirSVBrnjEARBELQQxyEIgiBoIY5DEARB0EIchyAIgqCFT4PjXD0CrkSGKs0GmwJBI8VEAVMHAFAEhAEUMvaqw7HxLEWQiwv+q1KZxMXHs+1hcS0NbVYTXyshN9VYe0N1Hly6F1LUPAlQRLyJEwooDuhNGpHi+vWsg2JXCCv8gfxChyHYa2HGqwqOcmkruPQdKrLy+PoRoTa+Tkcuk35Dp8YMFIHtYCYArQpW5yhqXiza8YuhbeHAFqztnzoaryGdFDiqMLhqn3J9q9aJExWo5sLETKeFmcsCpjZKaZE7DkEQBEELcRyCIAiCFuI4BEEQBC3EcQiCIAhaiOMQBEEQtPCpqopNucCoClRqBU7xoFIgZOUZFUZqW179YWNSJqjUSIXMY/5mhZKCG0dISDBr26VbT7Y9KCzC0HYi9Rhrm/aLUYGiStViYhRUqtQRXLoYQKFYUSjluLkg8IPjxuy5oVVqGX/AGhhgmEtONaTap1y7am3OXjYW71LaXslj2yOCLYY2VY2gyznG602lJOLGobquLmbls+0TO9c3tIUz4wWA3ALjHKtStXDnp9MvwKdJUaUt4T5j7MTvf27M3KeGKk1LaZA7DkEQBEELcRyCIAiCFuI4BEEQBC3EcQiCIAha+DQ47iBSphMpiipwparTwcEGXRWH5tI+AHyKB2VtCsYlq1KZmJjaG/0HPsTaRkdVZdsvXDhvaNu6ZTNry82nah242LIqzQSXLgHgA9RWRaCUSyMSqLC1M5PvKaTQSUFT0XApd7hVUNVT4Op0cPMH8AFoVamSEEWKiis5Bczx+D64a0iVyoTr4/cMPggeYuM/soKZMauC/xm5xsC9XbF3OcGHRdEvl5IF4D83whTnwV0rQYr1KGByjnCfcypxRWmQOw5BEARBC3EcgiAIghbiOARBEAQtxHEIgiAIWojjEARBELTwqarKdO3/ucMoZRTuTUcxw6kVAhUdFyryb3BKIJVggRObqMZbtWoVQ1uDerVZ20tZRmULAGzf8i9D25nfz7G23DBUhZW4YjGkSOOhOr9ArlCPwpabe1JI18pDLVKRmEwmQ9oc7oxU6kEuhYeqABin7AmyKAo2KVJnhDJKoEDFGnAqPZU6jlOCVYuwsbapZ7PY9pjIIENbNpNmCOCv2QCFUsrESM/sSpUn3wenilKpCrm5VynlVOquikDuOARBEAQtxHEIgiAIWojjEARBELQQxyEIgiBoIY5DEARB0MKnqio7EeweigFO/WQL5NUfnK2qcE+I1XiqqgInKsUDa60Q9lgYxValSpVY24HJQwxtZ5jCOwCw59/b2PajR44ah6ZQ2HAqDRujfAL4YkmqOVblu+JyBqlsOWWWqsgUt0ye/XqTC81XFNgdhsJl3J5UFQ7ibNl8agCiw40qJS5nE1BMHiVmLlXCxlDmelOpg64wRZ/SfufVU81q89cQW0RM8bWYG0ZEMH/OXF431RyrrouwICvTL98HpxQsUKi4bEzuO24eyqOYmdxxCIIgCFqI4xAEQRC0EMchCIIgaCGOQxAEQdDCp8HxwACTIWVBgIYvK23RElUqEy6VA8AHylTH49JkNExowdsGhng9htS0VLadS3LiUATFuEB4QaH3ATSlAEFRqIebN9Xcc4FLnTm+mQiymA1pP1SpWDg40YGqeBE3U6pUJlxqEQDIYQoV2RTH40QJpy/ygo9zTNEmVdEntajC2Jav2NNcIDwrj0+zwqES1USFG4PgAD9vqmJx3Omp1pSbC06AoBIllAa54xAEQRC0EMchCIIgaCGOQxAEQdBCHIcgCIKghTgOQRAEQQufqqoK7QSzh+KGU3pkM6oEAAhhCqSoFD+5BUYlhErZwKmAAF7dozpe3bp1DG1JHdqxtgVk9N8qVZVKSMSNWdkH26336VdUKieVikuloGJh1TH82CxMyoWbKeVIbr4dVo+9zSnezmcaVUcAEMWkEclTFGG6zKT1CFakmeFUQACv7lGl3+C2SGQorzri1jdEoexSLSdXAEmlDuO6UCmPuD5USjLV54bqc4aFMc1UpIbhlGc6aZhKg9xxCIIgCFqI4xAEQRC0EMchCIIgaCGOQxAEQdDCp8Fxk8mYz58LMKnqY3BBc1XgVieQrltvgqNOnbqGtpXfn2Ztz/9+2dDWIaEya5tfwAdK+aAYH+T0THMBqGuesGk9FNMQoJh7LvipSqPA1Sl4/oUprO1fp08ztHmKK3RS0FQ0AQEmw5xxIg5VfYxzGXmGNtW8Vg0zBqYLFIFtnXoTqqAyJ8zoNnsra3v0wC+Gtref7c7a9kuoybZzNSsuZhewtpEhxvomqponbAoP1hKwKOY+I8c4jrAgfk259ecC/wC/t4MYwYNqT5QGueMQBEEQtBDHIQiCIGghjkMQBEHQQhyHIAiCoIU4DkEQBEELn6qqiIwpBLg6NiplTKDZqARSpb3QUUSpUmRwiodQRq0F8GkbBrS/jbU9nW7sY92qFaztxSuZbHsAM3GqlCPcHKumx8TkQDCZ9FIYcGlkVOvB2c7864usLacW8VTlOXiBkF/gcJBhv3Jb3cao4AAgiNl7KqUUq4hSjEtV4Okyo1KKZtKeAMDZK0bF1/uj7mZtHdTG0HZblWDWVpV+xbMgHKBOOaK1/xljjUw+AIBgDUUnp4qyBfKpWrh1ymM+o1SpUEqD3HEIgiAIWojjEARBELQQxyEIgiBoIY5DEARB0MKnwfGAAGMgmosZqQJXbDoMRYYJLmiuCroT8e3hTJoAVTD+m2+2G9r2fL+TtS1g0myYuQge1KlBuIA+F9gG+PnkxgDwAXZlPQ4NAYLKlAvyK9eU6cQz6FgetQjKikCzyRDgLGTGqyP4UGwbNmiuSkXhUOz/mMpBhjadGhS1qoSytll5xnoT7D4AUEmRGoQLFHOBbYDfe6oaJFxgWyddjgrVvgxkrjfVmnJ9cOliVPVsSoPccQiCIAhaiOMQBEEQtBDHIQiCIGghjkMQBEHQwifBcWeO+7w849OlXMxIFShmg+MKuECSOjjO98HZqwKXeUwO/UDwATid4Lgq1qsTHPd2DADg0AjWlVtwXNUHs/4Fhe5t+df2mKpuhC9wjiUj44rhNS44rqpHozPfOjVRVHuMC3irguMZ2cYnvINM/FPf2UxwXJX1QB1U9j44zrWqguMFTHBc9blRXsFxFdyezs4znkdGRobSvqT4xHE4T2TBvNd9cXjhv5CMjAxUqlTJ18MAcH3/N443FvsShPKiLK8BE/ngq5jD4cCpU6cQHh6u/FYgCGUBESEjIwM1a9ZEgCoJWQUj+1+oSMrjGvCJ4xAEQRBuXvzjK5ggCIJw0yCOQxAEQdBCHIcgCIKghTgOQRAEQQtxHIIgCIIW4jgEQRAELXyWVj03Nxf5+fyTpIJQllitVgQFGVOC+xLZ/0JFUtbXgE8cR25uLurVq4f09HRfHF74L6NGjRpITU31G+ch+1+oaMr6GvCJ48jPz0d6ejqOp/6CiIiIqzmHrv5/Vw4jAl3/+9pruNZGV/+8Zu98xfl/3NuoSJvzScerfVw/pltbkffRtRbnez3f58wV5LjWgVub2/uvtjvH4qBrfZLT7vo5ut5HV/ulIrausZBxTJ52jmt/OKjonJHxvMg5Rx59UNH5V7xWdH2cc05k/JuKb2fb6FreH3IUWUTn33T9b6ctca8DeTlZmP3cI8jPz/cbx+Hc/0d+/gXh4RHX9wOKrJfbetLV/FHX1tNxbb0cBDjgXOeie8KjD6Zft33mmvfr9naQ61hOWzsRHA7neK7+2/l+u/N9RK78bfYiNna69h7H9XOwOwh2x7W/r71GBNgd1+yB6687rvbrwNX8cHbH1f1y9XVynb+r/do46Np7nW3kuHo+DodzbNf6dbj/jWs2rnbnuToc1/u1E8jhbHf+TXCQ4/rfVyfs2vuu/42i/Raxdf5NDgfgsF/dxw77tcWxX//bYb/+ut3TtogNOYCCXKQffLdMrwGfVgCMiIgoc8fh2eb24Yei/V0/Jtdm+IC91uYoYlMSx0EocpG7LsqiF3iR15zjcF3opXMcRT+I3B1Bkbn1dA6ex/T4XxQZ440cRMkdh8oxOD/tbvC6nxIeEYGIYhzH9bUrxnG41lntJLg2znEU7cP5Qe88RlHH4fDCcTj/djkOx3XHYSe143DZOIyOw9mmchwOByHgWnsAXXccnm1OW5OHs3D/GzAVsTG52hyuv2G//j4UcRwo4gCuedqr/1vkb7o62TBdcyKef8PgOBxFnAW5Ow6TnbcxXW0jh1QAFARBEHyMOA5BEARBC3EcgiAIghbiOARBEAQtfBocv3LlagW0sgyOw6PNLcCLov1dP6ZbW5H3ccHxou8TVVWRufMMchf9m4pvZ9vKSlWVm83uPX8g48qVGwe26QbBcZChD1FV3TyqqqsKKuf/lpOqyl72zwv5rHRsWFgY4uvV8cXhhf8ywsLCXA7KH3Du/4Zxsv+FiqGsrwGfOA6TyYTMzEz8+uuviIiI8MUQbjquXLmC2rVry5xp4pw3f6q0J/u/ZMg1UDLK4xrwi+c4BO+RObt1kLUsGTJvvkeC44IgCIIW4jgEQRAELXziOGw2G6ZMmQKbzeaLw9+UyJyVDH+cN38c082AzFvJKI95M5E/yU0EQRAEv0d+qhIEQRC0EMchCIIgaCGOQxAEQdBCHIcgCIKghTgOQRAEQYtycxzz589HbGwsgoKC0KZNG3z77bfF2q9evRqNGzdGUFAQmjVrhs8++6y8hua36MzZ0qVLYTKZ3P7zl9KoFcm2bdvQt29f1KxZEyaTCevXr7/he7Zs2YI77rgDNpsN9evXx9KlS8t8XLL/S4ZcA3r4av+Xi+NYuXIl/vznP2PKlCn44Ycf0KJFC/Ts2RNnz55l7Xfs2IHk5GSMGDECu3fvxv3334/7778fP/74Y3kMzy/RnTPgauqF06dPu/47ceJEBY7YP8jKykKLFi0wf/58r+xTU1PRu3dvdOnSBXv27MG4cePw2GOPYdOmTWU2Jtn/JUOuAX18tv+pHLjrrrtozJgxrn/b7XaqWbMmvfzyy6z9wIEDqXfv3m5tbdq0odGjR5fH8PwS3TlbsmQJVapUqYJGd3MAgNatW1eszTPPPEMJCQlubYMGDaKePXuW2Thk/5cMuQZKR0Xu/zK/48jPz8euXbvQrVs3V1tAQAC6deuGnTt3su/ZuXOnmz0A9OzZU2l/q1GSOQOAzMxM1K1bF7Vr18Z9992HAwcOVMRwb2rKe6/J/i8Zcg1UDGW118rccZw7dw52ux3Vq1d3a69evTrS09PZ96Snp2vZ32qUZM4aNWqEd955Bxs2bMDy5cvhcDjQrl07nDx5siKGfNOi2mtXrlxBTk5OqfuX/V8y5BqoGMpq//s0rbpQctq2bYu2bdu6/t2uXTs0adIECxcuxPTp0304MkGoGOQa8B1lfscRFRUFs9mMM2fOuLWfOXMGNWrUYN9To0YNLftbjZLMmScWiwWtWrXCsWPHymOItwyqvRYREYHg4OBS9y/7v2TINVAxlNX+L3PHYbVakZiYiC+//NLV5nA48OWXX7p9OyhK27Zt3ewB4IsvvlDa32qUZM48sdvt2L9/P2JiYsprmLcE5b3XZP+XDLkGKoYy22u6kXtv+OCDD8hms9HSpUvp4MGDNGrUKKpcuTKlp6cTEdHQoUNp0qRJLvtvvvmGAgMDafbs2XTo0CGaMmUKWSwW2r9/f3kMzy/RnbNp06bRpk2b6Pjx47Rr1y4aPHgwBQUF0YEDB3x1Cj4hIyODdu/eTbt37yYANGfOHNq9ezedOHGCiIgmTZpEQ4cOddn//PPPFBISQhMnTqRDhw7R/PnzyWw208aNG8tsTLL/S4ZcA/r4av+Xi+MgIpo3bx7VqVOHrFYr3XXXXfTvf//b9VpSUhI98sgjbvarVq2ihg0bktVqpYSEBPr000/La2h+i86cjRs3zmVbvXp16tWrF/3www8+GLVv2bx5MwEw/Oecq0ceeYSSkpIM72nZsiVZrVaKi4ujJUuWlPm4ZP+XDLkG9PDV/pd6HIIgCIIWkqtKEARB0EIchyAIgqCFOA5BEARBC3EcgiAIghbiOARBEAQtxHEIgiAIWojjEARBELQQxyEIgiBoIY5DEARB0EIchyAIgqCFOA5BEARBi/8HnOzvukvPh5MAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "3a141027", + "metadata": {}, + "outputs": [], "source": [ "visualize_integrated_gradients(test_dataset[0], model_clean, \"Clean Model on Clean 7\")\n", "visualize_integrated_gradients(tainted_test_dataset[0], model_clean, \"Clean Model on Tainted 7\")" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "09f0b17b", "metadata": {}, "source": [ "

\n", - " Task 4.1: Interpereting the Clean Model's Attention on 7s

\n", + " Task 4.1: Interpreting the Clean Model's Attention on 7s

\n", "Where did the clean model focus its attention for the clean and tainted 7s? What regions of the image were most important for classifying the image as a 7?\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "43a466fa", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**4.1 Answer:**\n", "\n", - "Your answer here!" + "The clean model focus its attention to the 7 itself. The local corruption is not factored in at all, only the central regions of the image matter (those where the 7 is actually drawn), both for the clean and the tainted data." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "53e3d16c", "metadata": { "tags": [ "solution" @@ -1484,12 +1360,12 @@ "**4.1 Answer from 2023 Students:**\n", "\n", "The network looks at the center of the 7s, same for clean and tainted 7s.\n", - "It looks like a 7, it is a 7. :)\n" + "It looks like a 7, it is a 7. :)" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "e886ceb9", "metadata": {}, "source": [ "Now let's look at the attention of the tainted model!" @@ -1497,61 +1373,43 @@ }, { "cell_type": "code", - "execution_count": 30, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAECCAYAAADpdjDfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwy0lEQVR4nO3deXwT1d4/8E+6JC1dWAulCm1Zi1UoFkUWqSCLl/0BBUpl8UFABP2BgFfFK6B4FVRAVoVHFqEgoKwuLFfZRUVEQfAChRZBKAhoaUtpIfn+/oCEpJm0OWnSpPB5vy7X9OTMmTNnZvKdyTmZoxMRARERkZP8vF0BIiIqWxg4iIhICQMHEREpYeAgIiIlDBxERKSEgYOIiJQwcBARkRIGDiIiUsLAQUREShg4yrhHHnkEjzzyiLerYUen02HChAneroZDJWm3mJgYDBw40K318bYJEyZAp9N5uxp2fPX4vtMxcHiBTqdz6t+2bds8Wo9ly5Zh+vTpHl1HUTIyMizbOmnSJM08KSkp0Ol0CA0NLeXa+b5HHnnEqePI0wH822+/xYQJE/D33397dD2OWB9HWv8GDx7slXrdzgK8XYE70ZIlS2z+/vjjj7Flyxa79AYNGhRb1ubNm12ux7Jly/Drr79i5MiRLpfhDkFBQVi+fDleffVVm/Tc3FysW7cOQUFBXqqZbxs3bhyefvppy9979+7FjBkz8Morr9gcOw0bNiy2rFdffRUvvfSSS/X49ttvMXHiRAwcOBAVKlRwqYySiIiIsDt3AGDjxo1ITU1F+/btS71OtzsGDi948sknbf7+7rvvsGXLFrt0Z+j1endVy2s6duyI1atX45dffkGjRo0s6evWrUNBQQEee+wxfPPNN16soW9q166dzd9BQUGYMWMG2rVrp/z1TkBAAAICyubHQUhIiOa5s2jRIoSHh6NLly5eqNXtjV9V+aiFCxeiTZs2qFq1KgwGA+655x7MnTvXLl/h74C3bdsGnU6HlStX4s0338Tdd9+NoKAgPProo0hLS7NZ7osvvsDJkyctt/QxMTGW9/Pz8zF+/HjUqVMHBoMBNWrUwIsvvoj8/Hyb9efn52PUqFGIiIhAWFgYunbtitOnTytta7NmzRAbG4tly5bZpKempuKxxx5DpUqVNJebM2cO4uPjYTAYEBUVheHDh2t+XTJv3jzUrl0bwcHBePDBB7Fz507N8pzdZmfl5uZi9OjRqFGjBgwGA+rXr493330XhR9IrdPpMGLECKxduxb33nsvDAYD4uPjsXHjRpfWa23nzp144oknULNmTcs2jRo1Cnl5eTb5tPo4nKnXhAkTMHbsWABAbGys5VjKyMiw5Fm6dCkSExMRHByMSpUqoU+fPjh16pRdXZ3dT844e/Ystm7dih49evCO1QPK5iXGHWDu3LmIj49H165dERAQgA0bNuDZZ5+FyWTC8OHDi13+7bffhp+fH8aMGYOsrCxMmTIFKSkp+P777wHc+JojKysLp0+fxrRp0wDA0o9gMpnQtWtX7Nq1C0OGDEGDBg1w8OBBTJs2DUePHsXatWst63n66aexdOlS9O3bF82bN8c333yDTp06KW9vcnIyli5dirfffhs6nQ4XLlzA5s2bsWTJEs0P0AkTJmDixIlo27Ythg0bhiNHjmDu3LnYu3cvdu/ejcDAQADARx99hKFDh6J58+YYOXIkTpw4ga5du6JSpUqoUaOGpTyVbXaGiKBr167YunUrBg0ahISEBGzatAljx47FH3/8YWlzs127dmH16tV49tlnERYWhhkzZqBnz574/fffUblyZeX2NFu1ahWuXLmCYcOGoXLlyvjhhx8wc+ZMnD59GqtWrSp2+eLq1aNHDxw9ehTLly/HtGnTUKVKFQA3vj4CgDfffBP/+te/0KtXLzz99NP4888/MXPmTLRq1Qr79++3fLXl7H5y1ieffAKTyYSUlBTlZckJQl43fPhwKbwrrly5YpevQ4cOUqtWLZu0pKQkSUpKsvy9detWASANGjSQ/Px8S/r7778vAOTgwYOWtE6dOkl0dLTdepYsWSJ+fn6yc+dOm/QPPvhAAMju3btFROTnn38WAPLss8/a5Ovbt68AkPHjxxe53enp6QJA3nnnHfn1118FgGWds2fPltDQUMnNzZUBAwZISEiIZbnz58+LXq+X9u3bi9FotKTPmjVLAMiCBQtERKSgoECqVq0qCQkJNm0xb948AWDTbs5us4hIdHS0DBgwoMhtW7t2rQCQSZMm2aQ//vjjotPpJC0tzZIGQPR6vU3aL7/8IgBk5syZRa7H2qpVqwSAbN261ZKmdRy99dZbotPp5OTJk5a08ePH2x2DztbrnXfeEQCSnp5us3xGRob4+/vLm2++aZN+8OBBCQgIsKSr7CdnJSYmSvXq1W2OD3IfflXlo4KDgy2vs7KycOHCBSQlJeHEiRPIysoqdvmnnnrKpv/j4YcfBgCcOHGi2GVXrVqFBg0aIC4uDhcuXLD8a9OmDQBg69atAIAvv/wSAPD888/bLO9KZ3t8fDwaNmyI5cuXA7jRcd+tWzeUK1fOLu9//vMfFBQUYOTIkfDzu3UIDx48GOHh4fjiiy8AAD/++CPOnz+PZ555xqYtBg4ciPLly7u0zc768ssv4e/vb9c2o0ePhojgq6++sklv27Ytateubfm7YcOGCA8Pd2p/FcX6OMrNzcWFCxfQvHlziAj2799f7PIlqdfq1athMpnQq1cvmzaNjIxE3bp1LW2qsp+ccfToUezbtw99+vSxOT7IffhVlY/avXs3xo8fjz179uDKlSs272VlZRV7QtWsWdPm74oVKwIA/vrrr2LXfezYMfz222+WrxsKO3/+PADg5MmT8PPzs/lgAYD69esXuw4tffv2xXvvvYdRo0bh22+/xSuvvKKZ7+TJk5rr0ev1qFWrluV983/r1q1rky8wMBC1atWySXN2m5118uRJREVFISwszCbdPNrJXDezwvsLuLHPnNlfRfn999/x2muvYf369XZlOXMBUpJ6HTt2DCJi1/5m5q8TVfaTM1JTUwGAX1N5EAOHDzp+/DgeffRRxMXFYerUqahRowb0ej2+/PJLTJs2DSaTqdgy/P39NdPFiZmCTSYT7rvvPkydOlXzfVe+c3ZGcnIyXn75ZQwePBiVK1cu1WGU3tpms5LsL0eMRiPatWuHS5cu4Z///Cfi4uIQEhKCP/74AwMHDiyV40in0+Grr77SLMdTv81ZtmwZ6tevj8TERI+UTwwcPmnDhg3Iz8/H+vXrba74VL8uKY6jXwrXrl0bv/zyCx599NEif00cHR0Nk8mE48eP21z9HzlyxKX61KxZEy1atMC2bdswbNgwh8NDo6OjLeuxviItKChAeno62rZta5Pv2LFjlq+cAODatWtIT0+3Gfrr7DY7Kzo6Gv/5z3+QnZ1tc9fx3//+16ZunnTw4EEcPXoUixcvRv/+/S3pW7Zscet6ijqORASxsbGoV6+ew+VV9lNxvv/+e6SlpeH11193ehlSxy8AfZD56sz6qi4rKwsLFy5063pCQkI0v67o1asX/vjjD8yfP9/uvby8POTm5gIA/vGPfwAAZsyYYZOnJL9GnzRpEsaPH4/nnnvOYZ62bdtCr9djxowZNm300UcfISsryzKqq0mTJoiIiMAHH3yAgoICS75FixbZDdt1dpud1bFjRxiNRsyaNcsmfdq0adDpdJa28ySt40hE8P7777t1PSEhIQBg16Y9evSAv78/Jk6caHeHIiK4ePEiALX9VBzzkO6+ffsqbgWp4B2HD2rfvj30ej26dOmCoUOHIicnB/Pnz0fVqlVx9uxZt60nMTERK1aswAsvvIAHHngAoaGh6NKlC/r164eVK1fimWeewdatW9GiRQsYjUb897//xcqVK7Fp0yY0adIECQkJSE5Oxpw5c5CVlYXmzZvj66+/tvm9iKqkpCQkJSUVmSciIgIvv/wyJk6ciMceewxdu3bFkSNHMGfOHDzwwAOWH4MFBgZi0qRJGDp0KNq0aYPevXsjPT0dCxcutPvu3NltdlaXLl3QunVrjBs3DhkZGWjUqBE2b96MdevWYeTIkXb9Qp4QFxeH2rVrY8yYMfjjjz8QHh6Ozz77rMT9JoWZvxIaN24c+vTpg8DAQHTp0gW1a9fGpEmT8PLLLyMjIwPdu3dHWFgY0tPTsWbNGgwZMgRjxoxR2k9FMRqNWLFiBR566KFSad87mlfGcpENreG469evl4YNG0pQUJDExMTI5MmTZcGCBXbDHh0Nx121apVNeeahrwsXLrSk5eTkSN++faVChQoCwGZobkFBgUyePFni4+PFYDBIxYoVJTExUSZOnChZWVmWfHl5efL8889L5cqVJSQkRLp06SKnTp1SHo5blMLDcc1mzZolcXFxEhgYKNWqVZNhw4bJX3/9ZZdvzpw5EhsbKwaDQZo0aSI7duywazeVbXZmOK6ISHZ2towaNUqioqIkMDBQ6tatK++8846YTCabfABk+PDhdss7ux4zreG4hw8flrZt20poaKhUqVJFBg8ebBlSa30sOBqO62y93njjDbnrrrvEz8/P7hj97LPPpGXLlhISEiIhISESFxcnw4cPlyNHjtiU4ex+cmTjxo0CQGbMmOFUfnKdTqQEvW9ERHTHYR8HEREpYeAgIiIlDBxERKSEgYOIiJR4NXCUZLrKRYsW2T2+2d3MM4stWrTIY+tQVRam0iw8tap5X/3444+lsv6y0EZljdb5FhMTg86dO5fK+s3TBXh6VszSVla3y6XAcejQITz55JO46667LHMhpKSk4NChQ+6uH5WQ0WhEVFSU5dEPWubMmaMZHA8fPowJEyZ4NDi7ypfrVhrmzJkDnU6Hpk2bar5fVPs42t++wFfrJiJYsmQJWrVqhQoVKqBcuXK477778Prrryv/OPS2oDp+97PPPhO9Xi+RkZEybtw4+b//+z959dVXpXr16qLX62X16tVOl3Xt2jXJy8tTrYKIiFy/fl3y8vLsxsS7k9ZvH7xNZVy7iMjmzZsFgMTExEhKSopmnvj4eM0ytX4X4IyrV69KQUGB5e+FCxcKANm7d69SOUUpqm75+fk2j+e+HTVv3lxiYmIEgBw7dszu/aLax9H+LorW+RYdHS2dOnVSrXqRHNXNaDRKXl6eVx6Tfv36denVq5cAkIcfflimTZsmH374oTz55JPi5+cn9957r2RmZrpUtvl3V6rnmLcp3XEcP34c/fr1Q61atXDgwAFMmjQJgwYNwhtvvIEDBw6gVq1a6NevX7GPXDZH6ICAAJdn5/L390dQUJBbnit0O1u6dCnuv/9+jBo1CmvXrvXY1ZGIWGaVMxgMliefeoNer78tptR1JD09Hd9++y2mTp2KiIgIy9NgPcF8vHj7fPPz80NQUJBXHpM+ZcoUrFy5EmPGjMGOHTswcuRIDBkyBEuWLMHatWtx+PBhm69m7wgqUWbo0KECQHbs2KH5/vbt2wWADB061JJm/kXqoUOHJDk5WSpUqCAJCQk271m7cuWKPPfcc1K5cmUJDQ2VLl26yOnTp+1+iWy+irX+har5Cmjnzp3ywAMPiMFgkNjYWFm8eLHNOi5evCijR4+We++9V0JCQiQsLEwee+wx+fnnn23yOXvH4Wx55quLFStWyKRJk+Suu+4Sg8Egbdq00bxq/PDDD6VWrVoSFBQkDzzwgPIvaa9cuSJhYWEyZcoUOXv2rPj5+UlqaqpNnujoaAFg8y8pKcnSvoX/ma+MzG29ceNGSUxMFIPBINOmTbO8Z/3LYnNZ27dvlyFDhkilSpUkLCxM+vXrJ5cuXbKpT+H9bF1Pc5nF1U2rjc6dOyf/+7//K1WrVhWDwSANGzaURYsW2eSx/iW7ue31er00adJEfvjhB6favDS88cYbUrFiRcnPz5dhw4ZJ3bp1bd4vqn0c7W/r5bZt2ybDhg2TiIgIqVChgs17Wufbpk2bpFGjRmIwGKRBgwby2Wef2dRH6zzXKrOoujm6Ml+5cqXcf//9EhQUJJUrV5aUlBQ5ffq0TR7zkwdOnz4t3bp1k5CQEKlSpYqMHj1arl+/XmRbX7lyRSpWrCj16tWTa9euaeZ56qmnBIDs2bPHrm2K+ywqvF2vvfaaBAQEyPnz5+3WM3jwYClfvrzL39K4k1L43rBhA2JiYiyTAhXWqlUrxMTEWCbSsfbEE0/gypUr+Pe//43Bgwc7XMfAgQMxc+ZMdOzYEZMnT0ZwcLDSVKRpaWl4/PHH0a5dO7z33nuoWLEiBg4caNP/cuLECaxduxadO3fG1KlTMXbsWBw8eBBJSUk4c+aM0+tytby3334ba9aswZgxY/Dyyy/ju+++s5s7wDyVZmRkJKZMmYIWLVqga9eumnM1O7J+/Xrk5OSgT58+iIyMxCOPPGJ3dTp9+nTcfffdiIuLw5IlS7BkyRKMGzcOrVq1skxC9Morr1jeM88nAdx4Om1ycjLatWuH999/HwkJCUXWZ8SIEfjtt98wYcIE9O/fH6mpqejevbvyo8OdqZu1vLw8PPLII1iyZAlSUlLwzjvvoHz58hg4cKDmA/+WLVuGd955B0OHDsWkSZOQkZGBHj164Nq1a0r19JTU1FT06NEDer0eycnJOHbsGPbu3Wt5v6j2cbS/rT377LM4fPgwXnvtNbz00ktF1uXYsWPo3bs3/vGPf+Ctt95CQEAAnnjiCZeewOtM3awtWrQIvXr1gr+/P9566y0MHjwYq1evRsuWLe0ejmg0GtGhQwdUrlwZ7777LpKSkvDee+9h3rx5RdZp165d+Ouvv9C3b1+HT2s2P3n4888/t0l35rOosH79+uH69etYsWKFTXpBQQE+/fRT9OzZ0zfmUHc2wvz9998CQLp161Zkvq5duwoAuXz5sojcutpITk62y1v4SmTfvn0CQEaOHGmTb+DAgU7fcaDQHdH58+fFYDDI6NGjLWlXr161+640PT1dDAaDvP766zZpcOKOw9nynJ3W1V1TaXbu3FlatGhhs7zW1YwrfRzmtt64caPme1p3HImJiTZ9H1OmTBEAsm7dOkta4f3sqMyi6lb4jmP69OkCQJYuXWpJKygokGbNmkloaKjlWDXv78qVK9vcCa1bt04AyIYNG+zWVdp+/PFHASBbtmwRERGTySR33323/L//9/9s8rnSx2HeTy1btrS7Ei/qfLO+w8jKypLq1atL48aNLWnO3nEUVbfCV+bmc+Tee++1uQL//PPPBYC89tprlrQBAwYIAJtzUUSkcePGkpiYaLcua+ZjZ82aNQ7zXLp0SQBIjx49LGnOfhZp3Uk1a9ZMmjZtarOO1atX+1RfiNN3HNnZ2QBgN6NZYeb3L1++bJP+zDPPFLuOjRs3ArhxxWOtqEdsF3bPPffY3BFFRESgfv36Nv0uBoPB8l2p0WjExYsXERoaivr16+Onn35yel2ullfctK7umErz4sWL2LRpE5KTky1pPXv2hE6nw8qVK5W3UUtsbCw6dOjgdP4hQ4bY9H2Y59wwT0HrKV9++SUiIyNt2iIwMBDPP/88cnJysH37dpv8vXv3tsyYCKhNu+tpqampqFatGlq3bg3gxlwYvXv3xieffAKj0eiWdQwePNjhBE6FRUVF4X/+538sf4eHh6N///7Yv38/MjMz3VIfLeZz5Nlnn7W5Au/UqRPi4uI0v/Uo/Bn08MMPF7tPnfncc/SZ58xnkZb+/fvj+++/x/Hjxy1pqampqFGjRrFPji4tTgcOc+OYG9IRRw0dGxtb7DrMU5EWzlunTh1nq+nUVJcmkwnTpk1D3bp1YTAYUKVKFURERODAgQNOTadZmGp5xU3r6o6pNFesWIFr166hcePGSEtLQ1paGi5duoSmTZu6rTPVmX1qrfD2hIaGonr16h4fUnvy5EnUrVvXrmPV2WlcVabd9SSj0YhPPvkErVu3Rnp6umW/Nm3aFOfOncPXX3/tlvWo7Nc6derYdZibJ23y5H51NH0wcONx8oX3aVBQkN20wM5MgevM556jzzxXp93t3bs3DAaD5TzNysrC559/jpSUFJ8ZDOR04ChfvjyqV6+OAwcOFJnvwIEDuOuuuxAeHm6THhwc7FoNFTkz1eW///1vvPDCC2jVqhWWLl2KTZs2YcuWLYiPj3dqOs3CVMvzxDShhZkPuhYtWqBu3bqWf7t27cKePXvccvVcWvsUgNuupp1RGvvHFd988w3Onj2LTz75xGaf9urVCwDcdkHg7v3q6MPOF/ZpccwXF0V97pnfu+eee5xaZ3HHUcWKFdG5c2fL/vz000+Rn59vmWfGFyhN5NS5c2fMnz8fu3btQsuWLe3e37lzJzIyMjB06FCXKmOeijQ9Pd3m6rQkEwNp+fTTT9G6dWt89NFHNul///03qlSp4vXySjqVpnm45ogRI+xubU0mE/r164dly5bh1VdfBeD4xHb31c2xY8csX7EAQE5ODs6ePYuOHTta0ipWrGjXsVlQUGA3gZVK3aKjo3HgwAGYTCabu47SnMbVHVJTU1G1alXMnj3b7r3Vq1djzZo1+OCDDxAcHFxk+7hzv6alpUFEbMo8evQogBu/LAdu3bH9/fffqFChgiVf4bsClbpZTx9sfY6Y09y1T1u2bIkKFSpg2bJlGDdunGYw+PjjjwHArb+i79+/P7p164a9e/ciNTUVjRs3Rnx8vNvKLymlUVVjx45FcHAwhg4dapn20ezSpUt45plnUK5cOYwdO9alypi/L58zZ45N+syZM10qzxF/f3+7qL9q1Sr88ccfPlFeSafSNF+pvPjii3j88cdt/vXq1QtJSUk2V6chISGa5TqaEtRV8+bNsxmZNHfuXFy/ft1mGtXatWtjx44ddssVvjpVqVvHjh2RmZlpM1Ll+vXrmDlzJkJDQ33me+Oi5OXlYfXq1ejcubPdPn388ccxYsQIZGdnY/369QCKbh9H+9sVZ86cwZo1ayx/X758GR9//DESEhIQGRkJAJbZ+Kz3a25uLhYvXuxy3Zo0aYKqVavigw8+QH5+viX9q6++wm+//aY0ErMo5cqVw5gxY3DkyBHNEV5ffPEFFi1ahA4dOuChhx5yyzqBG9MyV6lSBZMnT8b27dt96m4DULzjqFu3LhYvXoyUlBTcd999GDRoEGJjY5GRkYGPPvoIFy5cwPLly12etjExMRE9e/bE9OnTcfHiRTz00EPYvn275QrGXVdKnTt3xuuvv46nnnoKzZs3x8GDB5Gamqo0TaUnyyvpVJqpqalISEhAjRo1NN/v2rUrnnvuOfz000+4//77kZiYiLlz52LSpEmoU6cOqlatijZt2iAhIQH+/v6YPHkysrKyYDAY0KZNG1StWtWl7SooKMCjjz6KXr16WaZ6bdmyJbp27WrJ8/TTT+OZZ55Bz5490a5dO/zyyy/YtGmT3Z2bSt2GDBmCDz/8EAMHDsS+ffsQExODTz/9FLt378b06dOLHfDhC9avX4/s7GybtrL20EMPWX4M2Lt37yLbx9H+dkW9evUwaNAg7N27F9WqVcOCBQtw7tw5LFy40JKnffv2qFmzJgYNGoSxY8fC398fCxYsQEREBH7//Xeb8pytW2BgICZPnoynnnoKSUlJSE5Oxrlz5/D+++8jJiYGo0aNcml7tLz00kvYv38/Jk+ejD179qBnz54IDg7Grl27sHTpUjRo0EAzCJZEYGAg+vTpg1mzZsHf399mYIdPcGUo1oEDByQ5OVmqV68ugYGBEhkZKcnJyZbhpNbMQ/H+/PNPh+9Zy83NleHDh0ulSpUkNDRUunfvLkeOHBEA8vbbb1vyFfWDpMIKD8+8evWqjB49WqpXry7BwcHSokUL2bNnj10+leG4zpSnMq2riGtTaZqHNP/rX/9ymCcjI0MAyKhRo0REJDMzUzp16iRhYWF2w33nz58vtWrVEn9/f80fAGop7geAFStWlNDQUElJSZGLFy/aLGs0GuWf//ynVKlSRcqVKycdOnSQtLQ0zelKHdXN0Q8An3rqKalSpYro9Xq577777Nq7qKls4cRUuJ7UpUsXCQoKktzcXId5Bg4cKIGBgXLhwgURcdw+jvZ3UY+GKe4HgA0bNhSDwSBxcXF2x7fIjeOyadOmotfrpWbNmjJ16lTNMh3VzdEPAFesWCGNGzcWg8EglSpVKvIHgIU5GiasxWg0ysKFC6VFixYSHh4uQUFBEh8fLxMnTpScnBy7/M5+FhX1yJEffvhBAEj79u2dqmNpKhNTx/78889o3Lgxli5davdDOSKi29Evv/yChIQEfPzxx+jXr5+3q2PD5+bjMD/vyNr06dPh5+eHVq1aeaFGRESlb/78+QgNDUWPHj28XRU7Sn0cpWHKlCnYt28fWrdujYCAAHz11Vf46quvMGTIEIff2RMR3S42bNiAw4cPY968eRgxYoRloIMv8bmvqrZs2YKJEyfi8OHDyMnJQc2aNdGvXz+MGzfO4bNiiIhuFzExMTh37hw6dOiAJUuW+OTgDZ8LHERE5Nt8ro+DiIh8GwMHEREp8UqngclkwpkzZxAWFuYzD+2i25OIIDs7G1FRUV6ZPU4Lj38qTZ44B7wSOM6cOcMRUlSqTp06hbvvvtvb1QDA45+8w53ngFcCh3mUwIjnR8JgMHijCnSHyM/Px6wZvvVYEXNd0tJPIazQU6SJ3C378mXUia3h1nPAK4HDfHtuMBgYOKhU+NJXQua6hIWH200/QOQp7jwHfONLXyIiKjMYOIiISAl/ik3kQ7R+j+tLX7OR7/DmscI7DiIiUsLAQUREShg4iIhICQMHEREpYec4kQ9hR7hrPNVR7MuDFbxZD95xEBGREgYOIiJSwsBBRERKGDiIiEgJAwcRESnhqCqiO5TWiCHAd0YNqfBUnVXKdUd7+vIoLmu84yAiIiUMHEREpISBg4iIlDBwEBGREnaOE/kQX+gcLYud5irt5mj7nOWo3NLuSPcm3nEQEZESBg4iIlLCwEFEREoYOIiISAkDBxERKeGoqjtQCQeVoIwM/CiTSjqqxh2jdXx5ZI/K9jnK6wvHvy+3sTN4x0FEREoYOIiISAkDBxERKWHgICIiJewcvwOV8X45coE7HmVSmo9DUe3kV3mMiJ+fb9TZE+srrU533nEQEZESBg4iIlLCwEFEREoYOIiISAkDBxERKSnTo6q0BjGoDCqIj79HMz0h4X7N9NzcHLu0a9eua+Y9ePCAXVpOjv3yAHDp0iVHVSRyyGSyPwEcjRhSGXV07bpJMz0wwP46U6sORdWD3Mebjy3hHQcRESlh4CAiIiUMHEREpISBg4iIlDBwEBGRkjI9qqqkgwratm2nmV6+QgXNdD+NFRodjCpp0qSJXVpe3lXNvBcv/umghp6hMo+N1mCcnOzLmnl3796tmX7mzBmFNZKzVI5/lYmOHJWrlf+6g+Nf64OlwMFoLb3GaC1HdXA0ikulLRyds86uL8Bfe2XueI5WWZngiXccRESkhIGDiIiUMHAQEZESBg4iIlJSpjvHS2rDhg2a6dWqVdNM//NP+07siIgI7TIiI+3SasXGauatUaOGXVpWVpZm3vDw8prpWn1q143anXImMdqlXcm9opm3QvlwuzRHfX2O6szOcc8oaUeqo+X9FS4nAx10FGt1QBsCtQtW2Q6Vjuar17Q747VWpzXwBdDePkdVcFS32/HxK7zjICIiJQwcRESkhIGDiIiUMHAQEZESBg4iIlJyR4+qOnHihFK6lrS0NKfzBgcHa6ZrjeI6e/asZt677rrL6fU5cu3aNbs0R5NJjRgxwi4tKEh7Oy5d+qtkFSNNjh8N4pnROu4o19FjObRobZ+jOqiMUArW+5d4fc4uf6fhHQcRESlh4CAiIiUMHEREpISBg4iIlNzRneOlLS8vTzM9IyPD6TJUOu5V3HPPPZrpekOQXdr58+c08x469Ktb63S7ExGnOlrLyhwNxVHp5PdkB7RKe17TmEMkUGP+kDsNW4CIiJQwcBARkRIGDiIiUsLAQUREShg4iIhICUdV+SjVQSUqA29CQkLs0jp27OSgXPuCt2/frpnX0agx0qbT6Zwa4eOOR46U9DEbRdVDi1bZavV1OiuAkk+WZNKYeEpVaT8axpt4x0FEREoYOIiISAkDBxERKWHgICIiJewc9wEqHYHu6Gd78MEH7dK0OswBID//ql3ahQsXSl4J0uSOTmwt7phvoqT1cFSuSr+0oz7wEs+x4SBd5fEit2MnuCO84yAiIiUMHEREpISBg4iIlDBwEBGREgYOIiJSwlFVPkBrMIY75rGpWbOmZnqLFi2cqgMALF++3C7t/PnzJaoXOaYyqZGnRvGU9ggsrZFS6o/ccX591432kzP5OxiuVdLHrDgqo6yPwOIdBxERKWHgICIiJQwcRESkhIGDiIiUMHAQEZESjqryUe4YdFGnTl3NdH9/+92edvy4Zt7Tp0+XvCJUIqU9AkdlpJQ7RhJp5XU0MZPKKCejg4dgadXDUd4A/5JfW5d0pJwvThDFOw4iIlLCwEFEREoYOIiISAkDBxERKWHn+G0iMDDQLq12ndqaeY3G63Zp27dtc5DXWKJ6UdlT2hNHeapcR53Kfhpl+LuhE1xFWX88Ce84iIhICQMHEREpYeAgIiIlDBxERKSEgYOIiJRwVNVtonnz5nZpUdWjNPMeP55ml3bq1Cm314nUeWpUTWmP1lFZnzvqYdJ4ZIjW6CnA8eNMyHm84yAiIiUMHEREpISBg4iIlDBwEBGREnaOlzH16tXTTE9KSrJLy8+/qpl3m4PHi5D3+eLjJbxBdQ4KrWSFqTtKHefjICKiOwoDBxERKWHgICIiJQwcRESkhIGDiIiUcFSVjypXrpxmeofHHtNeQGOExdGjxzSznj592uV6UdlU1kZrOarvdaOpxGX74fZoC2/iHQcRESlh4CAiIiUMHEREpISBg4iIlLBz3Af4+dnH75SUJzXzVq5USTP9woWLdmnbtm0tWcWg9tgGH+zDuy2U9iMnHK2vpHVQ2Q6t+TUAIMBf+1r32nX7TvPAgJJfFzuqh5Y7aZ4P3nEQEZESBg4iIlLCwEFEREoYOIiISAkDBxERKeGoKh9QsWJFu7SoqCilMrZs3mSXdunSJZfrZMaRUt7ni4+cMPOVSYYC/J2fAEmFpzbDl/epM3jHQUREShg4iIhICQMHEREpYeAgIiIlDBxERKSEo6pKUYUKFTTT+/fvb5fmaNDF5s2bNdOPHtOetIluX1qjhkp7tI6n1qdabFkfpVTW8I6DiIiUMHAQEZESBg4iIlLCwEFERErYOV6KEhMTNdPLly/vdBkZGRma6e54vAKVLSXtEFZ9XIjKMabSce8Lx65KW7ij3cp6Zz7vOIiISAkDBxERKWHgICIiJQwcRESkhIGDiIiUcFSVh9SsWdMurckDD2rmNWmMujB5f6AJ3eZUR/aUdIRRwXWTZl4/jWpcd3ACBAX6F1FD13lyRFRZH0GlhXccRESkhIGDiIiUMHAQEZESBg4iIlLCznEPiY6OtkszGPSaef00Os8uXLyombegoKBkFSuDyt3dVDP9yunvS7kmvkXlUR0qHdsqZah0/Gp1ggOAv8YbjjrHPUX1MSKlqeIDIzTT/9o7q5RrcgvvOIiISAkDBxERKWHgICIiJQwcRESkhIGDiIiUcFRVKdJBe4RGZmamXdrixYs18+bl5bm1TmXB7Tp6SkTsRvOojOIp6Yif0h4xpLI+1UeLlHSEmS+MnnLEm6OnHOEdBxERKWHgICIiJQwcRESkhIGDiIiUsHPcQ3bu3OlUGt25dDqdXaesO+Z/KE0qndJajxZx1/p8uY1UlHT/ay2v+mgZZ/COg4iIlDBwEBGREgYOIiJSwsBBRERKvNI5bu6syc/P98bq6Q5iPsY80UHoKnNdsi9fdvieNV/u+C3pL7bdtT5fbiMVnugcz86+7PA9V3klcGRnZwMAZs2Y7o3V0x0oOzsb5cuX93Y1ANw6/uvE1vByTehO4s5zQCdeuBQzmUw4c+YMwsLCbpsrBfJNIoLs7GxERUXBz883vpnl8U+lyRPngFcCBxERlV2+cQlGRERlBgMHEREpYeAgIiIlDBxERKSEgYOIiJQwcBARkRKvPVb96tWrKCgo8Nbq6Q6i1+sRFBTk7WrY4PFPpcnd54BXAsfVq1cRGxuLzMxMb6ye7jCRkZFIT0/3meDB459Km7vPAa8EjoKCAmRmZuJ4+u8IDw+HQHDzfzD/HFEgt17ffA830+TGy5v5ze+Y/882TazSzL90vFHGrXXapFktJzdTzMsWXs50s3DTzQJs0myWv5FurotJbpYp5ny3ttGynNwoV6zyWuoi9nUqnM9084VJrNtM7LdLzG1UqAyxbn8H71nvH3Obi9i/lqLTNdPEdLNwk9VONL+WW6/NeUXrfSA/LxfvvjIABQUFPhM4zMf/0RO/Iyws/NbxAKv9ZbM/Baabm2WSm69vpplg3s/Wx0ShMjTKtTnOLO1+K78RYlmXOa9RBCaTuT43/jYvbzQvJwLTjQrCaJXHKDeXMd3aBqNJYDTdfH3zPRHAaLqZH7j1vulGuSYAppvLiZiXF8v2W9Jv1kNuLmtOE9ON7TGZzHW7Wa7J9jVu5rGkm7fVZLpVrlEgJnO6+bXAJKZbr2802M3lbr2GdblWec2vxWQCTMYbx7HJeHPnGG+9NhlvvW8snNcqj5iAa1eReXixW88Br84AGB4e7vbAUTjN5sMP1uXdWqdWmt0H7M00k1UeVwKHwOokt5yU1ie41XvmelhO9JIFDusPIttAYNW2hYND4XUW+i+s6lhcgHA9cDgKDOZPu2Le91Fh4eEILyJw3Np3RQQOy352HCS00rQCh3UZ5g968zqsA4fJicBhfm0JHKZbgcMojgOHJY/JPnCY0xwFDpNJ4Hcz3U9uBY7Caea8ukLBwvY1oLPKo7OkmSyvYby1HKwCB6wCwM1Ie+O/Vq/lRmNDdzOIFH4Nu8BhsgoWYhs4dEbtPLobaWIyuf3YZec4EREpYeAgIiIlDBxERKSEgYOIiJR4tXP88s0Z0NzZOY5CaTYdvLAu79Y6bdKsltPqHLdejqOqrNqucCe39WspOl0zzV2jqq5e0Tz2fEH25cvFd2xLMZ3jELsyOKqq7IyqujGCyvxfD42qMrr/90Jemzo2NDQUtWNremP1dIcJDQ21BChfYD7+69Xi8U+lw93ngFcCh06nQ05ODk6dOoXw8HBvVKHMuXz5MmrUqME2U2RuN1+aaY/Hv2t4DrjGE+eAT/yOg5zHNrt9cF+6hu3mfewcJyIiJQwcRESkxCuBw2AwYPz48TAYDN5YfZnENnONL7abL9apLGC7ucYT7aYTXxpuQkREPo9fVRERkRIGDiIiUsLAQUREShg4iIhICQMHEREp8VjgmD17NmJiYhAUFISmTZvihx9+KDL/qlWrEBcXh6CgINx333348ssvPVU1n6XSZosWLYJOp7P55ytTo5amHTt2oEuXLoiKioJOp8PatWuLXWbbtm24//77YTAYUKdOHSxatMjt9eLx7xqeA2q8dfx7JHCsWLECL7zwAsaPH4+ffvoJjRo1QocOHXD+/HnN/N9++y2Sk5MxaNAg7N+/H927d0f37t3x66+/eqJ6Pkm1zYAbj144e/as5d/JkydLsca+ITc3F40aNcLs2bOdyp+eno5OnTqhdevW+PnnnzFy5Eg8/fTT2LRpk9vqxOPfNTwH1Hnt+BcPePDBB2X48OGWv41Go0RFRclbb72lmb9Xr17SqVMnm7SmTZvK0KFDPVE9n6TaZgsXLpTy5cuXUu3KBgCyZs2aIvO8+OKLEh8fb5PWu3dv6dChg9vqwePfNTwHSqY0j3+333EUFBRg3759aNu2rSXNz88Pbdu2xZ49ezSX2bNnj01+AOjQoYPD/LcbV9oMAHJychAdHY0aNWqgW7duOHToUGlUt0zz9LHG4981PAdKh7uONbcHjgsXLsBoNKJatWo26dWqVUNmZqbmMpmZmUr5bzeutFn9+vWxYMECrFu3DkuXLoXJZELz5s1x+vTp0qhymeXoWLt8+TLy8vJKXD6Pf9fwHCgd7jr+vfpYdXJds2bN0KxZM8vfzZs3R4MGDfDhhx/ijTfe8GLNiEoHzwHvcfsdR5UqVeDv749z587ZpJ87dw6RkZGay0RGRirlv9240maFBQYGonHjxkhLS/NEFW8bjo618PBwBAcHl7h8Hv+u4TlQOtx1/Ls9cOj1eiQmJuLrr7+2pJlMJnz99dc2VwfWmjVrZpMfALZs2eIw/+3GlTYrzGg04uDBg6hevbqnqnlb8PSxxuPfNTwHSofbjjXVnntnfPLJJ2IwGGTRokVy+PBhGTJkiFSoUEEyMzNFRKRfv37y0ksvWfLv3r1bAgIC5N1335XffvtNxo8fL4GBgXLw4EFPVM8nqbbZxIkTZdOmTXL8+HHZt2+f9OnTR4KCguTQoUPe2gSvyM7Olv3798v+/fsFgEydOlX2798vJ0+eFBGRl156Sfr162fJf+LECSlXrpyMHTtWfvvtN5k9e7b4+/vLxo0b3VYnHv+u4TmgzlvHv0cCh4jIzJkzpWbNmqLX6+XBBx+U7777zvJeUlKSDBgwwCb/ypUrpV69eqLX6yU+Pl6++OILT1XNZ6m02ciRIy15q1WrJh07dpSffvrJC7X2rq1btwoAu3/mthowYIAkJSXZLZOQkCB6vV5q1aolCxcudHu9ePy7hueAGm8d/5yPg4iIlPBZVUREpISBg4iIlDBwEBGREgYOIiJSwsBBRERKGDiIiEgJAwcRESlh4CAiIiUMHEREpISBg4iIlDBwEBGRkv8PtufTPKcPR10AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAECCAYAAADpdjDfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9kElEQVR4nO2de5xN5ffHP2cu58ydcRljCoOEhhAllwwSfd3qhwgJPzEV9SPp8tUvKX2LCt1U+hXlUii3bqRCSDcJX/qWyxC55dLcjLmc8/z+4BznzF7PzHnmdoY+7+/XqzPPXud51n72s/fa+6y117IppRQIIYQQPwkKtAKEEEIuLmg4CCGEGEHDQQghxAgaDkIIIUbQcBBCCDGChoMQQogRNByEEEKMoOEghBBiBA0HIYQQI2g4LlE6duyIjh07BloNCzabDU888USg1dBSknlLTEzEsGHDSlWf8mLYsGFITEwMtBrkIoGGowJhs9n8+rdu3boy1WPhwoWYOXNmmY5RGPv37/fs65QpU0SZwYMHw2azISoqqpy1u7hIT0/H5MmT0axZM0RFRSE8PBxNmjTBww8/jMOHDwdaPb/xXhPSv5EjRwZaxb8VIYFWgFxg3rx5Pn+/++67WLNmjaW9cePGRfb1+eefF1uPhQsX4t///jfGjh1b7D5Kg7CwMLz33nt47LHHfNqzsrKwYsUKhIWFBUizi4N9+/ahS5cu+P3333Hbbbdh1KhRsNvt2L59O9566y0sW7YMv/32W6DV9Ivq1atbzgMAWLVqFRYsWICuXbsGQKu/LzQcFYg77rjD5+9vv/0Wa9assbT7g91uLy21Akb37t2xdOlSbNu2Dc2aNfO0r1ixArm5ubj55pvx1VdfBVDDikt+fj769OmDY8eOYd26dWjfvr3P9qeffhpTp04NkHbmREZGiufB3LlzERMTg169egVAq78v/KnqImPOnDno3Lkz4uLi4HA4cNVVV+G1116zyBX8rX7dunWw2WxYvHgxnn76aVx++eUICwvDjTfeiD179vh875NPPsGBAwc8PwN4//adk5ODSZMm4YorroDD4UCtWrXw0EMPIScnx2f8nJwcjBs3DtWrV0d0dDR69+6NQ4cOGe1rmzZtULduXSxcuNCnfcGCBbj55ptRpUoV8XuzZs1CUlISHA4HEhISMHr0aPz1118WudmzZ6N+/foIDw/Hddddhw0bNoj9+bvP/pKVlYXx48ejVq1acDgcaNiwIZ5//nkUTFRts9kwZswYLF++HE2aNIHD4UBSUhJWrVpV5Bgffvghtm3bhokTJ1qMBgDExMTg6aefLrQPl8uFmTNnIikpCWFhYahRowZSUlJw+vRpH7kVK1agR48eSEhIgMPhQP369fHUU0/B6XT6yHXs2BFNmjTBrl270KlTJ0REROCyyy7DtGnTitwfiSNHjmDt2rXo06cPnz7LGT5xXGS89tprSEpKQu/evRESEoKPPvoI9957L1wuF0aPHl3k95999lkEBQXhwQcfRFpaGqZNm4bBgwfju+++AwBMnDgRaWlpOHToEGbMmAEAHj+Cy+VC7969sXHjRowaNQqNGzfGjh07MGPGDPz2229Yvny5Z5y77roL8+fPx6BBg9C2bVt89dVX6NGjh/H+Dhw4EPPnz8ezzz4Lm82GEydO4PPPP8e8efPEC+gTTzyByZMno0uXLrjnnnvw66+/4rXXXsMPP/yATZs2ITQ0FADw1ltvISUlBW3btsXYsWOxb98+9O7dG1WqVEGtWrU8/Znssz8opdC7d2+sXbsWI0aMQPPmzbF69WpMmDABf/zxh2fO3WzcuBFLly7Fvffei+joaLz00kvo27cvfv/9d1StWlU7zsqVKwEAQ4YMMdLPm5SUFMydOxfDhw/H/fffj9TUVLzyyivYunWrz1zOnTsXUVFReOCBBxAVFYWvvvoKjz/+ONLT0/Hcc8/59Hn69GncfPPN6NOnD/r3748PPvgADz/8MJo2bYp//OMfRvq9//77cLlcGDx4cLH3kRQTRSoso0ePVgUP0ZkzZyxy3bp1U/Xq1fNpS05OVsnJyZ6/165dqwCoxo0bq5ycHE/7iy++qACoHTt2eNp69Oih6tSpYxln3rx5KigoSG3YsMGn/fXXX1cA1KZNm5RSSv38888KgLr33nt95AYNGqQAqEmTJhW636mpqQqAeu6559S///1vBcAz5quvvqqioqJUVlaWGjp0qIqMjPR87/jx48put6uuXbsqp9PpaX/llVcUAPX2228rpZTKzc1VcXFxqnnz5j5zMXv2bAXAZ9783WellKpTp44aOnRoofu2fPlyBUBNmTLFp71fv37KZrOpPXv2eNoAKLvd7tO2bds2BUC9/PLLhY7TokULValSpUJlvBk6dKjPMd+wYYMCoBYsWOAjt2rVKku7tCZTUlJURESEOnv2rKctOTlZAVDvvvuupy0nJ0fFx8ervn37+q2rm5YtW6qaNWv6HGtSPvCnqouM8PBwz+e0tDScOHECycnJ2LdvH9LS0or8/vDhw338HzfccAOAc47UoliyZAkaN26MRo0a4cSJE55/nTt3BgCsXbsWAPDpp58CAO6//36f7xfH2Z6UlISrr74a7733HoBzjvtbbrkFERERFtkvvvgCubm5GDt2LIKCLiztkSNHIiYmBp988gkA4Mcff8Tx48dx9913+8zFsGHDUKlSpWLts798+umnCA4OtszN+PHjoZTCZ5995tPepUsX1K9f3/P31VdfjZiYmCKPV3p6OqKjo41082bJkiWoVKkSbrrpJp/9btmyJaKionz223tNZmRk4MSJE7jhhhtw5swZ/Oc///HpNyoqysdXYbfbcd111/m1/rz57bffsGXLFtx+++0+x5qUD/yp6iJj06ZNmDRpEjZv3owzZ874bEtLS7Nc+ApSu3Ztn79jY2MBwPK7tcTu3bvxyy+/oHr16uL248ePAwAOHDiAoKAgnwseADRs2LDIMSQGDRqEF154AePGjcM333yDf/7zn6LcgQMHxHHsdjvq1avn2e7+b4MGDXzkQkNDUa9ePZ82f/fZXw4cOICEhATLRd0dKefWzU3B4wWcO2ZFHS9/jEth7N69G2lpaYiLixO3e+/3zp078dhjj+Grr75Cenq6j1zBm5nLL78cNpvNpy02Nhbbt2830m/BggUAwJ+pAgQNx0XE3r17ceONN6JRo0aYPn06atWqBbvdjk8//RQzZsyAy+Uqso/g4GCxXflRQdjlcqFp06aYPn26uN3bN1CaDBw4EI8++ihGjhyJqlWrlmvoZaD22U1xj1ejRo2wdetWHDx4sFg6ulwuxMXFeS7QBXEb0r/++gvJycmIiYnBk08+ifr16yMsLAw//fQTHn74YcuaLMn682bhwoVo2LAhWrZsafQ9UjrQcFxEfPTRR8jJycHKlSt97kRNfy4pioJ3hG7q16+Pbdu24cYbb9TKAECdOnXgcrmwd+9en7v/X3/9tVj61K5dG+3atcO6detwzz33ICREXrZ16tTxjOP95JCbm4vU1FR06dLFR2737t2en5wAIC8vD6mpqT6hv/7us7/UqVMHX3zxBTIyMnyeOtw/6bh1Kym9evXCe++9h/nz5+PRRx81/n79+vXxxRdfoF27dj4/RRVk3bp1OHnyJJYuXYoOHTp42lNTU4ultz9899132LNnD5588skyG4MUDn8cvIhw3615352lpaVhzpw5pTpOZGSk6C/p378//vjjD7z55puWbdnZ2cjKygIAT3TMSy+95CNTkrfRp0yZgkmTJuG+++7TynTp0gV2ux0vvfSSzxy99dZbSEtL80R1tWrVCtWrV8frr7+O3Nxcj9zcuXMtYbv+7rO/dO/eHU6nE6+88opP+4wZM2Cz2Ywji3T069cPTZs2xdNPP43NmzdbtmdkZGDixIna7/fv3x9OpxNPPfWUZVt+fr5nnqQ1mZubi1mzZpVwD/S4w7MHDRpUZmOQwuETx0VE165dYbfb0atXL6SkpCAzMxNvvvkm4uLicOTIkVIbp2XLlli0aBEeeOABXHvttYiKikKvXr0wZMgQLF68GHfffTfWrl2Ldu3awel04j//+Q8WL16M1atXo1WrVmjevDkGDhyIWbNmIS0tDW3btsWXX37p876IKcnJyUhOTi5Upnr16nj00UcxefJk3Hzzzejduzd+/fVXzJo1C9dee63HKRsaGoopU6YgJSUFnTt3xoABA5Camoo5c+ZYfBz+7rO/9OrVC506dcLEiROxf/9+NGvWDJ9//jlWrFiBsWPHWvxCxSU0NBRLly5Fly5d0KFDB/Tv3x/t2rVDaGgodu7ciYULFyI2Nlb7LkdycjJSUlLwzDPP4Oeff0bXrl0RGhqK3bt3Y8mSJXjxxRfRr18/tG3bFrGxsRg6dCjuv/9+2Gw2zJs3z/inJ39xOp1YtGgRrr/++lKbK1IMAhfQRYpCCsdduXKluvrqq1VYWJhKTExUU6dOVW+//bYCoFJTUz1yunDcJUuW+PTnDn2dM2eOpy0zM1MNGjRIVa5cWQHwCdPMzc1VU6dOVUlJScrhcKjY2FjVsmVLNXnyZJWWluaRy87OVvfff7+qWrWqioyMVL169VIHDx40DsctjILhuG5eeeUV1ahRIxUaGqpq1Kih7rnnHnX69GmL3KxZs1TdunWVw+FQrVq1Ul9//bVl3kz22Z9wXKWUysjIUOPGjVMJCQkqNDRUNWjQQD333HPK5XL5yAFQo0ePtnzf33GUUur06dPq8ccfV02bNlUREREqLCxMNWnSRD366KPqyJEjHrmC4bhuZs+erVq2bKnCw8NVdHS0atq0qXrooYfU4cOHPTKbNm1S119/vQoPD1cJCQnqoYceUqtXr1YA1Nq1az1yycnJKikpyTKGbmwJdzjwSy+95Jc8KRtsSpXRrQEhhJBLEvo4CCGEGEHDQQghxAgaDkIIIUbQcBBCCDEioIbjiSeeKPZLVXPnzoXNZsP+/ftLVykv3FXH5s6dW2ZjmFJRS8J6U7CEqvtY/fjjj+Uy/sUwRxcb0vmWmJiInj17lsv47rIAZV39sry5WPerWIZj586duOOOO3DZZZd5ah4MHjwYO3fuLG39SAlxOp1ISEiAzWazJNBzM2vWLNE47tq1C0888USZGufiUpF1Kw9mzZoFm82G1q1bi9sLmx/d8a4IVFTdlFKYN28eOnTogMqVKyMiIgJNmzbFk08+afwS6CWBafzuhx9+qOx2u4qPj1cTJ05U//d//6cee+wxVbNmTWW329XSpUv97isvL09lZ2ebqqCUUio/P19lZ2dbYt9LE+kdh0AjvWdQGJ9//rkCoBITE9XgwYNFmaSkJLHPJUuWWGLx/eHs2bMqNzfX8/ecOXMUAPXDDz8Y9VMYhemWk5Pjky79UqRt27YqMTFRAVC7d++2bC9sfnTHuzCk861OnTqqR48epqoXik43p9OpsrOzA5JCPT8/X/Xv318BUDfccIOaMWOGeuONN9Qdd9yhgoKCVJMmTdTRo0eL1bf7/SrTcyzQGD1x7N27F0OGDEG9evWwfft2TJkyBSNGjMBTTz2F7du3o169ehgyZEiRWTndFjokJKTYlbuCg4MRFhZWKvmDLmXmz5+Pa665BuPGjcPy5cvL7O5IKYXs7GwAgMPh8BT5CQR2u/2SKJ2rIzU1Fd988w2mT5+O6tWraxMRlgbu9RLo8y0oKAhhYWEBSaE+bdo0LF68GA8++CC+/vprjB07FqNGjcK8efOwfPly7Nq1y+en2b8FJlYmJSVFAVBff/21uH39+vUKgEpJSfG0TZo0SQFQO3fuVAMHDlSVK1dWzZs399nmzZkzZ9R9992nqlatqqKiolSvXr3UoUOHLG8cu+9ivd+Wdt8BbdiwQV177bXK4XCounXrqnfeecdnjJMnT6rx48erJk2aqMjISBUdHa1uvvlm9fPPP/vI+fvE4W9/7ruLRYsWqSlTpqjLLrtMORwO1blzZ/Gu8Y033lD16tVTYWFh6tprr9W+2azjzJkzKjo6Wk2bNk0dOXJEBQUFWQrz1KlTRwHw+ZecnOyZ34L/3HdG7rletWqVatmypXI4HGrGjBmebd5vNrv7Wr9+vRo1apSqUqWKio6OVkOGDFGnTp3y0afgcfbW091nUbpJc3Ts2DH13//93youLk45HA519dVXq7lz5/rIeL+x7p57u92uWrVqpb7//nu/5rw8eOqpp1RsbKzKyclR99xzj2rQoIHP9sLmR3e8vb+3bt06dc8996jq1aurypUr+2yTzrfVq1erZs2aKYfDoRo3bqw+/PBDH32k81zqszDddHfmixcvVtdcc40KCwtTVatWVYMHD1aHDh3ykXFnGDh06JC65ZZbVGRkpKpWrZoaP368ys/PL3Suz5w5o2JjY9WVV16p8vLyRJnhw4crAGrz5s2WuSnqWlRwvx5//HEVEhKijh8/bhln5MiRqlKlSsX+laY0MTLfH330ERITEz3FfwrSoUMHJCYmegrmeHPbbbfhzJkz+Ne//oWRI0dqxxg2bBhefvlldO/eHVOnTkV4eLhRydE9e/agX79+uOmmm/DCCy8gNjYWw4YN8/G/7Nu3D8uXL0fPnj0xffp0TJgwATt27EBycjIOHz7s91jF7e/ZZ5/FsmXL8OCDD+LRRx/Ft99+a6kr4C5tGh8fj2nTpqFdu3bo3bs3Dh486LdeK1euRGZmJm6//XbEx8ejY8eOlrvTmTNn4vLLL0ejRo0wb948zJs3DxMnTkSHDh08xYb++c9/era560YA57LQDhw4EDfddBNefPFFNG/evFB9xowZg19++QVPPPEE7rzzTixYsAC33nqrcV4jf3TzJjs7Gx07dsS8efMwePBgPPfcc6hUqRKGDRuGF1980SK/cOFCPPfcc0hJScGUKVOwf/9+9OnTB3l5eUZ6lhULFixAnz59YLfbMXDgQOzevRs//PCDZ3th86M73t7ce++92LVrFx5//HE88sgjheqye/duDBgwAP/4xz/wzDPPICQkBLfddhvWrFljvF/+6ObN3Llz0b9/fwQHB+OZZ57ByJEjsXTpUrRv396SrNLpdKJbt26oWrUqnn/+eSQnJ+OFF17A7NmzC9Vp48aNOH36NAYNGqTNynznnXcCAD7++GOfdn+uRQUZMmQI8vPzsWjRIp/23NxcfPDBB+jbt2/FqK/ur4X566+/FAB1yy23FCrXu3dvBUClp6crpS7cbQwcONAiW/BOZMuWLQqAGjt2rI/csGHD/H7iQIEnouPHjyuHw6HGjx/vaTt79qzlt9LU1FTlcDjUk08+6dMGP544/O3P3/KtJqVNC6Nnz56qXbt2Pt+X7maK4+Nwz/WqVavEbdITR8uWLX18H9OmTVMA1IoVKzxtBY+zrs/CdCv4xDFz5kwFQM2fP9/Tlpubq9q0aaOioqI8a9V9vKtWrerzJLRixQoFQH300UeWscqbH3/8UQFQa9asUUop5XK51OWXX67+53/+x0euOD4O93Fq37695U68sPPN+wkjLS1N1axZU7Vo0cLT5u8TR2G6Fbwzd58jTZo08bkD//jjjxUA9fjjj3vahg4dqgD4nItKnSuv27JlS8tY3rjXzrJly7Qyp06dUgBUnz59PG3+XoukJ6k2bdqo1q1b+4yxdOnSCuUL8fuJIyMjAwCKLEfp3l6wEtjdd99d5BirVq0CcO6Ox5vCUmkX5KqrrvJ5IqpevToaNmzo43dxOBye30qdTidOnjyJqKgoNGzYED/99JPfYxW3v6LKt5qUNtVx8uRJrF69GgMHDvS09e3bFzabDYsXLzbeR4m6deuiW7dufsuPGjXKx/fhrq3hLjVbVnz66aeIj4/3mYvQ0FDcf//9yMzMxPr1633kBwwY4KmMCJiV1y1rFixYgBo1aqBTp04AztVOGTBgAN5//304nc5SGWPkyJHagksFSUhIwH/91395/o6JicGdd96JrVu34ujRo6Wij4T7HLn33nt97sB79OiBRo0aib96FLwG3XDDDUUeU3+ue7prnj/XIok777wT3333Hfbu3etpW7BgAWrVqlVkhujywm/D4Z4c90Tq0E103bp1ixzDXXK0oOwVV1zhr5p+ldp0uVyYMWMGGjRoAIfDgWrVqqF69erYvn27X3W7C2LaX1HlW01Km+pYtGgR8vLy0KJFC+zZswd79uzBqVOn0Lp161JzpvpzTL0puD9RUVGoWbNmmYfUHjhwAA0aNLA4Vv0t12pSXrcscTqdeP/999GpUyekpqZ6jmvr1q1x7NgxfPnll6UyjslxveKKKywO8yuvvBIAyvS46soEA+eqHxY8pmFhYZbyv/6U4PXnuqe75hW37O+AAQPgcDg852laWho+/vhjDB48uMIEA/ltOCpVqoSaNWsWWRt4+/btuOyyyxATE+PTXlgVsdLEn9KU//rXv/DAAw+gQ4cOmD9/PlavXo01a9YgKSnJr/KrBTHtr7TKZxaGe9G1a9cODRo08PzbuHEjNm/eXCp3z+V1TAGU2t20P5TH8SkOX331FY4cOYL333/f55j2798fAErthqC0j6vuYlcRjmlRuG8uCrvuubddddVVfo1Z1DqKjY1Fz549Pcfzgw8+QE5OjqeeTEXAqJBTz5498eabb2Ljxo1o3769ZfuGDRuwf/9+pKSkFEsZd8nR1NRUn7vTkhQAkvjggw/QqVMnvPXWWz7tf/31F6pVqxbw/kxKm0q4wzXHjBljebR1uVwYMmQIFi5ciMceewyA/sQu7bub3bt3e35iAYDMzEwcOXIE3bt397TFxsZaHJu5ubmWQlUmutWpUwfbt2+Hy+Xyeeoo7XKtZc2CBQsQFxeHV1991bJt6dKlWLZsGV5//XWEh4cXOj+leVz37NkDpZRPn7/99huAc2+WAxee2P766y9UrlzZI1fwqcBEN+8ywd7niLuttI5p+/btUblyZSxcuBATJ04UjcG7774LAKX6Fv2dd96JW265BT/88AMWLFiAFi1aICkpqdT6LylGUVUTJkxAeHg4UlJScPLkSZ9tp06dwt13342IiAhMmDChWMq4fy8vWHby5ZdfLlZ/OoKDgy1Wf8mSJfjjjz8qRH8mpU0l3HcqDz30EPr16+fzr3///khOTva5O42MjBT7jYyMBAC/xvSH2bNn+0Qmvfbaa8jPz/cpl1q/fn18/fXXlu8VvDs10a179+44evSoT6RKfn4+Xn75ZURFRVWY340LIzs7G0uXLkXPnj0tx7Rfv34YM2YMMjIysHLlSgCFz4/ueBeHw4cPY9myZZ6/09PT8e6776J58+aIj48HAE+lPu/jmpWVhXfeeafYurVq1QpxcXF4/fXXkZOT42n/7LPP8MsvvxhFYhZGREQEHnzwQfz6669ihNcnn3yCuXPnolu3brj++utLZUzgXPnlatWqYerUqVi/fn2FetoADJ84GjRogHfeeQeDBw9G06ZNMWLECNStWxf79+/HW2+9hRMnTuC9994rdknHli1bom/fvpg5cyZOnjyJ66+/HuvXr/fcwZTWnVLPnj3x5JNPYvjw4Wjbti127NiBBQsW+O0/KOv+TEqbSixYsADNmzdHrVq1xO29e/fGfffdh59++gnXXHMNWrZsiddeew1TpkzBFVdcgbi4OHTu3BnNmzdHcHAwpk6dirS0NDgcDnTu3BlxcXHF2q/c3FzceOON6N+/v6eka/v27dG7d2+PzF133YW7774bffv2xU033YRt27Zh9erVlic3E91GjRqFN954A8OGDcOWLVuQmJiIDz74AJs2bcLMmTOLDPioCKxcuRIZGRk+c+XN9ddf73kZcMCAAYXOj+54F4crr7wSI0aMwA8//IAaNWrg7bffxrFjxzBnzhyPTNeuXVG7dm2MGDECEyZMQHBwMN5++21Ur14dv//+u09//uoWGhqKqVOnYvjw4UhOTsbAgQNx7NgxvPjii0hMTMS4ceOKtT8SjzzyCLZu3YqpU6di8+bN6Nu3L8LDw7Fx40bMnz8fjRs3Fo1gSQgNDcXtt9+OV155BcHBwT6BHRWC4oRibd++XQ0cOFDVrFlThYaGqvj4eDVw4EBPOKk37lC8P//8U7vNm6ysLDV69GhVpUoVFRUVpW699Vb166+/KgDq2Wef9cgV9kJSQQqGZ549e1aNHz9e1axZU4WHh6t27dqpzZs3W+RMwnH96c+kfKtS/pc29cYd0vy///u/Wpn9+/crAGrcuHFKKaWOHj2qevTooaKjoy3hvm+++aaqV6+eCg4OFl8AlCjqBcDY2FgVFRWlBg8erE6ePOnzXafTqR5++GFVrVo1FRERobp166b27NkjlkvV6aZ7AXD48OGqWrVqym63q6ZNm1rmu7CStfCj5G1Z0qtXLxUWFqaysrK0MsOGDVOhoaHqxIkTSin9/OiOd2GpYYp6AfDqq69WDodDNWrUyLK+lTq3Llu3bq3sdruqXbu2mj59utinTjfdC4CLFi1SLVq0UA6HQ1WpUqXQFwALogsTlnA6nWrOnDmqXbt2KiYmRoWFhamkpCQ1efJklZmZaZH391pUWMqR77//XgFQXbt29UvH8uSiKB37888/o0WLFpg/f77lRTlCCLkU2bZtG5o3b453330XQ4YMCbQ6PlS4ehzufEfezJw5E0FBQejQoUMANCKEkPLnzTffRFRUFPr06RNoVSwY+TjKg2nTpmHLli3o1KkTQkJC8Nlnn+Gzzz7DqFGjtL/ZE0LIpcJHH32EXbt2Yfbs2RgzZown0KEiUeF+qlqzZg0mT56MXbt2ITMzE7Vr18aQIUMwceJEba4YQgi5VEhMTMSxY8fQrVs3zJs3r0IGb1Q4w0EIIaRiU+F8HIQQQio2NByEEEKMCIjTwOVy4fDhw4iOjq4wSbvIpYlSChkZGUhISAhI9TgJrn9SnpTFORAQw3H48GFGSJFy5eDBg7j88ssDrQYArn8SGErzHAiI4XBHCdx73//A4XD4bLPB/zsw6WZN5+pXsG4I0tztafsQNujuGKXxdEh6uDRK6HSW5E32z6kZLyTI/+Oh01k6probbRPdJNUKjpWTk4NXX65YaUXcuvxn7wFER/tmkZbWk+4IBAkT4HLJcyUdm2DNsdV0IfYt6QCYZRIOCbbeBec75SzVOp2dgm5SvzrZPM14YaHWpIa6fZP6BeTzULf+pS50uknnprR+MjLS0bBe7VI9BwJiONw753A4aDg0etBwFK2bP4bjwngV5ychty7R0TGW8gM0HOeg4ShaN38Nhz/bTKkYP/oSQgi5aKDhIIQQYkRAX8UOstksj3H5TumRs2x+ZtD9tKLD5FHP5OcnE3RdlPQnvpBSeIw1+WnMZCqCDX4OLChagX6hshASHGT5OSU711oVL9xevOp1RaH7aUWH7mcpCZOfn0x+1tKpbHJuSj93Bdnke2iTn6c1v4yVeP3bNR37+/Oj7ue9ksAnDkIIIUbQcBBCCDGChoMQQogRNByEEEKMqHB5ykvqyNG9P2HiPNa9N2AzeTdDendBo4PoNNe9S2LzXwfdePJw/segax30mimW5tPk/RAd0v4VnMvSCEgoK5RSFuerPaRk93Lad2kM3g/J1TixS3rIdE5lyUmvP2z+H0/9+1jWNt28SdcjXVCB7tqVk28NeJDeDzFFusZIAQi6oISSjU0IIYQYQMNBCCHECBoOQgghRtBwEEIIMYKGgxBCiBEBjapSyhrhYPKKf74Q3aDPJOrf9wG9NRUjUwwiTUyiPLTpOwyiSkwy7JpEfJlk6AXMIqikTKD6lCNWCka26HStCEjrX8xAq9mFnHzrXOn21y6k7TmbZ432AfTzLUUN6aZXOld00UhSe6hBmg0dJtFPun2W+tBFT+mil0wy7J4RUs7oUo5IPUhReboswSWBTxyEEEKMoOEghBBiBA0HIYQQI2g4CCGEGBFQ57jNZnWuSQ4fnT9Msnomefl1zjOb1pkr5eooufNVcraZZsowKc8qOWD1dQ7EwURMnOY6Z3yIFMWgwaSOQ0UkKMhmqXEhzZXu2EgOXZNSrrmCcx3Qp8MwOY7SAtadKQ5hPNNaIdJ5rzuNpZo/2rKvkiNdo4OJ01x3nTJJRSKnavGvraTwiYMQQogRNByEEEKMoOEghBBiBA0HIYQQI2g4CCGEGFHhCjmJYVUGaQ20aTbEwkpmSFFDuvGkZl3UhZhmQiOri2KR0qeEVJR0G8Jc2DS3LCYpJaS9s6aw8bu7ckcq5CSnn5G/L60nKWULIKfw0Ka10RU1EvrQRSNJzaFC2hMAyBOiu0I0sjZN1J2UPsVhUBRLt0zkFEhm99tSH7osICbRZP6sf11bSeETByGEECNoOAghhBhBw0EIIcQIGg5CCCFGVLh6HJJTWOfckXx7OlnJ6aStE6FplvrQ+Z8lx6XWcS/IalMgaAaU7gB044npGTTuQZPjoR/P2qZNI2Pg0BcDAgpMREWJD5BwKasTWXIK6/yl0vLV+UGl9CI657FuzvKEVB26U0hyhOvWdKigR46mVoiuToeUfsUkjYjuQijpputXV49DvhbI48k1T+RJzhZqd0j66gJtSgKfOAghhBhBw0EIIcQIGg5CCCFG0HAQQggxgoaDEEKIERWvkJP4yrwmikEITdCl9XAKfTRp0kSUbdqshdiefSbT0paXly/K7tix3dJ2JitLlD1x8qTYLqGbCylKQxtLYfM/xUmpYJJyxCT9SgWOmPKHIJs1Kkk6jtKcAECOEMVj10RK5UhRVZoIpawcOaIpLNT/CCOJEM14umgkCd14ZhGP1jYpGgnQpBzRq6fpwz8dALnIVGiIJpIygOufTxyEEEKMoOEghBBiBA0HIYQQI2g4CCGEGEHDQQghxIgKV8hJjoTQFTWyoi1OIzTf2OUmUTY4LEpsjwm3TpeULwYAWl93raXtVLocVZV+2iSqSrNB2D9d0EV2njWKJdIeLMqeEfYvR4guA4Dvvv1GbD946A9LmxQ9AgBSnR7dPusi6C5mxFxFGlmnsKh1cyLlZdMdgxMZOWL75VXCLW1pZ/JE2bhKYZa2Y2lnRdlKEaGWNt0+6wpVSfmcdH38mZFraasebRdlT2ZaZaPD5MtmhENul/KEnRXOQcAsx5cUQSdFgekiMUsCnzgIIYQYQcNBCCHECBoOQgghRtBwEEIIMaLCOccldM4dyQ+oS88gOco+/milKFs9robYfuLPPy1t1apXF2VrxMdb2mrXThRl4xMus7QdP3FalK0ZV0Vsdwm+Nl1hpRwhTUp6huzwrhNf2dImpXoBgGMnZZ0l57jWc2mSnkRMB+HbcRn4BUsNm82mLdLjjc45auLwloJGdI70hFirExyQ57JypOxUzsqxrrGwUDkAQwowSc+WU/nonNiSA1q3TqUUJ/v/PCPKVomyjveXJiAgTaNzlUjB+a857CbpSeQ0K/4XjSoJfOIghBBiBA0HIYQQI2g4CCGEGEHDQQghxAgaDkIIIUYENKpKKf+iXgyybGhlpQiS3Xv3ibKpqaliuxTFs2fPHlFWKj4UHi5Hq1Spao3MOvHnMVE2ISFBbJfQzUW+EFV1+vQpUXbMmDGWtgiHNZ0EAJw+JfchRfRc7EWYSgOXS1miAKVjZrL+dZF0DiGi6WyenC7HoSlqJEZ3aZSLEFLY6CLIMrKtUUq1q/of2QUA4UKwlS6aqJKQOkhXZEoiRzNvp7LkaKtQoW/d+pfmyCRliNRtWZxqfOIghBBiBA0HIYQQI2g4CCGEGEHDQQghxIiAOsddSlmceZLTSOtIldJTGHiCpJQNgD5tiVjzQjOg5KTMOiOnNcjO/t1vHfbukx36UsoRHSFCzv9GjRqLsvk2a7qEU0dlx33q7v+I7dIU6Zy4BVOGAIDSeGAl2YuJPKfLUl9CCuLQlR2R01No6tEIwjonuC5tiXQcpSAQQJcmRe43Oty6xvKEFCI6HQAgP1+oQyGLIizUut+68U4I9TgqC/VDACAuxiG2Szrr0siIaZR054rkSBfkyiLrDp84CCGEGEHDQQghxAgaDkIIIUbQcBBCCDGChoMQQogRAY2qCg6yaaNAvNFFIEjf1b2dL0WK+DO2N1LqDF3EgyRrUlTIqRPWNAcbhJNFRkZa2rr36CHK5gnztv7r9aJsZpYcNWYS6SZFUGmL3vgRL+KPTKCwhwTBXiCySYqUkYoUub9fEF003tk8ax/S9wtDSsshFUUCzM5NiYLRZp4+NPJ2g5QhcjSS3HPmWWt6nlihMBOgj8zSRZ5JOIXwSJNIuZLImcAnDkIIIUbQcBBCCDGChoMQQogRNByEEEKMqHApR0zSKEhOc50bKkgwkTqnqybjgpl3TyBfkxfEIDuDmC5EJ66btxbXtLK0RQgOcwDIPpNtafvr1Ekz3aQyDpq5rLiu7NLH6VKWNSw5R6VaGoDsNNet/1Dh2Oh8tnm6FBcah7W/6Op/5AsngO5Uk9KFAHKQim7esgSHd7Bm7V4Wa609o0vVoks/JF2ndEEMF8v65xMHIYQQI2g4CCGEGEHDQQghxAgaDkIIIUbQcBBCCDEioFFVQTabJTWHFB2hKywjRUqZoE8XIstLaUR06VCk8Bbp+4BcUEoXgaWLBJP6vrxWLVG2Y8cOfukAAIsXv29pO6op5GRS1EcXgaWdT2k8P3KZ+CMTKEKCgyxpPJSyHvezuXI0km4O/UU317q1IKUc0aVDCRHmXRflJ0U/6SKwdH1Iuun2L8xuHU93zkt96K5HoSFyJ1IqEkkHQD+fEv6mTDJNreQPfOIghBBiBA0HIYQQI2g4CCGEGEHDQQghxAgaDkIIIUYENKpKQorM0Vk3KShKF0QjRVDZNJl9dNFWUrsuYsFEVsrVo4sGMtE5sd4VGllrH7/8tkeUPXTwkFUHjW66eZPEpX3WohOtuAFTfqGUsuTsChXyIMllg+SIH+0aE/JM6daYtoiSEPGlKwYljafLHSVFUIVqCjPp1p403hlNNJpJQbYIIfrJZI4B+ZqmixqTkceTZlOaH92clQQ+cRBCCDGChoMQQogRNByEEEKMoOEghBBiRIVzjkvoUgeYOLkkB6uyybI655fUtT5tibUPbR0ooV2XvkNpPMUOu93SdlmtuqKsy2V1zH2zYb0o63RaZbW6+Z99pZAgBmtbWaRMqAjYbDaL41IqcJWnSXEhzYvOQSuuXd1a0jixpeJDuvFMUoBIaujSqejON2m8kxnWImQAUKOSw9IW6ZAvhVJ6EZs2WkdulvZEl9ZFChrRBSDoiqGVB3ziIIQQYgQNByGEECNoOAghhBhBw0EIIcQIGg5CCCFGVLioKilywySqRhdoIEbrGL6KL4nrUoBIeugiokwK8ghZHwAAra673tKWWPsyUfbQ76mWtoMHD4qypZKuwGDepNAUfaCc/6laLhakKB6TqBpNAJYY0SSlNykMKZpOE5gonse6KCBdUSMJZ77cR0Z2nqUtJkJO1hKhiaCS0GQ+MUK8bmjXqXBMNdFo0nyWtLiXv/CJgxBCiBE0HIQQQoyg4SCEEGIEDQchhBAjAuocV8rq+JQccCZv1mudo0HWTrT1IzTjmegm1v/QqCY5v3S73OjKK8X29jd0sLSlZ50RZdetW6fpvYQY1M3QpmoR2nRpLSTnbsFuA5iVoUicLmU59pJzU3I0A/J0S6k3zvciji9Katr9mW83Uk0PXZBLbr5VVptaRNNHjtBH5tl8UbZKpK7CScnQptwRVNbNvRSwc1ZTVyQyzHr5lo6d7niWBD5xEEIIMYKGgxBCiBE0HIQQQoyg4SCEEGIEDQchhBAjAhtVdf5/vo1l88q8lOLCNDuFSYSOWLxIk2ZD0iMyMkKUbduxi9iecdYaeZG6Z48oe+jQIbFdQkyTojlGuukRU7to5l6a46BL9PZGKWVJG6GEiTEIVtOm9ZCiDU3rY0mRQLou5PFkaUmPIM1B33ssU2xPz7ZGUEkFmwA53Ydu3qToriDNXusiwRwhBilVDFLDSDpLGpRFYOElekoSQggpK2g4CCGEGEHDQQghxAgaDkIIIUYE1DkeZLNZHGYmDjgJk/oROoeYrg8TZ7r4lr8ujYLgPLul3+2ibHxcNbH95MlTlrYfNm8QZU2c/HJqBE26BANvqzbliDDJJnVTLM7mCpxzJDjIZpkzKf2GSY0RnSNVmm9dKgrdcZSadedKvtC3Ls2GpPPh09mibCVNjY3ocGt7XIzsHBdrhYiScioT3dEwqpuimQspZYzutJLm3iWkemHKEUIIIQGHhoMQQogRNByEEEKMoOEghBBiBA0HIYQQIwIaVeVSyhLtIQVpmESV6BCzXhj2KwXo6KJ2pFbdcLGxsZa2K+vWFmX/OpMrtq/98nNL258nToqy0nyKqUV0srqCNZp4E0leJythEoFV8JiaHuPyRCrkJEU06YszWdGnHLG2BRtEAQFypKAUxXNO1iqsK8IkjRdfKUyUTf0zS2yPr2yVz8mTCyBJ86nbZ0ln3frXXaekeTO5pmmLPgmHT1o/JtGO/sInDkIIIUbQcBBCCDGChoMQQogRNByEEEKMoOEghBBiRECjqmzn/+fTJgQA6KIKTCITpKiJ0shJpQsOsgkqVxGipwCgV19rXqrMHGthGgDYvGGt2L5vz25Lmy6awiR9k9SHLvdNaQQwiYWcKnBkVEmw2WyWNSgdMl10UKgUHaQZSzpmumAt3XSLxck0slKxI1102L7j1kipsFBZ9rIq4WK7Q4gQ053fJrmqHKHWPHJ5Qv6qc+PJfciRifKI0rVOdx6bFKQqbfjEQQghxAgaDkIIIUbQcBBCCDGChoMQQogRgXWO26wOJRPnkJTWQJv2QmrTFXISWzWdaJB0vrpZC1E2Ia6qdSjNWAcPHPBbB10fYlEfXeoUYTK0KRc0ekhFfbTpJ6RJlpSALo1M0TIVBX8LOekKBIlFzzQ7LB2yPE26kNIIqpB0zjorB3xIBZe0RZ8M0q/o+pDa8zVzIcnq5kFXROusENwQJjjdAUC5hEJMmitSkHBUg4RjJ7WVFD5xEEIIMYKGgxBCiBE0HIQQQoyg4SCEEGIEDQchhBAjAhpVJSFFdJgUTtEXGfIfbYoLgwij2rWthZiuvqaV3zqcyMyRVdCoJhaZ0oSBiXMsZ7UwKvqki8ySIqhMijP9nQgNluZKlpVSeGjTwUhtmrk2Kfyj003i9Jk8sb1yRKil7dejGaLsdfWqyHqI0U+yclLEly4Cy2SOdZFZUjoUnaw099pIOWH//G0rKXziIIQQYgQNByGEECNoOAghhBhBw0EIIcSIgDrHlbI6dU3qZkg+n3zhlX0ACBb60Dn2lGaDNJ7OkRifUMvSFhkeJspKjrljJ06Isrm5uWK7mH5Dl35F2A+t011whGvrHBhEJuic4FIX0/7vM1F2wl03C0P59ltO5QmKhdOlLMderpvhf10JKb0FIKfqkFLBAPrjKInr0qGkCY7wcE2NDSnNSlaenJ5Eh5RWQ6qJA5jNsXQ90snq5jNEWOu6zCnS1Fe5bowo++e3L1napHPTJIDBX/jEQQghxAgaDkIIIUbQcBBCCDGChoMQQogRNByEEEKMCGhUlUspSwSHSboDKQIhJMh/WxikC7vQyvuvW2iIlDpAlj129Jilbc3ShaLsmTPZYrtY1EoznrQfQdoCWP7PkW48KWrMZC4fuusfYruJbhWRfKfLknpCilLSRrEJ86otECS0hRpmd5Gig3RdRDqsemSe1aRDEfrteGV1UVaX7kMqSqW7lkhpRHQXQum80q063aUrR4h00xWkkvo++d3LfusmppaR1SoRfOIghBBiBA0HIYQQI2g4CCGEGEHDQQghxIiAOseDg2wWB5bk/NKmHJFcSbraHVJKAoOUHOf0sLbpnHUbNmywtG3csFHuWNJBsyMmtUl0yE41+ftG9TGUpg+D2xNJN60OwngF560iO9AdocFwFHBm5wnpN3TpKUTHrbZ2h5STxmz9S+eQpK+u6+hwa90NQHbe6upj6NJnSM5m3ZGXamGY1CbRyWpKbMAuBMrokK4n0rwD8jkrrQltKqASwCcOQgghRtBwEEIIMYKGgxBCiBE0HIQQQowIiHPcneM+JyfHsq08neN6/eR2E+e45PHTOaBFHcrQOS7W2NDoZuQbN5g3HSbOcWm8gvvmXmNSXYVA4dYlIz3dsk12jvtf/8TIOa7VT24vqXNcdx5LrSY1QQAgRNBNd8RNav5IU693jssjGlx6xD70x9/aJu1bRka6dltxCYjhyMjIAAC88tLMQAxP/oZkZGSgUqVKgVYDwIX1f0Vda7EvQsqK0jwHbCoAt2IulwuHDx9GdHS01noTUhoopZCRkYGEhAQEmcQFlyFc/6Q8KYtzICCGgxBCyMVLxbgFI4QQctFAw0EIIcQIGg5CCCFG0HAQQggxgoaDEEKIETQchBBCjAhYWvWzZ88iNzc3UMOTvxF2ux1hYWGBVsMHrn9SnpT2ORAQw3H27FnUrVsXR48eDcTw5G9GfHw8UlNTK4zx4Pon5U1pnwMBMRy5ubk4evQo9qb+jpiYmHP5hc7935MnR0Fd+KzceWfUhc8eefcWeJLTeLcprzb3m47n+rgwpk+b1/fU+Rb3dwt+z51Px3W+A582n++fa3fr4lLn+1RuuQv76PmeOtev8pL16KKsOhWUc53/4FLec6as+6Xcc1SgD+U9/5pt3sfHPedKWT+rwtvFNnU+B5JyeR1E92d14bNbVknbgZzsLDz/z6HIzc2tMIbDvf5/2/c7oqNjLqwHeB0vn+OpzuUlOn88XeePl0sBLriPs/eaKNCH0K/POvPM+wV5J5RnLLesUym4XG59zv3t/r7T/T2lPPnbnF4yTnX+O64L++B0KThd5z+f36bUuYJITqXgAi5sd53r14Vz+eGcrnPr5dx25dl/T/t5PdT577rblOvc/rhcbt3O9+vy/YzzMp529766XBf6dSool7vd/VnBpVwXPp+bsPPfu/AZ3v16ybo/K5cLcDnPrWOX8/zBcV747HJe2O4sKOslo1xA3lkc3fVOqZ4DAa0AGBMTU+qGo2Cbz8UP3v1dGFNqs1xgz7e5vGSKYzgUvE5yz0npfYJ7bXPr4TnRS2Y4vC9EvobAa24LGoeCYxb4L7x0LMpAFN9w6AyD+2pXxPYKSnRMDGIKMRwXjl0hhsNznPVGQmqTDId3H+4LvXsMb8Ph8sNwuD97DIfrguFwKr3h8Mi4rIbD3aYzHC6XQtD59iB1wXAUbHPL2goYC9/PgM1LxuZpc3k+w3nhe/AyHPAyAOct7bn/en1W5yYbtvNGpOBnWAyHy8tYKF/DYXPKMrZzbcqlKU1YAugcJ4QQYgQNByGEECNoOAghhBhBw0EIIcSIgDrH089XQCtN5zgKtPk4eOHd34Uxfdq8vic5x72/x6gqr7kr6OT2/qwKbxfbSiuq6uwZce1VBDLS04t2bKsinONQlj4YVXXxRFWdi6By/7eMoqqcpf++UMBKx0ZFRaF+3dqBGJ78zYiKivIYqIqAe/1fWY/rn5QPpX0OBMRw2Gw2ZGZm4uDBg4iJiQmEChcd6enpqFWrFufMEPe8VaRKe1z/xYPnQPEoi3OgQrzHQfyHc3bpwGNZPDhvgYfOcUIIIUbQcBBCCDEiIIbD4XBg0qRJcDgcgRj+ooRzVjwq4rxVRJ0uBjhvxaMs5s2mKlK4CSGEkAoPf6oihBBiBA0HIYQQI2g4CCGEGEHDQQghxAgaDkIIIUaUmeF49dVXkZiYiLCwMLRu3Rrff/99ofJLlixBo0aNEBYWhqZNm+LTTz8tK9UqLCZzNnfuXNhsNp9/FaU0anny9ddfo1evXkhISIDNZsPy5cuL/M66detwzTXXwOFw4IorrsDcuXNLXS+u/+LBc8CMQK3/MjEcixYtwgMPPIBJkybhp59+QrNmzdCtWzccP35clP/mm28wcOBAjBgxAlu3bsWtt96KW2+9Ff/+97/LQr0KiemcAedSLxw5csTz78CBA+WoccUgKysLzZo1w6uvvuqXfGpqKnr06IFOnTrh559/xtixY3HXXXdh9erVpaYT13/x4DlgTsDWvyoDrrvuOjV69GjP306nUyUkJKhnnnlGlO/fv7/q0aOHT1vr1q1VSkpKWahXITGdszlz5qhKlSqVk3YXBwDUsmXLCpV56KGHVFJSkk/bgAEDVLdu3UpND67/4sFzoGSU5/ov9SeO3NxcbNmyBV26dPG0BQUFoUuXLti8ebP4nc2bN/vIA0C3bt208pcaxZkzAMjMzESdOnVQq1Yt3HLLLdi5c2d5qHtRU9Zrjeu/ePAcKB9Ka62VuuE4ceIEnE4natSo4dNeo0YNHD16VPzO0aNHjeQvNYozZw0bNsTbb7+NFStWYP78+XC5XGjbti0OHTpUHipftOjWWnp6OrKzs0vcP9d/8eA5UD6U1voPaFp1UnzatGmDNm3aeP5u27YtGjdujDfeeANPPfVUADUjpHzgORA4Sv2Jo1q1aggODsaxY8d82o8dO4b4+HjxO/Hx8UbylxrFmbOChIaGokWLFtizZ09ZqHjJoFtrMTExCA8PL3H/XP/Fg+dA+VBa67/UDYfdbkfLli3x5ZdfetpcLhe+/PJLn7sDb9q0aeMjDwBr1qzRyl9qFGfOCuJ0OrFjxw7UrFmzrNS8JCjrtcb1Xzx4DpQPpbbWTD33/vD+++8rh8Oh5s6dq3bt2qVGjRqlKleurI4ePaqUUmrIkCHqkUce8chv2rRJhYSEqOeff1798ssvatKkSSo0NFTt2LGjLNSrkJjO2eTJk9Xq1avV3r171ZYtW9Ttt9+uwsLC1M6dOwO1CwEhIyNDbd26VW3dulUBUNOnT1dbt25VBw4cUEop9cgjj6ghQ4Z45Pft26ciIiLUhAkT1C+//KJeffVVFRwcrFatWlVqOnH9Fw+eA+YEav2XieFQSqmXX35Z1a5dW9ntdnXdddepb7/91rMtOTlZDR061Ed+8eLF6sorr1R2u10lJSWpTz75pKxUq7CYzNnYsWM9sjVq1FDdu3dXP/30UwC0Dixr165VACz/3HM1dOhQlZycbPlO8+bNld1uV/Xq1VNz5swpdb24/osHzwEzArX+WY+DEEKIEcxVRQghxAgaDkIIIUbQcBBCCDGChoMQQogRNByEEEKMoOEghBBiBA0HIYQQI2g4CCGEGEHDQQghxAgaDkIIIUbQcBBCCDHi/wHJSWYhe2VO7wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "5d8fe87c", + "metadata": {}, + "outputs": [], "source": [ "visualize_integrated_gradients(tainted_test_dataset[0], model_tainted, \"Tainted Model on Tainted 7\")\n", "visualize_integrated_gradients(test_dataset[0], model_tainted, \"Tainted Model on Clean 7\")" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "63f51d95", "metadata": {}, "source": [ "

\n", - " Task 4.2: Interpereting the Tainted Model's Attention on 7s

\n", + " Task 4.2: Interpreting the Tainted Model's Attention on 7s

\n", "Where did the tainted model focus its attention for the clean and tainted 7s? How was this different than the clean model? Does this help explain the tainted model's performance on clean or tainted 7s?\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "96f968ca", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**4.2 Answer:**\n", "\n", - "Your answer here!" + "The tainted model only focuses on the dot in the tainted 7. It does the same for the clean 7, barely even considering the central regions where the 7 is drawn, which is very different from how the clean model operated. Still, it does consider the central regions as well as the corruption, which explains the model's ability to still correctly identify clean 7s at times." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "98ffa814", "metadata": { "tags": [ "solution" @@ -1568,8 +1426,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "d84b50f2", "metadata": {}, "source": [ "Now let's look at the regions of the image that Integrated Gradients highlights as important for classifying fours in the clean and tainted models." @@ -1577,50 +1435,10 @@ }, { "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAECCAYAAADpdjDfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABBQ0lEQVR4nO2dd3xUZdbHf5MyM6kQaggtBFDYUA1FCBBgEZQmKxhEpLgIsaDiIijiCyK4CijCUkRcBKWogBQrrIWquCpdQAVNQKVJTW8z5/0jzJCZe54wT9pM2PP9yMfJmXOf+9znee4998459xwTEREEQRAEwUP8vN0BQRAEoWIhhkMQBEHQQgyHIAiCoIUYDkEQBEELMRyCIAiCFmI4BEEQBC3EcAiCIAhaiOEQBEEQtBDDIQiCIGghhuMGJjo6GiNHjvR2N3ySrl27omvXrsXatiKP68iRIxEdHe3tbggVHDEcFZBffvkFSUlJiImJgdVqRXh4OOLj4zFv3jxkZWV5u3sek5KSApPJBJPJhBkzZrA6Q4cOhclkQmhoaDn3rmKRmpqKadOmoWXLlggNDUVQUBCaNWuGp556CqdOnfJ294rN5cuXUaNGDZhMJqxbt87b3RGuEuDtDgh6fPzxx7j77rthsVgwfPhwNGvWDLm5udi1axcmTJiAw4cPY8mSJd7uphZWqxXvvPMOnn32WRd5RkYGNm3aBKvV6qWeVQx+/fVX9OjRAydPnsTdd9+NMWPGwGw24+DBg1i6dCk2bNiAn3/+2dvdLBZTpkxBZmamt7shuCGGowKRnJyMe+65B/Xr18eXX36JWrVqOb975JFHcPz4cXz88cde7GHx6N27N9avX48DBw6gZcuWTvmmTZuQm5uL22+/HV9++aUXe+i75Ofn46677sLZs2exbds2dOrUyeX7F154ATNnzvRS70rGDz/8gNdeew1TpkzBlClTvN0doRDyU1UFYtasWUhPT8fSpUtdjIaDRo0a4fHHHy+yjcuXL2PcuHGoW7cuLBYLGjVqhJkzZ8Jut7vovfzyy+jYsSOqVq2KoKAgxMXFsT8VmEwmjB07Fhs3bkSzZs1gsVgQGxuLzZs3e3xcHTp0QIMGDbB69WoX+apVq3D77bejSpUq7HaLFi1CbGwsLBYLoqKi8Mgjj+Dy5csGvSVLlqBhw4YICgpCu3btsHPnTra9nJwcTJ06FY0aNYLFYkHdunUxceJE5OTkeHwshcnIyMD48eOdY33zzTfj5ZdfhntC6pKM4fvvv48DBw5g8uTJBqMBAOHh4XjhhReKbMNut2Pu3LmIjY2F1WpFzZo1kZSUhEuXLrnobdq0CX369EFUVBQsFgsaNmyI6dOnw2azueh17doVzZo1w5EjR9CtWzcEBwejdu3amDVr1nWPpzCPP/44/va3v6Fz585a2wnlAAkVhtq1a1NMTIzH+vXr16cRI0Y4/87IyKAWLVpQ1apV6ZlnnqHFixfT8OHDyWQy0eOPP+6ybZ06dejhhx+mBQsW0Jw5c6hdu3YEgD766CMXPQDUsmVLqlWrFk2fPp3mzp1LMTExFBwcTOfPny+yf8nJyQSAZs+eTc888wzVq1eP7HY7ERH9+eefFBAQQO+88w6NGDGCQkJCXLadOnUqAaAePXrQ/PnzaezYseTv709t27al3Nxcp96///1vAkAdO3akf/3rXzRu3DiqXLkyxcTEUEJCglPPZrNRz549KTg4mMaNG0evv/46jR07lgICAujOO+8sclw57HY7de/enUwmEz3wwAO0YMEC6tevHwGgcePGldoY3nvvvQSATp48WaSegxEjRlD9+vVdZA888AAFBATQ6NGjafHixfTUU09RSEiIYSwHDBhAiYmJNHv2bHrttdfo7rvvJgD05JNPurSXkJBAUVFRVLduXXr88cdp0aJF1L17dwJAn3zyiUf9XLNmDVmtVkpOTqatW7cSAFq7dq1H2wpljxiOCsKVK1cIgOEiVhTuF7jp06dTSEgI/fzzzy56Tz/9NPn7+7tcfDIzM110cnNzqVmzZtS9e3cXOQAym810/Phxp+zAgQMEgObPn19k/wobjh9++IEA0M6dO4mIaOHChRQaGkoZGRkGw3Hu3Dkym83Us2dPstlsTvmCBQsIAL355pvOPteoUYNatWpFOTk5Tr0lS5YQABfDsWLFCvLz83Pu38HixYsJAH311VdOmSeGY+PGjQSAZsyY4SIfNGgQmUwml/EqyRi2bt2aKlWqVKROYdwNx86dOwkArVq1ykVv8+bNBrn7miAiSkpKouDgYMrOznbKEhISCAC9/fbbTllOTg5FRkbSwIEDr9vHzMxMqlevHk2aNImISAyHDyI/VVUQUlNTAQBhYWHFbmPt2rXo3LkzIiIicP78eee/Hj16wGazYceOHU7doKAg5+dLly7hypUr6Ny5M/bu3Wtot0ePHmjYsKHz7xYtWiA8PBy//vqrx32LjY1FixYt8M477wAAVq9ejTvvvBPBwcEG3c8//xy5ubkYN24c/PyuLeHRo0cjPDzc6ef5/vvvce7cOTz44IMwm81OvZEjR6JSpUqGsWnatCmaNGniMjbdu3cHAGzdutXjYwGATz75BP7+/njsscdc5OPHjwcR4dNPP3WRF3cMU1NTS7wmKlWqhNtuu83luOPi4hAaGupy3IXXRFpaGs6fP4/OnTsjMzMTP/74o0u7oaGhuO+++5x/m81mtGvXzqM18dJLLyEvLw/PPPNMsY9LKFvEOV5BCA8PB1BwwhaXY8eO4eDBg6hevTr7/blz55yfP/roI8yYMQP79+93+Y3fZDIZtqtXr55BFhERYfiN/Hrce++9eOWVV/DEE0/g66+/Vl44Tpw4AQC4+eabXeRmsxkxMTHO7x3/b9y4sYteYGAgYmJiXGTHjh3D0aNHPRobTzhx4gSioqIMF/WmTZu69M1BccdQ10C7c+zYMVy5cgU1atRgvy983IcPH8azzz6LL7/80nkj4+DKlSsuf9epU8ewViIiInDw4MEi+5OSkoLZs2dj4cKFEoLtw4jhqCCEh4cjKioKP/zwQ7HbsNvtuO222zBx4kT2+5tuugkAsHPnTvTv3x9dunTBokWLUKtWLQQGBmLZsmUGBzYA+Pv7s+2RZlXiIUOGYNKkSRg9ejSqVq2Knj17am1fEux2O5o3b445c+aw39etW7dM91/cMWzSpAn27duH3377rVh9tNvtqFGjBlatWsV+7zCkly9fRkJCAsLDw/H888+jYcOGsFqt2Lt3L5566ilDcEVxj2fKlCmoXbs2unbtipSUFADAmTNnAAB//vknUlJSUK9ePZcnTaH8EcNRgejbty+WLFmC3bt3o0OHDtrbN2zYEOnp6ejRo0eReu+//z6sViu2bNkCi8XilC9btkx7nzrUq1cP8fHx2LZtGx566CEEBPDLs379+gCAn376yeXJITc3F8nJyc7jc+gdO3bM+ZMTAOTl5SE5Odkl9Ldhw4Y4cOAA/vrXv7JPVbrUr18fn3/+OdLS0lyeOhw/6Tj6VlL69euHd955BytXrsSkSZO0t2/YsCE+//xzxMfHu/wU5c62bdtw4cIFrF+/Hl26dHHKk5OTi9VvFSdPnsTx48cNT4QA8PDDDwMo+Om0cuXKpbpfQQ8x2xWIiRMnIiQkBA888ADOnj1r+P6XX37BvHnzlNsnJiZi9+7d2LJli+G7y5cvIz8/H0DB3aLJZHIJs0xJScHGjRtLfhDXYcaMGZg6dSoeffRRpU6PHj1gNpvxr3/9y+UOdunSpbhy5Qr69OkDAGjTpg2qV6+OxYsXIzc316m3fPlyQ9huYmIi/vjjD7zxxhuG/WVlZSEjI0PrOHr37g2bzYYFCxa4yF999VWYTCbccccdWu2pGDRoEJo3b44XXngBu3fvNnyflpaGyZMnK7dPTEyEzWbD9OnTDd/l5+c7x8nxBFF4vHNzc7Fo0aISHoErM2bMwIYNG1z+Ofo2ceJEbNiwASEhIaW6T0EfeeKoQDRs2BCrV6/G4MGD0bRpU5c3x7/++musXbu2yBxKEyZMwAcffIC+ffti5MiRiIuLQ0ZGBg4dOoR169YhJSUF1apVQ58+fTBnzhzcfvvtuPfee3Hu3DksXLgQjRo1uu5v1CUlISEBCQkJRepUr14dkyZNwrRp03D77bejf//++Omnn7Bo0SK0bdvW6ZQNDAzEjBkzkJSUhO7du2Pw4MFITk7GsmXLDHe0w4YNw5o1a/Dggw9i69atiI+Ph81mw48//og1a9Zgy5YtaNOmjcfH0a9fP3Tr1g2TJ09GSkoKWrZsif/85z/YtGkTxo0b5+IILwmBgYFYv349evTogS5duiAxMRHx8fEIDAzE4cOHsXr1akRERCjf5UhISEBSUhJefPFF7N+/Hz179kRgYCCOHTuGtWvXYt68eRg0aBA6duyIiIgIjBgxAo899hhMJhNWrFih/XPk9eDeRXE8XbRt2xYDBgwo1f0JxcSLEV1CMfn5559p9OjRFB0dTWazmcLCwig+Pp7mz5/vEhbJhY2mpaXRpEmTqFGjRmQ2m6latWrUsWNHevnll11i9pcuXUqNGzcmi8VCTZo0oWXLljnfnSgMAHrkkUcMffQkZLVwOG5RcO9xEBWE3zZp0oQCAwOpZs2a9NBDD9GlS5cMeosWLaIGDRqQxWKhNm3a0I4dOyghIcElHJeoIHx35syZFBsbSxaLhSIiIiguLo6mTZtGV65c0To2ooKxfuKJJygqKooCAwOpcePGNHv2bOe7Kg5KMoYOLl26RFOmTKHmzZtTcHAwWa1WatasGU2aNIlOnz7t1OPe4yAqCFGOi4ujoKAgCgsLo+bNm9PEiRPp1KlTTp2vvvqKbr31VgoKCqKoqCiaOHEibdmyhQDQ1q1bnXoJCQkUGxtr2Idq39dDwnF9DxNRKd8yCIIgCDc04uMQBEEQtBDDIQiCIGghhkMQBEHQQgyHIAiCoIVXDcdzzz1X7Jetli9fDpPJ5Hy7tCxwVKhbvnx5me1Dl5KUPC0v3EurOubq+++/L5f9V4Qxqmhw51t0dDT69u1bLvvftm0bTCYTtm3bVi77Ky8q6nEVy3AcPnwY9913H2rXru2shTB06FAcPny4tPsnlBCbzYaoqCiYTCZDYj0HixYtYo3jkSNH8Nxzz5WpcS4uvty38mDRokUwmUxo3749+31R46Oab1/AV/tGRFixYgW6dOmCypUrIzg4GM2bN8fzzz+v/XLoDYFu/O77779PZrOZIiMjafLkyfTvf/+bnn32WapVqxaZzWZav369x23l5eVRVlaWbheIiCg/P5+ysrIMMfGlieM9g2XLlpXZPnTh3j8oiv/85z8EgKKjo2no0KGsTmxsLNvm2rVrDTH6npCdne3yTsiyZcsIAH333Xda7RRFUX3LyclxSaN+I9KxY0eKjo4mAHTs2DHD90WNj2q+i4I73+rXr099+vTR7XqRqPpms9koKyvLJY1+eZGfn0+JiYkEgDp37kyvvvoqvf7663TfffeRn58fNWvWjM6cOVOsth3vqOieY95G64njl19+wbBhwxATE4ODBw9ixowZGDVqFKZPn46DBw8iJiYGw4YNu262ToeFDggIKHY9aX9/f1it1lLJK3Qjs3LlStxyyy144oknsHHjxjK7OyIiZGVlAQAsFgsCAwPLZD+eYDabXdKo32gkJyfj66+/xpw5c1C9enVlgsLSwLFevH2++fn5wWq1eiW54axZs7BmzRo8+eST2LFjB8aNG4cxY8ZgxYoV2LhxI44cOVJkxoYbEh0rk5SURABox44d7Pfbt28nAJSUlOSUOd42Pnz4MA0ZMoQqV65MrVq1cvmuMJmZmfToo49S1apVKTQ0lPr160e///47AaCpU6c69Rx3scnJyU6Z4w5o586d1LZtW7JYLNSgQQN66623XPZx4cIFGj9+PDVr1oxCQkIoLCyMbr/9dtq/f7+LnqdPHJ6257i7eO+992jGjBlUu3Ztslgs1L17d/au8fXXX6eYmBiyWq3Utm1b5RvPKjIzMyksLIxmzZpFp0+fJj8/P0PBnvr16xMAl38JCQnO8XX/57gzcoz15s2bKS4ujiwWC7366qvO7wq/8exoa/v27TRmzBiqUqUKhYWF0bBhw+jixYsu/XGf58L9dLR5vb5xY3T27Fn6+9//TjVq1CCLxUItWrSg5cuXu+gUfpPdMfZms5natGlD3377rUdjXh5Mnz6dIiIiKCcnhx566CFq3Lixy/dFjY9qvgtvt23bNnrooYeoevXqVLlyZZfvuPNty5Yt1LJlS7JYLNS0aVN6//33XfrDnedcm0X1TXVnvmbNGrrlllvIarVS1apVaejQofT777+76DgyD/z+++905513UkhICFWrVo3Gjx9P+fn5RY51ZmYmRURE0E033UR5eXmszv33308AaPfu3Yaxud61yP24pkyZQgEBAXTu3DnDfkaPHk2VKlUq9q80pYmW+f7www8RHR2trAHcpUsXREdHOwvpFObuu+9GZmYm/vnPf2L06NHKfYwcORLz589H7969MXPmTAQFBTmT1nnC8ePHMWjQINx222145ZVXEBERgZEjR7r4X3799Vds3LgRffv2xZw5czBhwgQcOnQICQkJOHXqlMf7Km57L730EjZs2IAnn3wSkyZNwjfffIOhQ4e66CxduhRJSUmIjIzErFmzEB8fj/79++O3337zuF8ffPAB0tPTcc899yAyMhJdu3Y13J3OnTsXderUQZMmTbBixQqsWLECkydPRpcuXZxFiJ555hnnd456EkBBdtohQ4bgtttuw7x589CqVasi+zN27FgcPXoUzz33HIYPH45Vq1ZhwIAB2vmOPOlbYbKystC1a1esWLECQ4cOxezZs1GpUiWMHDmSTQq5evVqzJ49G0lJSZgxYwZSUlJw1113IS8vT6ufZcWqVatw1113wWw2Y8iQITh27Bi+++475/dFjY9qvgvz8MMP48iRI5gyZQqefvrpIvty7NgxDB48GHfccQdefPFFBAQE4O6778Znn32mfVye9K0wy5cvR2JiIvz9/fHiiy9i9OjRWL9+PTp16mRIYmmz2dCrVy9UrVoVL7/8MhISEvDKK69gyZIlRfZp165duHTpEu69915ltubhw4cDKKhhUxhPrkXuDBs2DPn5+Xjvvfdc5Lm5uVi3bh0GDhxY7F9pShVPLczly5c9Kl3av39/AkCpqalEdO1uY8iQIQZd9zuRPXv2sDWZR44c6fETB9yeiM6dO0cWi4XGjx/vlGVnZxt+K01OTiaLxULPP/+8iwwePHF42p7j7qJp06Yuv8HPmzePANChQ4eISK/kaVH07duX4uPjXbbn7maK4+NwjPXmzZvZ77gnjri4OBffx6xZswgAbdq0ySlzn2dVm0X1zf2JY+7cuQSAVq5c6ZTl5uZShw4dKDQ01LlWHfNdtWpVlyehTZs2EQD68MMPDfsqb77//nsCQJ999hkRFdQ2r1OnjqFmfHF8HI556tSpk+FOvKjzrfATxpUrV6hWrVrUunVrp8zTJ46i+uZ+Z+44R5o1a+ZyB/7RRx8RAJoyZYpTNmLECALgci4SFZTdjYuLM+yrMI61s2HDBqXOxYsXCQDdddddTpmn1yLuSapDhw7Uvn17l32sX7/ep3whHj9xOCrPXa9MpeN79wphDz744HX3sXnzZgDX8u47KCrFtjt/+ctfXJ6IqlevjptvvtnF72KxWJy/ldpsNly4cAGhoaG4+eab2dKo10O3vfvvv9/lN3hHfx191Cl5quLChQvYsmULhgwZ4pQNHDgQJpMJa9as0T5GjgYNGqBXr14e648ZM8bF9+GoufHJJ5+USn9UfPLJJ4iMjHQZi8DAQDz22GNIT0/H9u3bXfQHDx6MiIgI59/u8+NNVq1ahZo1a6Jbt24ACioyDh48GO+++65LGvySMHr0aGUhJneioqLwt7/9zfl3eHg4hg8fjn379jkLMJUFjnPk4YcfdrkD79OnD5o0acL+6uF+DercufN159ST657qmufJtYhj+PDh+O9//4tffvnFKVu1ahXq1q173czR5YXHhsMxONcrXaoa6AYNGlx3HydOnICfn59Bt1GjRp5206MSnHa7Ha+++ioaN24Mi8WCatWqoXr16jh48KChBKYn6Lbn3kfHRcrRR52Spyree+895OXloXXr1jh+/DiOHz+Oixcvon379qXmTPVkTgvjfjyhoaGoVatWmYfUnjhxAo0bNzY4Vj0t4+o+P97CZrPh3XffRbdu3ZCcnOyc1/bt2+Ps2bP44osvSmU/OvPaqFEjg8PcUUmyLOdVVT4YKKiK6D6nVqvVUBbYk9K8nlz3VNe84pYDHjx4MCwWi/M8vXLlCj766CMMHTrUZ4KBPDYclSpVQq1ata5bj+HgwYOoXbu2s0a2g6Kqi5UmnpSs/Oc//4l//OMf6NKlC1auXIktW7bgs88+Q2xsrKEEpifotldapVaLwrHo4uPj0bhxY+e/Xbt2Yffu3aVy91xecwqg1O6mPaE85qc4fPnllzh9+jTeffddlzlNTEwEgFK7ISjteVVd7HxhTq+H4+aiqOue47u//OUvHu3zeusoIiICffv2dc7nunXrkJOT46wz4wtoFXLq27cv3njjDezatYstuLJz506kpKQgKSmpWJ2pX78+7HY7kpOTXe5Ojx8/Xqz2VKxbtw7dunXD0qVLXeSXL19GtWrVvN6eTslTDke45tixYw2Ptna7HcOGDcPq1avx7LPPAlCf2KV9d3Ps2DHnTywAkJ6ejtOnT6N3795OWUREhMGxmZubi9OnTxe7b/Xr18fBgwdht9tdnjpKu4xrWbNq1SrUqFEDCxcuNHy3fv16bNiwAYsXL0ZQUFCR41Oa83r8+HEQkUubP//8M4CCN8uBa09sly9fdin56v5UoNO3wuWDC58jDllpzWmnTp1QuXJlrF69GpMnT2aNwdtvvw0ApfoW/fDhw3HnnXfiu+++w6pVq9C6dWvExsaWWvslRSuqasKECQgKCkJSUhIuXLjg8t3Fixfx4IMPIjg4GBMmTChWZxy/l7uXo5w/f36x2lPh7+9vsPpr167FH3/84RPt6ZQ85XDcqUycOBGDBg1y+ZeYmIiEhASXu9OQkBC2XUeJTk/26QlLlixxiUx67bXXkJ+f71JGtWHDhtixY4dhO/e7U52+9e7dG2fOnHGJVMnPz8f8+fMRGhrqM78bF0VWVhbWr1+Pvn37GuZ00KBBGDt2LNLS0vDBBx8AKHp8VPNdHE6dOoUNGzY4/05NTcXbb7+NVq1aITIyEgCc1Q4Lz2tGRgbeeuutYvetTZs2qFGjBhYvXoycnByn/NNPP8XRo0e1IjGLIjg4GE8++SR++uknNsLr448/xvLly9GrVy/ceuutpbJPALjjjjtQrVo1zJw5E9u3b/eppw1A84mjcePGeOuttzB06FA0b94co0aNQoMGDZCSkoKlS5fi/PnzeOedd4pdFjMuLg4DBw7E3LlzceHCBdx6663Yvn278w6mtO6U+vbti+effx73338/OnbsiEOHDmHVqlUe+w/Kuj2dkqccq1atQqtWrVC3bl32+/79++PRRx/F3r17ccsttyAuLg6vvfYaZsyYgUaNGqFGjRro3r07WrVqBX9/f8ycORNXrlyBxWJB9+7dUaNGjWIdV25uLv76178iMTHRWeq1U6dO6N+/v1PngQcewIMPPoiBAwfitttuw4EDB7BlyxbDk5tO38aMGYPXX38dI0eOxJ49exAdHY1169bhq6++wty5c68b8OELfPDBB0hLS3MZq8LceuutzpcBBw8eXOT4qOa7ONx0000YNWoUvvvuO9SsWRNvvvkmzp49i2XLljl1evbsiXr16mHUqFGYMGEC/P398eabb6J69eo4efKkS3ue9i0wMBAzZ87E/fffj4SEBAwZMgRnz57FvHnzEB0djSeeeKJYx8Px9NNPY9++fZg5cyZ2796NgQMHIigoCLt27cLKlSvRtGlT1giWhMDAQNxzzz1YsGAB/P39XQI7fILihGIdPHiQhgwZQrVq1aLAwECKjIykIUOGOMNJC+MIxfvzzz+V3xUmIyODHnnkEapSpQqFhobSgAED6KeffiIA9NJLLzn1inohyR338Mzs7GwaP3481apVi4KCgig+Pp52795t0NMJx/WkPVUJTNV+PC15WhhHSPP//d//KXVSUlIIAD3xxBNERHTmzBnq06cPhYWFGcJ933jjDYqJiSF/f3/2BUCO670AGBERQaGhoTR06FC6cOGCy7Y2m42eeuopqlatGgUHB1OvXr3o+PHjbBlVVd9ULwDef//9VK1aNTKbzdS8eXPDeBdVyhaKMOHyol+/fmS1WikjI0OpM3LkSAoMDKTz588TkXp8VPNdVGqY670A2KJFC2eZYa7E6549e6h9+/ZkNpupXr16NGfOHLZNVd9ULwC+99571Lp1a7JYLFSlSpUiXwB0RxUmzGGz2WjZsmUUHx9P4eHhZLVaKTY2lqZNm0bp6ekGfU+vRUWlHPn2228JAPXs2dOjPpYnFaJ07P79+9G6dWusXLnS8KKcIAjCjciBAwfQqlUrvP322xg2bJi3u+OCz9XjcOQ7KszcuXPh5+eHLl26eKFHgiAI5c8bb7yB0NBQ3HXXXd7uigEtH0d5MGvWLOzZswfdunVDQEAAPv30U3z66acYM2aM8jd7QRCEG4UPP/wQR44cwZIlSzB27FhnoIMv4XM/VX322WeYNm0ajhw5gvT0dNSrVw/Dhg3D5MmTlbliBEEQbhSio6Nx9uxZ9OrVCytWrPDJ4A2fMxyCIAiCb+NzPg5BEATBtxHDIQiCIGjhFaeB3W7HqVOnEBYW5jNJu4QbEyJCWloaoqKivFI9jkPWv1CelMU54BXDcerUKYmQEsqV3377DXXq1PF2NwDI+he8Q2meA14xHI4ogaRHHoPFYnH5LtDfaBHzbHzG2gDGeqpu4Gx2YwyAv58iayejCwB+TOOq/XEhBwS+XROMjSj7oLhhKGkb3PYAf3x2RTyFqg0u/sJPMfY6oRrceLrPUU5ODhb8y7fSijj6cvCnZISFuWaRDrYYT8nMnHy2HWugMeGealxz843nUKA/r5tn4yeBO19U55CdWXuqdcOdV1x/ASBA0WeujRxFG9xxc9sD/PpXnVeqp0duLFTHoWiahTuvApjrZ1pqKho1qFuq54BXDIdjgC0Wi0eGw08Mx7U+iOG4puuB4XD2zYd+EnL0JSws3FB+gDMcAWI4nIjhuIanhsNBaZ4DvvGjryAIglBhEMMhCIIgaOHVV7ED/f0MP01xj7Pcz1cqVD91cO3a8z1/JAf4n0aU+2OeklXtck+Qqp+kVI/JYPqmGjfVTwYc+czPForDgOKXKvYHOlUXbNzjt2qH5Ds/PxWHILM/gsyuPzflMz/LuusUhWp9cO3m8b+AwRzArxvupxFufajkqna59a/6KUf1ExaHaty4MVKdEbl5TAVPxXpULVP22qNYu5w/16KaD+aE4+aoLN7xlicOQRAEQQsxHIIgCIIWYjgEQRAELcRwCIIgCFpUiDzlSocf926GIlaZe+dD9V6FSszFeuu8K6F6kZHrsb9GvDqgeG9EdXiMXOWM5xx76ncw+B1yUlVIuT8zGipnPnscbtvfCLmfVe9VZOfZDDJVQISFeedDOV+KMePeEchh+lCga5zHzFxel1sKlkD+OJTvjTB9VsWRcHKz4nzLZM7ZAH/Pne4Av/5VjnRu/lTtcnJu+7I4B+SJQxAEQdBCDIcgCIKghRgOQRAEQQsxHIIgCIIWYjgEQRAELbwaVUVk9PizGVZNqmysRkqjTokqCIHLtqmK4uLQySSazaQ6ANTpN9gMo4ooLjOXul6RyoFLE6GMcmKl/DypIj244SRFlglW163hski3UFrYyRjhw2Uw9VOMLDfnqoy3OqhGLDUrzyDj1hKgivjh+8alJ7mcadwXoE6/wUUTZSiyCocyGYgzshW6VqOuTvQUwK9/VcQXd43I00iNxPVNnaao+MgThyAIgqCFGA5BEARBCzEcgiAIghZiOARBEAQtvOoct9nJ4Lhh8/ArctdzfjlVegYm44Ky1KnKGR/IOKNU5SlVKRM4uPQiXDoVoKiynka56vi4VBXqVA6eO9ZUcQLcoajSr7ApMzTarUh3Qnn5dkNQArdu7IoB4JzNqrQewUxtClUpUZUzPog5iVIVTuVKQZ5fWri1pzqvshRBI5wDWHV8lzJyDTIuJYuqXRWqNCKcbztLMU9cDRHVeaWTcqm0qUjnmSAIguADiOEQBEEQtBDDIQiCIGghhkMQBEHQQgyHIAiCoIVXo6pMJmPEAJd+Q/kqPxNAoEprwKVnyFFEaHBpNgAg327Ur1IpjNX9a+8BBtnFc6dY3SOH9htkf5y9wOpy4wPw0VaqseCiY5TFYph2VdEqwUFWVh4dXd8g++nnY6wuMWOsKhzFp3JwSznCbukbcOufS7+himzjopG46CmVbmoWHxEVxqTZAIAsJhovXKF77Ey6QVYj3MLqVg0zypVRhYpoq8wco5yLUAKAKiFmgyxX0S53jVBFILIRoeAjBU3g98ed34GK65EfE/3JjVtZnAPyxCEIgiBoIYZDEARB0EIMhyAIgqCFGA5BEARBC686x/39TAZHE+cIVGQA0YJzOqqcWap0GKEhwQZZUMs+rG7dunUNMj97Dqt7+pzREa5yVucr+sY5LkOYugMAYA00yri0JyqCg4JY+agHRrPykxnGvp0/f57VPX/e87HgpO5+y3LKwFAszAF+hkAM7lj9VDlXNODqu6icx6q0JVzQSPw/v2R1l/+9nUGmcvJeTDemAFE5q7MVfbuYaWyjBuN0BwB7sHGMdVIEBShqkHCpfABg/aHfDLIhreuxutx1SjUW3LWSq9ejSoVSEuSJQxAEQdBCDIcgCIKghRgOQRAEQQsxHIIgCIIWYjgEQRAELbwaVeUxqkI+TLCBKh2ASSM0q3J4KCvv0rOfQda8SWNW95v/fmuQffHZZkXfjDJVJIQqSoiLoFKlHOEyWKja5VKZtO/QidX1t/LpV45v/8QgO32Wj6riIt1Uc8odB/l0khFXTCYTk76FS/HCb8/NjUUjPYWKUEUakQMnLhtkHz3OrwWub1zaH1Xf1OcxK2YjqFRRYxq1ydgIMyI+eurPVD5qstdNtQwyVboXKxPdpUqBREyBO53CayVBnjgEQRAELcRwCIIgCFqI4RAEQRC0EMMhCIIgaCGGQxAEQdDC56KqdHJKERtBoBGNoQhAqF6jJiu3VjdGR6zfzxdnOv3fXQYZV9AFAHKZ/FNc0aii4KJpVPl38vI9L/ZSNyrSIKvzl1as7slkvjjT8R+PKFo3ws2TKlcVF3lTTkElpQIRGdZwFhPFo4oOUhX14tAZq8wcPuJn37nLBtmTG39ndf/zWLzH+0vPMX6Ro8j7pCIsyJiArVIQf3nLyDG2bWMilAAgnGn348OnWd3OMdVYOVdci+sDwM+TKleVhSnIZmeun2WBPHEIgiAIWojhEARBELQQwyEIgiBoIYZDEARB0MKrznE7keEVeZUjnIMrPmRTeOD8Ga9rcKixMBMANG36F1beqKoxFcnRr75gdTMzMw0yZToMLnWG0surSNug4VTjmq5d0+gEB4C+A+8xyCLCrKzuR1uPsvKsbGMqhsAAVfoJRq5KOcMciPv2qjQXvoDNTgbHv8oRzsEFP3CBFoAqMENRIEux9G5vbFwj/ZoYA0YAMKlUAJsi4IPbnyoggmsX4NPrpGXzTn6u6RALP+7HzqQbZK2jKrO6qnHjAn5U++Oc46rCUVxRN257VfqWkiBPHIIgCIIWYjgEQRAELcRwCIIgCFqI4RAEQRC0EMMhCIIgaOHVqCo/k8kQ9aJTiMTEhNuYVJEijLxK0/asblybNqz81xO/GWQ//chHEuUxEU2BioIsXJEp7tgAIE8VNeNnnEqTid9fBpNSomZUHVY3JMQYSfbjDwdZ3UMHeTkXCJPLpD0B+AgSLiIOUI9RRcHfz2SIeFFFE3FwEUaqABouSm/BV8ms7uj29Vk517cwRdGnDCaiKVgRScT1WRUNxxVWAoAgJv2GKproLFNw6UpmHqvLjVvlYGMaEkA9d9w1LS1bcRxMVJ1ZEVWlijArD+SJQxAEQdBCDIcgCIKghRgOQRAEQQsxHIIgCIIWXnWOEzGv6TP+JS6dhorsXN55bGXSMzSqwqccycrlUxXkZGUYZPn5vK5OVnzu+FTpSbgc/ACfaiXIzDvxEjp0Nsjat2/H6nLOzw8/3MTqquIazExQgCqIgUujEKA4Zo6cPHuRf/sSdjKmv+DGUJWGh3OOXkjPZXW52hS9G9dgdS9n8I7iUGYtqFL86KR64YJGVEEylRSOaS7VSrA/v264VDx2O9/fqIggg4xbz4C6xkaYxThufiZel6vHYgnm98eNMefkT8vir1ElQZ44BEEQBC3EcAiCIAhaiOEQBEEQtBDDIQiCIGghhkMQBEHQwqtRVRxcpIgqwoJLORGgiMDKZqJrVAVS7IrUAVeCjFEo/ZhCRwCQm2NMa/DTD/tYXS5SSpVaJF/Rt5joBgaZf2U+aqZyTWPxHfLjo1X27j9kFCqip1TRP+z0KYJuuPQKqlQOXEoJQ3Eju+/eG5lgHAYuwk51/NxStygifq4wkTWqolGqtbdwtzFFSZ9G/BrjCkdFRfAFwLhIqcjKvC53HgN8saRPj5xhdc9kGM/NNpERrC6HJdzCylXjyc6fYv2HMhFYecyxAYCZKYYWzkTPIa/0L/O+e1YJgiAIPokYDkEQBEELMRyCIAiCFmI4BEEQBC286hy3ERlTFnApRxSOpDw7U/NC4aDl0gT8sP97Vjc/vDq/P39j+oHUQIVTLdDYj6wo3qmWmNDQIMtUpC/49Afe4dfmltoG2ec/nWN1Y6xGZ+SBlD9Y3R+/3m6QqZJ4qIIK/BknHqnqTnCTrVDlUke4O2U1yruUO7k2uzFVBtNfVV2JDCY1TrDCQculjlE53Zd+m8LKL2Ya1+SS7401agB+3D/b9Suru3VKT4PsQprRgQ0AY9/dz8pX/L2tQfbWt7/zbXSKNsh2/XaB1X04PsYgy87jz02uBg/Ap2pRnSsBzLmi0k3LMqYXCWGc62VxDsgThyAIgqCFGA5BEARBCzEcgiAIghZiOARBEAQtxHAIgiAIWvhcyhFVBAkHF0GVz0RaATBWzAFw+tQpVvXyptWsvGp1Y3qF7LCarG6tm1obZLc0DGN1P9+60yCrEsqnAKmviJBYuexjg6xO57tY3feZ6JaGYems7vkLTLSJKiBKMXdcOggVXHEaVcoZLsWJe7oMVfoMX0VVJIgjmImgyVFE/HC1yVT7eqB9NCvnChW9e4CPXPr86HmDbPLQlqzuRab4VOPIUFb348fiWTkXTRZk5i9v97z0uUG2amIPVpcrLKZa/1xBKkCdJoWDu/6poqK4FCcZOcaJzmRkJUWeOARBEAQtxHAIgiAIWojhEARBELQQwyEIgiBoIYZDEARB0MKrUVVcIRtiQhZUOXW4YjFcVA4AmDRMZE5ONitPSUkxyIiMMgA4dfAbg2y/IuqIOzxVzq28fH4sImtUNci4XE4AcEu0MWfWf7d8yuqy4+nneWEtAMhlIt1U+Xe4TFiq+bcyBbDcx82uKNblC3Drn4sgy1HMI5eXSBWVqBOtqCpw5mcyRlXd07IOq5vYwpg7TRXFxc2vSjdPkcON6zOXywkAFjze2SDr3Lgaq6sxbMprTzoT1aTKa8Whmv+IELNBFmxhIk2ZdVJSfPesEgRBEHwSMRyCIAiCFmI4BEEQBC3EcAiCIAhaeNU57u9nMjjt8hlHmcrpxDlYlekpGO8454hX9QHgHYwqpyPXD1U2FD+T58fM6QJATPN2BtmRPQdY3bSAPw2yzIxMvnMaqMaTc/SThhOX8YEXtMHszn3YFMPoE5gD/AxOYM4RygWBALyDVRVIwDmPSXGuqAoVWZiJUDmxuVQdytQzTBOq8ypAId91zJji5MvX32Z137pvrkGmWiY6RZBU1x4uHYpdsai58Qzm67+xc80Nj46D31PkiUMQBEHQQgyHIAiCoIUYDkEQBEELMRyCIAiCFmI4BEEQBC28GlVFZIxa4AIAVJExbBCDIgqCa0NV40cVhcBFOqnSAXDRH6rj0Cle1KJFM1betWNbgywr/A9W9/x3xvQiqmgcnVQVyug35lh05lRVnCvAz3jf434cquPyBexkTDfDjaFqCrhDU0UBcW3kKKKcVJFLXGRWqiKth4WJDlIV+gpgjlk1b5ZA/l43plqIQXbnuFGsLhe5pDqPueNQoTpXPI1+UumqotyCmMgsLs2QKvVQSZAnDkEQBEELMRyCIAiCFmI4BEEQBC3EcAiCIAhaeNU5zqFysHKwDmSVI5FxOqn2pKorwTmpVP3NYOoGBChqbPgzbah0GzdqzMozmZz/NwVeYXWPnD3j8f5UTnod3ew8o3NO5YDlUybwulyKk4qUcoSrx6EaF448JrpDdbxcug/VnlTjfTkj1yBT1e74M82oa1U4trmUKipdlQP6z9Qcg2zJ4JasLuccV6Vf0QmuUOlezjQGEHC1ZAB+/lUpZ7jzTSctUkmQJw5BEARBCzEcgiAIghZiOARBEAQtxHAIgiAIWojhEARBELTwalSVzU6GSAQuoEMV2MNHAvERBFxxJlUES1Yu/4o/F23CRbYAfJRGXr7qQBj7zXcBteo24JswGfvxze7drC43FlxkFwDkMdE4XGEmQB1Vwmmr5pSYQlWqKDcuUsgwp76bcQQ5+XZDqgtuSaoCe1SRR6p9uaNKp3Epg08jwkXnZDDRfAAfxchFGgJAiKJQEUdaNr+/qmHGRlTnNxcdqYpcymSuBVxhJkCd2sOkkVKFOw39FOufu05x0Vo6xag8RZ44BEEQBC3EcAiCIAhaiOEQBEEQtBDDIQiCIGjhVed4gL/J4ODWqd3A57lXpM5gdFW+alXdgBwmdYaqb5zjXuWk4pyUTZu3ZnVDQkNZ+YVLxvQiv/9xit8hQz7xjj0z4zRUBgQo2uacqqoUJ2xqDMUYc6kjDOvHh1OOWAP9DA5ubk3zrlg+cEGVXiKPcdzqBZ0AqVlGx7QqmwVXN0O1vzCr8TJ0jkkhAvCOZgC4lG5McVI11My3wchUNS9CLMa+qYJnVCl3uPNbFdjApedRLeGwoECDLF8jDU1JkCcOQRAEQQsxHIIgCIIWYjgEQRAELcRwCIIgCFqI4RAEQRC08GpUVb6d4O8WRcKlvuAK9hTIPYeLlCLFa/+qSJEQizG+RZVmgEMVrcK10eqWOFb3nd0prDySzhpkNkWUR2iQ1SALDg5idc9fvGSQqSJ3VBFtXKQHFz0F8KkfVPPPRbG4T6lGHZ5yh0s5wh6/Yh7ZQj6KGJxAJrLHppgD1fzWCDem9UjL4tOTcKE8VkWKk3QmFQkXXQQAiQu/YuXzhxvPF1X0H5cyxOLH942LoFKl3An05+PfuDZUkVlcFJcqWos9r7jo0TI4CeSJQxAEQdBCDIcgCIKghRgOQRAEQQsxHIIgCIIWYjgEQRAELbybq8rPZCi2olNwiYurUhVIYYMmVNFBCjkX3aAqAMMFt3D5sgAgiInyuJxlzL0DAAPb1mXlu745Y5C1ad2K1Q1r0NQoy89idTd//IFBphpjrggTAPgzUSh2RTBaPvNFgCLihceHw6jcsAb6GwrvcDmTuOI8BRjHShXlx0UCqYp3qaL/uHnnooAAsOufy5cFAFVCjDmX9vx2kdV996GOrPzPDGNuK1Xf3tt/0iC7rVEkq8vlu1KNsTJXFZOXisszBujOP0f5rH954hAEQRC0EMMhCIIgaCGGQxAEQdBCDIcgCIKghVed40TG4i6cI1zldOJQpUvg0m+onIOq3XEpNXLtfOoArh8qh5iZmYXalfkUIKpUHd3i2xtkYUH89O7ds9cg2/nVDlaXS/eh9FUrxo1zJarSQSiDDbh2mYlyT8PApWXwFWx2MjicOUeozjFwRYMAIJdpgyvSBajXP7em07ONxZ0APsVJliKNSKgxAw7a16/K6iafy2DldSOCWTlHYktjgEmAYiy4sVcFD6jGjbv2ZCpSjnDpUFRw51A2026OYl8lQZ44BEEQBC3EcAiCIAhaiOEQBEEQtBDDIQiCIGghhkMQBEHQwqtRVSaTsd4Ll5ZDmQKE0TUpTGEAExGlSp2hisziUg2oihdxbQSbVZEbxn58vmUzq9uhUxdWfvbU7wbZ999/x+pmZBrTi+Tn85EXXASJKnUEl1oE4MeeFLrccCqGGH5MXgv3qCSTXSddQ/ni72cyrBNubFVRPNy6Ua1/Llorh0lvAQAWRYoLLoJKFY3ERXepUmdwRZtCrfylqU5VPtqwcrAxbYkqUxEX3KUqrGRl0oVkMoWnAD61CABYA4zHrUo/xF03VOufi0C0hBj35Wczpk0pKfLEIQiCIGghhkMQBEHQQgyHIAiCoIUYDkEQBEELrzrH7UTGtBEadSw4qa7Dm0OVDoNzhKua5dIPqFKncM6vkyeNNQMAIHnlCr5vzC2AynHPOWBVju3UrDyDzKxIa+FHisFgxMr50Bg3zjns7jDUyFZT7uTb7IaUFtyUqdLMcOOi8HeD80ubFOsjM4dPI8KlA1LNI3ca2pTnFdM3VrOI+h8acOtf5dj+/aIxkETluOfSrKhQnUPcelVd07igAi5lier6WRLkiUMQBEHQQgyHIAiCoIUYDkEQBEELMRyCIAiCFmI4BEEQBC28GlUFgjGKhk05oSqcYowWUEUgcBFGqogQk6Jujk5sAhcdoUodwEU9qAKUVBFfFmV1JSNcChdVGgUurYFy3DwPXINJETfDpcxQRVVxqTjy7fYi//YluEJm3BiqxpuYQ+PS4hS0YYy2CVSlfVHcT+qsf+48VB0HF+Vk5w4O6gJIlRRFyzi4dXM+LZfVDWaiuJRRhcoISyY1jOJkYde04pzn0qFkM2F1nKykyBOHIAiCoIUYDkEQBEELMRyCIAiCFmI4BEEQBC286hy3EcHm5jjiaiyonK6cz1TluOIcrKp0FDrOeJUu53dUOe5VNQ34vvG6nLNZ5VTmnJSqVA7c4emm8eBSZmhkHFGmTlGNZ0Uhz2ZHrpvjk0vrYVI4sbnjD7HwNS84XUUmE6UTO1/D4c3JVY57K5MmQ4U6MMPzejvcNaJ6uIXV5Xanu/5zmNQgyoAHpnHV9UFVT6U8kCcOQRAEQQsxHIIgCIIWYjgEQRAELcRwCIIgCFp4xTnucADl5OQYvuNrXnjuHLQpHIkqRzGH6q1mrg1V3zhKo1aI6ji4fpDiXV9WVxkoYJTpOge541YeMiPXmX/38XGsMc7p6C0cfUlLSzV8x60FlXOUczbnKupK6AQSqMabc45zznwVKue4Th0LnXNINeecrmp4SsM5zh23TvYFHec4Nz6OdVaa54BXDEdaWhoA4PWF//LG7oX/QdLS0lCpUiVvdwPAtfXf4uYGXu6J8L9EaZ4DJvLCrZjdbsepU6cQFhamDGcVhNKAiJCWloaoqCj4aeTzKktk/QvlSVmcA14xHIIgCELFxTduwQRBEIQKgxgOQRAEQQsxHIIgCIIWYjgEQRAELcRwCIIgCFqI4RAEQRC08Fpa9ezsbOTm8nV+BaE0MZvNsFqt3u6GC7L+hfKktM8BrxiO7OxsNGjQAGfOnPHG7oX/MSIjI5GcnOwzxkPWv1DelPY54BXDkZubizNnzuCX5JMIDw8vyKlU8J8zDwyBrn0mR4EfuvbZqe/4Bs4qQIVlVEjmeNOxoI1r+3SRFdqOrkoc27pv58iLZL/agIvMZfsCuaMvdrraJjn0rh2jczsqaJcK6Tr7QsY+uevZr36wU+ExI+NxkWOM3NqgwuOv+K7w/DjGnMj4mYqWszK6mt+H7IUm0fGZrn126BL3PZCTlYGXnxmB3NxcnzEcjvX/868nERYWfm09oNB8ucwnFeRSujqf9qvzZSfADsc8F14Tbm0w7bqsM+e4X9O3gZz7cujaiGC3O/pT8Ldje5tjOyLYr+ZLshXSsdHVbezXjsFmJ9jsVz9f/Y4IsNmv6gPXvrcXtGsHYL+6HZFje3Iev1N+tR90dVuHjOwFx2O3O/p2tV2762dc1XHKHcdqt19r10Ygu0Pu+Eywk/3a54IBu7rdtc8o3G4hXcdnstsBu61gHdttVyfHdu2z3Xbte5u7biEdsgN52Thz5K1SPQe8WgEwPDy81A2Hu8zl4ofC7V3bJyczXGCvyuyFdIpjOAiFTnLnSVn4BC/0naMfzhO9ZIaj8IXI1RAUGlt34+C+T7f/o1Afr2cgim84VIbBcbW7zvc+Slh4OMKLMBzX5q4Iw+GcZ7WR4GSc4SjchuNC79hHYcNh98BwOD47DYf9muGwkdpwOHXsRsPhkKkMh91O8Lsq96NrhsNd5tA1uRkL18+AqZCOySmzOz/Ddm07FDIcKGQArlragv8X+kwFgw3TVSPi/hkGw2EvZCzI1XCYbLyOqUBGdj65ZEkQ57ggCIKghRgOQRAEQQsxHIIgCIIWYjgEQRAELbzqHE9NvVqZqhSd43CTuTh4Ubi9a/t0kRXajnOOF95OoqoKjZ27k7vwZypazspKK6oqO5Nde75AWmrq9R3bdB3nOMjQhkRVVZyoqoIIKsf/yyiqylb67wt5rXRsaGgoGjao543dC/9jhIaGOg2UL+BY/zfFyPoXyofSPge8YjhMJhPS09Px22+/ITw83BtdqHCkpqaibt26MmaaOMbNlyrtyfovHnIOFI+yOAd84j0OwXNkzG4cZC6Lh4yb9xHnuCAIgqCFGA5BEARBC68YDovFgqlTp8JisXhj9xUSGbPi4Yvj5ot9qgjIuBWPshg3E/lSuIkgCILg88hPVYIgCIIWYjgEQRAELcRwCIIgCFqI4RAEQRC0EMMhCIIgaFFmhmPhwoWIjo6G1WpF+/bt8e233xapv3btWjRp0gRWqxXNmzfHJ598UlZd81l0xmz58uUwmUwu/3ylNGp5smPHDvTr1w9RUVEwmUzYuHHjdbfZtm0bbrnlFlgsFjRq1AjLly8v9X7J+i8ecg7o4a31XyaG47333sM//vEPTJ06FXv37kXLli3Rq1cvnDt3jtX/+uuvMWTIEIwaNQr79u3DgAEDMGDAAPzwww9l0T2fRHfMgILUC6dPn3b+O3HiRDn22DfIyMhAy5YtsXDhQo/0k5OT0adPH3Tr1g379+/HuHHj8MADD2DLli2l1idZ/8VDzgF9vLb+qQxo164dPfLII86/bTYbRUVF0YsvvsjqJyYmUp8+fVxk7du3p6SkpLLonk+iO2bLli2jSpUqlVPvKgYAaMOGDUXqTJw4kWJjY11kgwcPpl69epVaP2T9Fw85B0pGea7/Un/iyM3NxZ49e9CjRw+nzM/PDz169MDu3bvZbXbv3u2iDwC9evVS6t9oFGfMACA9PR3169dH3bp1ceedd+Lw4cPl0d0KTVmvNVn/xUPOgfKhtNZaqRuO8+fPw2azoWbNmi7ymjVr4syZM+w2Z86c0dK/0SjOmN1888148803sWnTJqxcuRJ2ux0dO3bE77//Xh5drrCo1lpqaiqysrJK3L6s/+Ih50D5UFrr36tp1YXi06FDB3To0MH5d8eOHdG0aVO8/vrrmD59uhd7Jgjlg5wD3qPUnziqVasGf39/nD171kV+9uxZREZGsttERkZq6d9oFGfM3AkMDETr1q1x/PjxsujiDYNqrYWHhyMoKKjE7cv6Lx5yDpQPpbX+S91wmM1mxMXF4YsvvnDK7HY7vvjiC5e7g8J06NDBRR8APvvsM6X+jUZxxswdm82GQ4cOoVatWmXVzRuCsl5rsv6Lh5wD5UOprTVdz70nvPvuu2SxWGj58uV05MgRGjNmDFWuXJnOnDlDRETDhg2jp59+2qn/1VdfUUBAAL388st09OhRmjp1KgUGBtKhQ4fKons+ie6YTZs2jbZs2UK//PIL7dmzh+655x6yWq10+PBhbx2CV0hLS6N9+/bRvn37CADNmTOH9u3bRydOnCAioqeffpqGDRvm1P/1118pODiYJkyYQEePHqWFCxeSv78/bd68udT6JOu/eMg5oI+31n+ZGA4iovnz51O9evXIbDZTu3bt6JtvvnF+l5CQQCNGjHDRX7NmDd10001kNpspNjaWPv7447Lqms+iM2bjxo1z6tasWZN69+5Ne/fu9UKvvcvWrVsJgOGfY6xGjBhBCQkJhm1atWpFZrOZYmJiaNmyZaXeL1n/xUPOAT28tf6lHocgCIKgheSqEgRBELQQwyEIgiBoIYZDEARB0EIMhyAIgqCFGA5BEARBCzEcgiAIghZiOARBEAQtxHAIgiAIWojhEARBELQQwyEIgiBoIYZDEARB0OL/Ac8p7WzdY0+DAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAECCAYAAADpdjDfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABHX0lEQVR4nO2dd3xUZdbHf5MyM0kmk14hPaEYWkgoAaQJwtJkLRRZEF8FLLiLqyiWBRF2FQsWBBVXQQELKmAXKyIC0kJHIJDQk0Agvc887x8wQybPeUJuSDLBPd/Psk7OnHnuc59775y5c878jk4IIcAwDMMwdcTF2RNgGIZhri04cDAMwzCa4MDBMAzDaIIDB8MwDKMJDhwMwzCMJjhwMAzDMJrgwMEwDMNoggMHwzAMowkOHAzDMIwmOHBc40RHR2PixInOnkazpG/fvujbt2+9XvtnXNennnoKOp3O2dOQuJrjxDgHDhzNlCNHjmDKlCmIjY2F0WiE2WxGz5498corr6C0tNTZ06szmZmZ0Ol00Ol0mDt3Lukzbtw46HQ6mEymJp5d86dv37729avt31NPPdWo89i4cSOeeuop5OXlNep26kpeXh6Cg4Oh0+nwySefOHs6/3O4OXsCjMxXX32F2267DQaDARMmTEC7du1QUVGBDRs2YPr06di3bx8WL17s7Glqwmg04oMPPsCTTz7pYC8uLsZnn30Go9HopJk1b5544gncfffd9r+3bt2KV199FY8//jjatm1rt3fo0OGKYz355JOYMWNGveaxceNGzJ49GxMnToSvr2+9xmhIZs6ciZKSEmdP438WDhzNjIyMDIwZMwZRUVH46aefEBYWZn/u/vvvR3p6Or766isnzrB+DBkyBKtWrcKuXbvQsWNHu/2zzz5DRUUFBg8ejJ9++smJM2yeDBw40OFvo9GIV199FQMHDtT89Y6bmxvc3K79S37v3r14/fXXMXPmTMycOdPZ0/mfhL+qamY899xzKCoqwttvv+0QNGzEx8fjH//4R61j5OXlYdq0aYiIiIDBYEB8fDzmzZsHq9Xq4PfCCy+gR48eCAgIgIeHB5KTk8nbfp1Oh6lTp2LNmjVo164dDAYDEhMT8e2339Z5v1JTUxETE4P333/fwb5ixQoMHjwY/v7+5OsWLVqExMREGAwGhIeH4/777ye/Llm8eDHi4uLg4eGBrl274tdffyXHKy8vx6xZsxAfHw+DwYCIiAg88sgjKC8vr/O+VKe4uBgPPfSQfa1bt26NF154ATVFpxtiDVX8+uuvuO222xAZGWnfpwcffFD6SpPKcdRlXk899RSmT58OAIiJibF/PZaZmWn3Wb58OZKTk+Hh4QF/f3+MGTMGJ06ckOZa1+NUG//4xz/w17/+Fddff73m1zINhGCaFS1atBCxsbF19o+KihJ33HGH/e/i4mLRoUMHERAQIB5//HHxxhtviAkTJgidTif+8Y9/OLy2ZcuW4r777hOvvfaamD9/vujatasAIL788ksHPwCiY8eOIiwsTMyZM0e8/PLLIjY2Vnh6eopz587VOr+MjAwBQDz//PPi8ccfF5GRkcJqtQohhDh79qxwc3MTH3zwgbjjjjuEl5eXw2tnzZolAIgBAwaIBQsWiKlTpwpXV1fRpUsXUVFRYff773//KwCIHj16iFdffVVMmzZN+Pr6itjYWNGnTx+7n8ViETfeeKPw9PQU06ZNE2+++aaYOnWqcHNzEzfddFOt60phtVpF//79hU6nE3fffbd47bXXxPDhwwUAMW3atAZbw+p8/PHHAoD4+eef7bYHHnhADBkyRPznP/8Rb775prjrrruEq6uruPXWW8n11DqvXbt2ibFjxwoA4qWXXhLLli0Ty5YtE0VFRUIIIebOnSt0Op0YPXq0WLRokZg9e7YIDAwU0dHR4sKFC/Zt1fU41cbKlSuF0WgUGRkZ4ueffxYAxMcff1zn9WMaBg4czYj8/HwBQHoTq42ab3Bz5swRXl5e4tChQw5+M2bMEK6uruL48eN2W0lJiYNPRUWFaNeunejfv7+DHYDQ6/UiPT3dbtu1a5cAIBYsWFDr/KoHjr179woA4tdffxVCCLFw4UJhMplEcXGxFDhycnKEXq8XN954o7BYLHb7a6+9JgCId955xz7n4OBg0alTJ1FeXm73W7x4sQDg8Ia0bNky4eLiYt++jTfeeEMAEL/99pvdVpfAsWbNGgFAzJ0718F+6623Cp1O57BeV7OG1aECR83jKIQQzzzzjNDpdOLYsWN2mypw1GVezz//vAAgMjIyHF6fmZkpXF1dxb///W8H+549e4Sbm5vdruU4qSgpKRGRkZHiscceE0IIDhxOhL+qakYUFBQAALy9ves9xscff4zrr78efn5+OHfunP3fgAEDYLFYsH79eruvh4eH/fGFCxeQn5+P66+/Hjt27JDGHTBgAOLi4ux/d+jQAWazGUePHq3z3BITE9GhQwd88MEHAID3338fN910Ezw9PSXfH374ARUVFZg2bRpcXC6fppMmTYLZbLbnebZt24acnBzcc8890Ov1dr+JEyfCx8dHWpu2bduiTZs2DmvTv39/AMDPP/9c530BgK+//hqurq74+9//7mB/6KGHIITAN99842BviDWkqH4ci4uLce7cOfTo0QNCCKSlpV3x9Vczr1WrVsFqtWLUqFEOaxoaGoqEhAT7mmo5TiqeffZZVFZW4vHHH6+TP9N4XPuZsj8RZrMZAFBYWFjvMQ4fPozdu3cjKCiIfD4nJ8f++Msvv8TcuXOxc+dOh+/4qVr/yMhIyebn54cLFy5omt/tt9+OF198EQ8++CA2btyofBM4duwYAKB169YOdr1ej9jYWPvztv8mJCQ4+Lm7uyM2NtbBdvjwYRw4cKBOa1MXjh07hvDwcCnQ26qdbHOz0VBrWJPjx49j5syZ+Pzzz6Wx8vPzr/j6q5nX4cOHIYSQ1t+Gu7s7AG3HiSIzMxPPP/88Fi5cyGXbzQAOHM0Is9mM8PBw7N27t95jWK1WDBw4EI888gj5fKtWrQBcTKiOGDECvXv3xqJFixAWFgZ3d3csWbJESmADgKurKzme0Nh5eOzYsXjssccwadIkBAQE4MYbb9T0+qvBarWiffv2mD9/Pvl8REREo26/odawOhaLBQMHDsT58+fx6KOPok2bNvDy8sKpU6cwceJEqSCioedltVqh0+nwzTffkOM01Jv8zJkz0aJFC/Tt29eelM/KygIAnD17FpmZmYiMjHS4O2UaDw4czYxhw4Zh8eLF2LRpE1JTUzW/Pi4uDkVFRRgwYECtfp9++imMRiPWrl0Lg8Fgty9ZskTzNrUQGRmJnj17Yt26dbj33nuV5aFRUVEAgIMHDzp8Iq2oqEBGRoZ9/2x+hw8ftn/lBACVlZXIyMhwKP2Ni4vDrl27cMMNNzTIL6ijoqLwww8/oLCw0OGu448//nCYW2OyZ88eHDp0CO+++y4mTJhgt3///fcNuh3VesXFxUEIgZiYGPuHEgotx4ni+PHjSE9PJ+9O7rvvPgAXv25tDr8x+V+Aw3Mz45FHHoGXlxfuvvtuZGdnS88fOXIEr7zyivL1o0aNwqZNm7B27Vrpuby8PFRVVQG4+ClTp9PBYrHYn8/MzMSaNWuufieuwNy5czFr1iw88MADSp8BAwZAr9fj1Vdfdfjk+/bbbyM/Px9Dhw4FAKSkpCAoKAhvvPEGKioq7H5Lly6VynZHjRqFU6dO4a233pK2V1paiuLiYk37MWTIEFgsFrz22msO9pdeegk6nQ5/+ctfNI1XH2yf8quvkRCi1nOkPnh5eQGAtKY333wzXF1dMXv2bOkORQiB3NxcANqOE8XcuXOxevVqh39z5swBcPGaWb16tX2OTOPDdxzNjLi4OLz//vsYPXo02rZt6/DL8Y0bN+Ljjz+uVUNp+vTp+PzzzzFs2DBMnDgRycnJKC4uxp49e/DJJ58gMzMTgYGBGDp0KObPn4/Bgwfj9ttvR05ODhYuXIj4+Hjs3r27UfexT58+6NOnT60+QUFBeOyxxzB79mwMHjwYI0aMwMGDB7Fo0SJ06dIFf/vb3wBc/I587ty5mDJlCvr374/Ro0cjIyMDS5YskT6djh8/HitXrsQ999yDn3/+GT179oTFYsEff/yBlStXYu3atUhJSanzfgwfPhz9+vXDE088gczMTHTs2BHfffcdPvvsM0ybNs0h4dxYtGnTBnFxcXj44Ydx6tQpmM1mfPrpp1edN6lJcnIygIu/ZB8zZgzc3d0xfPhwxMXFYe7cuXjssceQmZmJkSNHwtvbGxkZGVi9ejUmT56Mhx9+WNNxoujVq5dks91ddOnSBSNHjmzI3WWuhHOKuZgrcejQITFp0iQRHR0t9Hq98Pb2Fj179hQLFiwQZWVldj+qbLSwsFA89thjIj4+Xuj1ehEYGCh69OghXnjhBYffP7z99tsiISFBGAwG0aZNG7FkyRJlyeb9998vzbEuJavVy3Frg/odhxAXy2/btGkj3N3dRUhIiLj33nsdfhtgY9GiRSImJkYYDAaRkpIi1q9fL/r06SOVeVZUVIh58+aJxMREYTAYhJ+fn0hOThazZ88W+fn5mvZNiItr/eCDD4rw8HDh7u4uEhISxPPPP2//rYqNq1nD6lDluPv37xcDBgwQJpNJBAYGikmTJtlLapcsWWL3u9pjO2fOHNGiRQvh4uIileZ++umnolevXsLLy0t4eXmJNm3aiPvvv18cPHjQYYy6Hqe6wOW4zkMnxFVk5hiGYZj/OTjHwTAMw2iCAwfDMAyjCQ4cDMMwjCY4cDAMwzCacGrguJpWlkuXLpWknRsaW/e6pUuXNto2tHIttNms2XbVdqy2bdvWJNu/FtboWoO63qKjozFs2LAm2f66deug0+mwbt26JtleU3Gt7le9Ase+ffvwt7/9DS1atLD3SRg3bhz27dvX0PNjrhKLxYLw8HC7LATFokWLyOC4f/9+PPXUU40anOtLc55bU7Bo0SLodDp069aNfL629VEd7+ZAc52bEALLli1D79694evrC09PT7Rv3x5PP/205h+O/inQWr/76aefCr1eL0JDQ8UTTzwh/vvf/4onn3xShIWFCb1eL1atWlXnsSorK0VpaanWKQghhKiqqhKlpaVSvXxDYvsNQvVaeGejteb9u+++EwBEdHS0GDduHOmTmJhIjkn9ZqAulJWVOfxeZMmSJQKA2Lp1q6ZxaqO2uZWXlztId/8Z6dGjh4iOjhYAxOHDh6Xna1sf1fGuDep6i4qKEkOHDtU69VpRzc1isYjS0lIHif2moqqqSowaNUoAENdff7146aWXxJtvvin+9re/CRcXF9GuXTuRlZVVr7Ftv0XReo05G013HEeOHMH48eMRGxuL3bt3Y+7cubjrrrswZ84c7N69G7GxsRg/fvwV5ZhtEdrNza3evaZdXV1hNBobRHPoz8zy5cvRuXNnPPjgg1izZk2jfToSQtg7zhkMBrsqqjPQ6/UO0t1/NjIyMrBx40bMnz8fQUFBWLFiRaNty3a+OPt6c3FxgdFodIqI4XPPPYeVK1fi4Ycfxvr16zFt2jRMnjwZy5Ytw5o1a7B///5a1Rz+lGiJMlOmTBEAxPr168nnf/nlFwFATJkyxW6z/Vp13759YuzYscLX11d06tTJ4bnqlJSUiAceeEAEBAQIk8kkhg8fLk6ePCkAiFmzZtn9bJ9iq/961fYJ6NdffxVdunQRBoNBxMTEiHfffddhG7m5ueKhhx4S7dq1E15eXsLb21sMHjxY7Ny508GvrnccdR3P9unio48+EnPnzhUtWrQQBoNB9O/fn/zU+Oabb4rY2FhhNBpFly5dNP/KtqSkRHh7e4vnnntOnDlzRri4uIgVK1Y4+ERFRQkADv/69OljX9+a/2yfjGxr/e2334rk5GRhMBjESy+9ZH+u+q+ObWP98ssvYvLkycLf3194e3uL8ePHi/PnzzvMp+Zxrj5P25hXmhu1RtnZ2eL//u//RHBwsDAYDKJDhw5i6dKlDj7Vf+VuW3u9Xi9SUlLEli1b6rTmTcGcOXOEn5+fKC8vF/fee69ISEhweL629VEd7+qvW7dunbj33ntFUFCQ8PX1dXiOut7Wrl0rOnbsKAwGg2jbtq349NNPHeZDXefUmLXNTfXJfOXKlaJz587CaDSKgIAAMW7cOHHy5EkHH5sqwcmTJ8VNN90kvLy8RGBgoHjooYdEVVVVrWtdUlIi/Pz8RKtWrURlZSXpc+eddwoAYtOmTdLaXOm9qOZ+zZw5U7i5uYmcnBxpO5MmTRI+Pj71/pamIdEUvr/44gtER0cre/327t0b0dHR9iY71bnttttQUlKC//znP5g0aZJyGxMnTsSCBQswZMgQzJs3Dx4eHnZBu7qQnp6OW2+9FQMHDsSLL74IPz8/TJw40SH/cvToUaxZswbDhg3D/PnzMX36dOzZswd9+vTB6dOn67yt+o737LPPYvXq1Xj44Yfx2GOPYfPmzRg3bpyDz9tvv40pU6YgNDQUzz33HHr27IkRI0aQfZxVfP755ygqKsKYMWMQGhqKvn37Sp9OX375ZbRs2RJt2rTBsmXLsGzZMjzxxBPo3bu3vUHR448/bn/O1msCuKhcO3bsWAwcOBCvvPIKOnXqVOt8pk6digMHDuCpp57ChAkTsGLFCowcOVKzrHhd5lad0tJS9O3bF8uWLcO4cePw/PPPw8fHBxMnTiTFAN9//308//zzmDJlCubOnYvMzEzcfPPNqKys1DTPxmLFihW4+eabodfrMXbsWBw+fBhbt261P1/b+qiOd3Xuu+8+7N+/HzNnzsSMGTNqncvhw4cxevRo/OUvf8EzzzwDNzc33HbbbfVS563L3KqzdOlSjBo1Cq6urnjmmWcwadIkrFq1Cr169ZKEEy0WCwYNGoSAgAC88MIL6NOnD1588UUsXry41jlt2LABFy5cwO23365UcrapEn/55ZcO9rq8F9Vk/PjxqKqqwkcffeRgr6iowCeffIJbbrml3t/SNCh1jTB5eXl1ams6YsQIAUAUFBQIIS5/2hg7dqzkW/OTyPbt28l+zRMnTqzzHQdq3BHl5OQIg8EgHnroIbutrKxM+q40IyNDGAwG8fTTTzvYUIc7jrqOZ/t00bZtW4fv4F955RUBQOzZs0cI0TBtNoUQYtiwYaJnz54Or6c+zdQnx2Fb62+//ZZ8jrrjSE5Odsh9PPfccwKA+Oyzz+y2msdZNWZtc6t5x/Hyyy8LAGL58uV2W0VFhUhNTRUmk8l+rtqOd0BAgMOd0GeffSYAiC+++ELaVlOzbds2AUB8//33QoiLfc9btmwp9ZOvT47Ddpx69eolfRKv7XqrfoeRn58vwsLCRFJSkt1W1zuO2uZW85O57Rpp166dwyfwL7/8UgAQM2fOtNvuuOMOAcDhWhRCiKSkJJGcnCxtqzq2c2f16tVKn/PnzwsA4uabb7bb6vpeRN1Jpaamim7dujlsY9WqVc0qF1LnOw5bV7ortTW1PW9rg2rjnnvuueI2vv32WwCX9fVt1Ca/XZPrrrvO4Y4oKCgIrVu3dsi7GAwG+3elFosFubm5MJlMaN26Ndk29UpoHe/OO+90+A7eNl/bHBuizWZubi7Wrl2LsWPH2m233HILdDodVq5cqXkfKWJiYjBo0KA6+0+ePNkh92Hrx/H11183yHxUfP311wgNDXVYC3d3d/z9739HUVERfvnlFwf/0aNHw8/Pz/53zePjTFasWIGQkBD069cPwMU+GaNHj8aHH37oIJF/NUyaNEnZ3Kkm4eHh+Otf/2r/22w2Y8KECUhLS7M3WmoMbNfIfffd5/AJfOjQoWjTpg35rUfN96Drr7/+ise0Lu97qve8urwXUUyYMAG///47jhw5YretWLECERERV1SVbirqHDhsi3OltqaqhY6JibniNo4dOwYXFxfJNz4+vq7TrFMbTKvVipdeegkJCQkwGAwIDAxEUFAQdu/eXadWmzXROl7NOdrepGxzvNo2mwDw0UcfobKyEklJSUhPT0d6ejrOnz+Pbt26NVgytS7HtDo198dkMiEsLKzRS2qPHTuGhIQEKbFa1xavNY+Ps7BYLPjwww/Rr18/ZGRk2I9rt27dkJ2djR9//LFBtqPluMbHx0sJc1tDp8Y8rqrWwsBFqfmax9RoNEotg+vSHrcu73uq97z6tuQdPXo0DAaD/TrNz8/Hl19+iXHjxjWbYqA6Bw4fHx+EhYVdsVfD7t270aJFC3v/bBseHh71m6FG6tIG8z//+Q/++c9/onfv3li+fDnWrl2L77//HomJiXVqtVkTreM1RgvRmthOup49eyIhIcH+b8OGDdi0aVODfHpuqmMKoME+TdeFpjg+9eGnn37CmTNn8OGHHzoc01GjRgFAg30gaOjjqnqzaw7H9ErYPlzU9r5ne+66666r0zavdB75+flh2LBh9uP5ySefoLy83N6DpjmgqZHTsGHD8NZbb2HDhg1kY5Vff/0VmZmZmDJlSr0mExUVBavVioyMDIdPp+np6fUaT8Unn3yCfv364e2333aw5+XlITAw0OnjXW2bTVu55tSpU6VbW6vVivHjx+P999/Hk08+CUB9YTf0p5vDhw/bv2IBgKKiIpw5cwZDhgyx2/z8/KTEZkVFBc6cOVPvuUVFRWH37t2wWq0Odx1N2eK1IVixYgWCg4OxcOFC6blVq1Zh9erVeOONN+Dh4VHr+jTkcU1PT4cQwmHMQ4cOAbj4y3Lg8h1bXl6eQ2vXmncFWuZWvbVw9WvEZmuoY9qrVy/4+vri/fffxxNPPEEGg/feew8AGvRX9BMmTMBNN92ErVu3YsWKFUhKSkJiYmKDjX+1aKqqmj59Ojw8PDBlyhR7S0gb58+fxz333ANPT09Mnz69XpOxfV++aNEiB/uCBQvqNZ4KV1dXKep//PHHOHXqVLMY72rbbNo+qTzyyCO49dZbHf6NGjUKffr0cfh06uXlRY6rahdaXxYvXuxQmfT666+jqqrKocVqXFwc1q9fL72u5qdTLXMbMmQIsrKyHCpVqqqqsGDBAphMpmbzvXFtlJaWYtWqVRg2bJh0TG+99VZMnToVhYWF+PzzzwHUvj6q410fTp8+jdWrV9v/LigowHvvvYdOnTohNDQUAOydEKsf1+LiYrz77rv1nltKSgqCg4PxxhtvoLy83G7/5ptvcODAAU2VmLXh6emJhx9+GAcPHiQrvL766issXboUgwYNQvfu3RtkmwDwl7/8BYGBgZg3bx5++eWXZnW3AWi840hISMC7776LcePGoX379rjrrrsQExODzMxMvP322zh37hw++OCDerfMTE5Oxi233IKXX34Zubm56N69O3755Rf7J5iG+qQ0bNgwPP3007jzzjvRo0cP7NmzBytWrKhz/qCxx7vaNpsrVqxAp06dEBERQT4/YsQIPPDAA9ixYwc6d+6M5ORkvP7665g7dy7i4+MRHByM/v37o1OnTnB1dcW8efOQn58Pg8GA/v37Izg4uF77VVFRgRtuuAGjRo2yt4Ht1asXRowYYfe5++67cc899+CWW27BwIEDsWvXLqxdu1a6c9Myt8mTJ+PNN9/ExIkTsX37dkRHR+OTTz7Bb7/9hpdffvmKBR/Ngc8//xyFhYUOa1Wd7t27238MOHr06FrXR3W860OrVq1w1113YevWrQgJCcE777yD7OxsLFmyxO5z4403IjIyEnfddRemT58OV1dXvPPOOwgKCsLx48cdxqvr3Nzd3TFv3jzceeed6NOnD8aOHYvs7Gy88soriI6OxoMPPliv/aGYMWMG0tLSMG/ePGzatAm33HILPDw8sGHDBixfvhxt27Ylg+DV4O7ujjFjxuC1116Dq6urQ2FHs6A+pVi7d+8WY8eOFWFhYcLd3V2EhoaKsWPH2stJq2MrxTt79qzyueoUFxeL+++/X/j7+wuTySRGjhwpDh48KACIZ5991u5X2w+SalKzPLOsrEw89NBDIiwsTHh4eIiePXuKTZs2SX5aynHrMp6q1aVqO/Vps2kraf7Xv/6l9MnMzBQAxIMPPiiEECIrK0sMHTpUeHt7S+W+b731loiNjRWurq7kDwAprvQDQD8/P2EymcS4ceNEbm6uw2stFot49NFHRWBgoPD09BSDBg0S6enpZCtT1dxUPwC88847RWBgoNDr9aJ9+/bSetfW5haKMuGmYvjw4cJoNIri4mKlz8SJE4W7u7s4d+6cEEK9PqrjXZs0zJV+ANihQwd7C2Kqlev27dtFt27dhF6vF5GRkWL+/PnkmKq5qX4A+NFHH4mkpCRhMBiEv79/rT8ArImqTJjCYrGIJUuWiJ49ewqz2SyMRqNITEwUs2fPFkVFRZJ/Xd+LapMc2bJliwAgbrzxxjrNsSm5JlrH7ty5E0lJSVi+fLn0QzmGYZg/I7t27UKnTp3w3nvvYfz48c6ejgPNrh+HTe+oOi+//DJcXFzQu3dvJ8yIYRim6XnrrbdgMplw8803O3sqEppyHE3Bc889h+3bt6Nfv35wc3PDN998g2+++QaTJ09WfmfPMAzzZ+GLL77A/v37sXjxYkydOtVe6NCcaHZfVX3//feYPXs29u/fj6KiIkRGRmL8+PF44oknlFoxDMMwfxaio6ORnZ2NQYMGYdmyZc2yeKPZBQ6GYRimedPschwMwzBM84YDB8MwDKMJpyQNrFYrTp8+DW9v72Yj2sX8ORFCoLCwEOHh4U7pHkfB5z/TlDTGNeCUwHH69GmukGKalBMnTqBly5bOngYAPv8Z59CQ14BTAoetSuDVha9LSpzXdUiS/Df8/AM5zqBBgyXb2rXfkr6DB8u+335D+3a5npZf2LrhJ8kW27kn6Xt0+2+Src8NA0nfX36Su6UNvJHuc/H9d2tJe/8BN0q2n374jvQdMFAe+wfFuF17y2ux5Vd5HQCg3w3yHADgZ2IeHVL7kr67N6+TbN1730D6bl4vy4hbLFUOf5eVleHpp2Y1q8oU21wOHj0Ob29HFems/DLJv4UfrVZbZZGVl91c6U+UVA2MqizmcBYtId4qTF7Dz/bQemwj2rWQbLlF5YQnEOhtkGzlVbRKtdGdVpwtKJG7M5o96b73JWVVks2gp8c9kl0k2RJCTaRvXjHdIdKHmMeWzPOkb7cYf8mWkVNM+saGyPOgjnNhYQESYiIb9BpwSuCw3Z57eHjA09PT4TmTSd45lcwztRBafI0KX2oOqrE9TfRJRI2tZVzVQVbtn0nDWlC+WtZCy7iqsb0U60aNrWXdqqrkNwWg4ZV+rwbbXLy9zVL7gWKrXvI3m5s2cJiK6bUym4lzwVRAeELaLwCo0NGBw2y++sAh3OoeOFz18jliVAQOU4m8nmYzfe5aXOnAQc3Dy6TwJdbNVErPjZpHbUWyDXkNNI8vfRmGYZhrBg4cDMMwjCac+lPsFpHR8PJyvN3KvyB/91ez5aiNzFNyT+OoGFrS/fjpbMkWq5B/ryyh28fGxsktbANdKghPoDxalj8/eUaeA0C3xj12ivZV7d+BDPm75miF7wliLVpE0e1C887nSrY4Yh0AIP+C7AsAYRHRkk1fRX9vS+1fUQHdajM8Up7z8aOHSd/mSH5JJaw1vmLxVHxlQpGVL3/14+el+F6/XO625+1BX/6RgZ6kvdIifw3y1/ZyLgMA8oicA2UDgCDiq6qzBfTXWv5e8ld5ALD/tPyVWccIH9L3fLF8zRor6HU3usufrS1W+usgLwM9BpW36hot5zIAoJg4Tn4mep+pNQr0pn0bGr7jYBiGYTTBgYNhGIbRBAcOhmEYRhMcOBiGYRhNODU5vmv7NqnGPyZWTo7u2LaFfD3VHH7blt9J36SUrpItTTFuStdupH3rls2SrUdqKum7Y5s8D5Xvpk3yuKrG91t+l30BoGcPeexNirWg9m/ndnotqDlv3kzPoXMXeY0BYO/ObZLNy0DvH3X8unajjwd1XgT6+5G+zRGT0Q3eRsdLsKxSTo6qCPc11tm3vFL+XYS74jcfFis9BxfiZwAuit8GmInEuypxT+WawxT7pkpMd4+Tk80KV/gTyWaDG70WAYrENEWx4thR+6LaD6o4ws21+fwGyQbfcTAMwzCa4MDBMAzDaIIDB8MwDKMJDhwMwzCMJjhwMAzDMJpwSs/xgoIC+Pj4YO2P6yTJkTKi+kMlARIQECDZjp6QZUgAwM9f9i0ppKUs/AlfALhAyG94+dDSARdyz0m2wMDAOo+b70JXlXhVlZL2oKAgyZadnUP6hoUGS7bCPFrmmZrzuXPyvgGA3suXtFPHz92TloOwlMq+3oo1PkvMI/PIIYe/y8pK8fiMR5Gfn08qjzoD2/mffvIcvGvMKZ+Q5YgIoCVAqEv35Hn6/KCqqiipDwCoJFR3Abry6LxCStxdQyWQnhj3u8P0ddw7Wj53AcCVKPkqV1Q5eRnkii+V/AqJ4h3z1AV67anjdyK3hPSNDfaSbNQ5oZqGHyHJUlBQgJAAnwa9BviOg2EYhtEEBw6GYRhGExw4GIZhGE1w4GAYhmE04VTJkZ3bt0uSI/EJcq+HzYQkB0BLZ+zduZX0Te0uS2eoJEc6dO5C2ilZjs4ptBzG7jR5Hl260jIb27fK48Ylyr3XAWDb7u2kvW3HFMl2dP8O0tfNlZBfUUiOJCXLvpScCgC0aZ9M2vcTc+5EjAsA+4h166aQX6Hm4e937UiOeBrcpEQtlbi1KuQpSivk5K9KqoOCSigDwLlCuseMByGHYVbMraaUCkAXvgCAGzGPVr50EpeaAwAcPycnm9tH0GPkFtH7R0Elpk3EvgH08QBoGRlVi98qoueJqq0ttW5NBd9xMAzDMJrgwMEwDMNoggMHwzAMowkOHAzDMIwmOHAwDMMwmnBqVVX7pM6S5AhVpKFq5ONplitoOiTRFVFBQbJ0RnuFbzAh3wEA7TrJ/ka/ENK3z7j75NcHe9PbC5QlNfJKVc105OopADiv85Bs8YmdSd8AQkakp6LJlNlPnptqjRNbxZD2bp3bSbZDx7NJ32SiUo6SiwHoKrUjhw+Svs2RvOIKWFwdK3yoBj8+nnQDpDyi4kfRV4mstsopKCd9VQ2ezuSVSbYj54pJ31+OyRI2o9uFk75twuXrgqrKAoCTCqmOLw/L8jqqqqNAQmpF5Wt0lyuazirWLbElXcVFVVtlF8hrCQC+xLFWHdMq4gmT4tg1NHzHwTAMw2iCAwfDMAyjCQ4cDMMwjCY4cDAMwzCacGpyfE/aDklypEWUnGDdvYOWEenWTU6O7knbRm9MJyd007bS0hkqyZEjB/fJxgKTbAMwoa1sp+QEAODLr76WbO060UnwPxSSI24RbSTb2ZN/kL4BJjkR/vvvtKwLJTly9OBe0nfE0MGkHUJODp46Q/cK+Zk4JnHX0Un+9H2ypEqA/7UjOeLrpYe5Rv+E84QcBtUHAwBCfOQkr06RSc3KlxO6ZkUC+mwhnfxt4ScXYHS4/RXS96c375VsZQpJjooqWYrE4E7vc6hCUkV/RN7vGKK3BQC4aegVUkX0JokKpPujFJfT+0f1G4nwp8fwMsjJ+H0nC0jfti2c11+G7zgYhmEYTXDgYBiGYTTBgYNhGIbRBAcOhmEYRhMcOBiGYRhNNDvJEaoCwUDIUACAyUeuoOmi8HX38pFslLwFAMRFR5H26/v2l2xU4x2Alhk48gddjdQ5Ra5ccvWU5wsA1ymqrYrc5CqNoDB6DIPJV7IlEo2gAKBFmCyp0r7b/aSvquHQiTPnJFuRogKFquIKDw0mfSkpjswjh0jf5gglOeLtIZ9P5UTVEQAUlVVJNk9F0x+qIZGqkVOQt1ytBQAHThdKtj9WPkj6UtVhqiZTBaXy3HIUlV2qyiWqGqmQWB+AvjZVPZHCiUqydYfOkr5JLX1J+6nzpZKtqJyem56o+KIkWQCgmBhD76YnPBsevuNgGIZhNMGBg2EYhtEEBw6GYRhGExw4GIZhGE1w4GAYhmE04Vytqp074FFDqyqoRbTkd2AXrT+VRFQjpW3bQvrGEU2NDu+hdZ/at21F2o9ekJvIdG5BVy4t/u9CyRbT6jrSN22brM/kGUX7FmYQelkA2naQq6J2EVpOAF15tm8nvcbRLYdLtgii0qQ2PvngPcmW3JnWn/p9q3z89KmyJhkA7Nwu+/r6+mqamzPxN+lhNjlWwRzPlStwVNpI5ZVytZWHoqqKahDlp2gQpaq2+iFDriaa1JWuQAwhdJSoRlAA4ENUku3IyiN9R3dsSdp7VckNx/y96P0rJyqwPIiGTQCto5UaSzcWUxFLaGYpmzMp9OwoqKZPQsivp2xXC99xMAzDMJrgwMEwDMNoggMHwzAMowkOHAzDMIwmnJocT+qcAi+To+RIeaUsB6BXNFYKD5GlKCxJtK9/YKBkiwoZQI8bQSf8zmfJDVVW7TpD+l6X2E6y+fjRSTUqsW31oBtE5SskTky+svxK9+50UtnPX57HsBEjSN/gKLlQIL+UlkvwJpKOAJBwXQfJ5h9ArwU15wDi2AFAV6KR16GDdPOq5khpuQVuNSQ03AnJiVyF/AYluXK2gPb1N8lSFKoErUqqw5NorjTuPbrA5OP/k69Do6I507FzctGJH5EwB4CNmbmk3cvt6t7KLIoE8u6T+ZIt0ERLskT400Ujp/PlooBQogkXAFiJeehAHygqke5OSDapmntdDXzHwTAMw2iCAwfDMAyjCQ4cDMMwjCY4cDAMwzCa4MDBMAzDaMKpVVVpO7ZJkiPRsXGS33aFjAi6yNIZu9O2kq6t2ydLtuvi6eqptQfpRi1RbnLFisspuopn/bZNkq1Hj1TS9xAhfeIfL1dlAUD2wT2kPdBTrmLZqZBqodbCBXSzoKSOHSXbnj30HLJzskk7JRnj40FXfG3bKsuvdFRU1e3aIR/ra0lyxNPoBi+j4yXoQsh9qIpiqOq2YB+6WdKR7CJ5XDNd2fPPz2lZm3sJeZHu4bLUB0A36nJTSJnEh8gVhAdy5QpGAOgVQ1fYnSMqz1TVRFRjJZORfivsEiNXK6pQbS8yQJtET01yiaZYABCoaLjVFPAdB8MwDKMJDhwMwzCMJjhwMAzDMJrgwMEwDMNowqnJ8bYdkuDl5ZgY0xM/me+RSieVPbx9JZsqkerlIyfxfjlN6/X3bk8nGHefqJRs6w7RSbzObeWkcqELnSTrQMyZmi8A+Blk6QgAiG4ZKtkMenrd2nWR7QGe9LiUBEJ2Np0E9/Gj50ztn4c3nXQkJUcC6ISoS7LcjyXjyCHStzly6kIpCqocz0FvIkmr6rFRWiEnoFXyJEQ7DrR79GvS919j6cKMf31zQLKlH6YLSV6ZJB+bMos8XwDoHiHLz7T2l/t5AEDm2WLSHh8qJ9izFP0/ThTIEiet9N6kbxWxcKokf3E5LdVSRvRNUfXICCYKFqi+GwCQVywnzX296Ou4oeE7DoZhGEYTHDgYhmEYTXDgYBiGYTTBgYNhGIbRBAcOhmEYRhNOrarat3MHjDUkR1olJEh+mzfL8h0AkNpdrg7auZ2WHGmfJDdLaulNVzZ8/WU6aafo2lWW7wCAUNcLss3sRfruJyQ5WkbFkL5HDh8k7clJQyTbvvRjpO+mo+cl24DWclMsANC7yRUhG37bSPp2JKqcAGDndlkyhqq0AoB9O+W1SOkqS8sAwPZtsjyJv1/dJSKcTZC3AeYaVTSKgh0SqhmQSvaivEo+ji/fSZ+7Y+6YW+c5JAwfSdqpCqrrAn1IX6ohVaGiWZjJSFcNGYhqTFWV04s/HJFs84Ynkr5UlZvRna5yyy+Rqy4BuirqbCEtI1JJNGeiqucAWiaFqtZSVXBdDXzHwTAMw2iCAwfDMAyjCQ4cDMMwjCY4cDAMwzCacGpyvGvXrjCZHKUCqH4EbTvIiW0A8A+QpQradqQTfpTExW/H80jf6DZtSXtBnix3YFTo+Fd5hMvjRtOSHJ3btZZsC7+l+3yU+tByEPtzZOmTiJYtSN+9hbJkyNlSWqoiPSNDsqn6ihhNvqQ9JjFJsrUMCyF9TUZZcsRDMW7nFDlpnnkNSY646ORkuJur/FkuPUvupQEALf1lCZszeXKvCQAoKJUTt4t+zSR92/71ZtJ+IlOWF/H1peV51uzOkcftR8uIuBP7POSZH0jf8zlyYQcALHx0gGTr3pKWqnF3l7d34AItHVRUKSfYu0TTBRgWStcFwO5T+ZLtujB6LagxLhDSIhd95aS7v0kuHlAVTFwNfMfBMAzDaIIDB8MwDKMJDhwMwzCMJjhwMAzDMJrgwMEwDMNowqlVVVu3bpEkR1q3aiX5/bF7O/l6T4MscbEnjZYciW4rV/a4HN1J+voFKCqlck5Itoi2w0jfEG+5ukHVkGfTps2Szcc3jPSNdZerVQCg8IQso+DWQW4mBQCR/p6SLTeTllnJPStvb+9Oeo27dJUrogDg2IGdki3YW5bLAIC0bbI8SecUWsqE8vXz8yV9r2Vig2mpmsIyueInhJAhAYBT+XK11Ud30rIvhxVVXMHE2K9vpmVtOoTJc6YqfgDASlQSRSoqEL+ccQNpDyDGJtQ7AAC9EuRqq07BvqSvl0F+L3BV6MIEKs7pUKLyrJxo7gTQ7xHUvqnmxpIjDMMwTLOEAwfDMAyjCQ4cDMMwjCY4cDAMwzCa4MDBMAzDaMKpVVXJKV3gVUOritKtUWkjmcyyZoyqsseL8DUbFRpYfrSOTGmZXI3hXSBXWgFA2q5Tku1CBF0pVVRUKNkMoJvClJeXkHaX4FB5bgodLarGorxU1uECAG8fed26daPXOCCA1gaKv46oaDPSa9whSa70MfvSFTbUeXHgwAHStzlSaRFS4x43ovCO0m8D6GqZskq6gibMLFf2ZOWXkb5movEQAGTny3pmj98gN14DgENn5HOa0uECAEpKadqN8aQv1bwIAE5dkPclKdqX9LUSVwDVTAoAzhfJOlGqyjVVE679J2UdLIWsFSIDZP2xKoWztwc955qwVhXDMAzjdDhwMAzDMJrgwMEwDMNoggMHwzAMowmnJsd3bN8GjxqSI1ExcZLf9q2/k69P6SI38tmh8O2YLMtW7N9FS5mkdJXHBYD0fTskm68iqXaY8A0y00n+TZtlyREqSQwA+3ZuI+2DBw2UbG+vl5swAUCvMItkW/nbL6RvVyIR/vvv8nwBoEcqvX8ZhORIUDd6jbdvk4+fatwtv8u+15LkiNHdBcYaTYWKCRkRTwMtVaN3kz/3UcUlAFBRJUtcBJvpJG9JhXx+AEALPznBrvJtE+4t2VwUSdoKizy3zuF0s6QWfnLyGACM7vIapf77J9L3x4d7SzaVHBAlI6JKgqvWvlOUr2SrJPYZoBs5qdaNkmqhXFlyhGEYhnE6HDgYhmEYTXDgYBiGYTTBgYNhGIbRBAcOhmEYRhM60Rgp9ytQUFAAHx8f/LhuPUw1JEeo6o/8C+fJcfRePpKtsjif9PUPCJBsF87nkr5+/rIvAJw8Izc1CgqkZTZKi/IkGyWRAgAXLsjzUMl3BAUHk/bIli0k24YMet2KLpyVbOIs3ZDH20eW+ygvziN9Pb3p/cvOkbcXQBwPAMgjjnWgao0LL0i2P/74w+HvsrJSPD7jUeTn58NspmVOmhrb+X/6bJ40pyKiqkpV8XPqvNycKYKQrABo2Qq9hgosAMgvlWVwVGIWwT5yBVZesSzfAQAGoiKKqhgCAIvi7cqDGOPZn+nmZEFecjHp2E4RpG8Bsc/hisquswWyJAtAr6dVtR+KY00RRFV8ESVfBQUFCAnwadBrgO84GIZhGE1w4GAYhmE0wYGDYRiG0QQHDoZhGEYTTpUc2bZ1qyQ5Eh8v6/Bv3ryJfH17QpZj946tpG8qIVuxeRM9rqr/x540eWxVb4oNGzdKtu7d6XEpSZUuCtkTV1c6eeYbICfNjflyTxAAKD+fLdk2b91C+ialyFItadto3+6p9FrsIGREYhPlHh0AcPzALsnWMZmWX9m5XZ5HUADdu6M54uqig2uNZKbZQ74kKRkKAHAnJEdUfR4o2QrVuAZ3+vNksLucjFWNUVIuJ/mp+QJ0QrhMIWVCNpMBcIIoFLgrhU54U1Irqp4VVBJbVRAQpJBwoRLse0/TRTwpUfL5S/UEAYDSSnmNPIm1ZMkRhmEYxulw4GAYhmE0wYGDYRiG0QQHDoZhGEYTHDgYhmEYTTi1qiohsRO8vBwlR7yIpjVURRQAeJh8JZuqGsnFKP/UnmruBADevnRlTjLROMroLc8BADp2lscud/OifYl5uHjIcioA0KljB9JOVX+oGs6YiP3r3p2uiKJkXahKKwDwUkiqtOskV0VVGum1iCOqrVw9aZmEVKJKLf3wQdK3OXI0uwimEsfPbiE+cmWOp4G+TKnjW05U2gDASaLqyN+kJ32ppkgA4EZs8EKJXDEE0JU86eeKSN8OLXwlW1ZeGembEGoi7WG+dW8ylV8qV3z5ENVsAJBP7J+qSImSdQGA3EJZiuRYQQnp63lKnkdJlTxfAEj2kq83qjpMVTF2NfAdB8MwDKMJDhwMwzCMJjhwMAzDMJrgwMEwDMNowqnJ8UN702CsITmSEJ8g+W1SSIO0IyRHKFkQAOjQue6+OkXSfMvvmyVbr549SF9KliNFkbhP2yH7Dh4zkfQtVST83FzlBNjXX6whfRMSO0u2w/t2kL5duspJc0pCBADiiXEB4ODu7ZKtqyIZv4WYR1eFrMtWQibFz8+X9G2ORAZ6wmz2vKKfqjdFlYXosaGQ9fD2cJdsAYrk+PliRcKbOMdUY1A9KNqG0EUOVGJ6Q0Yh6avaHiVbokp4/3FaHtvHw5v0pWREDIo13n+KnnNcsFwIourp4U6scSVxnAF1EUNTwHccDMMwjCY4cDAMwzCa4MDBMAzDaIIDB8MwDKMJDhwMwzCMJpxaVdUhKVmSHDEQlQLdFBU4ZkI6Q3RKIX2jWoRKNquV9rUYaFmDzilyVVRQYCDpm0xUUHn70JIcrdoly6+Pa0n6HsktJu1md/lQ9lBItbiZAiRbaLBsAwCdi3w8VOMGBQWRdqoSxsuHlnW5nqhSc/ek5VcoeZlrSXKkoKQSws2xgomqflI14vEk5HnOKKQ6WhBVPJQMCQAcyaWlQRIC5cqjYKKaCaDlPgqJhkYA3ahocBv5egWA7w7KTcgAoIWXvH9J0b6kL9V86mwh3SyJaigVHURXwnWIpM9TSgamoIyWEQklJGdyztHyJFQFlkqepqHhOw6GYRhGExw4GIZhGE1w4GAYhmE0wYGDYRiG0QQHDoZhGEYTTq2q2pO2Q9Kqik+Il/y2/E5rI1HaT/t2bSN9XV1l/amdO2itqu4KbaQdO+Wx3d1oXaudhFZV91R63EN7ZS0nl5FDSN+WPrTGDdWqpbiYrsZo30muiirOyiB9c7LlKpaNCu2wxI50ldr+XfL+dUyWtcMAYOd2ed2oRlAAsI84HteSVpWvlx5mL8eKM7p+im7E40FUIPp6ylVZAF01pGrk5OtJV/+ZiYovVSMnP2IeqrlR1UEqukXS1X/UEKqGSzklcmOlxJa0jpabq/zZusoi63ABwMnz9PUWESBXYbkquqxRFV8uikZMVAVqU8F3HAzDMIwmOHAwDMMwmuDAwTAMw2iCAwfDMAyjCacmx5OSU+BlcpT3oJJGKskRT7OcxFMlUiPDQySbSKET2waTL2nv2k1OxgcH0zIbVmLsEIUkRyoh4VGpSMAVK6QKdmXLTWRGjryJ9KUScL8epGUmKFkXVRLcP4CWX0kligKocQEgtbu8FtRxBgBDF3mNM9IPkb7NkbIKC9xrSFqoGjFRULIVVcX0eRPqY5Rs2QVykhhQS4NQzZKUyXhi7EBvOhmvI5K/JeX0eZ6TT0uqvLfrtGR7blhb0rdPgnwd5imS/FSzpHOF9LpR1xVAlzZ4uNf9OBsUvkXE8TcTzatUkjVXA99xMAzDMJrgwMEwDMNoggMHwzAMowkOHAzDMIwmOHAwDMMwmnBqVVXajm3wqCE5EhsnS478vnkz+fpkoqpmbxotI6J3kyuiKHkLAOjZQ24mBAAbN8pSGwnt5SZMAJC+d4dk8+xJN0Ci9i+sRQTp666XG70AQHKY3PjmpZdeIn2va9dBnsOmjaRv+yS5goqSEAGATgoZkV2EtEtXhawLtRaqqro0QtbF19eX9G2OeBhcpWZMlRa5AkYlT2EiGjkZ3enKpUKiAsfPi66ICjHT51hFlVyxtf9UPunbNlxu+kRVTwEAtXuqOqBgojoMAB5IjVK8QobaDz8vet2yiSquSEJCBADOF9PNoFyIHVTJhVBr5K+Ym5sGqZaGhu84GIZhGE1w4GAYhmE0wYGDYRiG0QQHDoZhGEYTTk2Op6R0gamG5AiVSOrRg04q6wxyAk6VSPUmJC66E/IWAODmQWvzt0uSk79lejpRFnVdJ8kWFEhLcnQh+ooUFxeTvvknT5D27Jxzki0xsR3pq/eS948qNACAMjcvyabqK2LyoWVEUroQUi1B9FokEVIt/gF0D4b2xPE4kXGY9G2OWKxCkqnQIjlyJo9I3AbS5yMph6HIQGecpc89qi/Evlw6OV5SJSfjU2Pp40glq1UqGVSfDwDIyrdINlXfjNwiojeJolBgX1aBZAtRJOhVyX9KPoWSMgFo6RNK6gWgk/HBisKGhobvOBiGYRhNcOBgGIZhNMGBg2EYhtEEBw6GYRhGExw4GIZhGE04tapq29atMEqSI3GS3++/05IjPYgGSFu3/E76Us2StirGVVVm7d0pS2e07UA3NTp6YKdkCzXT1RjUPFRz2PCbLHsCANf3kmVSNm2ifbsTY6vWrVOyXOW0mZAQAYAUojrs4tjy/nXtSu8fJQOjGncPIS9zLUmO6HQ6qRKnrFKuDnJTSI7Eh5gkm6KwB0ai2qaSqGYCgCgNlVmdq+gmW/Gh8txKiX0DAL2r/PlV1byopIIeg2pUpeirhBAfeS2oijEAaB/mQw9CYFTMmaqUo44zAPibZHmRUsU+N1UFFQXfcTAMwzCa4MDBMAzDaIIDB8MwDKMJDhwMwzCMJpyaHLdYq2CxOP4cP+fsWcnP349OwOWek2U2VMnRnJwceVx/xbi58rgAEBQgS2qIMlpyIYAYO+88PS41D9UcQoJoWQ/Kn5oDAFw4n1tn35KC85LNz8+X9M2/II8L0MfvvGItqOOXkyOfEyrfczXOifLycvK1zQEXndyLwkL04zAoZEhUEhcUlPyGu2JcVdLcQPT/aBUmJ8EBuoeIi47eHuUr6HwwzB70WxaVCFfUFACQn1CtZaC3nKxWjeupkAahxlZJqlCopFN0xPaEloGvAr7jYBiGYTTBgYNhGIbRBAcOhmEYRhMcOBiGYRhNOCU5bkvglJXJ/QT0pSWSrayslByntESDr5ZxCV+Vf3PwBTSuRWOtGzGuyl/L/rlr8K2ZDLf93VRJw7pgm0thodzrobSc6CtBJKWBq0+OuxG/2AbUyXEqma5K3FIJb7IniMK3kigSAAB3V3qftSXHZVRrSe0fNV+tY2tZ46JSuUcHAIhKuYcIdZ7bzrOGvAZ0wglX1MmTJxEREdHUm2X+hzlx4gRatmzp7GkA4POfcQ4NeQ04JXBYrVacPn0a3t7emj41MYxWhBAoLCxEeHg4XFyaxzezfP4zTUljXANOCRwMwzDMtUvz+AjGMAzDXDNw4GAYhmE0wYGDYRiG0QQHDoZhGEYTHDgYhmEYTXDgYBiGYTThNFn1srIyVFRUOGvzzP8Qer0eRiPd791Z8PnPNCUNfQ04JXCUlZUhJiYGWVlZztg88z9GaGgoMjIymk3w4POfaWoa+hpwSuCoqKhAVlYWjmQch9lshoDApf/ZG5wIiMuPLz2HSzZx8eElf9sztv9ztIlqNtsvHS+OcXmbDrZqrxOXLLbX1nyd9dLg1ksDONgcXn/RbpuLVVwaU9j8Lu+j/XXi4riimq99LkKeU00/66UHVlF9zYS8X8K2RjXGENXXX/Fc9eNjW3Mh5MeidjtpE5e0fIS12kG0PRaXH9t8BfU8UF5ajBcevwMVFRXNJnDYzv9DR4/D29t8+XxAtePlcDzFRS2mS8fTeul4WQVghe04Vz8naoxBjOtwntnX/bK/BcK+LZuvRQhYrbb5XPzb9nqL7XVCwHpJOMpSzcciLr3GenkfLFYBi/XS40vPCQFYrJf8gcvPWy+OawVgvfQ6IWyvF/b9t9svzUNceq3NJqwX98dqtc3t0rhWx8e45GO32/bVar08rkVAWG1222MBq7BefnxxwS697vJjVB+3mq/tsbBaAavl4nlstVw6OJbLj62Wy89bavpW8xFWoLIMWfvfbdBrwKkdAM1mc4MHjpo2hzc/VB/v8jYpm/QGe8lmreZTn8AhUO0it1+U1S/was/Z5mG/0K8ucFR/I3IMBNXWtmZwqLnNGv9FtTleKUDUP3CoAoPt3e4KzzdTvM1mmGsJHJePXS2Bw36c1UGCslGBo/oYtjd62zaqBw5rHQKH7bE9cFgvBw6LUAcOu49VDhw2mypwWK0CLpfsLuJy4Khps/nqagQLx8eArpqPzm6z2h/Dcvl1qBY4UC0AXIq0F/9b7bG4uNjQXQoiNR9DChzWasFCOAYOnYX20V20CSstqHg1cHKcYRiG0QQHDoZhGEYTHDgYhmEYTXDgYBiGYTTh1OR4QcGlzlQNmBxHDZtDghfVx7u8TQdbtddRyfHqr+OqqmprVzPJXf2xqN1O2hqqqqqM7h7YHCgsKLhyYltcITkOIY3BVVXXTlXVxQoq238bqarK0vC/F3Ja61iTyYS4mEhnbJ75H8NkMtkDVHPAdv63iuXzn2kaGvoacErg0Ol0KCoqwokTJ2A2m50xhWuOgoICRERE8JppxLZuzanTHp//9YOvgfrRGNdAs/gdB1N3eM3+PPCxrB+8bs6Hk+MMwzCMJjhwMAzDMJpwSuAwGAyYNWsWDAaDMzZ/TcJrVj+a47o1xzldC/C61Y/GWDedaE7lJgzDMEyzh7+qYhiGYTTBgYNhGIbRBAcOhmEYRhMcOBiGYRhNcOBgGIZhNNFogWPhwoWIjo6G0WhEt27dsGXLllr9P/74Y7Rp0wZGoxHt27fH119/3VhTa7ZoWbOlS5dCp9M5/GsurVGbkvXr12P48OEIDw+HTqfDmjVrrviadevWoXPnzjAYDIiPj8fSpUsbfF58/tcPvga04azzv1ECx0cffYR//vOfmDVrFnbs2IGOHTti0KBByMnJIf03btyIsWPH4q677kJaWhpGjhyJkSNHYu/evY0xvWaJ1jUDLkovnDlzxv7v2LFjTTjj5kFxcTE6duyIhQsX1sk/IyMDQ4cORb9+/bBz505MmzYNd999N9auXdtgc+Lzv37wNaAdp53/ohHo2rWruP/+++1/WywWER4eLp555hnSf9SoUWLo0KEOtm7duokpU6Y0xvSaJVrXbMmSJcLHx6eJZndtAECsXr26Vp9HHnlEJCYmOthGjx4tBg0a1GDz4PO/fvA1cHU05fnf4HccFRUV2L59OwYMGGC3ubi4YMCAAdi0aRP5mk2bNjn4A8CgQYOU/n826rNmAFBUVISoqChERETgpptuwr59+5piutc0jX2u8flfP/gaaBoa6lxr8MBx7tw5WCwWhISEONhDQkKQlZVFviYrK0uT/5+N+qxZ69at8c477+Czzz7D8uXLYbVa0aNHD5w8ebIppnzNojrXCgoKUFpaetXj8/lfP/gaaBoa6vx3qqw6U39SU1ORmppq/7tHjx5o27Yt3nzzTcyZM8eJM2OYpoGvAefR4HccgYGBcHV1RXZ2toM9OzsboaGh5GtCQ0M1+f/ZqM+a1cTd3R1JSUlIT09vjCn+aVCda2azGR4eHlc9Pp//9YOvgaahoc7/Bg8cer0eycnJ+PHHH+02q9WKH3/80eHTQXVSU1Md/AHg+++/V/r/2ajPmtXEYrFgz549CAsLa6xp/ilo7HONz//6wddA09Bg55rWzH1d+PDDD4XBYBBLly4V+/fvF5MnTxa+vr4iKytLCCHE+PHjxYwZM+z+v/32m3BzcxMvvPCCOHDggJg1a5Zwd3cXe/bsaYzpNUu0rtns2bPF2rVrxZEjR8T27dvFmDFjhNFoFPv27XPWLjiFwsJCkZaWJtLS0gQAMX/+fJGWliaOHTsmhBBixowZYvz48Xb/o0ePCk9PTzF9+nRx4MABsXDhQuHq6iq+/fbbBpsTn//1g68B7Tjr/G+UwCGEEAsWLBCRkZFCr9eLrl27is2bN9uf69Onj7jjjjsc/FeuXClatWol9Hq9SExMFF999VVjTa3ZomXNpk2bZvcNCQkRQ4YMETt27HDCrJ3Lzz//LABI/2xrdccdd4g+ffpIr+nUqZPQ6/UiNjZWLFmypMHnxed//eBrQBvOOv+5HwfDMAyjCdaqYhiGYTTBgYNhGIbRBAcOhmEYRhMcOBiGYRhNcOBgGIZhNMGBg2EYhtEEBw6GYRhGExw4GIZhGE1w4GAYhmE0wYGDYRiG0QQHDoZhGEYT/w/XN8GpU+44RQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAECCAYAAADpdjDfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDoUlEQVR4nO2dd3xUVfr/P5MyM+k9hJ4EEDACgVAMIKHj0mRBwYgo/hAQUBcEXBSXorgKKKAIWL4KSlFAaVZEBBQJEDoKUhM6CQmQXmfO7w+YIZPznDA3JJmBfd6vZZ2ceebc555z7zxz73nu59EJIQQYhmEYxk5cHO0AwzAMc3fBgYNhGIbRBAcOhmEYRhMcOBiGYRhNcOBgGIZhNMGBg2EYhtEEBw6GYRhGExw4GIZhGE1w4GAYhmE0wYHjLqdjx47o2LGjo92Q0Ol0mDZtmqPdUHIn4xYeHo6hQ4dWqD+OZtq0adDpdI52Q8JZj+//dThwOACdTmfXv61bt1aqHytWrMC8efMqdRtlkZycbN3XGTNmkDaDBw+GTqeDt7d3FXvn/HTs2NGu46iyA/iOHTswbdo0XL9+vVK3Yy/Xr19HaGgodDodvv76a0e7c0/i5mgH/hdZunSpzd9ffPEFNm3aJLU3btz4tn39/PPP5fZjxYoV+PPPPzF27Nhy91ERGI1GfPnll3jttdds2nNycrB+/XoYjUYHeebcTJ48Gc8++6z178TERLz//vt49dVXbY6dpk2b3rav1157DZMmTSqXHzt27MD06dMxdOhQ+Pv7l6uPimTKlCnIzc11tBv3NBw4HMCTTz5p8/fOnTuxadMmqd0e9Hp9RbnlMHr27Ik1a9bg4MGDaNasmbV9/fr1KCwsxMMPP4xff/3VgR46J926dbP522g04v3330e3bt00395xc3ODm9vd/3Xw559/YtGiRZgyZQqmTJniaHfuWfhWlZOyePFidO7cGaGhoTAYDLj//vuxaNEiya70PeCtW7dCp9Nh1apVePPNN1GrVi0YjUZ06dIFJ0+etPnc999/jzNnzlhvaYSHh1vfLygowNSpU1G/fn0YDAbUrl0bL7/8MgoKCmy2X1BQgHHjxiEkJAQ+Pj7o27cvzp8/r2lfY2NjERERgRUrVti0L1++HA8//DACAwPJzy1cuBBRUVEwGAyoUaMGxowZQ94u+fjjj1GvXj14eHigdevW+P3338n+7N1ne8nJycH48eNRu3ZtGAwGNGzYEO+88w5KC1LrdDo8//zzWLduHR544AEYDAZERUXhp59+Ktd2S/L777/jscceQ506daz7NG7cOOTl5dnYUWsc9vg1bdo0TJw4EQAQERFhPZaSk5OtNsuWLUNMTAw8PDwQGBiIxx9/HOfOnZN8tXeeyuJf//oX/vnPf+Khhx7S/FnGfu7+nxj3KIsWLUJUVBT69u0LNzc3fPvttxg9ejTMZjPGjBlz28+//fbbcHFxwYQJE5CRkYFZs2Zh8ODB2LVrF4AbtzkyMjJw/vx5zJ07FwCs6whmsxl9+/bF9u3bMWLECDRu3BiHDx/G3Llzcfz4caxbt866nWeffRbLli3DE088gbZt2+LXX39Fr169NO9vfHw8li1bhrfffhs6nQ5paWn4+eefsXTpUvILdNq0aZg+fTq6du2KUaNG4dixY1i0aBESExPxxx9/wN3dHQDw6aefYuTIkWjbti3Gjh2L06dPo2/fvggMDETt2rWt/WnZZ3sQQqBv377YsmULhg0bhujoaGzcuBETJ07EhQsXrGNuYfv27VizZg1Gjx4NHx8fvP/++xgwYADOnj2LoKAgzeNpYfXq1cjNzcWoUaMQFBSE3bt3Y/78+Th//jxWr15928/fzq/+/fvj+PHj+PLLLzF37lwEBwcDAEJCQgAAb775Jv7zn/9g4MCBePbZZ3HlyhXMnz8fHTp0wP79+623tuydp9vt644dO3D06FGbwMVUAoJxOGPGjBGlpyI3N1ey69Gjh4iMjLRpi4uLE3Fxcda/t2zZIgCIxo0bi4KCAmv7e++9JwCIw4cPW9t69eol6tatK21n6dKlwsXFRfz+++827R9++KEAIP744w8hhBAHDhwQAMTo0aNt7J544gkBQEydOrXM/U5KShIAxOzZs8Wff/4pAFi3uWDBAuHt7S1ycnLE008/Lby8vKyfS01NFXq9XnTv3l2YTCZr+wcffCAAiM8++0wIIURhYaEIDQ0V0dHRNmPx8ccfCwA242bvPgshRN26dcXTTz9d5r6tW7dOABAzZsywaX/00UeFTqcTJ0+etLYBEHq93qbt4MGDAoCYP39+mdspyerVqwUAsWXLFmsbdRy99dZbQqfTiTNnzljbpk6dKh2D9vo1e/ZsAUAkJSXZfD45OVm4urqKN99806b98OHDws3NzdquZZ5U5Obmijp16ohXXnlFCHHrPFi9evVtP8toh29VOSkeHh7W1xkZGUhLS0NcXBxOnz6NjIyM237+mWeesVn/sFy6nz59+rafXb16NRo3boxGjRohLS3N+q9z584AgC1btgAAfvjhBwDAiy++aPP58iy2R0VFoWnTpvjyyy8B3Fi4f+SRR+Dp6SnZ/vLLLygsLMTYsWPh4nLrEB4+fDh8fX3x/fffAwD27NmD1NRUPPfcczZjMXToUPj5+ZVrn+3lhx9+gKurqzQ248ePhxACP/74o017165dUa9ePevfTZs2ha+vr13zVRYlj6OcnBykpaWhbdu2EEJg//79t/38nfi1Zs0amM1mDBw40GZMw8LC0KBBA+uYapknFW+//TaKiorw6quv2mXP3Bl8q8pJ+eOPPzB16lQkJCRIGSIZGRm3PaHq1Klj83dAQAAA4Nq1a7fd9okTJ3D06FHr7YbSpKamAgDOnDkDFxcXmy8WAGjYsOFtt0HxxBNP4N1338W4ceOwY8cO5ZfAmTNnyO3o9XpERkZa37f8t0GDBjZ27u7uiIyMtGmzd5/t5cyZM6hRowZ8fHxs2i3ZThbfLJSeL+DGnNkzX2Vx9uxZTJkyBRs2bJD6sucHyJ34deLECQghpPG3YLmdqGWeKJKTkzF79mwsWLCA07arCA4cTsipU6fQpUsXNGrUCHPmzEHt2rWh1+vxww8/YO7cuTCbzbftw9XVlWwXdlQKNpvNaNKkCebMmUO+b+89Z63Ex8fjlVdewfDhwxEUFITu3btXynYoHLXPFu5kvlSYTCZ069YNV69exb///W80atQIXl5euHDhAoYOHVolx5FOp8OPP/5I9lNRX/JTpkxBzZo10bFjR+vaxuXLlwEAV65cQXJyMurUqWNzdcrcGRw4nJBvv/0WBQUF2LBhg80vPq23S26H6knhevXq4eDBg+jSpUuZTxPXrVsXZrMZp06dsvn1f+zYsXL5U6dOHbRr1w5bt27FqFGjlOmhdevWtW6n5C/SwsJCJCUloWvXrjZ2J06csN5yAoCioiIkJSXZpP7au8/2UrduXfzyyy/Iysqyuer4+++/bXyrTA4fPozjx4/j888/x1NPPWVt37RpU4Vup6zjSAiBiIgI3HfffcrPa5knirNnz+LkyZPk1cno0aMB3LjSdoZnTO4VOAQ7IZZfZyV/1WVkZGDx4sUVuh0vLy/ydsXAgQNx4cIFfPLJJ9J7eXl5yMnJAQD84x//AAC8//77NjZ38jT6jBkzMHXqVLzwwgtKm65du0Kv1+P999+3GaNPP/0UGRkZ1qyuli1bIiQkBB9++CEKCwutdkuWLJHSdu3dZ3vp2bMnTCYTPvjgA5v2uXPnQqfTWceuMqGOIyEE3nvvvQrdjpeXFwBIY9q/f3+4urpi+vTp0hWKEALp6ekAtM0TxYwZM7B27Vqbf2+88QYA4OWXX8batWutPjIVA19xOCHdu3eHXq9Hnz59MHLkSGRnZ+OTTz5BaGgoLl26VGHbiYmJwcqVK/HSSy+hVatW8Pb2Rp8+fTBkyBCsWrUKzz33HLZs2YJ27drBZDLh77//xqpVq7Bx40a0bNkS0dHRiI+Px8KFC5GRkYG2bdti8+bNNs+LaCUuLg5xcXFl2oSEhOCVV17B9OnT8fDDD6Nv3744duwYFi5ciFatWlkfpHR3d8eMGTMwcuRIdO7cGYMGDUJSUhIWL14s/Tq1d5/tpU+fPujUqRMmT56M5ORkNGvWDD///DPWr1+PsWPHSutClUGjRo1Qr149TJgwARcuXICvry+++eabO143KU1MTAyAGynejz/+ONzd3dGnTx/Uq1cPM2bMwCuvvILk5GT069cPPj4+SEpKwtq1azFixAhMmDBB0zxRtG/fXmqzXF20atUK/fr1q8jdZQBOx3UGqHTcDRs2iKZNmwqj0SjCw8PFzJkzxWeffSalParScUunIVpSXxcvXmxty87OFk888YTw9/cXAGxScwsLC8XMmTNFVFSUMBgMIiAgQMTExIjp06eLjIwMq11eXp548cUXRVBQkPDy8hJ9+vQR586d05yOWxal03EtfPDBB6JRo0bC3d1dVKtWTYwaNUpcu3ZNslu4cKGIiIgQBoNBtGzZUvz222/SuGnZZ3vScYUQIisrS4wbN07UqFFDuLu7iwYNGojZs2cLs9lsYwdAjBkzRvq8vduxQKXjHjlyRHTt2lV4e3uL4OBgMXz4cGtKbcljQZWOa69fb7zxhqhZs6ZwcXGRjtFvvvlGtG/fXnh5eQkvLy/RqFEjMWbMGHHs2DGbPuydJ3vgdNzKRSfEHay+MQzDMP9z8BoHwzAMowkOHAzDMIwmOHAwDMMwmuDAwTAMw2jCoYHjTspVLlmyRJJvrmgsFeqWLFlSadvQyt1QSrN0aVXLXO3Zs6dKtn83jNHdBnW+hYeHo3fv3lWyfUu5gMquilnV3K37Va7A8ddff+HJJ59EzZo1rbUQBg8ejL/++qui/WPuEJPJhBo1alilHygWLlxIBscjR45g2rRpTilR7cy+VQULFy6ETqdDmzZtyPfLGh/VfDsDzuqbEAJLly5Fhw4d4O/vD09PTzRp0gSvv/665odD7wm05u9+8803Qq/Xi7CwMDF58mTxf//3f+K1114T1atXF3q9XqxZs8buvoqKikReXp5WF4QQQhQXF4u8vDwpJ74ioZ59cDRa89p//vlnAUCEh4eLwYMHkzZRUVFkn9RzAfaQn58vCgsLrX8vXrxYABCJiYma+imLsnwrKCiwkee+F2nbtq0IDw8XAMSJEyek98saH9V8lwV1vtWtW1f06tVLq+tlovLNZDKJvLw8Gxn9qqK4uFgMHDhQABAPPfSQmDt3rvjoo4/Ek08+KVxcXMQDDzwgLl++XK6+Lc+baD3HHI2mK45Tp05hyJAhiIyMxKFDhzBjxgwMGzYMb7zxBg4dOoTIyEgMGTLktpLLlgjt5uZW7nrSrq6uMBqNFaIrdC+zbNkytGjRAuPGjcO6desq7deREMJaVc5gMFiVTx2BXq+/J0rqqkhKSsKOHTswZ84chISEYPny5ZW2Lcvx4ujzzcXFBUaj0SFChbNmzcKqVaswYcIE/Pbbbxg7dixGjBiBpUuXYt26dThy5IjNrdn/CbREmZEjRwoA4rfffiPf37ZtmwAgRo4caW2zPJH6119/ifj4eOHv7y+io6Nt3itJbm6ueOGFF0RQUJDw9vYWffr0EefPn5eeRLb8ii35hKrlF9Dvv/8uWrVqJQwGg4iIiBCff/65zTbS09PF+PHjxQMPPCC8vLyEj4+PePjhh8WBAwds7Oy94rC3P8uvi5UrV4oZM2aImjVrCoPBIDp37kz+avzoo49EZGSkMBqNolWrVpqfpM3NzRU+Pj5i1qxZ4tKlS8LFxUUsX77cxqZu3boCgM2/uLg46/iW/mf5ZWQZ659++knExMQIg8Eg5s6da32v5JPFlr62bdsmRowYIQIDA4WPj48YMmSIuHr1qo0/pee5pJ+WPm/nGzVGKSkp4v/9v/8nQkNDhcFgEE2bNhVLliyxsSn5JLtl7PV6vWjZsqXYvXu3XWNeFbzxxhsiICBAFBQUiFGjRokGDRrYvF/W+Kjmu+Tntm7dKkaNGiVCQkKEv7+/zXvU+bZx40bRrFkzYTAYROPGjcU333xj4w91nlN9luWb6pf5qlWrRIsWLYTRaBRBQUFi8ODB4vz58zY2FuWB8+fPi0ceeUR4eXmJ4OBgMX78eFFcXFzmWOfm5oqAgABx3333iaKiItLmmWeeEQBEQkKCNDa3+y4qvV9TpkwRbm5uIjU1VdrO8OHDhZ+fX7nv0lQkmsL3t99+i/DwcGU93w4dOiA8PNxaSKckjz32GHJzc/Hf//4Xw4cPV25j6NChmD9/Pnr27ImZM2fCw8NDUynSkydP4tFHH0W3bt3w7rvvIiAgAEOHDrVZfzl9+jTWrVuH3r17Y86cOZg4cSIOHz6MuLg4XLx40e5tlbe/t99+G2vXrsWECRPwyiuvYOfOnRg8eLCNjaWUZlhYGGbNmoV27dqhb9++ZK1mFRs2bEB2djYef/xxhIWFoWPHjtKv03nz5qFWrVpo1KgRli5diqVLl2Ly5Mno0KGDtQjRq6++an3PUk8CuKFOGx8fj27duuG9995DdHR0mf48//zzOHr0KKZNm4annnoKy5cvR79+/TRLh9vjW0ny8vLQsWNHLF26FIMHD8bs2bPh5+eHoUOHkoJ/K1aswOzZszFy5EjMmDEDycnJ6N+/P4qKijT5WVksX74c/fv3h16vR3x8PE6cOIHExETr+2WNj2q+SzJ69GgcOXIEU6ZMwaRJk8r05cSJExg0aBD+8Y9/4K233oKbmxsee+yxcinw2uNbSZYsWYKBAwfC1dUVb731FoYPH441a9agffv2kjiiyWRCjx49EBQUhHfeeQdxcXF499138fHHH5fp0/bt23Ht2jU88cQTSrVmi/Lwd999Z9Nuz3dRaYYMGYLi4mKsXLnSpr2wsBBff/01BgwYUO67NBWKvRHm+vXrAoB45JFHyrTr27evACAyMzOFELd+bcTHx0u2pX+J7N27VwAQY8eOtbEbOnSo3VccKHVFlJqaKgwGgxg/fry1LT8/X7pXmpSUJAwGg3j99ddt2mDHFYe9/dlb1rUiSmkKIUTv3r1Fu3btbD5P/ZopzxqHZax/+ukn8j3qiiMmJsZm7WPWrFkCgFi/fr21rfQ8q/osy7fSVxzz5s0TAMSyZcusbYWFhSI2NlZ4e3tbj1XLfAcFBdlcCa1fv14AEN9++620rapmz549AoDYtGmTEEIIs9ksatWqJf71r3/Z2JVnjcMyT+3bt5d+iZd1vpW8wsjIyBDVq1cXzZs3t7bZe8VRlm+lf5lbzpEHHnjA5hf4d999JwCIKVOmWNuefvppAcDmXBRCiObNm4uYmBhpWyWxHDtr165V2ly9elUAEP3797e22ftdRF1JxcbGijZt2thsY82aNU61FmL3FUdWVhYASBXNSmN5PzMz06b9ueeeu+02fvrpJwC3NPQtlCWxXZr777/f5oooJCQEDRs2tFl3MRgM1nulJpMJ6enp8Pb2RsOGDbFv3z67t1Xe/m5X1rUiSmmmp6dj48aNiI+Pt7YNGDAAOp0Oq1at0ryPFBEREejRo4fd9iNGjLBZ+7DU3LCUoK0sfvjhB4SFhdmMhbu7O1588UVkZ2dj27ZtNvaDBg2yVkwEtJXdrWyWL1+OatWqoVOnTgBu1MIYNGgQvvrqK5hMpgrZxvDhw5UFnEpTo0YN/POf/7T+7evri6eeegr79++3FlOqDCznyOjRo21+gffq1QuNGjUi73qU/g566KGHbjun9nzvqb7z7Pkuonjqqaewa9cunDp1ytq2fPly1K5d+7bK0VWF3YHDMjiWgVShGuiIiIjbbsNSirS0bf369e11065Sl2azGXPnzkWDBg1gMBgQHByMkJAQHDp0yK5ymqXR2t/tyrreaSlNAFi5ciWKiorQvHlznDx5EidPnsTVq1fRpk2bCltMtWdOS1J6f7y9vVG9evVKT6k9c+YMGjRoIC2s2lvGVUvZ3crEZDLhq6++QqdOnZCUlGSd1zZt2iAlJQWbN2+ukO1omdf69etLC+aWok2VOa+q8sHADTn50nNqNBqlssD2lMC153tP9Z1X3rK7gwYNgsFgsJ6nGRkZ+O677zB48GCnSQayO3D4+fmhevXqOHToUJl2hw4dQs2aNeHr62vT7uHhUT4PNWJPqcv//ve/eOmll9ChQwcsW7YMGzduxKZNmxAVFWVXOc3SaO2vMsqElsZy0LVr1w4NGjSw/tu+fTsSEhIq5NdzVc0pgAr7NW0PVTE/5eHXX3/FpUuX8NVXX9nM6cCBAwGgwn4QVPS8qr7snGFOb4flx0VZ33uW9+6//367tnm74yggIAC9e/e2zufXX3+NgoICa50ZZ0BTIafevXvjk08+wfbt28niKb///juSk5MxcuTIcjljKUWalJRk8+v0TgoDUXz99dfo1KkTPv30U5v269evIzg42OH93WkpTUu65vPPPy9d2prNZgwZMgQrVqzAa6+9BkB9Ylf0r5sTJ05Yb7EAQHZ2Ni5duoSePXta2wICAqSFzcLCQqmAlRbf6tati0OHDsFsNttcdVRlGdeKYPny5QgNDcWCBQuk99asWYO1a9fiww8/hIeHR5njU5HzevLkSQghbPo8fvw4gBtPlgO3rtiuX79uU7619FWBFt9Klg8ueY5Y2ipqTtu3bw9/f3+sWLECkydPJoPBF198AQAV+hT9U089hUceeQSJiYlYvnw5mjdvjqioqArr/07RlFU1ceJEeHh4YOTIkdayjxauXr2K5557Dp6enpg4cWK5nLHcL1+4cKFN+/z588vVnwpXV1cp6q9evRoXLlxwiv7utJSm5ZfKyy+/jEcffdTm38CBAxEXF2fz69TLy4vsV1UStLx8/PHHNplJixYtQnFxsU0Z1Xr16uG3336TPlf616kW33r27InLly/bZKoUFxdj/vz58Pb2dpr7xmWRl5eHNWvWoHfv3tKcPvroo3j++eeRlZWFDRs2ACh7fFTzXR4uXryItWvXWv/OzMzEF198gejoaISFhQGAtdphyXnNycnB559/Xm7fWrZsidDQUHz44YcoKCiwtv/44484evSopkzMsvD09MSECRNw7NgxMsPr+++/x5IlS9CjRw88+OCDFbJN4EZZ5uDgYMycORPbtm1zqqsNQOMVR4MGDfD5559j8ODBaNKkCYYNG4aIiAgkJyfj008/RVpaGr788styl8WMiYnBgAEDMG/ePKSnp+PBBx/Etm3brL9gKuqXUu/evfH666/jmWeeQdu2bXH48GEsX77c7vWDyu7vTktpLl++HNHR0ahduzb5ft++ffHCCy9g3759aNGiBWJiYrBo0SLMmDED9evXR2hoKDp37ozo6Gi4urpi5syZyMjIgMFgQOfOnREaGlqu/SosLESXLl0wcOBAa6nX9u3bo2/fvlabZ599Fs899xwGDBiAbt264eDBg9i4caN05abFtxEjRuCjjz7C0KFDsXfvXoSHh+Prr7/GH3/8gXnz5t024cMZ2LBhA7KysmzGqiQPPvig9WHAQYMGlTk+qvkuD/fddx+GDRuGxMREVKtWDZ999hlSUlKwePFiq0337t1Rp04dDBs2DBMnToSrqys+++wzhISE4OzZszb92eubu7s7Zs6ciWeeeQZxcXGIj49HSkoK3nvvPYSHh2PcuHHl2h+KSZMmYf/+/Zg5cyYSEhIwYMAAeHh4YPv27Vi2bBkaN25MBsE7wd3dHY8//jg++OADuLq62iR2OAXlScU6dOiQiI+PF9WrVxfu7u4iLCxMxMfHW9NJS2JJxbty5YryvZLk5OSIMWPGiMDAQOHt7S369esnjh07JgCIt99+22pX1gNJpSmdnpmfny/Gjx8vqlevLjw8PES7du1EQkKCZKclHdee/rSUdRWifKU0LSnN//nPf5Q2ycnJAoAYN26cEEKIy5cvi169egkfHx8p3feTTz4RkZGRwtXVlXwAkOJ2DwAGBAQIb29vMXjwYJGenm7zWZPJJP7973+L4OBg4enpKXr06CFOnjxJlitV+aZ6APCZZ54RwcHBQq/XiyZNmkjjXVYpW9hRCrcy6dOnjzAajSInJ0dpM3ToUOHu7i7S0tKEEOrxUc13WdIwt3sAsGnTpsJgMIhGjRqR5Vr37t0r2rRpI/R6vahTp46YM2cO2afKN9UDgCtXrhTNmzcXBoNBBAYGlvkAYGlUacIUJpNJLF68WLRr1074+voKo9EooqKixPTp00V2drZkb+93UVmSI7t37xYARPfu3e3ysSq5K0rHHjhwAM2bN8eyZcukB+UYhmHuRQ4ePIjo6Gh88cUXGDJkiKPdscHp6nFY9I5KMm/ePLi4uKBDhw4O8IhhGKbq+eSTT+Dt7Y3+/fs72hUJTWscVcGsWbOwd+9edOrUCW5ubvjxxx/x448/YsSIEcp79gzDMPcK3377LY4cOYKPP/4Yzz//vDXRwZlwultVmzZtwvTp03HkyBFkZ2ejTp06GDJkCCZPnqzUimEYhrlXCA8PR0pKCnr06IGlS5c6ZfKG0wUOhmEYxrlxujUOhmEYxrnhwMEwDMNowiGLBmazGRcvXoSPj4/TiHYx9yZCCGRlZaFGjRoOqR5Hwcc/U5VUxjngkMBx8eJFzpBiqpRz586hVq1ajnYDAB//jGOoyHPAIYHDkiUwf8EiSYmzWfMYyf7XX34m++nx8MNS28abNT1K06Vrd6lts6Lfjl26ke1bf5GrmlE+AMDGjbIf3brTtSs2bdwotXXpJvsLqH3u2k3u+5ef5X4BILZjF6ktYSstyR1HjMW2X+nqbp270D5T8/ePnv8gLG9oDZWG2jeA3j+Tudjm7/z8fLw+bapTZaZYfDl++ix8fGxVpLPziyV7X0+6frvJLOe1uLrQVzDZeXL1Qi8jffpfyy4k2/295DruZkVujZur/Ms2r5BWw9W7EbYF8jgAap+pvo3utDrt2fRcqa1OkCdpm55dILWF+NIV+DJy6HHz8ZDnz0UxT1SuUm4BPW5Gvbx/1PxnZWaifkTtCj0HHBI4LJfnHh4e8PS0nTBvYudUMs/UQKhstfTr7U0PsJGwV00G1Tflg6pfla2W/aP6Bej902KrxQdV35U1biYT/YXjTLeELL74+PhK5Qd0+soJHDp3OXB4K76Ei13oL0DfOwwc7hoCh5sicKh8diP69lAEDu9CuQ9fXzpwFOrkwOGrCBxmV8W43WHgcFUEDg87A4eFijwHnOOmL8MwDHPXwIGDYRiG0YRDH8WuVqsuvLy8bdrS09IkO1Xp2CtXZNt69Wjbq6XqhwBA3Qha/j036zrZXidCljRPSb1C2kZEyn2nKmwbNJB9zrh2lbRV+XzxcqrUpho3qu9IhRR+XvZ1qU01xteuyWMM0PtH+avq+1IKbUv5fOL4MdLWGUnNKkAebG+FeBnk2w9m4paUql31PC91CyNXcesoyMdAtmfkyre73F3p2x/FhG/FJrq6ptFd/v1K3YYB1D5n5cm3tgzELTAA8CT6LlT4Fuon35ZS7YdBcWuMukOUo7gVR/msWhuixt5FJ3++Mp7x5isOhmEYRhMcOBiGYRhNcOBgGIZhNMGBg2EYhtGEQxfHjxzcJ+XtRxKLo7t37SQ/37J1G6ltz+5dpG2zmNZS2/49tG2r1nTR+f17dhO2sg8AsHuX3HdsLN3vzp3y/rVuQ9uq9q9FK3n/9iXK/gK0z7t302PcNjZWaqP8Bej5AIC9ibLPqv2j5rpp81ak7aH9iVKbv78/aeuMhPkZpWcCCovlhVdVzn8BYataVM4gFo/9POjTn3oIEQD8iOdJCopUC7fyb1I90QbQzxeong9RPZtRbJLtVc8t+BL77abhuQoXRb8mM71oTvlBjQ9AP/+iWtymnn+htlUZzzDxFQfDMAyjCQ4cDMMwjCY4cDAMwzCa4MDBMAzDaIIDB8MwDKMJh9Qcz8zMhJ+fHzZu3ipJjlCZAipZj2qhIVJbOiEtAgBuHr5SW1FuBmnrHxhEtlNSHR4+/qRtTsY1qc3HP5C0vXZV9tlXYZubKfcLACEhwVKbatxCQuRxU8mhePoGSG2UvwBQt2Y1sj2VkIbxD6D37wohOVOjWihpe5Xw4+jRozZ/5+fn4dVJ/0ZGRoakROsoLMf/yfNp8Cnlk7dBzvhRyWFQ8hSqDJrkKzlSW91gWhE2v4jeHpWxlZopq8cCQKCXnIGVSWR2AfR+ZCskOYK8ZYVegM50ojLUADpLTSUjkk5IzFPfUQAQopBqoVSM8xXZaJS6DCVDA9ifgZWZmYmwYP8KPQf4ioNhGIbRBAcOhmEYRhMcOBiGYRhNcOBgGIZhNOFQyZED+/ZKkiNUHYtdCsmRBx+U5TB2KeQwKEkOSkIE0CYj0uZB+6UzVDIblCRHy1a0D3sIW5UfiSp5kpbyWOxVyJM0i5HlPg7tk6U+AMDNRe4XAPYS0i5tFGNByaQYNEi13E2SIz4e7lJZUUrCQyWHQclsKJQsEECUfVWhEqig6n8EKMraUvU/VGVfqboSKpUMakEYoBegDUSdDwDIIiRVqKSEG33IC9OqBfpMoq47QO+3aoGdkiLRohjCkiMMwzCMU8KBg2EYhtEEBw6GYRhGExw4GIZhGE1w4GAYhmE04VDJkZ83b4OXt63kCJUAkEZIVgBAYJAsDaKSHCFtCXkLAKiukLhIvSLLckRGhJO2QTXkdn9FBsqu3XKWkrs7neVxRcNYXFWMRQAhqXI1ne6XkidR2QaEhJHtXl5eUltedhZpm56WKrUp5Veyrkttd5PkSNLFdElyhJLOUJ2ixUQmkasig4ayVSXbeCqKQVGZS6rsoJMp9kucUNIgVFaWygdVuyobjSqA5UZkdgH0eKpsVfIrFKWz6SwYiUwwVWGtIIXESWkyMzNRLciPJUcYhmEYx8GBg2EYhtEEBw6GYRhGExw4GIZhGE04VHJk/749dkmOqGQ2KGmQPQqZjQcJSY59CskRlRzG4UMHpbaOnbuQtjnEgpZqYe+XnzdKbW3bynIqAJC4m5ZUiY2V7SkpE4CWJ1GNBSWTQo0DALzwL3osdJAXIxMS95G2lLxMq9b0fFBzHRDgT9o6Ix56V2khmloo1hOyFwBQQNTNUC1Wm4kFdq0L0FTfqhob1IK+qj4GtRhP1cwA1HUzKFkN1f4Zif1TmKKIkHVRjbGPQlJFSx0TL4NRaqNkTwBaAoZKeKiM/Ce+4mAYhmE0wYGDYRiG0QQHDoZhGEYTHDgYhmEYTXDgYBiGYTThUMmRLdt+h3cpyREqo+MKIfUBAKGEHMYVhYxISHCw1EZJiABArdq1yfaG9zWU2lSDRxWn2X/gAGlLSaqEhMj+AsD5S7Ikh8o+89pV0jaIGIuUVHoswkLlMb6/SVPSVpU1k5N5XWo7mXSGts2QfQ4Mosfi2lVZUuX4sb9t/nZmyZGUdNknagxVpyiVNaQ6m6lsG0qGBKCzdVSoLD2ITCCVLbV/qoyoazl0sSTK3stAZyNRY0TJkAC0BEhOgVxsC6ALRAGAn4ecbZWt6IMqjKXKcnMnsrvIzDeWHGEYhmEcDQcOhmEYRhMcOBiGYRhNcOBgGIZhNMGBg2EYhtGEQ7Wqdu/aDWMprarIerJWVaJCfyqmlaxVpdJnonStdu+ibevXr0+2Z+TJGR0q3ZoP3p8vtUU90IS03U3oM1EaUQCwX6EpFRsr21O6TwA9FokK2379HpHaihQZKJSuDwB8seQzqa158xakLTUnlM4YAOzaKft8N2lVmc1CymCiNKWMCq2inAI5i8fLQJ/S+YVyFg+VlQMAJh09j0mpcnEmb4U+k1eg3K7KuqMyEIsVx5KqGBqVNUbpVwFAQZE8FgbFWFDZWtS4A0AeMcYAUMNf1p+i9KsAupAXdUyobKsKvuJgGIZhNMGBg2EYhtEEBw6GYRhGExw4GIZhGE04dHG8WYsYeHnZSo4YiUUjajEXAEIIyRGqoBEABAYFSW1dutKFh2rWrku2UyoIqoIz1EK4t18AaUsVVqIkUgCgRcvWZHtAoLx/Klt/wrZHz96kbeMoeT9yFYuAOoWoRDSxEK739idtqYVwat9UtsdKSY44M1l5RYC7bcKFv5desqMWcwHA3dX+332qhXAK1eJvjQB5kddN4QOVQHE9l5YLCfKW91klOZJJJKgA9GKzajGeUvBQya9QkiOqJBBqkV/V96Xr+aRtTWKMVftBJea4oGoWzPmKg2EYhtEEBw6GYRhGExw4GIZhGE1w4GAYhmE0wYGDYRiG0YRDs6oO7t8Lj1KSI3XCIyW7fQqZjZaE5MgeheQIlW0VWi2MtFXJiFy6fFlqO3H8GGlLyYhQ2VMALZ2hktlQjQXVt2osWrWWbc0mOpOm2CRndJw9eZS0vXhJHh+AlhFRZXxR+9dSkVVHycv4+/uTts6Ir6c7fEtJaFBZQz4KWQ9K4kKV2UNlKamydbwVsiVFxLGg2h6VbUVlT6l8UxWT8vGgJUcoe5WsR0GRvB8qyZFsIsOsdqAHYakeTzdi/6jiToBKcoQ0VWa0VQV8xcEwDMNoggMHwzAMowkOHAzDMIwmOHAwDMMwmnDo4nhMTEt4edtKjlCLQyrJkWBClkNVxyKQkK24r1Fj0jYlg5YDqB4mL6anpqSStlStEJWMSBvCZ6MPLU/Sug09Fn7+gVJbu3YPkbYdO8ZJbSrJhZRMeSzOXrhE2taoFkq2U7VCfAh/AXquVVIt1Fwfv4skRwqKzNJCrSexoEst5gK03I2qjoWOqLGhqh9x4nI22d6sjp/UppLfKCiWF5U9FHVFqASMK1mFpG2AF704TtUbMSi250Ys6OcrxvjIpUyprVktf9LWy0Bvj0JVKySfkJdRyaxQC/papGXuBL7iYBiGYTTBgYNhGIbRBAcOhmEYRhMcOBiGYRhNcOBgGIZhNOHQrKq9e/dIkiP16tWX7BJ309IZlCwHJfUB0Nk65j//Im1jouXiRQCdCdHo/ijS1mCUC7K4uNBZF+lpsoRHdHgEaXv21HGyvUf3rlLbeUX2EyXxoCrOVCvAU2r7PJGWPXFRZL/tIeZPi4yIKquOkjIJCPAnbZ0Ro95VKlxGZRgZiGJCKlTZOlQxKLOgM6JiIvzt7jszq4C0pTKaVNlBVPEqKrsMUBevMnpR2Wj0MU1JCqUpsrhiI+VsTFWRKdU5REmfUJldKlsq0xRQF5GrCviKg2EYhtEEBw6GYRhGExw4GIZhGE1w4GAYhmE04dDF8abNY+DlZSs5Qq0DqWREfAnZCpWtX4Bsq1rkUunqU/aq2h0NGjSQ2oRiMTKsVh2pTbUg1rB+PbL9Wo688BgUUo20NRHyIgrXcO7sWaktphVdS4OSgAHohfCgIHnREQCaNG8ltankSVoQfiSdpJMHnJHrOYUwudouylLzrlooziMWf40KmQ1KUoOqEwEA2fl0bRZKzsJLUSuEOsZUi7lJqTmyb4rFY5Wsx6kUuQ9/T1qexIuoN6JKFKDO+RyiRgeg3j9KRkRVbyQlQ042UPVLSY74Kfa5ouErDoZhGEYTHDgYhmEYTXDgYBiGYTTBgYNhGIbRBAcOhmEYRhMOzao6tG8vjKUkR+pEREp2+/fQEhdaJEeowkqUvAUAZGRcJ9vPJidLbYPinyBt6WwrOjtiLyHh0UpRsGnHTnr/PEuNIwDUb0TLoWRly/IKp47TBZByrl+R2ih/AaANMR8ALTmiysw6vD9R7leRKUcdF/7+/qStM+Lr4Q5fD9ssmCwio0mVYeTtIp++qgycIiJT0FORoVSgyCqksrBUxaC8FdlWFFSBJ1VhMVV77SBZGic1k5ZDuXBNLlQV6C3LnqjwJLKyAHWmFJWZla3IzKrmZ5DaqAw1Vb9VBV9xMAzDMJrgwMEwDMNoggMHwzAMowkOHAzDMIwmOHAwDMMwmnBoVlXL1q3g7W2rVUVlJqgK+VAaRqoCQaEhIVIblWkFAH4+3mR7aDVZ++nwoYOk7fVrV6U2SlsLADIys6S2QwfpfnOz5YwQAAgmdKm8tWR/FOWStkGE/lRsLJ3l5OkTQLZT9ipdK9FSzrZy9/IjbZsTtneTVpW4+a8kRqJokyrLqYDQn1Jpp1E6U7kF9hceAoAiosiUqrASVfQpR6GBRcmyuSn6VSUSZebJfYcRGUoAXSyrVqCclQgoNLcUPqTn0MWgQnxlP1TnJrUf6UQWJAAEEZlgrFXFMAzDOCUcOBiGYRhNcOBgGIZhNMGBg2EYhtGEQxfH9+xOlCRHwiPlQkWUZAVAS45osVVJjrQgFl0BYB8hcdE8xn7bBxWLyomEz6oF6ISEBLI9rlNnqU0lVXDh3BmpbfPmzaQtlZiwexc9bq0VMinU/lEL2wAtI6IqzrWPkD4JCPAnbZ0RHWQRmmKTPGeqxWpKAkQlQ0HVKdIrZEGy8uSiYADg4yEvvF5XLAhTi/FGxX5oEc5QHdOULIuqIBu1H6oia1RCgF6xcK9lYZqSlgEAXw95TlTzz5IjDMMwzF0DBw6GYRhGExw4GIZhGE1w4GAYhmE0wYGDYRiG0YROqNIJKpHMzEz4+flh89bf7JIcSU9PJ/sJCAyS2q5fpW1DQmSJi9QraaStjx8tnUHJiGixVclspKXJftSsHkraVguVpUUAIJCQHDEo5CdSUlOktj8PHyZtKcmRK4pxU0mqZF2Xx8LTlx633KxrUlsgMc8AcDlFLjKVdMpWciQ/Pw+vTvo3MjIy4OvrS/ZT1ViO/4tXrks+UXIYlHwHQGf8qObchehDVRQpU5FVZSQKLmmxVewGmfGlVTqD8sNHkTVGjacqQYkaIlXBJi2ZUmlZ9suTUEW4ACC/SJaM8feSZUgyMzNRLcivQs8BvuJgGIZhNMGBg2EYhtEEBw6GYRhGExw4GIZhGE04VnIkMREepSRHIgjJEUqyAqBrb2iRHNm1c6fd/d7wQ7aPaUnbUtIZMa1U8iSyz8bYWNLWxYWWH/AOkOuNnD5xjLS9ePGC1JaQQI8FJX2yexdtq6qbQs2fFlul5AgxxneT5Iiri06SjSgmSmS4E3IaAGAy35nkCCVZAgAexMI2ABiIWiHFJtrWl5D1yCmgF48pSQ2VmIZqQT+LqGPhR/igQtEtuWjuopgPT4NCGoaQKPH3on0jt6eYJ0o6pargKw6GYRhGExw4GIZhGE1w4GAYhmE0wYGDYRiG0QQHDoZhGEYTDpUc+eXXbfAqJTlSQDxen0nIdwCADyFxkXGNlhwJqyZLeKSkypIVABAYREtcUNIZbp5+pG12hiydUS1UznwCgKvpsoRHqML2vsZNyHaqaM3xv4+Qtm462ZaSPQGAwCBZckRtS48bJQOjkhzJz7outamkWtKJcfv7779t+3NiyZEzl65KPmUSshXeimydTCKTSJXZQ2VKUecaoC6WRElnJF3JJW39CckQvUIOhcruogpBAcCVzAKyncrYUhVACvSWZTlUmIjCWqovTNW4UTIw6dm05Eg1P1lyRAWVQUfJqbDkCMMwDONwOHAwDMMwmuDAwTAMw2iCAwfDMAyjCYdKjuzdu+eOJEdat5FlKygZihu2smyFSp6kDSFPAgAJCQmyrUIO48Be2Q+VzMbuXbIfI0aNJm2v5dKLal56eSo3/fgtaRtLyJmoxpjyeW+i/bYAvX/RMa1I24P7EqW2mFb2S8AEBtCL7s6Iwd1FkvHw1cnzqCckKwC6xgYlCwIAxcQir6di8Vgl61FE9BGmWMz1NMj7QdWPAOj9U9W2SErLIdtDfWQ/agR4EJY0qhyhAsgJBFStEQDIL6T3j1roNyrmiZInUUm1UIvubgo5lIqGrzgYhmEYTXDgYBiGYTTBgYNhGIbRBAcOhmEYRhMcOBiGYRhNOFRyZBMlOVIkZzHkZcnyHQDgFyBLXFDyFgAQRMhWqCRH/ANkKRMAyMmU/QgiJDkAIPWK3DflA0BLeDzcvRtpS8lMALT8wB+/bSFtA0OqSW3FBXmkrV4vyzNcvJxK2qrGLY+QEVGNBSUjEhhIS5lcIcbt5HHb4lXOLDmSTEmO5BVJ9qG+dOZSLpHFQ2XaAHQhJ0qmBgDyFNlPQYRUh0pmg2pXFUuiUGUdnb9KH6fuRDYS5S8AXMuRMxN9CYkUgM5cU2U55Smyqqj5U40FdR4XKeaJ6oKSWWHJEYZhGMbhcOBgGIZhNMGBg2EYhtEEBw6GYRhGExw4GIZhGE04VKtqH6FVFVmvvmS3a6esSQQALe9QR0llq9Kf2kn4QellAbT2U/OWrUnb/YS+VsyDHUjbIEKTR0V+Hl1kJ6aZXAzqz7/+JG1TU1KkNkqHCwBaKjSl9hDj3KwFrVV1YK+sVUXNM0DPn7+/P2nrjBjdXaTsIVcXORNISzYSpXUEAAVEppSq6JNK74ryQ6VrRWV3qTIC/YiMpj/PZZC291X3IdsphSaVbpOWQk7UeOrd6M8b3OzPeLyuKOQU6EVkrikSXymtMSpJtjISZ/mKg2EYhtEEBw6GYRhGExw4GIZhGE1w4GAYhmE04dDF8egWMfDyspUcoR7xj42lF6uDCdkK1cK2PyFboSo8FBxCy2E8SPgRQMieAHThKJUkB+WzXlEsRrXQRS3i9erdh7TNJyQMrmdmk7a+/rLP1L4BQIBCGoRKCghRSI5QRbRCFfNBLcafPHGMsHROsvOLodPbLqi6EQup7q70seBBHCPFJlqegirkJARtSxUeUmFWLI5T2yN27aat7IePBy0Bojr+qfNFVVgph2hX+aYnxoKSNwFoCRCATgpQScNQUi3UPAO0xAlVQEtHfKfeKXzFwTAMw2iCAwfDMAyjCQ4cDMMwjCY4cDAMwzCa4MDBMAzDaMKhWVUH9u2VJEfqRtST7FTSIJQUReIu2rZt21jZlpAFAdTZVruJvlu0sl9GRJWNlJCQILXVrF2btM0spDMkGkbWldo+/79FpG3jKFlyJHGX7AMAxBCZS3s0jtu+RHksHiSypwBaXkYlOZK4W7YNDAggbZ0RHw93+JbKHlIVCaIoILLjqCwgAPAyyqe6KkNJVeCJytwrIrKnAMBDLx+nRtDZQVQmUYgPLeux/+x1sr1WgKfcFuhBWAJFRBaXNzE+AJBTIGcuUZlvAFBMJ3HBh+jbrBh7KgNKVVhLlZlVFfAVB8MwDKMJDhwMwzCMJjhwMAzDMJrgwMEwDMNoQicqQ6z9NmRmZsLPzw+//LoNXt62kiOUM+lpaWQ/voTcR/b1q6QtJTly5coV0jYkJIRsv5ou++GnkBzJybwm2xLyHQBw9Wq61KaS2Ui9Qo8FZX/+UippG0TIfeQS/gJAUBA1brQPHr70wnReltw3JWUCABnX5Plbsl6u0QEAz/STa3oc+/tvm7/z8/Pw6qR/IyMjA76+vmQ/VY3l+D97+arkE6XgoRKMoKQz/DzoRV5qIZ1alAbo+hEAvShMLR4DdM2LXMXCPyXhofJBVf+D8i0jr4i0pboIUtTooCRVVAvbV7LoGhuhvnINnex8eiyoGhuhsS+Stmm75ktt1LhlZmaiWpBfhZ4DfMXBMAzDaIIDB8MwDKMJDhwMwzCMJjhwMAzDMJrgwMEwDMNowqGSI3v37IGxlORI/Qb1JTuVNAglRaGSw6CKCamkTNq1bUu2U5IjqiJTOwnpDKpI0Y1+ZVuVfIdqLChpkAN7ZakPlR+U1AcAxMbKUi27CH8BbT5Hx9BSLZTPQx9RjHGC7EdAgD9p64y4u7pIGUVUvo4qw4iypWRBADr7yctAS4Co+qAyjAK87P/taVAUJKL2T1WEyUhkHQFADpGl5O9JF4OisqpUyaUuhG8uijy3AMX2qOlTZWZRRbRSE94nbR0JX3EwDMMwmuDAwTAMw2iCAwfDMAyjCQ4cDMMwjCYcujhuMhfDZLJd1KLkRfz9/cnPZxBSHUrba7KtqnZDaiot1UEtvKak0rIllB8qiRPKlpI3UdkC9P6pbLWMcRrhs7JfDT5nXZf9VdmmpdHjRs1HWql9KygoID/rDLi46KTFV2oBWoWHYqGYgpKyUC2CFxP1KlT2WhaxtUicuLmqhFZoqLGgalsAgAuRVqCy1YIqiYHqm6rRURHboxb5K0NViq84GIZhGE1w4GAYhmE0wYGDYRiG0QQHDoZhGEYTDlkctyzW5OfnS+/l5eZKbfn5eWQ/mmzz7sxWZe8MtkAljtsdjrHKvrJsSy+GW/52QNkZJRZfsjIzpfeoxXHq6WWtFBH1OKinlIGKWRwvJBarCwkfAEBP+KHFB0DbuFHHQkUsjlNjDNDjrGX/tPRL7VtWVqbyvfLikEJO58+fR+3atat6s8z/MOfOnUOtWrUc7QYAPv4Zx1CR54BDAofZbMbFixfh4+NTIZGeYVQIIZCVlYUaNWrAxcU57szy8c9UJZVxDjgkcDAMwzB3L87xE4xhGIa5a+DAwTAMw2iCAwfDMAyjCQ4cDMMwjCY4cDAMwzCa4MDBMAzDaMJhsur5+fkoLCx01OaZ/yH0ej2MRqOj3bCBj3+mKqnoc8AhgSM/Px8RERG4fPmyIzbP/I8RFhaGpKQkpwkefPwzVU1FnwMOCRyFhYW4fPkyTiWdha+vLwQEbv4PlscRBcSt1zffw802cePlTXvLO5b/s20TJdosTzre6OPWNm3aSnxO3GyxfLb058w3Ozff7MCmzebzN9otvpjFzT6Fxe7WPlo/J270K0rYWn0Rsk+l7cw3X5hFyTET8n4JyxiV6kOUHH/FeyXnxzLmQsivRdntZJu4qc8jzCUm0fJa3HptsRXU+0BBXg7eefVpFBYWOk3gsBz/x0+fhY+P763jASXmy2Y+Bcw3d8ssbr6+2WaGZZ5LHhOl+iD6tTnOrON+y94EYd2WxdYkBMxmiz83/rZ83mT5nBBW3ShTCRuTuPkZ8619MJkFTOabr2++JwRgMt+0B269b77Rrxk3dKlM5hvHy433hXX/re03/RA3P2tpE+Yb+2M2W3y72a/Z9jVu2ljbLftqNt/q1yQgzJZ2y2sBszDfen1jwG5+7tZrlOy3hK3ltTCbAbPpxnFsNt2cHNOt12bTrfdNpW1L2AgzUJSPy0c+r9BzwKEVAH19fSs8cJRus/nyQ8n+bm2TapO+YG+2mUvYlCdwCJQ4ya0nZckTvMR7Fj+sJ/qdBY6SX0S2gaDE2JYODqW3Weq/KOHj7QJE+QOHKjBYvu1u876T4uPrC98yAsetuSsjcFjnWR0kqDYqcJTsw/JFb9lGycBhtiNwWF5bA4f5VuAwCXXgsNqY5cBhaVMFDrNZwOVmu4u4FThKt1lsdaWChe1rQFfCRmdtM1tfw3TrcygROFAiANyMtDf+W+K1uDHY0N0MIqVfQwoc5hLBQtgGDp2JttHdaBNmWiTxTuDFcYZhGEYTHDgYhmEYTXDgYBiGYTTBgYNhGIbRhEMXxzNvVkCryMVxlGqzWeBFyf5ubdOmrcTnqMXxkp/jrKoSY1d6kbvka1F2O9lWUVlV+XT1QGcgKzPz9gvb4jaL4xBSH5xVdfdkVd3IoLL8t5KyqkwV/7yQw0rHent7o15EHUdsnvkfw9vb2xqgnAHL8X9fJB//TNVQ0eeAQwKHTqdDdnY2zp07B19fX0e4cNeRmZmJ2rVr85hpxDJuzlRpj4//8sHnQPmojHPAKZ7jYOyHx+zegeeyfPC4OR5eHGcYhmE0wYGDYRiG0YRDAofBYMDUqVNhMBgcsfm7Eh6z8uGM4+aMPt0N8LiVj8oYN51wpnQThmEYxunhW1UMwzCMJjhwMAzDMJrgwMEwDMNoggMHwzAMowkOHAzDMIwmKi1wLFiwAOHh4TAajWjTpg12795dpv3q1avRqFEjGI1GNGnSBD/88ENluea0aBmzJUuWQKfT2fxzltKoVclvv/2GPn36oEaNGtDpdFi3bt1tP7N161a0aNECBoMB9evXx5IlSyrcLz7+ywefA9pw1PFfKYFj5cqVeOmllzB16lTs27cPzZo1Q48ePZCamkra79ixA/Hx8Rg2bBj279+Pfv36oV+/fvjzzz8rwz2nROuYATekFy5dumT9d+bMmSr02DnIyclBs2bNsGDBArvsk5KS0KtXL3Tq1AkHDhzA2LFj8eyzz2Ljxo0V5hMf/+WDzwHtOOz4F5VA69atxZgxY6x/m0wmUaNGDfHWW2+R9gMHDhS9evWyaWvTpo0YOXJkZbjnlGgds8WLFws/P78q8u7uAIBYu3ZtmTYvv/yyiIqKsmkbNGiQ6NGjR4X5wcd/+eBz4M6oyuO/wq84CgsLsXfvXnTt2tXa5uLigq5duyIhIYH8TEJCgo09APTo0UNpf69RnjEDgOzsbNStWxe1a9fGI488gr/++qsq3L2rqexjjY//8sHnQNVQUcdahQeOtLQ0mEwmVKtWzaa9WrVquHz5MvmZy5cva7K/1yjPmDVs2BCfffYZ1q9fj2XLlsFsNqNt27Y4f/58Vbh816I61jIzM5GXl3fH/fPxXz74HKgaKur4d6isOlN+YmNjERsba/27bdu2aNy4MT766CO88cYbDvSMYaoGPgccR4VfcQQHB8PV1RUpKSk27SkpKQgLCyM/ExYWpsn+XqM8Y1Yad3d3NG/eHCdPnqwMF+8ZVMear68vPDw87rh/Pv7LB58DVUNFHf8VHjj0ej1iYmKwefNma5vZbMbmzZttfh2UJDY21sYeADZt2qS0v9coz5iVxmQy4fDhw6hevXpluXlPUNnHGh//5YPPgaqhwo41rSv39vDVV18Jg8EglixZIo4cOSJGjBgh/P39xeXLl4UQQgwZMkRMmjTJav/HH38INzc38c4774ijR4+KqVOnCnd3d3H48OHKcM8p0Tpm06dPFxs3bhSnTp0Se/fuFY8//rgwGo3ir7/+ctQuOISsrCyxf/9+sX//fgFAzJkzR+zfv1+cOXNGCCHEpEmTxJAhQ6z2p0+fFp6enmLixIni6NGjYsGCBcLV1VX89NNPFeYTH//lg88B7Tjq+K+UwCGEEPPnzxd16tQRer1etG7dWuzcudP6XlxcnHj66adt7FetWiXuu+8+odfrRVRUlPj+++8ryzWnRcuYjR071mpbrVo10bNnT7Fv3z4HeO1YtmzZIgBI/yxj9fTTT4u4uDjpM9HR0UKv14vIyEixePHiCveLj//yweeANhx1/HM9DoZhGEYTrFXFMAzDaIIDB8MwDKMJDhwMwzCMJjhwMAzDMJrgwMEwDMNoggMHwzAMowkOHAzDMIwmOHAwDMMwmuDAwTAMw2iCAwfDMAyjCQ4cDMMwjCb+P7wQBHJtOcn5AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAECCAYAAADpdjDfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCOUlEQVR4nO2deXyT1dLHf+mSpG3aUqClFIGyCVhWKyKgFBBB2fQCghUReBGqoF4QQbn4giheBRRwARRfBWVRFtncQFRAWVRkF7jIUjbZZOvepk3O+wckJDlz2pxuCdz53svHdDI5z9mezPNk5pkxCCEEGIZhGMZLAnzdAYZhGObGgg0HwzAMowUbDoZhGEYLNhwMwzCMFmw4GIZhGC3YcDAMwzBasOFgGIZhtGDDwTAMw2jBhoNhGIbRgg3HTUq7du3Qrl07X3dDwmAw4OWXX/Z1N5SUZN7i4+MxcODAUu1PeTFw4EDEx8f7uhvMDQIbDj/CYDB49W/Dhg1l2o9FixZhxowZZXqMwjh27JhzrJMmTSJ1+vXrB4PBAIvFUs69u7FIT0/HxIkT0bRpU1gsFoSEhKBRo0Z44YUXcPr0aV93r9hcuXIFMTExMBgMWLZsma+7819HkK87wFxn/vz5bn9/+umnWLdunSRv2LBhkW199913xe7HokWL8Mcff2DEiBHFbqM0MJvN+Oyzz/DSSy+5ybOysrBq1SqYzWYf9ezG4OjRo+jYsSNOnDiBhx9+GEOHDoXRaMSePXvw0UcfYcWKFfjzzz993c1iMX78eGRnZ/u6G/+1sOHwIx577DG3v3/55ResW7dOknuD0WgsrW75jC5dumD58uXYvXs3mjZt6pSvWrUKVqsV999/P3788Ucf9tB/KSgoQM+ePXHu3Dls2LABd999t9v7r732GiZPnuyj3pWMP/74A7Nnz8b48eMxfvx4X3fnvxL+qeoGY+7cuejQoQNiYmJgMplw2223Yfbs2ZKe52/1GzZsgMFgwJIlS/Daa6/hlltugdlsxr333ovDhw+7fe7rr7/G8ePHnT8Xuf72nZeXhwkTJqBu3bowmUyoXr06xowZg7y8PLfj5+XlYeTIkYiOjkZ4eDh69OiBU6dOaY21VatWqFWrFhYtWuQmX7hwIe6//35UrFiR/NysWbOQkJAAk8mEuLg4DB8+HFeuXJH05syZgzp16iAkJAR33nknfv75Z7I9b8fsLVlZWRg1ahSqV68Ok8mE+vXr480334RnomqDwYCnn34aK1euRKNGjWAymZCQkIA1a9YUeYwvvvgCu3fvxrhx4ySjAQARERF47bXXCm3DbrdjxowZSEhIgNlsRpUqVZCSkoLLly+76a1atQpdu3ZFXFwcTCYT6tSpg1dffRU2m81Nr127dmjUqBH279+P9u3bIzQ0FNWqVcOUKVOKHI8r//znP/GPf/wD99xzj9bnmNKD7zhuMGbPno2EhAT06NEDQUFB+PLLLzFs2DDY7XYMHz68yM+/8cYbCAgIwPPPP4+0tDRMmTIF/fr1w6+//goAGDduHNLS0nDq1ClMnz4dAJx+BLvdjh49emDTpk0YOnQoGjZsiL1792L69On4888/sXLlSudxnnjiCSxYsACPPvooWrdujR9//BFdu3bVHm9ycjIWLFiAN954AwaDARcuXMB3332H+fPnk1+gL7/8MiZOnIiOHTviqaeewsGDBzF79mxs27YNmzdvRnBwMADgo48+QkpKClq3bo0RI0bg6NGj6NGjBypWrIjq1as729MZszcIIdCjRw+sX78egwcPRrNmzbB27VqMHj0af/31l3POHWzatAnLly/HsGHDEB4ejnfeeQe9evXCiRMnUKlSJeVxVq9eDQDo37+/Vv9cSUlJwbx58zBo0CA8++yzSE1NxXvvvYedO3e6zeW8efNgsVjw3HPPwWKx4Mcff8T48eORnp6OqVOnurV5+fJl3H///ejZsyf69OmDZcuW4YUXXkDjxo3xwAMPFNmnpUuXYsuWLThw4ACOHTtW7LExJUQwfsvw4cOF5xJlZ2dLep07dxa1a9d2kyUlJYmkpCTn3+vXrxcARMOGDUVeXp5T/vbbbwsAYu/evU5Z165dRc2aNaXjzJ8/XwQEBIiff/7ZTf7+++8LAGLz5s1CCCF27dolAIhhw4a56T366KMCgJgwYUKh405NTRUAxNSpU8Uff/whADiPOXPmTGGxWERWVpYYMGCACAsLc37u/Pnzwmg0ik6dOgmbzeaUv/feewKA+Pjjj4UQQlitVhETEyOaNWvmNhdz5swRANzmzdsxCyFEzZo1xYABAwod28qVKwUAMWnSJDd57969hcFgEIcPH3bKAAij0egm2717twAg3n333UKP07x5cxEZGVmojisDBgxwW/Off/5ZABALFy5001uzZo0kp/ZkSkqKCA0NFbm5uU5ZUlKSACA+/fRTpywvL0/ExsaKXr16FdnH7OxsUaNGDTF27FghxPU9vXTpUq/HyZQO/FPVDUZISIjzdVpaGi5cuICkpCQcPXoUaWlpRX5+0KBBbv4Px+3+0aNHi/zs0qVL0bBhQzRo0AAXLlxw/uvQoQMAYP369QCAb775BgDw7LPPun2+OM72hIQENGnSBJ999hmAq477Bx98EKGhoZLu999/D6vVihEjRiAg4PrWHjJkCCIiIvD1118DAH7//XecP38eTz75pNtcDBw4EJGRkcUas7d88803CAwMlOZm1KhREELg22+/dZN37NgRderUcf7dpEkTREREFLle6enpCA8P1+qbK0uXLkVkZCTuu+8+t3EnJibCYrG4jdt1T2ZkZODChQu45557kJ2djf/85z9u7VosFjefndFoxJ133unV/nvjjTeQn5+Pf/3rX8UeF1M68E9VNxibN2/GhAkTsHXrVimqJC0tTfri86RGjRpuf0dFRQGA9Ls1xaFDh3DgwAFER0eT758/fx4AcPz4cQQEBLh94QFA/fr1izwGxaOPPoq33noLI0eOxJYtW5RfHMePHyePYzQaUbt2bef7jv/Wq1fPTS84OBi1a9d2k3k7Zm85fvw44uLipC91R6Sco28OPNcLuLpmRa2XN8alMA4dOoS0tDTExMSQ77uOe9++fXjppZfw448/Ij093U3P82LmlltugcFgcJNFRUVhz549hfbn2LFjmDp1KmbOnMkh2H4AG44biCNHjuDee+9FgwYNMG3aNFSvXh1GoxHffPMNpk+fDrvdXmQbgYGBpFx4UUHYbrejcePGmDZtGvm+q2+gNElOTsbYsWMxZMgQVKpUCZ06dSqT41D4aswOirteDRo0wM6dO3Hy5Mli9dFutyMmJgYLFy4k33cY0itXriApKQkRERF45ZVXUKdOHZjNZuzYsQMvvPCCtCeLO57x48ejWrVqaNeundO3cfbsWQDA33//jWPHjqFGjRpud5pM2cGG4wbiyy+/RF5eHlavXu12Jar7c0lReF4ROqhTpw52796Ne++9V6kDADVr1oTdbseRI0fcrv4PHjxYrP7UqFEDbdq0wYYNG/DUU08hKIjetjVr1nQex/XOwWq1IjU1FR07dnTTO3TokPMnJwDIz89HamqqW+ivt2P2lpo1a+L7779HRkaG212H4ycdR99KSvfu3fHZZ59hwYIFGDt2rPbn69Spg++//x5t2rRx+ynKkw0bNuDixYtYvnw52rZt65SnpqYWq98qTpw4gcOHD0t3hAAwbNgwAFfvmitUqFCqx2Vo2DzfQDiu1lyvztLS0jB37txSPU5YWBjpL+nTpw/++usvfPjhh9J7OTk5yMrKAgBndMw777zjplOSp9EnTZqECRMm4JlnnlHqdOzYEUajEe+8847bHH300UdIS0tzRnXdcccdiI6Oxvvvvw+r1erUmzdvnhS26+2YvaVLly6w2Wx477333OTTp0+HwWDwKrLIG3r37o3GjRvjtddew9atW6X3MzIyMG7cOOXn+/TpA5vNhldffVV6r6CgwDlP1J60Wq2YNWtWCUfgzqRJk7BixQq3f46+jRkzBitWrEBYWFipHpNRw3ccNxCdOnWC0WhE9+7dkZKSgszMTHz44YeIiYnBmTNnSu04iYmJWLx4MZ577jm0aNECFosF3bt3R//+/bFkyRI8+eSTWL9+Pdq0aQObzYb//Oc/WLJkCdauXYs77rgDzZo1Q3JyMmbNmoW0tDS0bt0aP/zwg9vzIrokJSUhKSmpUJ3o6GiMHTsWEydOxP33348ePXrg4MGDmDVrFlq0aOF0ygYHB2PSpElISUlBhw4d0LdvX6SmpmLu3LnSFa23Y/aW7t27o3379hg3bhyOHTuGpk2b4rvvvsOqVaswYsQIyS9UXIKDg7F8+XJ07NgRbdu2RZ8+fdCmTRsEBwdj3759WLRoEaKiopTPciQlJSElJQWvv/46du3ahU6dOiE4OBiHDh3C0qVL8fbbb6N3795o3bo1oqKiMGDAADz77LMwGAyYP3++Vz996kA9i+K4u2jRogUeeuihUj0eUwS+C+hiioIKx129erVo0qSJMJvNIj4+XkyePFl8/PHHAoBITU116qnCcT1DFx2hr3PnznXKMjMzxaOPPioqVKggALiFaVqtVjF58mSRkJAgTCaTiIqKEomJiWLixIkiLS3NqZeTkyOeffZZUalSJREWFia6d+8uTp48qR2OWxie4bgO3nvvPdGgQQMRHBwsqlSpIp566ilx+fJlSW/WrFmiVq1awmQyiTvuuEP89NNP0rzpjNmbcFwhhMjIyBAjR44UcXFxIjg4WNSrV09MnTpV2O12Nz0AYvjw4dLnvT2OEEJcvnxZjB8/XjRu3FiEhoYKs9ksGjVqJMaOHSvOnDnj1PMMx3UwZ84ckZiYKEJCQkR4eLho3LixGDNmjDh9+rRTZ/PmzeKuu+4SISEhIi4uTowZM0asXbtWABDr16936iUlJYmEhATpGKpjFwWH4/oOgxClfGnAMAzD3NSwj4NhGIbRgg0HwzAMowUbDoZhGEYLNhwMwzCMFj41HC+//HKxH6qaN28eDAZDmWbIdFSimzdvXpkdQxd/LQnrimcJVcda/f777+Vy/Bthjm40qPMtPj4e3bp1K5fjO8oClHX1y/LmRh1XsQzHvn378Nhjj6FatWrOmgf9+vXDvn37Srt/TAmx2WyIi4uDwWCQEug5mDVrFmkc9+/fj5dfftkv01f7c9/Kg1mzZsFgMKBly5bk+4XNj2q9/QF/7ZsQAvPnz0fbtm1RoUIFhIaGonHjxnjllVe0HwK9KdCN3/3iiy+E0WgUsbGxYty4ceL//u//xEsvvSSqVq0qjEajWL58uddt5efni5ycHN0uCCGEKCgoEDk5OVLse2lCPePga6jnDArju+++EwBEfHy86NevH6mTkJBAtrl06VIpFt8bcnNzhdVqdf49d+5cAUBs27ZNq53CKKxveXl5bunSb0Zat24t4uPjBQBx6NAh6f3C5ke13oVBnW81a9YUXbt21e16oaj6ZrPZRE5Ojlu6/PKioKBA9OnTRwAQ99xzj5g+fbr44IMPxGOPPSYCAgJEo0aNxNmzZ4vVtuNZFN1zzNdo3XEcOXIE/fv3R+3atbFnzx5MmjQJgwcPxquvvoo9e/agdu3a6N+/f5FZOR0WOigoqNh1owMDA2E2m0slf9DNzIIFC3D77bdj5MiRWLlyZZldHQkhkJOTAwAwmUzOIj++wGg03hSlc1WkpqZiy5YtmDZtGqKjo5WJCEsDx37x9fkWEBAAs9nskySGU6ZMwZIlS/D888/jp59+wogRIzB06FDMnz8fK1euxP79+91+mv2vQMfKpKSkCADip59+It/fuHGjACBSUlKcsgkTJggAYt++fSI5OVlUqFBBNGvWzO09V7Kzs8UzzzwjKlWqJCwWi+jevbs4deqU9MSx4yrW9WlpxxXQzz//LFq0aCFMJpOoVauW+OSTT9yOcfHiRTFq1CjRqFEjERYWJsLDw8X9998vdu3a5abn7R2Ht+05ri4WL14sJk2aJKpVqyZMJpPo0KEDedX4wQcfiNq1awuz2SxatGihfLJZRXZ2tggPDxdTpkwRZ86cEQEBAVJhnpo1awoAbv+SkpKc8+v5z3Fl5JjrNWvWiMTERGEymcT06dOd77k+2exoa+PGjWLo0KGiYsWKIjw8XPTv319cunTJrT+e6+zaT0ebRfWNmqNz586J//mf/xExMTHCZDKJJk2aiHnz5rnpuD6x7ph7o9Eo7rjjDvHbb795NeflwauvviqioqJEXl6eeOqpp0S9evXc3i9sflTr7fq5DRs2iKeeekpER0eLChUquL1HnW9r164VTZs2FSaTSTRs2FB88cUXbv2hznOqzcL6proyX7Jkibj99tuF2WwWlSpVEv369ROnTp1y03FkGDh16pR48MEHRVhYmKhcubIYNWqUKCgoKHSus7OzRVRUlLj11ltFfn4+qTNo0CABQGzdulWam6K+izzHNX78eBEUFCTOnz8vHWfIkCEiMjKy2L/SlCZa5vvLL79EfHy8stZv27ZtER8f7yyY48rDDz+M7Oxs/Pvf/8aQIUOUxxg4cCDeffdddOnSBZMnT0ZISIhWydHDhw+jd+/euO+++/DWW28hKioKAwcOdPO/HD16FCtXrkS3bt0wbdo0jB49Gnv37kVSUhJOnz7t9bGK294bb7yBFStW4Pnnn8fYsWPxyy+/oF+/fm46jtKmsbGxmDJlCtq0aYMePXrg5MmTXvdr9erVyMzMxCOPPILY2Fi0a9dOujqdMWMGbrnlFjRo0ADz58/H/PnzMW7cOLRt29ZZbOhf//qX8z1H3Qjgahba5ORk3HfffXj77bfRrFmzQvvz9NNP48CBA3j55Zfx+OOPY+HChXjooYe08xp50zdXcnJy0K5dO8yfPx/9+vXD1KlTERkZiYEDB+Ltt9+W9BctWoSpU6ciJSUFkyZNwrFjx9CzZ0/k5+dr9bOsWLhwIXr27Amj0Yjk5GQcOnQI27Ztc75f2Pyo1tuVYcOGYf/+/Rg/fjxefPHFQvty6NAh9O3bFw888ABef/11BAUF4eGHH8a6deu0x+VN31yZN28e+vTpg8DAQLz++usYMmQIli9fjrvvvltKVmmz2dC5c2dUqlQJb775JpKSkvDWW29hzpw5hfZp06ZNuHz5Mh599FFlVubHH38cAPDVV1+5yb35LvKkf//+KCgowOLFi93kVqsVy5YtQ69evYr9K02p4q2FuXLligAgHnzwwUL1evToIQCI9PR0IcT1q43k5GRJ1/NKZPv27QKAGDFihJvewIEDvb7jgMcd0fnz54XJZBKjRo1yynJzc6XfSlNTU4XJZBKvvPKKmwxe3HF425635Vt1SpsWRrdu3USbNm3cPk9dzRTHx+GY6zVr1pDvUXcciYmJbr6PKVOmCABi1apVTpnnOqvaLKxvnnccM2bMEADEggULnDKr1SpatWolLBaLc6861rtSpUpud0KrVq0SAMSXX34pHau8+f333wUAsW7dOiGEEHa7Xdxyyy3in//8p5tecXwcjnW6++67pSvxws431zuMtLQ0UbVqVdG8eXOnzNs7jsL65nll7jhHGjVq5HYF/tVXXwkAYvz48U7ZgAEDBAC3c1GIq+V1ExMTpWO54tg7K1asUOpcunRJABA9e/Z0yrz9LqLupFq1aiVatmzpdozly5f7lS/E6zuOjIwMACiyHKXjfc9KYE8++WSRx1izZg2A6/n1HRSWStuT2267ze2OKDo6GvXr13fzu5hMJudvpTabDRcvXoTFYkH9+vWxY8cOr49V3PaKKt+qU9pUxcWLF7F27VokJyc7Zb169YLBYMCSJUu0x0hRq1YtdO7c2Wv9oUOHuvk+HLU1HKVmy4pvvvkGsbGxbnMRHByMZ599FpmZmdi4caObft++fZ2VEQG98rplzcKFC1GlShW0b98ewNXaKX379sXnn38Om81WKscYMmSIsuCSJ3FxcfjHP/7h/DsiIgKPP/44du7c6Sy0VBY4zpFhw4a5XYF37doVDRo0IH/18PwOuueee4pcU2++91Tfed58F1E8/vjj+PXXX3HkyBGnbOHChahevXqRGaLLC68Nh2NyHBOpQjXRtWrVKvIYjpKjnrp169b1tpteldq02+2YPn066tWrB5PJhMqVKyM6Ohp79uzxqm63J7rtFVW+Vae0qYrFixcjPz8fzZs3x+HDh3H48GFcunQJLVu2LDVnqjdr6orneCwWC6pWrVrmIbXHjx9HvXr1JMeqt+VadcrrliU2mw2ff/452rdvj9TUVOe6tmzZEufOncMPP/xQKsfRWde6detKDvNbb70VAMp0XVVlgoGr1Q8919RsNkvlf70pwevN957qO6+4ZX/79u0Lk8nkPE/T0tLw1VdfoV+/fn4TDOS14YiMjETVqlWLrA28Z88eVKtWDREREW7ywqqIlSbelKb897//jeeeew5t27bFggULsHbtWqxbtw4JCQlelV/1RLe9kpRv9RbHpmvTpg3q1avn/Ldp0yZs3bq1VK6ey2tNAZTa1bQ3lMf6FIcff/wRZ86cweeff+62pn369AGAUrsgKO11VX3Z+cOaFoXj4qKw7z3He7fddptXxyxqH0VFRaFbt27O9Vy2bBny8vKc9WT8Aa1CTt26dcOHH36ITZs2kYVVfv75Zxw7dgwpKSnF6oyj5Ghqaqrb1WlJCgBRLFu2DO3bt8dHH33kJr9y5QoqV67s8/Z0SptSOMI1n376aenW1m63o3///li0aBFeeuklAOoTu7Svbg4dOuT8iQUAMjMzcebMGXTp0sUpi4qKkhybVqtVKlSl07eaNWtiz549sNvtbncdpV2utaxZuHAhYmJiMHPmTOm95cuXY8WKFXj//fcREhJS6PyU5roePnwYQgi3Nv/8808AV58sB67fsV25csWttKvnXYFO31zLBLueIw5Zaa3p3XffjQoVKmDRokUYN24caQw+/fRTACjVp+gff/xxPPjgg9i2bRsWLlyI5s2bIyEhodTaLylaUVWjR49GSEgIUlJScPHiRbf3Ll26hCeffBKhoaEYPXp0sTrj+L3cs+zku+++W6z2VAQGBkpWf+nSpfjrr7/8oj2d0qYUjiuVMWPGoHfv3m7/+vTpg6SkJLer07CwMLJdRylOb47pDXPmzHGLTJo9ezYKCgrcyqXWqVMHP/30k/Q5z6tTnb516dIFZ8+edYtUKSgowLvvvguLxeI3vxsXRk5ODpYvX45u3bpJa9q7d288/fTTyMjIwOrVqwEUPj+q9S4Op0+fxooVK5x/p6en49NPP0WzZs0QGxsLAM6qhq7rmpWVhU8++aTYfbvjjjsQExOD999/H3l5eU75t99+iwMHDmhFYhZGaGgonn/+eRw8eJCM8Pr6668xb948dO7cGXfddVepHBO4Wn65cuXKmDx5MjZu3OhXdxuA5h1HvXr18Mknn6Bfv35o3LgxBg8ejFq1auHYsWP46KOPcOHCBXz22WfFLn+ZmJiIXr16YcaMGbh48SLuuusubNy40XkFU1pXSt26dcMrr7yCQYMGoXXr1ti7dy8WLlzotf+grNvTKW1KsXDhQjRr1gzVq1cn3+/RoweeeeYZ7NixA7fffjsSExMxe/ZsTJo0CXXr1kVMTAw6dOiAZs2aITAwEJMnT0ZaWhpMJhM6dOiAmJiYYo3LarXi3nvvRZ8+fZwlXe+++2706NHDqfPEE0/gySefRK9evXDfffdh9+7dWLt2rXTnptO3oUOH4oMPPsDAgQOxfft2xMfHY9myZdi8eTNmzJhRZMCHP7B69WpkZGS4zZUrd911l/NhwL59+xY6P6r1Lg633norBg8ejG3btqFKlSr4+OOPce7cOcydO9ep06lTJ9SoUQODBw/G6NGjERgYiI8//hjR0dE4ceKEW3ve9i04OBiTJ0/GoEGDkJSUhOTkZJw7dw5vv/024uPjMXLkyGKNh+LFF1/Ezp07MXnyZGzduhW9evVCSEgINm3ahAULFqBhw4akESwJwcHBeOSRR/Dee+8hMDDQLbDDLyhOKNaePXtEcnKyqFq1qggODhaxsbEiOTnZGU7qiiMU7++//1a+50pWVpYYPny4qFixorBYLOKhhx4SBw8eFADEG2+84dQr7IEkTzzDM3Nzc8WoUaNE1apVRUhIiGjTpo3YunWrpKcTjutNezrlW4XwvrSpK46Q5v/93/9V6hw7dkwAECNHjhRCCHH27FnRtWtXER4eLoX7fvjhh6J27doiMDCQfACQoqgHAKOiooTFYhH9+vUTFy9edPuszWYTL7zwgqhcubIIDQ0VnTt3FocPHybLpar6pnoAcNCgQaJy5crCaDSKxo0bS/NdWMlaeFHytizp3r27MJvNIisrS6kzcOBAERwcLC5cuCCEUM+Par0LSw1T1AOATZo0ESaTSTRo0IAs5bp9+3bRsmVLYTQaRY0aNcS0adPINlV9Uz0AuHjxYtG8eXNhMplExYoVC30A0BNVmDCFzWYTc+fOFW3atBERERHCbDaLhIQEMXHiRJGZmSnpe/tdVFjKkd9++00AEJ06dfKqj+XJDVE6dteuXWjevDkWLFggPSjHMAxzM7J79240a9YMn376Kfr37+/r7rjhd/U4HPmOXJkxYwYCAgLQtm1bH/SIYRim/Pnwww9hsVjQs2dPX3dFQsvHUR5MmTIF27dvR/v27REUFIRvv/0W3377LYYOHar8zZ5hGOZm4csvv8T+/fsxZ84cPP30085AB3/C736qWrduHSZOnIj9+/cjMzMTNWrUQP/+/TFu3DhlrhiGYZibhfj4eJw7dw6dO3fG/Pnz/TJ4w+8MB8MwDOPf+J2Pg2EYhvFv2HAwDMMwWvjEaWC323H69GmEh4f7TdIu5uZECIGMjAzExcX5pHocBe9/pjwpi3PAJ4bj9OnTHCHFlCsnT57ELbfc4utuAOD9z/iG0jwHfGI4HFECw58ZAZPJ5PaegOyrN8D7qzLq8wBAhQCoLvbsinCBoADv+5GXL2fFDQr0/vO6faPUVW3k2+RGVGOj2ghQNEyNGQCCiXHbFDEZgRpzbC2Qj2cMcr+iysvLw6x33/aryBRHXw4ePYHwcPcs0lSsimq+qRlUxbrYiI2jmusCxSYzBXl/tZqRUyDJzEbvM9SqtoGqb5S6anw5VjkrrymY7hvVRFAgPQ/p2XSFyBBi3Pk2+lzx3L+FkZkrz7HFLH+lZ2Sko0GdmqV6DvjEcDhuz00m001rOBDgv4YjoIwMBzVmoOwMhyGwaMPh1PWjn4QcfQkPj5DKD9wshgPB8pca9QWqoiwNRxBhOMylYDhEEG04QsvIcBiM8hyHE4bDqV+K54B//OjLMAzD3DCw4WAYhmG08Omj2AaD/FNIQQl/RqE+f7UN722k6m6Rut1X/YxgCpYbySd+kweAYI3bU9UtvF31G5bX7Xo/x9Q8AECgxk9xgaqqcETbwYqfBkxB8k8Anp8vRkHHciPAIK9nNuEnUv2MQv0Uk5VHV9Wj2lCtlpnYuwCQly+3rfrZJjI0WJJlEb/JA0CoieibYn8EBtB7T3Xee4vqZy1KTvnWAPqcV6Ha03lE22Em+ms6IkSeY6pvlE+zpPAdB8MwDKMFGw6GYRhGCzYcDMMwjBZsOBiGYRgtbog85TrhxyoneC7h2AtQxXmrnPGELNtKO/yoeGyDRty8asgqJx71XESwYi4UvlYS6rEAlSNd9WwGJVW1EUyMT5W/mXqQy9PRatNw2PsDOs8jUIQoFvcK8XCa6rki1fMa1JpdzMgjdakH0VTBE5RDWLk/FG1Qz0WEKpzKoUZSTEIFnai+H6wKJ7SdOjcVzvEwonSEKhjlUqZVklUOlwdn1XDaewvfcTAMwzBasOFgGIZhtGDDwTAMw2jBhoNhGIbRgg0HwzAMo4VPo6psdiFFDFDRFKqMmFQmUFUmXSqKQRWtoMpcSUW3qKK4qH4UKNql0mKokgSosp/qpDihxmFXHDGbiFyyKKJVVLE/VICMahxUhA2VWgTQy7bqj+TbhJQOgkrhQUUEAnTEjyoaiZorVeoMKloNoFPjqNORy/1QtUulC1Htf1VqnfAQeU+qUpxQEY82RW6ai0TkUmykmdTViYRUffek5cjRb5FEahEAqGjRCA8rZfiOg2EYhtGCDQfDMAyjBRsOhmEYRgs2HAzDMIwWPnWO24WQHsen6jSoUo5QT/irsjNQ6UVUTnCV0zWbqHWgclxSKRdUZSGpfPlqR5v36SCU6VAMchuqtBZUigeVk1PZRhAhVwyQqhuhrGVOtGstcJ9LytnuLxTY7FLABBXEoUxxoVEOlnJsU4EPAFBJ4XT9O11OL0KlMgGA2EiTJFOVNaX6odr/qnOImrcLinQoMMj9UKVZocq+Ug7zwvoWRtYbobtWgahjkk7Ub1e1m0F8R1G1yUsK33EwDMMwWrDhYBiGYbRgw8EwDMNowYaDYRiG0YINB8MwDKOFT6OqAgMMUhQI9eS/KlKKSvdRoEgdoMxhQKCKGqKiJipVCCd1G7e7X5KF5aWRujt3bJdkFy5eJnVVwyAjUxShG1SKB9WYqXQfIUZFZIuRjsapWbOmJDty5Iiib9Q4SFVyr3iq+nMZJ2NQgLSnqAg7VfEiKt1HniLKj5pD1dyoijNRUVFUFBAArPjjL0n2j0bVSN0IIqVGrmI/qvb/BSLSSVWojYrSo4oiqfpW0UKPWZXihzrfVNFvVBSgSpdql9Isi3OA7zgYhmEYLdhwMAzDMFqw4WAYhmG0YMPBMAzDaOFT53i+TSDAw8FDPfqvSg1COX1UjiQKKg0DoHZyhVtCJdkjA4eQunGVIiTZnwf/Q+pevEQ7wilUo6PSD3imcykMVR2HIMIxazLL6SQAIGVoCikPNMr1Cz6d+3+k7oULF+W+KZzDlHPcMz2HTWM/lDc5VhuCPJzAlANalRqEWjNV2guKUGLPAHRqHQAwE+k39p1KJ3UfIhzh1F4C1HVBKFT7NDpcDsxQ1bygUH1v6NR8UY0vjUjLUimcPodAzEVQsPfOcSplj1VRM6Uk8B0HwzAMowUbDoZhGEYLNhwMwzCMFmw4GIZhGC3YcDAMwzBa+DSqCgJSDgEqEIhKLQLQURMGRdwRFWGksppRkRZS3v2hXpIs0hJG6n7/01ZJ9uO6NaQuFbmhijRRRXlQqQqEIqqKCjZRFQuiok2a3tGK7ptFjiQDgK+++kqSXbp0yeu+qQKjqAAbm8eYPf/2J4SQ9zvVXSpSBqCj/9RpZohUFgrdiBD6a4FKRUJF8wHAsb+zJJkqPUlFonBURh5dfEgVjZSeI0cu2RVRVQWEXDXHVLqXo+flsQHq8anWxNu+qVLOUM1aiXVWRaWWBL7jYBiGYbRgw8EwDMNowYaDYRiG0YINB8MwDKMFGw6GYRhGC78r5ERFCuhEBagiGAKIaCtVLqeqVauScmPFWEmWeiWb1N37+xZJporcoLqhCsSgoi4AOioqUBGNRpGrKAAUHR0tyR64N4nU3bRtNyk/dHC/JFMFO1EFpVQ5lcj8Qh5bRZXbyB8IJgo5UcWHshQRRtTIVBFowYHe54BTRVv9flLOqfZXZi6pO6iFXLyLKlIF0JF0qtxRqn1KnVs6ebuuZNGFnISQ261RSc5ZBwCHzmaS8vpxcrE3VR4tqqBUdAQdSUaOT6MQVEngOw6GYRhGCzYcDMMwjBZsOBiGYRgt2HAwDMMwWvidc5xymqrqsVBOPFWqDsoZVakCnSKjTr0GpHzHyTRJJo7+SupmZclOc5VDjBqzStcURDu6hGfuFtCFXgDa8V49Tnb8A0Dvvv0kGZXWAAD+PnWUlOfmyqkqVIEJKke4t3iOzY994zAFBUiFy6g0Gaq9QDm8M3NpRzp1XkSFyak+AOAyUXgIAOZsOSHJPn60OalLdTlP4dimdFXncUQIndaD2k9UoAVAO4tV7Z5Pl/euOZi+3r61Kp2qiFo/KgUMQDvCVamDDAa5H9TY2DnOMAzD+Bw2HAzDMIwWbDgYhmEYLdhwMAzDMFqw4WAYhmG08GlUlbj2PzeZRpEhKmJGKLKTUBEobdt3JHWbNG1CysOOyFElX/3nAKlLpUZQpb8gM4MoxpFXQEeKUKiiKQKJaIxqt9QgdSMi5HQJe3bTqUW2/LaDlFvM3m8zav0L7PRkBBjkCCzPABZVRJ4/YBdCigaiInA8I68cUOsrBL3mYSZ5DS4S6S0Aqbaak5c63irJQhWFxa4QkVmq8ziIKFSURwd2kQWbALrPqpQjRuKEU6UyodqgvksA4FyaHIEFALEVzISUboOKqlP1LYjoB5WSSJWmqCTwHQfDMAyjBRsOhmEYRgs2HAzDMIwWbDgYhmEYLXzqHDdc+5+bjPCfqZyjnp8F1A5hOq2HwulKSoHzl69Islwr7azLI1ImBBNOQAAwBcgORqUjXSGnHIzGYDqNQt3Gd0qy48FxpC41nytWrCR1w0Po7UQ5fFXjsBELpXJGUqkYPGWqdA3+gMFgkOrHUHtE5RzVcQhT/lFVPQ6lwztPdqZnK9J6ZBBObFW7xiB5nwYq1pxyCAN0GhDVHttx7IokGzL3N1J307h7JZnK2RwXRTnB6fQpqnFQzvFQIrBBpeutrKTwHQfDMAyjBRsOhmEYRgs2HAzDMIwWbDgYhmEYLdhwMAzDMFr4NqrKIEdRURE4QWRODrp4kSqSgowrUOgGKyJTdu07I8lq39ON1I02yUc8+Z+9pK5OSg5Vcaa6dWpJMnMFujhTaHSMJDP9nUPq7twt91kVVZKvKCJEpbtQF7Uq2Zp6Ril5/u1PUIXMqGJH5mA6GokqXqSKKjQQk6WaG1UUT8/HXpFkKS8PJ3Xb1IyUZM2qViB1KxKRZJGKCD1VFBfF78cuk/LDVzIkWeP60aRuOrGnVXN8VpFypApRnImKugToCChlpCghCyB0KVlJ4TsOhmEYRgs2HAzDMIwWbDgYhmEYLdhwMAzDMFr41DlutwvJGaRyhFJQupTDUKW763c6zYC5Eu1UvqVZY0l2avc+Urdii6aSLK8KnZKgV1I9SXYuO5fUDQuml+yrX+VaIXkHD5O6horZkqxa1RBS95dtGySZIlsCAog6HwAdg0ClFgEUKRMUGROo9Bye6xzox87x/AI78j2cpFR6FVXCCMppqgo6oFJcqBzQ6w6eI+WtBj0qyT549QNS99Sw/pLsyY0bSd1vxj8gyfb8nUbqxoTKjmYAGPrOz5IsfTt9vMB6d0iyR3rLMgCIjZSPR9UaAYAQIu0JQDunVele8ongF1UwCpXCxUisMyUrKXzHwTAMw2jBhoNhGIbRgg0HwzAMowUbDoZhGEYLNhwMwzCMFj6NqhKQI0Z0no7PIdIPhCiKxWTnybrHTp4idTOWfkrKK0dXkWRVKtMFkJpVi5BkibF0RMiRfdslWaYifYcqSCjo+B+SLL9qG1LXnitHVVWxyUV6AGDv+QuSTJUCIy+fjhSh1okqPAWA3AAFiggUExFh5hlVR6Wl8Reo/U+tr+qUuJQlR/dUshhJ3b/T5XQYqiJXXW6jowrb15XTcqxPklPdAEBIoLxHxt93K6lbL9YiyWIi6QhE1bY5MrOXJKs6QN7nAFBwWd7Tw+6sQepSEVQVQukCaek59Dl7MVM+t6jCUyqo8wcAIoioOCqqThVpWhL4joNhGIbRgg0HwzAMowUbDoZhGEYLNhwMwzCMFmw4GIZhGC18W8gJ6ogRV3KJ4jYAEERE4KgCCKhaUKrcShmZdDRGds4xWXiCkAE4unOLJFPlXKJ6odRVmPpKFStKMlMIHZliDJdl2zavJXWp3Emq9chVRFVROXVUOcnIQkaKSDkKu73wv/0Jb/d/miI3kpkoOKbOVSUfKZiIfALoCEQAMBGRQJ0byJGGKlQ5l6jiZKrIJSo/GUDn4oqIkiMbAeCeB5pIstpVwkhdap+qclWp1qlyuBxNSZ1XAJCRI0dgVQij54KCmktV8beSwHccDMMwjBZsOBiGYRgt2HAwDMMwWrDhYBiGYbTwqXPcW4IUHmGdGj1UQZ/cAtpzqnLAFeTLTiZV+g2qb6oUD5TPUJUmIFBh62s1biHJ/rLTfbOn7pBkaRmZpC5VWIYqIATQwQoqOdUuQDtgVcWYqCnyVPXjOk5eo9pjVIEg1XCpYj5pObQzlwpmAOigiAphdIoTaiuoAj4oh74yzUwQ/ZX1059/S7JQCx0c8u8uDSRZriKtRzYhNxJBCYB6nUyEPtUuQKcRURViovY/tScoWUnhOw6GYRhGCzYcDMMwjBZsOBiGYRgt2HAwDMMwWrDhYBiGYbTwbVQVkXOBjhTwvkmbIhqJiqCyK8I8rIroDyptgyr9BhXJoDqeDg1vkyNCACC2XkNJdurgOVI30C5H06iKxVgL5D6HmbxPAQLQ0TRU9BRAz2egwftoNM81UkWA+QMGgxz15c2YCsOqiEaiIqhUkW2ZipQjVPGhK1l0AbBgIpIoXxHFaNAIfVNFgu35O0OShSkivqpWkKOtjp7PInWziLmIjqALsqmgUq1Q0VMAnc5ElZ6EapcqZKeKAisJfMfBMAzDaMGGg2EYhtGCDQfDMAyjBRsOhmEYRgufOsfzbQIBHg46I+EINCgSKagc0xRUGpECha6qpkE+4ShWOV+plCGq2hAC3qcyubVePVpe0SL3rdIJUnfp+lOSjBrb1X7I1xYqZ62qFgo1n6qUC1TbOqkqPOcyX+Es9gdyrDYEecyDxUSckgrnsaouBAXlNDUo6qdYFU5sqk4H5QQHgAK7rKuqC0GdK1EKx7YqbU/XenJdkIGJNUhdqm6GqgYJVRckRBHYoSp7Qc3nxUw6qIA631R1TKh2qfnJzlN90xUfvuNgGIZhtGDDwTAMw2jBhoNhGIbRgg0HwzAMowUbDoZhGEYLn0ZVBUC2XCUtvKNK6kE9tp9r1Ys2oCJIVBEoVLSVqjgTle4jUJFnZX9uOCkPvZwuybZu3ULqUt0IUaQRoYow5SmicXRSY1DRI6q+FSjC0ag19fy8KiLPHwg0GKQiVdT+V42Akqv2WAgRrXUly/uoLAAIM8ttZObS5xCV5kJVnOkSEWFkUkQVDlu6m5Q/dmc1SdYpUo60AugovUrhdBQX1Y/0HHrMqj1NXZ9HKlKOUH1TRY+GEWtKRRrqpHTxFr7jYBiGYbRgw8EwDMNowYaDYRiG0YINB8MwDKOFT53jwUEBksOZcu6oUoBQNS9U3nHKPWQ20nYzQOFMopzYqlz31gJZV+WkshBOx+a3J5K6XRJrkfJNh85IslN/nSZ1qW4YFTn/qXQoqjQrquweAYSfU+XEpdoOMHjvSPeMKdCp5VLehJqDJIczFWyhCsCgghGEoNeGkkaFyek0APX6XiKc6dTeBYAMom6Gqt1Yoj5GriIlzZs9Ekj5x9vlNDpJtaNJXWr/U45mgE7hoTznFTlHQon9r/pOo9oOCqQDBag2qNRKlKyk+PFpxTAMw/gjbDgYhmEYLdhwMAzDMFqw4WAYhmG0YMPBMAzDaOHTqCqbXUiRAXRUjSKKh4h4UFnCPCIyRVUsSVX8J5yIIFGlOKFSdagiiaiUAkcFnS5h26krpPzs8cOSzKoozhQWYpJkURFyISgAOH3+oiRTjdkYRK9TEBHaREVrAZBScADqaDSqDc+9oto7/kBevg15HmtPRdUEUmFpoPcpNX8AkE5EOamKJWUpCv/EEdFPqr1g0kg5QhWkeuT9X0jd9olyahEAqF1R3tNZiuJMVCGmCEWE2fn0PEmmKiZlUaTtodKWqL4LqDQ6qmg0Skrpqj5fEviOg2EYhtGCDQfDMAyjBRsOhmEYRgs2HAzDMIwWbDgYhmEYLXwaVWUXQoouMFD5h1SRMWSuIkVkj0a+FlXEg12RB8jb4+UpopwiQ+WIjv+5h85JFRNTiZT/eCZEkoXd3ozUrdagiSSzZ8mFoADgzJcrJZk6rxUNlS/KoLhmoeZeNevUWts9ovQ8//YnbHaBAs+oQqK/OlExVLExAAgxypE9qplR5VGi5Ko2qKJGGYqoqpqVQyXZ5nEdSF3VuXns72xJRkVBAsCm1AuSrGF0BKkbRkRKharyWpFSOleUQZF/TTX3FNR3TAGRL4uSlRS+42AYhmG0YMPBMAzDaMGGg2EYhtGCDQfDMAyjhU+d4wEGg+T4thP+M0XGBZB1nBR+ICrthQpVoZasXDmFQXgIPYWUU5ZKwwAA+YTzauNROdUHAPSKjiHliUThp5W7Ykldk1Vue8uvP5O6oUZ5fFSKFEAdxEDJVetEOYJVDkNB7RX/zTAiERQYIKWYoPZCkCIYgUpro5orKu2FaqpUxZnOpcnpN+Ki5DQkAO2QjQih03pkE0Wbpmw4QuqObV+XlFNjeWAGvad/eD5JklHBAwB9Hl/OspK6ynUi5Kp1ohzp1J5Q9a0s0otQ8B0HwzAMowUbDoZhGEYLNhwMwzCMFmw4GIZhGC3YcDAMwzBa+DSqymC4+s8VKgInnyjCBCgiCJTZSYou+uMg10ofj2pblQKBKj6kE/CQc/BXUv6LmW4k48IZSXZpzw5Sd01OjiSzWuniPVQKCxORTgIoJPqJEKvmjYqUUhXOofomtevHUVYBBnlPBBFjysql14aK/lNm56GKnik2ZFqWXFhJ1bZqzcmCbIrjUX2b9EADUnfTITldCADUi5ELkW0e257UpfqsmuMwIsKMShEE0MXiADr6STVvVkKuSpsTSqRDodoti1pmfMfBMAzDaMGGg2EYhtGCDQfDMAyjBRsOhmEYRgu/SzliJRxMqloapCNI4/gqXZXzN4TwMmXl0ek3qNQBnuklHFCOxENHj5G6h47Q8gIiV4tOqgpVGQDPehEAEKj2wJJiap00MsDg0IVMUl6nkuwQ9XQYK2u5+AFBgQHSGmXkyI5pVToMyhkbqFEzRjU3KucvtZ/Op8tpSAAghDiHVHUsKCd/OjEPANC4WiQpzyPS4GQoHN5U6h9qnwN0eh1VPRpVQQ5qnajvBwCglu/rg2dJ3fvryymFqPohZZGGhO84GIZhGC3YcDAMwzBasOFgGIZhtGDDwTAMw2jBhoNhGIbRwqdRVXa7kB6npyKPqHQhAJ3Wg4oYUqGKughVRLFQvVAVZ6L6TEU+qVBZ9Fwb3QYV6aFKVZBHyFVRHlQElSpdgioyxayIUqOgoq3qR4eTutT6e/ZN1Vd/IL/ALqXTCSMij1TpWahoGTNRsAmg03qcuZJL6lYON5Fyaj+FK4o+UcdTFQCjUEXupeXS0VbUvFHFpADAWiCf96pznvo+oiI/AXXKEVWUGgUV0flgQhypS6Vwofqm6m9J4DsOhmEYRgs2HAzDMIwWbDgYhmEYLdhwMAzDMFr4uB6HQXJwUs5MVcoRyg+el087goKDZGWVY0/lUNXJXkE5LlW+ccqRTtWauNoJ74+nUqaGpwoq0Mnvr+OYVc0xmSZFcTyqH56H8l/X+NU181w3ypFpVjhugwhxWrbKeSwrV61gJnVVzlQqGEEFlUZE5aymnP8hRH+v9sH746mggjhUe5dKZaKqK6JyglNBBao5ptZaNWaqG9QMl8U5wHccDMMwjBZsOBiGYRgt2HAwDMMwWrDhYBiGYbTwiXPc4SzNy5Nz+VNOU5vCOU6hco7bbXIbqnoEKsct5YBWOfyoJ6B1nON2Rc7/fMWT4zo596nh2TSc4ypU86njHLdpZA6gjufp+HTsMaoPvsLRl4yMdOk98slfhXOcIkPhHLdp1GlQOW4pB3SuKhiFOGd1nOP5ijHnWOmnz0vqHLdqOMdVQQKq+aSc454ZA5z9IMat2rvU8ain1x37rDTPAZ8YjoyMDADAzHdn+OLwzH8hGRkZiIykiwCVN479f2vtGj7uCfPfRGmeAwbhg0sxu92O06dPIzw8XCvEj2F0EUIgIyMDcXFxCNApO1iG8P5nypOyOAd8YjgYhmGYGxf/uARjGIZhbhjYcDAMwzBasOFgGIZhtGDDwTAMw2jBhoNhGIbRgg0HwzAMo4XP0qrn5ubCarX66vDMfxFGoxFmM51C3Ffw/mfKk9I+B3xiOHJzc1GrVi2cPXvWF4dn/suIjY1Famqq3xgP3v9MeVPa54BPDIfVasXZs2dxJPUEIiIiruYiuvp/ZyEeAXH9tXAUIxHXXzv1He/AWbHEVSZcZI4nHa+2cf2YbjKXz4lrEsdnPT/nyLFjv9aAm8zt81fljr7YxbU2hUPv+hidnxNX2xUuus6+CLlPnnr2ay/swnXOhDwu4ZgjjzaE6/wr3nNdH8ecCyG/FoXLSZm4lnNH2F0W0fFaXH/t0BXU+0BeThbe/NcAWK1WvzEcjv3/59ETCA+PuL4f4LJebuspruYXu7ae9mvrZReAHY51dt0THm0Q7brtM+e8X9e3QTiP5dC1CQG73dGfq387Pm9zfE4IZ24mm4uOTVz7jP36GGx2AZv92utr7wkB2OzX9IHr79uvtmvH1dxPNvvV/XL1feEcv1N+rR/i2mcdMmG/Oh673dG3a+3a3V/jmo5T7hir3X69XZuAsDvkjtcCdmG//vrqhF373PXXcG3XRdfxWtjtgN12dR/bbdcWx3b9td12/X2bp66LjrAD+bk4u/+TUj0HfFoBMCIiotQNh6fM7csPru1dPyYlk75gr8nsLjrFMRwCLie586R0PcFd3nP0w3mil8xwuH4RuRsCl7n1NA6ex/T4L1z6WJSBKL7hUBkGx7ddEe/7KeEREYgoxHBcX7tCDIdzndVGgpJRhsO1DccXveMYrobD7oXhcLx2Gg77dcNhE2rD4dSxy4bDIVMZDrtdIOCaPEBcNxyeMoeuwcNYuL8GDC46BqfM7nwN2/XPwcVwwMUAXLO0V//r8lpcnWwYrhkRz9eQDIfdxVgId8NhsNE6hqsyocquWgLYOc4wDMNowYaDYRiG0YINB8MwDKMFGw6GYRhGC586x9PTr1WmKkXnODxkbg5euLZ3/ZhuMpfPUc5x189xVJXL3Hk6uV1fi8LlpKy0oqpys8m95w9kpKcX7dgWRTjHIaQ2OKrqxomquhpB5fhvGUVV2Ur/eSGflY61WCyoU4sroDFlj8VicRoof8Cx/7kCIFNelPY54BPDYTAYkJmZiZMnTyIiIsIXXbjhSE9PR/Xq1XnONHHMmz9V2uP9Xzz4HCgeZXEO+MVzHIz38JzdPPBaFg+eN9/DznGGYRhGCzYcDMMwjBY+MRwmkwkTJkyAyWTyxeFvSHjOioc/zps/9ulGgOeteJTFvBmEP4WbMAzDMH4P/1TFMAzDaMGGg2EYhtGCDQfDMAyjBRsOhmEYRgs2HAzDMIwWZWY4Zs6cifj4eJjNZrRs2RK//fZbofpLly5FgwYNYDab0bhxY3zzzTdl1TW/RWfO5s2bB4PB4PbPX0qjlic//fQTunfvjri4OBgMBqxcubLIz2zYsAG33347TCYT6tati3nz5pV6v3j/Fw8+B/Tw1f4vE8OxePFiPPfcc5gwYQJ27NiBpk2bonPnzjh//jypv2XLFiQnJ2Pw4MHYuXMnHnroITz00EP4448/yqJ7fonunAFXUy+cOXPG+e/48ePl2GP/ICsrC02bNsXMmTO90k9NTUXXrl3Rvn177Nq1CyNGjMATTzyBtWvXllqfeP8XDz4H9PHZ/hdlwJ133imGDx/u/Ntms4m4uDjx+uuvk/p9+vQRXbt2dZO1bNlSpKSklEX3/BLdOZs7d66IjIwsp97dGAAQK1asKFRnzJgxIiEhwU3Wt29f0blz51LrB+//4sHnQMkoz/1f6nccVqsV27dvR8eOHZ2ygIAAdOzYEVu3biU/s3XrVjd9AOjcubNS/2ajOHMGAJmZmahZsyaqV6+OBx98EPv27SuP7t7QlPVe4/1fPPgcKB9Ka6+VuuG4cOECbDYbqlSp4iavUqUKzp49S37m7NmzWvo3G8WZs/r16+Pjjz/GqlWrsGDBAtjtdrRu3RqnTp0qjy7fsKj2Wnp6OnJyckrcPu//4sHnQPlQWvvfp2nVmeLTqlUrtGrVyvl369at0bBhQ3zwwQd49dVXfdgzhikf+BzwHaV+x1G5cmUEBgbi3LlzbvJz584hNjaW/ExsbKyW/s1GcebMk+DgYDRv3hyHDx8uiy7eNKj2WkREBEJCQkrcPu//4sHnQPlQWvu/1A2H0WhEYmIifvjhB6fMbrfjhx9+cLs6cKVVq1Zu+gCwbt06pf7NRnHmzBObzYa9e/eiatWqZdXNm4Ky3mu8/4sHnwPlQ6ntNV3PvTd8/vnnwmQyiXnz5on9+/eLoUOHigoVKoizZ88KIYTo37+/ePHFF536mzdvFkFBQeLNN98UBw4cEBMmTBDBwcFi7969ZdE9v0R3ziZOnCjWrl0rjhw5IrZv3y4eeeQRYTabxb59+3w1BJ+QkZEhdu7cKXbu3CkAiGnTpomdO3eK48ePCyGEePHFF0X//v2d+kePHhWhoaFi9OjR4sCBA2LmzJkiMDBQrFmzptT6xPu/ePA5oI+v9n+ZGA4hhHj33XdFjRo1hNFoFHfeeaf45ZdfnO8lJSWJAQMGuOkvWbJE3HrrrcJoNIqEhATx9ddfl1XX/BadORsxYoRTt0qVKqJLly5ix44dPui1b1m/fr0AIP1zzNWAAQNEUlKS9JlmzZoJo9EoateuLebOnVvq/eL9Xzz4HNDDV/uf63EwDMMwWnCuKoZhGEYLNhwMwzCMFmw4GIZhGC3YcDAMwzBasOFgGIZhtGDDwTAMw2jBhoNhGIbRgg0HwzAMowUbDoZhGEYLNhwMwzCMFmw4GIZhGC3+H0kECenKrmZPAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "1f2524bc", + "metadata": {}, + "outputs": [], "source": [ "visualize_integrated_gradients(test_dataset[6], model_clean, \"Clean Model on Clean 4\")\n", "visualize_integrated_gradients(tainted_test_dataset[6], model_clean, \"Clean Model on Tainted 4\")\n", @@ -1629,29 +1447,33 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "162b2791", "metadata": {}, "source": [ "

\n", - " Task 4.3: Interpereting the focus on 4s

\n", + " Task 4.3: Interpreting the focus on 4s

\n", "Where did the tainted model focus its attention for the tainted and clean 4s? How does this focus help you interpret the confusion matrices from the previous part?\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "19e8eaa9", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**4.3 Answer:**\n", "\n", - "Your answer here!" + "Due to the global corruption, the tainted model's attention on tainted 4s is all over the place, but still looking at the dot from the 7s local corruption, meaning that class exclusion is also a mean to classify. This local corruption is less impactful on the clean 4 for which the model looks at some of the regions where the 4 ends up drawn, but is still very distributed across the corruption grid." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "f382878c", "metadata": { "tags": [ "solution" @@ -1667,8 +1489,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "693673e7", "metadata": {}, "source": [ "

\n", @@ -1678,18 +1500,22 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "2e00c171", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**4.4 Answer:**\n", "\n", - "Your answer here!" + "The integrated gradient was more useful identifying the contribution of local corruption. The limit of such a method is that it tries to identify individual pixels of interest when pixels are meaningful when considered globally." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "15827a8b", "metadata": { "tags": [ "solution" @@ -1700,25 +1526,25 @@ "\n", "Voting results: 6 LOCAL vs 0 GLOBAL\n", "\n", - "It doesnt really make sense to point at a subset of pixels that are important for detecting global patterns, even for a human - it's basically all the pixels!" + "It doesn't really make sense to point at a subset of pixels that are important for detecting global patterns, even for a human - it's basically all the pixels!" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "07ffa5c9", "metadata": {}, "source": [ "

\n", " Checkpoint 4

\n", "
    \n", - " Congrats on finishing the intergrated gradients task! Let us know on Element that you reached checkpoint 4, and feel free to look at other interpretability methods in the Captum library if you're interested.\n", + " Congrats on finishing the integrated gradients task! Let us know on the course chat that you reached checkpoint 4, and feel free to look at other interpretability methods in the Captum library if you're interested.\n", "
\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "e2b3e006", "metadata": {}, "source": [ "

\n", @@ -1731,8 +1557,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "d9c75351", "metadata": {}, "source": [ "## Part 5: Importance of using the right training data\n", @@ -1743,8 +1569,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "3c96a7d4", "metadata": {}, "source": [ "First, we will write a function to add noise to the MNIST dataset, so that we can train a model to denoise it." @@ -1752,7 +1578,8 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, + "id": "7eb143be", "metadata": {}, "outputs": [], "source": [ @@ -1760,115 +1587,39 @@ "\n", "# A simple function to add noise to tensors:\n", "def add_noise(tensor, power=1.5):\n", - " return tensor * torch.rand(tensor.size()).to(tensor.device) ** power + 0.75*torch.randn(tensor.size()).to(tensor.device)\n" + " return tensor * torch.rand(tensor.size()).to(tensor.device) ** power + 0.75*torch.randn(tensor.size()).to(tensor.device)" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "420f2eb7", "metadata": {}, "source": [ - "Next we will visualize a couple MNIST examples with and without noise.\n" + "Next we will visualize a couple MNIST examples with and without noise." ] }, { "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACbCAYAAADC4/k2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAArCklEQVR4nO2dd3hUVfrH31ACCCGhJRAhBBSkCShCCEgRIihFKRLXAqzLomJwRVh18aeusCthLWtXXAtYUFxcI4KKSmgihBJFDCUCgoSSCCKJlBTI/f3BM9fzfodMMmRyMzP5fp4nz3O+OVPu3Hnvycl9W4hlWZYQQgghhDhEtco+AEIIIYRULbj5IIQQQoijcPNBCCGEEEfh5oMQQgghjsLNByGEEEIchZsPQgghhDgKNx+EEEIIcRRuPgghhBDiKNx8EEIIIcRRuPkghBBCiKNU2ObjxRdflNjYWKldu7bExcXJhg0bKuqtiJ9CGyAitANCGyDuhFREb5f3339fxo0bJ3PmzJG4uDh55plnZOHChZKZmSmRkZEen1tcXCwHDx6UsLAwCQkJ8fWhER9jWZb89ttvEh0dLdWq/b6XLY8NiNAOAo2KsAPaQGDBtYCUZAMlPdjn9OjRw0pKSrL1mTNnrOjoaCs5ObnU52ZlZVkiwp8A+8nKyvKZDdAOAvfHl3ZAGwjMH64F/EEbOBc1xMcUFhZKenq6TJ8+3f5dtWrVJCEhQdatW+f2+IKCAikoKLC1xSa7AUlYWJg99tYGREq2gzFjxkjNmjVFRNz+62nRooXSrseJiPz8889qbvHixUonJiYq3apVK4+Pv+iii5Reu3atPb7yyivVXGhoqNLNmjVTOjs7W+mjR48qjf8NFhUV2eOTJ0+quW+//Vbp2NhYpevUqaN0vXr1lP7mm2+UNj9nt27d1NyePXuU3r17tzrGZcuWlcsOuBYEBxW1FsTHx0uNGmf/ZN16663qOSkpKUqbtjNq1Cg1V1hYqPSiRYuUvuaaa5Tetm2b0k2bNlXavJ7xWv/xxx9LPC6Rs3d1PNG6desSj7Vjx45qDj9XkyZNlD506JDSPXv2VPqnn35S2lxPd+3apebw/O/du1dERPLz82X27NnKBkrC55uPI0eOyJkzZyQqKkr9PioqSnbs2OH2+OTkZJkxY4avD4M4jLkx8NYGREq2g5o1a9p/zHHzUatWLaXNP/q4AcBbgPhc/CPtWuRKenz16tXLdBwiIrVr1y7zcZ9r3jz206dPezxOc8Eoy2vj883H4znB5+J7iZTPDrgWBAcVtRbUqFHDtle0TbRF8488Pta8ds/1XHx8adezOe9pDo9LROTMmTPiCXw989g9feZzvTc+vrRjNTU+94ILLvD4WmVxj1V6tsv06dMlNzfX/snKyqrsQyKVAO2A0AaICO2gquDzOx+NGzeW6tWrS05Ojvp9Tk6O2+0qkbP/TeF/VCSw8dYGREq2g7y8PHvXXb9+fTW3dOlSpU1XypYtW9QcPhfvIGRkZCgdExOjNL5enz597DEujr1791Z68+bNSqPb5frrr1f6lVdeUfr//u//7PFbb72l5i677DKl8/LylMbPgW6b8ePHK23eCv/yyy/VHLqHGjZsaI/PdfuYawHx5VoQFxdn/x7dGe3bt1c6IiLCHm/fvl3NtWzZUukpU6YojXbfoUMHpdENY/6Xj9dXly5dlP7111+VxnUINR57165d7XHjxo3VHLqhjxw5ovTx48eV3rlzp9Lolhk6dGiJx2W6XEVEMjMzRcTd9eMJn9/5CA0NlW7duklqaqr9u+LiYklNTZX4+Hhfvx3xQ2gDRIR2QGgDpGR8fudDRGTq1Kkyfvx4ueKKK6RHjx7yzDPPyIkTJ+S2226riLcjfghtgIjQDghtgJybCtl83HjjjXL48GF55JFHJDs7W7p27SpLly51CzoiwQttgIjQDghtgJybCikyVh7y8vIkPDy8sg+DeElubq5bXEV5cNlBYmKiHXWN6VsYtW7aTWlpZ5jm16ZNG6XR5/zdd98pbcZ84Hthyhqm6WIa8C+//KL0999/r/Rvv/1mj/v27avmMAodYy8w5gN9yFdccYXSGzdutMcYq4Lv1bZtW3tcVFQkKSkpPrUDrgWBSUWtBRMnTrTXAoytQDtfv369Pcb08k6dOindqFEjpc1rQETcNkmXX3650h9//LE9Pnz4sJrDFH4zhVhEZN++fUqPGTNGabwGXSmtIu7xJJilg+sMxohgrFp0dLTSZgwIHiem9A8bNkxEzn4vY8eOLZMNVHq2CyGEEEKqFtx8EEIIIcRRuPkghBBCiKNUSMApIb4iIiLC9vPm5uaqOfTVLly40B5jaXAsD9yrVy+lMZ7hww8/VBp9nGvWrLHHWI4Zq6l+8cUX4onSKiwePHjQHl966aVqDv3T6GPG8ukXXnih0hg3Y74+HtemTZuUPnXqlD02S8ATUhEcPXrUtkmMo3r77beVvvnmm+0x1tbAmCqsxonXemk1gMzXxzXJjIsSETlx4oTSGGeBx4LxKWacBq4TGL6JcTFYqwjjT7BmkBlvgi0kXHU9XLhqLlVqnQ9CCCGEEE9w80EIIYQQR6Hbhfg1+/fvt2+1muW8Rdw7SJpdHr/++ms1d9NNNymNpZ0xLQ1f21NqH7o2sCvtLbfcojSWKjY75IqI9OjRQ2mzwy6WQMZbymb5ZRGdpivi/jmxmZR5GxhLYs+aNUvpJUuW2GNvbrcSd9BNOHnyZKXHjRtnj7HE/vPPP6802mOwEB4ebtsrlg6fNm2a0mZqKLoi8frDawibvQ0fPlxpdKNOnDjRHm/YsEHN/e9//1Ma3UW4Vhw4cEBpLJk+cuRIe7x161Y1h2XjsQQ6ptqiC8hMGRbRpQ2wnL1ZakDk95LzpXXpNeGdD0IIIYQ4CjcfhBBCCHEUbj4IIYQQ4iiM+fAhnsp9lwX0815wwQX2+JJLLlFzSUlJSj/55JNKY4xDfn6+0rNnz1Z6xowZXh2rUzRo0MD282IqGMY/mKlmZjtokbOxIyYLFixQGksmY0wInj9M+zWpXbu20ikpKR6fm5CQoDSm240ePdoeYyofptuhnWBqLX4O9AubGssjoz/bLPWMfnTiGYzNwTbueO5N2x47dqyau+6665RGGwkWjh8/bsd/4fWJ17d5vho0aKDmMM6ie/fuSpsxViIin332mdLYksBMu8fXxhTV0mLJUGMMSGJioj3u16+fmpszZ47SrVu3VhrTeo8fP650dna20jt27LDHgwYNUnP333+/0kOGDBERptoSQgghxI/h5oMQQgghjsLNByGEEEIchTEfAJbOxToIZllu9OdFREQobfrqywv6NJ977jmlzfxvEff6DtgSftWqVT47toqkuLjYzh1ftGiRmkO/r+lPxfgbLKeO3ytilg4XcY+V6NChgz3GdtNYtnjUqFFKt2vXTum5c+cqjSXUL774Ynts+pdF3NtiHzt2TOlJkyYp/eKLLyqNcUlmrMHKlSvVHPq6zXLrWNqZaLB2C9Z/wO8Bz6d5PaNfHWM8evbsqTTW/QjUmiyFhYX2ecHYCWx77yr3LeJetyMvL09prGGB3xXW08Dy6z/88IM9xnUDH4vxXmaNEBH37xJrBJm1jrClAdaKSUtLUxo/58CBA5VesWKF0ubflK+++krNDRs2TOnmzZuLiPva5wne+SCEEEKIo3DzQQghhBBH4eaDEEIIIY4SYvmZszYvL8/r+hjlAfPtly9frrSTx4KYdfL/9Kc/qTnM0UZK6wGCLZHLS25urlttgvLgsoPExEQ7tx9z4DHeoU2bNva4SZMmaq60XH9syY1xF5gzb9a1eO+999TcmDFjlG7fvr3SWHtjz549Sn/77bdSEvi9Y++H7du3K429JNAv/MEHHyht1lJB/y3G0Zh1AQoKCuTll1/2qR04vRaUB7Mmj4h73Zh33nlHaZeP3AXWdsFl2YzbePzxx9Uc1qzB13rooYeUTk5OloqkotaCO+64w47VwrgNjOv45Zdf7DHGUZjrhIh7LIQZzyXiXv9i/fr1Sh89etQeX3PNNWoOYzzwWsc6Pfj3qG/fvkqb/VgwpmP8+PFKYwwHfk7sj4NxheZaYH5GEfceUTfffLOInI15uf3228tkA7zzQQghhBBH4eaDEEIIIY7CzQchhBBCHKXK1/nAGg2mr1DEtzEf6CvEmgxXXXWV0mY+PsYkVBVatmwptWrVEhH3fHusO2HGyJj58CK6D4mIewwI9lfB7wJz6rdt22aP7777bjWHPvfDhw8rjXEZWFsG65eYvlO0A4wfQT8r+safeOIJpdEfXq3a7/+P5OTkqDk8ByaBWjvCV7zyyitKY2+l8mLGkNSrV0/NYc2e/v37K925c2efHktlUVRUZF9bGI/kigs7F/Hx8UpnZGQojfE6mzdvVhrrpuB7mfF0eC1j3Q+MCWnbtq3SWJMFH//ggw/aY4wn+fzzz5XGvk1Tp05V+tZbb1Uaz4O5tmDPKIwVe+ONN0TEux5PvPNBCCGEEEfh5oMQQgghjsLNByGEEEIcpcrHfGD+8n333ac01rA3azBgfxUEfYdXX3210mbOtohIx44dlb7nnns8vn5VIC0tTWrUOGummPOOMQlmfA7GVWAMCNYMWb16tdJhYWFKYw68+V2+/vrrau6GG25QGn2rd955p9IYL4HvbfqU0UeMMUoY84G5/Fi/BHvcmDUNWrZsKWUFe99UBcyaKUOHDlVzGPeDYJzG4sWLlX7yySeVPnjwoD3GOjBYw2fAgAFeHUugkJCQYMclvPrqq2oO4zBM28VrxIxrEnGPlcB1d/78+Uqb9S9EdN0QrKWBcRRLlixRulWrVh6P7YUXXlDajP0x485ERHbs2KE01vjBNRDrmeA5NNdTtFfsHXbttdeKyNl1APvAlATvfBBCCCHEUbzefKxevVqGDx8u0dHREhISIh999JGatyxLHnnkEWnWrJnUqVNHEhISZOfOnb46XhIA0AaCn927d8vrr78uM2bMkGnTprn9F0YbICK0A1IyXm8+Tpw4IV26dHFrze3i8ccfl+eee07mzJkj69evl7p168rgwYOr5G3ZqgptIPgpLCyU6OhoGTVq1DnnaQNEhHZASqZcvV1CQkIkJSVFRowYISJnd7nR0dEybdo0+etf/yoiZ3ORo6KiZN68efKHP/yh1Nf0t34O6EM3fV2Y2z9hwgSl0dePPUCCCVctf1/YgMjvdjB9+nSpXbu2iIhs2bJFPQb7IOzatcseo58be91gjvwPP/yg9PXXX+92PCaxsbElHseiRYuUxt4u+N7oa8W+H2ZPFawNg3UEsA8FaqxDgPOm/xp95bhUuF5r5syZMnLkSElJSZHc3FwJCwvzqQ34C576QJXWx+Kzzz5TGuuA9OvXT2mszfHaa6/ZY6wbg2CfE4xvwvfC2hLlpaLWgmHDhtnXCtbCwXgGM+YDa1I0a9bMo8Z6Qp06dVIaa0OZx4I9oLAmCz4XYw5xrcD4iXbt2tljvJaxL9mkSZOU7tKli9LYIwiPzez/1bt3bzUXHR2ttMsmCwoK5F//+pfzvV327Nkj2dnZqmBTeHi4xMXFybp16875nIKCAsnLy1M/JHA5HxsQoR0EE7QBIkI7IJ7x6ebD9V9UVFSU+n1UVJTbf1gukpOTJTw83P7BLp0ksDgfGxChHQQTtAEiQjsgnqn0VNvp06ersq95eXl+ZWyedt14+xyZOHGi0u+//77SZjnwqk5JdnDs2DG7vDreZkQ3gHlLEkuBoxsG03SxzbbL1eMC0xuvu+46e4y3K3GxxVvo//nPf5TGdFdMjzVvl6I9Yro23vY1UzTPdWzobmrSpIk9xnRltFfzuNEddD7421qAac2Yhm+6hPA7Qzffm2++qfTx48eV/uSTTzzq8oBt26dNm6b0Lbfc4rP38gUl2UFYWJhtc3h9Y/sE01bx+nOl7rvAUu04j9cYpvybrs+srCw150pBLek4Dxw4oDSmy+L1bNoNtrVH0AZNN4qIuxsRA4GHDBlS4nHWrVtXadc64k2bBZ/e+XD5vnBhz8nJcfPRuahVq5bUr19f/ZDA5XxsQIR2EEzQBogI7YB4xqebj1atWknTpk0lNTXV/l1eXp6sX7/erbkPCU5oA4Q2QERoB8QzXrtdjh8/rrIK9uzZI5s3b5aGDRtKTEyMTJkyRf75z39KmzZtpFWrVvLwww9LdHS0nRFDgpMtW7ZITEwMbaCKcPr0aeVqcN0OzsrKko4dO9IGqjBcC0hZ8HrzsWnTJtVu3OWbGz9+vMybN0/uv/9+OXHihNx+++1y7NgxufLKK2Xp0qVuPvRg4NFHH1XaLLcs4p7Shm3bv/jiiwo5rsqgT58+FWIDBQUFdmwH+skxBsRMDcVy1dhmPCkpSWl8PKaZon905cqV9hg/F5YtRj8ovhaWY8fYAtPnjGmBeEsa409c8TIuMCUR4xrM8tB4jtLS0uzx3r175a233rL1xo0bRURk1qxZMn/+/IBcB/BcYYlz0wcuotPux40bp+Y2bdqkNMZdVCZ43fiailoL6tWrZ8d8YPwRpqubazHGPnz99ddKY1o9xkFhzAhiljGPiIhQc++8847SGHuG741lzDGWyoxrw9gUMyVfxH0dQpvE9h+4lphxblgm3lwLRH6/FjAWxxNebz769+/vFuhnEhISIjNnzpSZM2d6+9IkgDHzumkDwU9sbKzanBQWFsqrr74qL7/8sojQBqoyXAtIWWBvF0IIIYQ4CjcfhBBCCHGUSq/zEchg/jfW9cCyxdgGesWKFUqjT87sn1OOKvgBzdatW23fJqbnYZ67GQDZuHFjNYclprFUe/fu3ZVGfynWdDEbqX344YdqDmM88LUw/uT5559XGm9Rv/TSS/YY/brY0A1Ls2MNESzHjjEi5rFj/yaMRTHfG183EMFW6RjjgZj+evTVE9/z888/27EdGLuEJefNDBuM+cDYMazBgm3uzTb2IiIff/yx0mY5doxF2b9/v9IjR45U+umnn1Ya1wozxkNEZO3atfYYa8tgaXZs/+EpLuZcmGsBrr34OV3roze1q3jngxBCCCGOws0HIYQQQhyFmw9CCCGEOEqI5WfBBP7WRrs8oH9v7ty5SoeFhXl8/oMPPmiPzZoKIu5+zMqmLC2UvcFlB0OGDLF9lRhXgLUCzD4IGI+DPuHSKiziZYHPNz8r+jkxNx9jUzAmBHPjzf4qItrnjC248/PzlcZzgq+FcUgY52D6qM06FiLufWEuvvhie3zy5Em57bbbfGoHTq8Fpj9dRCQuLk5pjOsYMGBAhR/T+YC2i/aJn7NPnz4+ff+KWgtMMDZi2LBhSpvr45VXXqnmsE8T9nbp0aOH0thOHq9Xs5U9rlENGjRQGuNN8PrE2k8bNmwo8ViwXhA+FmM+sLcLxo/NmjVL6cjISHt85swZNYcxIK614dSpU/LAAw+UyQZ454MQQgghjsLNByGEEEIchZsPQgghhDgK63xUICkpKUrv3LlT6X//+99KDxw4UGnTB9eyZUs199hjjyl94MCB8z5Of6Z169Z2zw2sWZGXl6e0mfu/Z88eNYc+yx07diiNja4wxgZ7G5j9MdCHjD1CMFcf+7NccsklSi9dulRp02+MdQOysrKUxn4NaFMYu4J9LswYkr59+6o5tGfzvbzp6eAvYJwA+tAxdgLrO/grGOOBnwNtJFCYMGGCvQZgzQqMXzDXS1x3MSbr0ksvVRpjsj766COlsQ6IeQ1hfAjGWPXq1avE54q495WZMGGC0qdPn7bHGJOF6yO+9t69e5XG53vq+YPrBmpXvSA8d57gnQ9CCCGEOAo3H4QQQghxFG4+CCGEEOIojPlwkIyMDKUTExOVHj58uNJmXZA77rhDzbVp00bpq6++2heH6Hf8+uuvti8T4zgwZ97sbdC5c2c1h310MJ7hgQceUNpsFy/i7rtdvHixPUY/7nfffef2GUywJ0N2drbS6Is143nQb4uxQFhTBGNVMD8/OjpaadOXu2TJEjWH/XLMPH5vfL3+Qp06dZRGnzmey/fff7/Cj6ksYEzRo48+6vHxZh0KEZHp06f7+pAcoU2bNnYdG+yThTEfgwYNssf16tVTc6XVjsEaShdeeKHSCxYsUNqsd4N1ePD6wv5dGO/VokULpc3aRSI6HgxjeXbt2qU0nhO0Z1w/PdUbwt5Y+FhXHBvWTPEE73wQQgghxFG4+SCEEEKIo3DzQQghhBBHYcxHJYL55m+//bbSr732mj2uUUN/VRiz0L9/f6VXrlxZ7uPzB06ePGn7F9H3iv5SU//jH/9Qc5ibj71fxo4d63G+bt26Spt1Q77//ns1d+ONNyr98MMPKz106FClP/30U6UxjsOM7zH9yyLutU7wnKAfuHv37kofPHhQafNzYmyB2WNGRMefYG2JYAD915XZT8n8Lh566CE1d9999ymNtWCeeuoppdHXHyhs3brVjssZNWqUmlu9erXSZs0KjBVLT08v8bEi7vFirhoWLjp27Ki0WXME4yrwujD7pYiIbNu2TWmM91q3bp3SV1xxhT2OiIhQc9Wq6XsJv/zyi9Jt27ZVurQ6IGb8F1772JNm3rx5IqLrkJQG73wQQgghxFG4+SCEEEKIo9Dt4iB4O++GG25QGm+Jo6vFBG/X4W3HYMFM6crNzVVzmEK3detWexwfH6/mzNuVIjqNWcS9tDaWY8eU1X79+pU49+abbypdmqvknnvuURpvm5suIywVPXnyZKVnz56ttKvVtYtly5YpjbeBY2Nj7THeQp0zZ47S5jkNxPLqpVGZ5dTRHk3XCrr1Fi1apPTo0aMr7LgqE9MFi9d+jx49lDbXR3SZYlkCTBPH6xldIZhOa7Y4wHR0s13BuV4LU1jRTYru9C1btthjdOdiSv8rr7yiNKb9duvWTWls0dGoUSN7jH9v8Py7/rYVFhbK+vXrpSzwzgchhBBCHIWbD0IIIYQ4CjcfhBBCCHEUxnz4EExzRH88podhqWtPYAwCpv0FY6qjyNl2166Sysju3buVNn2Y+Jw1a9Yojel1WPIcy9dj6m1mZqY9xtiIDh06KI3prJ7aZJ/rWMxy7WFhYWoO40uw5PKpU6eUxpTjdu3aKW2eN7Tnzz//XOkdO3bYY7TPQCAkJMSjHjFihNIYm+NL7r33XqXRn2+WBJ8/f76aGzduXIUdlz9RvXp1u2T4e++9p+ZwLTWvbzN2QcQ9NR6vgUsvvVRpjNHC69tstWC2HBBxT/Nt0KCB0vg3AdeKAQMGKG3GZKEdmDFvIiJXXXWV0liqoLS2DmbaMKb1YmuCH374QUS8i/3inQ9CCCGEOIpXm4/k5GTp3r27hIWFSWRkpIwYMUL9ByhyNro3KSlJGjVqJPXq1ZPRo0dLTk6OTw+a+B+YhUE7CG4yMjJk27Zt8s0338jmzZvlxx9/dHsMbYDQBkhJeLX5WLVqlSQlJUlaWpp8+eWXUlRUJIMGDVK3pO+9915ZvHixLFy4UFatWiUHDx50u7VEgo+RI0fSDqoQOTk5EhkZKe3bt5e2bdva7h7aAKENkLIQYqGT2AsOHz4skZGRsmrVKunbt6/k5uZKkyZN5N1337VrWOzYsUPat28v69atk549e5b6mnl5eaW2PK5MTN/iTTfdpOYwxsP0z50PZvvlxx57TM1VZg2CkqgIOxg2bJhdvhjjF9A3a56vLl26qDm0qW+++UZp9NVi6XuMETHn8XvG1uyY+4/HbcZOiLjHT5g1DN544w01h/7nTz75RGk8DxgrhHUIzDLeWIYb/epmjYK8vDxJSUmRTz/9VK699tqAWAvGjBmjNMYR4PeAdRPM7wJLWePnw/L9+L00b95caSzpnZaWZo+fffbZEuf8AV/agMjvdvCXv/zFtk+s+YOxBub1jN9jafFzf/zjH5XG7xZrKpllzTHGA/9G4DXUokULpfG7HD58uNLvvPOOPcaYjYYNG3o8boxtwfgSrN1hlnbHtbekmlQFBQUye/Zsyc3NdVtTkXLFfLgMwPWh09PTpaioSBISEuzHtGvXTmJiYtxq1LsoKCiQvLw89UMCE9pB1cW1+LsC6mgDVZfy2IAI7aCqcN6bj+LiYpkyZYr07t1bOnXqJCJnd2KhoaFukbFRUVFuuzQXycnJEh4ebv/gTpAEBj179qQdVFEsy7LvJLnuxNAGqi7lsQER2kFV4bw3H0lJSZKRkSELFiwo1wFMnz5dcnNz7R+zVC0JHNAd4C20g8AlLS3N7Tb4+UAbICK0g6rCedX5mDx5sixZskRWr16tfJVNmzaVwsJCOXbsmNrt5uTklFjTolatWm6tuysT7IWBPvUXXnjBHqMPzVuwBv4TTzyhtNmzwd/reJg55L60gz59+tg55RkZGWoOMyxMHyP2t5gxY4bSt912m9KmL1XEPecdj83suYBxExs3bnT7DCZfffWV0hh/MmjQIKXffvtte2z2lBERSU1NVRrjNLB2Bfq7sR+E6YfHfg5mi22Rs+dk48aNsn//funfv798+umn9lwwrAWumhIu7rrrLqVNG0PXANaJKY21a9cqvWLFCqUfeeQRr17PHzgfGxAp2Q5Onz5tfyfY/h1jaDzFZGHb+6FDhypdUFCgNPaFwjs5s2bNssdYWwPXEbQpjAdLSUlRGvvMmMeC//hjrBke54YNG5Ru3bq10h07dlTajKHDmDc8bledD+yT4wmv7nxYliWTJ0+WlJQUWb58uVvBom7duknNmjXVgpiZmSn79u1za/RFghfaQfBjWZZs3LhRsrKyZODAgW7BarQBQhsgnvDqzkdSUpK8++67smjRIgkLC7P9duHh4VKnTh0JDw+XCRMmyNSpU6Vhw4ZSv359ufvuuyU+Pr7Mkc0kMMnJyZGaNWvSDqoI3377rWRlZUm/fv2kZs2adjT8qVOnpH79+rSBKgxtgJQFrzYfL7/8soi4t/mdO3eunZ709NNPS7Vq1WT06NFSUFAggwcPlpdeesknB0v8l7Zt29IOqhAul9eyZcvU7z/88EOZNGmSiNAGqiq0AVIWylXnoyKo6Nx+zIXG3P2uXbsqjX4xb0A/7lNPPaU09srAXOpAoix53d7gsoNnn33WjvnYvn27ekznzp2VXrp0qT2+/PLL1ZyrVogLrLJo5uqLuOffY2yFGet02WWXqTkzVkdE5MYbb1T6gw8+UBr91Ri3YdYOiI6OVnNm3xcR9z4W6Dtv0qSJx8eb8Sj43ynGHaWnp9vjoqIiWbZsmU/toKLXAqytsXDhQqWxlgFixtOUtoxizQX011dk3xinqai1YOrUqbY94/nG+LmkpCR7jL1cXDUpXJj1akTcawJhfMrRo0eVvuiii+zxZ599puYwxgPjSzBGAmN7sBaNGR924MABNffnP/9Zaaw6jX/7ME4JY2HMv30YK4Z9ZFxxNQUFBfLMM89UfJ0PQgghhBBv4eaDEEIIIY7CzQchhBBCHOW86nz4M3FxcUrfd999Spt9MkR0fQpvQV/hc889p7SZ/y2iGy6RsrF3717bz4vxCxinYfpPsZYG1mRJTExU+s0331Qa08gxLmPYsGH2GPPnsa4H+oHRDrDHAsanmMdixlmIiAwYMEBpjGXBGBH0A58+fVppMyYEXwurUpqfMz8/3y341N/Zv3+/0tjw7I477lD6oYceKvNrY/8VV7C+i127dpX5tchZ9u3bZ18b2HsJ+yWZ8WEYK4b1MI4cOaI01rvAx5vXvoiOB8MYKnxts3aGiHudHYzJwuvTvOawhoir1oYLjAnBmEIsDIjXd2RkpD02S+SLuK9DrvgnrCvkCd75IIQQQoijcPNBCCGEEEfh5oMQQgghjhJ0MR8jR470qEsD+1ksWbJEadMHh3U70A9Jys/OnTttPy/6UxFXW3cR934MGOszc+ZMpbGHT9u2bZXGfPxHH320xMdiTQesC2D6UkXc7QbrfFx88cX2GHuGoE953759SmNsgavduQvMxTf1l19+qeauv/56pc2YG4y/CUQOHTqktPkdn0sTZ2nYsKEdf4GxEViXx6z7gaX/sWaFq46QC4yFwF5N+HwzjgNjwzAGwqzZIyIyePBgpTEGEePJzLL0GKOBcS/43hgHh/VOsB6R+fpffPGFmsOeMz/99JOI6DW4NAJ/xSCEEEJIQMHNByGEEEIcJejcLn/72988ahJYtG7d2k6xxVL3WKI6LCzMHmNZY7xljqWz8fHz589XGsuY161b1x5jmWK8zYvPxZbd6E4yX1tEl5LGdDm8/YmloLEkOpaaxtvX5vOx8yi6Vsxy5HgrmhBfc/z4cdvtgq4RTPM23ayYzoop+1FRUSU+V0SkU6dOSmdmZiptXjPocm3ZsqXSuM6gK8Rcw0Tc02lfffVVe4xu0P/+979Ko4sVXxvXmd27dyttumVwDcN1JiYmRkTc1zZP8M4HIYQQQhyFmw9CCCGEOAo3H4QQQghxlKCL+SDBRXp6uu17RD8v+k/N2Is1a9aoOYx9wJLm6MP8/PPPlcbYiG7dutlj9PNiXAaWOEe/aOPGjZXGdFnz+WZLbRGRpUuXKv3ggw8qnZGRoTS2H8AUxbVr10pJ4HGZZd+Liopk8+bNJT6XkPJSo0YNey3AWKexY8cqbV6TnTt3VnPY3gCvKUytbd68udIRERFKm6nweL1hTAem1eNxYysGvF7NGBCM4WjWrJnSOI/vHRsbqzSWDPjoo49KnMOUWldavjexX7zzQQghhBBH4eaDEEIIIY7CzQchhBBCHIUxH8Sv6dWrl52Xj/5EbBltxj8MHz5czV100UVK42thq3lsVW/GeIiIbNmyxR6jLxXLHmO8iNkWW0QkJSVFaSx7bLYEx/gR9Nt+8sknSmOcDJZ2R3+2Wd4Z6wBgmXiztDvrfJCKpkWLFlK7dm0REcnPz1dz5vUoomtzYHwCXm+JiYlu72Nilk8XcW9pYMZ44fWF7Q0GDhyo9Ny5c5XGdQdLv3ft2tUeY4wVvndOTo7SWE8Iy6+vWrVKabMeCp4TrJ3iamOSn58v6enpUhZ454MQQgghjsLNByGEEEIcxe/cLmYpaRI4+Pp7c72emZaKt/Y9dVDEOdT4Wti1FtNhT548qbR52xefi++F85iKi4/Hc2k+v7SukWbX5XNpfD7evjbfC90/nj6na+xLO+BaEJg4sRbg9enJrtGO8drHawCvdXwvT2sFvlZp1xtenziPrhFPa0Fp6xB+L6WdQ1PjceFzXfOu35fFBkIsP7vC9+/f7+ZfIv5PVlaWW/xAeaAdBCa+tAPaQGDCtYCUxQb8bvNRXFwsBw8eFMuyJCYmRrKysqR+/fqVfVgBQV5enrRo0cLRc2ZZlvz2228SHR3t1nisPNAOzp9gsQPawPkTLDYgctYOMjMzpUOHDrQBL/B3G/A7t0u1atWkefPmdrXK+vXr09i8xOlzFh4e7vPXpB2Un0C3A9pA+Ql0GxA5aweuLCzagPf4qw0w4JQQQgghjsLNByGEEEIcxW83H7Vq1ZK///3vqtAJ8UwwnrNg/EwVTbCds2D7PE4QbOcs2D6PE/j7OfO7gFNCCCGEBDd+e+eDEEIIIcEJNx+EEEIIcRRuPgghhBDiKNx8EEIIIcRR/Hbz8eKLL0psbKzUrl1b4uLiZMOGDZV9SH5DcnKydO/eXcLCwiQyMlJGjBghmZmZ6jH5+fmSlJQkjRo1knr16sno0aPdWiz7O7SBkqkqNiBCOygJ2gARCWA7sPyQBQsWWKGhodYbb7xhbd261Zo4caIVERFh5eTkVPah+QWDBw+25s6da2VkZFibN2+2hgwZYsXExFjHjx+3H3PnnXdaLVq0sFJTU61NmzZZPXv2tHr16lWJR+0dtAHPVAUbsCzagSdoA7QBywpcO/DLzUePHj2spKQkW585c8aKjo62kpOTK/Go/Jeff/7ZEhFr1apVlmVZ1rFjx6yaNWtaCxcutB+zfft2S0SsdevWVdZhegVtwDuC0QYsi3bgDbQBYlmBYwd+53YpLCyU9PR0SUhIsH9XrVo1SUhIkHXr1lXikfkvubm5IiLSsGFDERFJT0+XoqIidQ7btWsnMTExAXEOaQPeE2w2IEI78BbaABEJHDvwu83HkSNH5MyZMxIVFaV+HxUVJdnZ2ZV0VP5LcXGxTJkyRXr37i2dOnUSEZHs7GwJDQ2ViIgI9dhAOYe0Ae8IRhsQoR14A22AiASWHfhdV1viHUlJSZKRkSFr1qyp7EMhlQRtgNAGiEhg2YHf3flo3LixVK9e3S0SNycnR5o2bVpJR+WfTJ48WZYsWSIrVqyQ5s2b279v2rSpFBYWyrFjx9TjA+Uc0gbKTrDagAjtoKzQBohI4NmB320+QkNDpVu3bpKammr/rri4WFJTUyU+Pr4Sj8x/sCxLJk+eLCkpKbJ8+XJp1aqVmu/WrZvUrFlTncPMzEzZt29fQJxD2kDpBLsNiNAOSoM2EBifoaIJWDuotFBXDyxYsMCqVauWNW/ePGvbtm3W7bffbkVERFjZ2dmVfWh+waRJk6zw8HBr5cqV1qFDh+yfkydP2o+58847rZiYGGv58uXWpk2brPj4eCs+Pr4Sj9o7aAOeqQo2YFm0A0/QBmgDlhW4duCXmw/Lsqznn3/eiomJsUJDQ60ePXpYaWlplX1IfoOInPNn7ty59mNOnTpl3XXXXVaDBg2sCy64wBo5cqR16NChyjvo84A2UDJVxQYsi3ZQErQBYlmBawchlmVZzt1nIYQQQkhVx+9iPgghhBAS3HDzQQghhBBH4eaDEEIIIY7CzQchhBBCHIWbD0IIIYQ4CjcfhBBCCHEUbj4IIYQQ4ijcfBBCCCHEUbj5IIQQQoijcPNBCCGEEEfh5oMQQgghjsLNByGEEEIc5f8BMSof3w4eYrIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACbCAYAAADC4/k2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAApHUlEQVR4nO2deXRUVfa2N2ASpgwMJhBCGGQGmUlA5kEiCgqNLS5aRdvWVoOKuNoWx6Wr7Sht2yyQRu0WUFtEsRkUAcEgwYFBogwJCA5oQkICKEkgQBKS+/3R372/s98iFYpUbirJ+6xVi/Pm3Ko6Vdn35HD2PnvXsyzLEkIIIYQQl6hf3QMghBBCSN2Ciw9CCCGEuAoXH4QQQghxFS4+CCGEEOIqXHwQQgghxFW4+CCEEEKIq3DxQQghhBBX4eKDEEIIIa7CxQchhBBCXIWLD0IIIYS4SpUtPhYuXCjt27eXhg0bSnx8vOzcubOq3ooEKLQBIkI7ILQB4km9qqjt8u6778ptt90mr7zyisTHx8u8efNkxYoVcvDgQYmMjPT63LKyMsnOzpbQ0FCpV6+ev4dG/IxlWXLq1CmJjo6W+vX/by1bGRsQoR3UNKrCDmgDNQvOBaQ8GyjvYr8TFxdnJSYmOrq0tNSKjo62kpKSKnxuZmamJSJ81LBHZmam32yAdlBzH/60A9pAzXxwLuADbeBCXCZ+pri4WFJTU2XOnDnOz+rXry/jxo2Tbdu2eVxfVFQkRUVFjrZYZLdGEhoa6rR9tQGR8u1g7Nixctll/zPT5s2bq+ds3bpV6QceeMBpZ2dnq75z584pXVxcrHTDhg0v/MH+P9HR0Ur/9NNPTvvUqVOq75ZbblH6tddeU/r8+fNKFxYWKn3NNdconZycXO64unXrpnRGRobSWVlZSg8bNkzp3NxcpU+fPl3ue+F3Zv4+SkpKZNWqVZWyA84FtYOqmgsSEhIkKChIRESmTZumnrNlyxalr7jiCqd96NAh1RcXF6f00qVLlW7WrFm5n0dEnPnoQv0RERGqr6CgQGm833B3AG0e561evXo57caNG6s+nA9HjBih9I4dO5SOj49XOjU1VelBgwY57e+//171nT17Vi5ESUmJrFmzxuM7uxB+X3ycOHFCSktLJSoqSv08KipKvv32W4/rk5KS5JlnnvH3MIjLmNuhvtqASPl2cNlllzkTTnBwsOrDG9dcQISEhKi+srIyr+PH6xFcnJhjscdn06RJE6WxH7eOcTLD98J+Exw3vleDBg28Xo/fKT7fBL/DC11bGTvgXFA7qKq5ICgoyLE5/MOLdmzeQ9jXqFEjpfH+QruuSJuv7+v9VdHio7S0VGnz9SuaJ7Af39uXfvwc+B8o5GLcY9V+2mXOnDmSn5/vPDIzM6t7SKQaoB0Q2gARoR3UFfy+89GyZUtp0KCBx/ZSbm6utGrVyuP6kJCQCv/XSWoWvtqASPl20K5dO2fV3adPH9WH24Smy2H//v2qr2/fvkonJSUpPXDgQKXbtm2rdJs2bZQ2J8TWrVurvpdeeknp3r17K42uDXQn4Var+d6mu0fE083SsmVLpcPCwpT+5ZdflMaxd+rUyWkfOHBA9V1++eVKm1uxF/qfEOcC4s+5YPLkyc6Ox7///W/Vh6+1ceNGp33mzBnVl5+fr/SVV16pNO5GpKenKz19+nSlTXfk3r17VR/e++jSwbG1aNFC6T179ij91ltvOW10m+A9mJaWpnSPHj2U/u9//6s0fi5z17R79+6qD3+fu3btuuAYvOH3nY/g4GAZMGCA8lOXlZVJcnKyDBkyxN9vRwIQ2gARoR0Q2gApH7/vfIiIzJ49W2bMmCEDBw6UuLg4mTdvnhQWFsodd9xRFW9HAhDaABGhHRDaALkwVbL4mDZtmhw/flyeeuopycnJkb59+8qGDRs8go5I7YU2QERoB4Q2QC5MlSQZqwwFBQUSHh5e3cMgPpKfn+8RX1AZbDu48cYbnSjsH3/8UV2D0dnmsTY8gmoe3bsQOTk5So8ZM0bplJQUpZs2beq0MfIeo87xKC3GZfz6669KY2S5+Vk+/fRT1dezZ0+l8dgvxnTg7d65c2elzVMGDz74oOrbt2+f0ubx46KiIlm0aJFf7YBzQc2kquaC6dOnO/cGHj/HY+A33XST08Z7+3e/+53Sb7zxhtJDhw5VGuOq8Ojudddd57RPnjyp+vB+PH78uNIYS9GxY0el3377baXNeLAOHTqoPjy9UlJSojQel8X3zsvLU/ro0aNOG08I4Zw2adIkEfnfEdxHHnnkomyg2k+7EEIIIaRuwcUHIYQQQlyFiw9CCCGEuEqVBJwS4i/CwsIcP6+Zg0JEpGvXrkp/8803ThurZk6ZMkVpjBcx/Zsinv7PCRMmKG2ekcccA9dee2254xIRj6RJ6JvFvB/2GXoRkX79+qm+7777TmnMV4L+bvRXHzt2TOn777/faaMv3Pbr2hw+fNhp42cgxN9ERUU5+T8WLlyo+jBVu5mNF7P8Llu2TGmMZcISBFdffbXSmFrctP0FCxaoPjMeRMQzngtziOC8hTlIzNw7mMsIS0Dg3NCuXTuvGuOrzDIPK1asUH2YndbOwVRRbJ0Jdz4IIYQQ4ipcfBBCCCHEVeh2IQHNjh07nG1TTCeMW639+/d32l26dFF9R44cURqPnY0ePVrpDRs2KI2piRMSEpw2bpWuXLlSaTx6i9u4uPWKRZnMTJCrV6/2+tp4lK99+/ZK47Yvpm82t6tvu+021YfHCE+cOOG0fUmrTMilsGzZMif1eWRkpOrDlOjvvPOO0zZdiSKe7kR0N5huThFPNym6Fsz3xkqyWM4A3wvdKtu3b1ca3abmPfncc8+pvpiYGKWxTIN5v4qIzJo1S+m5c+cqbbpa8Eg+uqrs+dQX9yt3PgghhBDiKlx8EEIIIcRVuPgghBBCiKsw5oMENL169XLiFNBniWnNv/zyS6eNR04x1gFTE+OxNezv27ev0uZRMzziNmDAAKVTU1OVxqN+N954o9JY6tqMAZk4caLqW7x4sdKYGto8miciHpVEMSZk06ZNTjsrK0v1oV/dPGLMo7a+8dBDDyl96623Ko1HNPEoeF1k4MCB5ZZawO8nLi7OaZulEEQ870+MV8KYLLwfMQW6WV4eY81atGihNJY3wNIKGGe1d+9epR977DGnXdEcdvnllyuNR4ixPzQ0VGkzfgXLNGD6AHsOO3PmjKxdu1YuBu58EEIIIcRVuPgghBBCiKtw8UEIIYQQV2HMBwloBg0a5JRzTktLU31NmjRR2jx/j+ft33vvPaUx1sFbOWkRz5Tn5utjPImZY0DE08+L8SgtW7ZUetCgQUrHxsY6bfzM3lKei3jmL8H8JpiHwMyVgvkOML29mWaaMR++8eSTTyqN5cfN37kIYz5E/nd/l5aWiohn/Bfez6bGEgIY24C5cfB+btasmdJYosDM8zN9+nTVh/MGxqpg7qJTp04pjXEZZnwZfmaMy8BYld69eyvds2dPpdevX1/ue2Mffid2fpLi4mK5WLjzQQghhBBX4eKDEEIIIa7CxQchhBBCXIUxHySgWblypVO/5IYbblB9eJ7czPuB9RuwfDT6fc38FiIiY8aMURrP43/xxRdOG+szdO/eXWmMVUF/9U8//aS0WV9FRMeAfPTRR6ovIyNDacwzgDlG8LUjIiLKvR6/A8wjYD6XMR++gTFGGPNBPGndurUTjzFq1CjVhzVRTD755BOl8R7B7x7rQOE9c9VVVyk9cuRIp71u3TrVFxUVpTTWo8I5DfP24Fxi1qlJSkpSfX/729+UxlpMWK/KHLeIZ5yRmdfHzJsi4hlbZtszYz4IIYQQErBw8UEIIYQQV+HigxBCCCGuwpgPHzH9hVh/wVfwrH94ePhFPxfrbGCu/blz5yq9fPlyH0cXGMTHx0tISIiIeH5G9GmacRlYn6GwsFDpHTt2KD1+/Hil0XeJ+TDMuibo18W8Aeif/uqrr5RGnzPWZzHrsaSnp6s+zElwxx13KI35TdBu0Adt1pHB2BT0CZt5Pnzx9RKRBQsWKI3+euJJTEyMNGzYUEQ8Y2Z++OEHpc04qq5du6q+zz//XOk5c+Yobc83Nlu2bFEa66388Y9/dNr79u1TfXZeEpsJEyYovXr1aqUxVu2+++5T2rznsGZNSkqK0vZ3ZYM5gjBfCcaEmDElmDME68ScOXNGRHSupYrgzgchhBBCXIWLD0IIIYS4ChcfhBBCCHGVOh/zMXjwYKXbtm2rNNYImTZtmtPGvP0VYfrTRTxrfqD2Bp49x7z9eF4cawZgvohApaCgwIlruPXWW1Uf+l6//PJLp43fJfo/x44dq3SPHj2UXrZsmdKRkZFKm/E6WHfDrPUg4nn2f8aMGUpnZWUpbdeysTFzaKANYQwH+m0xtgWvx/P7ZkwJ1oHp06eP0qY/G33bhPibPXv2SFBQkIh41kcaPny40mZOmpycHNUXExOjNMYz4D2G2PENNs8995zTxvgtO0eRDdZEwXxDOE9hjIgZ17Zx40bV98EHHyiNMSFXXHGF0vg3w4xjE9HzK8Z7FRQUKG3Xz2GeD0IIIYQELD4vPrZu3SqTJk2S6OhoqVevnke0rmVZ8tRTT0nr1q2lUaNGMm7cOPnuu+/8NV5SA6AN1H4yMjJk3bp18sYbb8iiRYs8srTSBogI7YCUj8+Lj8LCQunTp48sXLjwgv1z586V+fPnyyuvvCI7duyQJk2aSEJCgpw7d67SgyU1A9pA7aekpERatGjhsd1tQxsgIrQDUj4+x3xMmDDBww9lY1mWzJs3T5544gknZ/2bb74pUVFRsnr1arn55psrN9pLAH37zz77rNKdO3dWGuM4KorT8AUzJqGyYH0BBPM/YBxBVeFvG+jXr58z9hdffFH1Yd0DMx4H6zk0aNBA6dGjRyu9a9cupZ966iml//Of/5R7PcZ4PPDAA0pj/hbcJfj444+9Xm+e7Ue/7Lfffqs05p65/PLLlX7iiSeURh+z6bPGvvXr1yttxouYMUiBOA8EGi+99JLSGMNVUdxBTcDfdpCbm+vEUGCOCoxtuuuuu5z2nj17VB/WbsF5pH379kqbdZxEPOtEmbERkyZNUn2YHwhrIOF7Yf4XxIzjwHwkmNsIY7Yw/gRzcvz4449Km3PNgAEDVB/WdmnZsuUFX9Mbfo35OHz4sOTk5Mi4ceOcn4WHh0t8fLxHMiOboqIiKSgoUA9Sc7kUGxChHdQmaANEhHZAvOPXxYcdVYwZH6Oiojwijm2SkpIkPDzceeBpE1KzuBQbEKEd1CZoA0SEdkC8U+1HbefMmSOzZ892dEFBgV+NDd0o8fHxPj3fW3nl+fPnq77MzEyvr/X+++/79N4mWPoct/MQ3Jb0VnI6ECjPDlavXu0cr8PfJaZNNrde8WgxuitwQsRju3gsDXnllVecNrr28BgzumWio6O9vvZbb72ldMeOHZ02upPwSDCmkUcXD7pMd+/erbT5PWF69f79+yvdokULp43H+i6Fqp4LAgl0s3z44YdKf/31124OJ6Aozw4SExOlcePGIiKSmpqqnoOuE/P7Qxf0lVdeqbQ9v5R3PbpGWrduXe7r4d8ATEP+7rvvKm2mZhcRj2BcLMVgHvNFtyje6z///LPS58+fVxr/Hl177bVKm8fyP/vsM9WHbmt02VwMft35sCeu3Nxc9fPc3FyPyd8mJCREwsLC1IPUXC7FBkRoB7UJ2gARoR0Q7/h18dGhQwdp1aqVJCcnOz8rKCiQHTt2qOJYpPZCGyC0ASJCOyDe8dntcvr0aRVFe/jwYdm9e7c0b95cYmNjZdasWfKXv/xFOnfuLB06dJAnn3xSoqOjZfLkyf4cNwkw9u7dK7GxsbSBOkJJSYn6H60dFJiZmSk9e/akDdRhOBeQi8HnxceuXbuUv8f2zc2YMUOWLl0qjzzyiBQWFsrdd98teXl5MmzYMNmwYYOHf8ot8JgV+sGwXDKWRJ43b15VDOuiMOM8Nm3a5NNzly5dqjTGrvib4cOHV4kNREREOD5ZM/ZBxDNtslmOeubMmaoPfbHoY8e0x+jXxSNwpp8Xj7viljKmX8dYiuPHjyvdq1cvpc2jt6NGjVJ9b775ptIvvPCC0m+//bbSGAv04IMPKm3Gm6Cv2/z9ZWZmquPHdjnvv/71r/L2228H3DxQ3eB3ieBOAKYAMNPeBzpVNRcUFhY6sTI4v915551KHzx40GljjBXGdOARcoyNQLcRHl8fP368087Pz/cYs8k111yjNB65xrg2fC8zJgRfC+OuML0Azp9YWgFTQZhHc3v27Kn61qxZo7SdVh2PEnvD58XHqFGjvOa6qFevnjz77LMe+TRI7SY/P9/xzdIGaj9t27aVhx9+2NFFRUXy8ssvy6JFi0SENlCX4VxALgbWdiGEEEKIq3DxQQghhBBXqfY8H1UN+rgryt9QnaBv0swXgeWPsTQ6nh+fO3eun0dXPezcudP5rOgPRd+t6cPcunWr6sMy2lgCHo/zYXlqO7+AjXmmHv2yGF+C5+8HDRqk9J/+9CelMU7DjEfp0KGD6sOUyY8//rjSmFbfTnNtg7EvdppkEZEmTZqoPkzXbMa9oH+ZaDAGCcF5ylsSrrrKtm3bnHsey0ugrXbq1Knc18GwAdPmRTxTpGNcFcbPmSnFcS44efKk0jiH9enTR2nM37R//36lu3Xr5rQxPhHfa+rUqUrjnIYxH7fccovSWVlZTvv06dOqD+cRO/+QHftxMXDngxBCCCGuwsUHIYQQQlyFiw9CCCGEuEqtj/moSVx//fVKmz519FNibolHH3206gZWjdx4441O6egVK1Z49JmYZZ/R94olt7Gq5ogRI5T+5ptvlEY/sJkPA32lGzduVPrpp59W2sxHIuKZwwVLZZvxFFhDAfORoE8ZfcZmPRYRkR49eiidnZ3ttNF/izUxvF1LfAPjCCqq3VQXKSgocHL+YCzTDz/8oLQZA4LxM1g/BecKzKly9uxZpQcOHKh0Xl6e08b7EWPL6tWrV+5zRUT69eunNN7v5v2MOUTMui8innWfcCyYXwi1WVcGx4V/f+zPbca/VAR3PgghhBDiKlx8EEIIIcRVuPgghBBCiKsw5qMaGTt2rNLPP/98uddirgjM6481a2oLDRs2dOpAPPnkk6oPYyXMugqYBwVjErp06aI0noG//fbblcaz/nZNIxGR5cuXq77u3bsrvXLlSqUr8ov+9re/Vfqdd95x2pgX4PDhw0r37dtX6auvvlpps+bFhZ5v5jsxcwqIiGzYsEHp0NBQp+1LTYe6QNu2bZV+6KGHlMaaUWaqenJhevXq5cRDYX4bMyeSiL4HMa4C6+Zg/AjW4cFaTRgvZt5TOM9gfoxp06YpjbFomHdn6NChSpuxLbGxsapv7969Sj/22GNK4xyHcUYYC2PGsmEcG8bBtGnTRkQ840q8wZ0PQgghhLgKFx+EEEIIcRUuPgghhBDiKoz5cBH0A5txAyIiTZs2Vdr071133XWqr7bGeCCnTp1y/KgHDhxQfeHh4UqbdU8wlgHrrWCMAsbQfPHFF0qPGTNGadPPi3EYJ06cUPrYsWNKY20X9PsOGzas3PfC2B/0V+PnsvMi2KSlpSlt1o0R8Ty/721cu3btKvd9iQbz9KAmFZOVleXUdsEaXWibZlwH5kzB+w9jtjAXTrt27ZTGnBdm3aeOHTuqPoz5GDlypNI7d+5UGvMN4fPNseMch7Eq8+fPVxr/vmBOIKyXY847WDtnypQpStvxIr7UeOLOByGEEEJchYsPQgghhLgKFx+EEEIIcRXGfLgI+usr8vs+/vjjTvv777+viiEFPLm5uY6fF0Ff7J49e5w2+igxZgPzgGzdulXpis7QR0ZGOm3MG1BWVlbutSKesSqTJ09W2vy9i+icBuZnFPHMD/Hqq68q3bNnT6Xxu0T/tXnWH+M4MG7GrAtTVFQka9euFUKqiiZNmjh5PjBeAW11wYIFTvuJJ55QfZhjBfPqYF0njJXA2ArznsLcGVibBfPsfP3110pj/hIcy0033VTuc7FuTMuWLZXet2+f0hjbgp/LzOWBc9zJkyeVPn/+vPr3YuDOByGEEEJchYsPQgghhLgK3S5+ZOLEiUrjljhu9eOxxkWLFin9/vvv+3F0NZOsrCxnKxLTfZvp1EX01uCpU6dUH26H4pGwjIwMpfG9cEvS3HZMTk5Wff3791faTg9v8+ijjyqNqdvx+Z999pnTxnLemOoZ3SpmunQRz2OH+N6/+c1vnDZuoeJWq1mK/Ny5c0JIVdK5c2fnaDnaOWrzSCsedcdjuXicFd0s6enpSmPpetOteujQIdXXu3dvpdH18a9//UvpBx54QGl0m7722mvlXovHdtHlg25qTC+A6dXNY/lDhgxRfVu2bFHadifR7UIIIYSQgIWLD0IIIYS4ChcfhBBCCHEVxnxUAjyq9Oc//1lp9JPhEUz0t2M6XCISExPj+HMLCgpUH8ZSmOWsMb4Gy9hj6WssRY9H3uwjfjbmcVm0Ayw3jb7Wl156SWn8XIWFhUoPHz7caX/88ceqD78D9DFjSn8cW1xcnNK9evVy2p988onXa82xML06qWoKCwudku1Y/iA7O1tp044///xz1RcdHa10aGio0mjnR48eVRrjGszYCJwLsPyBWTJDxLNUPc4zeA+a5RAwfgTLTwwdOlRpTPWwZMkSpa+88kqlzXQDeEQY5xk7/quoqEiVXfAGdz4IIYQQ4io+LT6SkpJk0KBBEhoaKpGRkTJ58mSPFdG5c+ckMTFRWrRoIU2bNpWpU6dKbm6uXwdNAg+MlKYd1G7Wr18vmzdvljVr1sjatWs9Iu1FaAOENkDKx6fFR0pKiiQmJsr27dtl06ZNUlJSIuPHj1fbxA899JB8+OGHsmLFCklJSZHs7Gx1fI/UTqZMmUI7qEMcOnRIOnbsKKNHj5Zhw4Y5LkXaAKENkIvBp5iPDRs2KL106VKJjIyU1NRUGTFihOTn58vrr78uy5Ytc9JZL1myRLp37y7bt2+XwYMH+2/k1cTYsWOdNvru8Uw2gj44TI9bk8nMzKwSO+jatasT14DpvVNSUpQ2YyvQr4s7M/i7wPwXGJ+Tl5endFRUlNPGMvXXX3+91/fG3cIuXboojfEpZp4C9E///PPPSmOMx44dO5TG7xDT9pu5UzD9v+mvnjhxoko5361bNzl27Jjs3r1bWrduXSfmAm+8+OKLSmPqazN3S22jqmzgsssuc2KxMLbCjPEQEcnJyXHamM8C72XUWA4B55kTJ04obea4ycrKUn34e8eYK/wcmBId54Lu3bs7bcxFFBQUpDTGl2Buo65duyqNKdTNHEI4R6H92p/Ll9ivSsV82BOVnWc/NTVVSkpKZNy4cc413bp1k9jYWI9kSDZFRUVSUFCgHqRmQjuou9hBeHZAHG2g7lIZGxChHdQVLnnxUVZWJrNmzZKhQ4c6q86cnBwJDg6WiIgIdW1UVJRaiZokJSVJeHi488D/uZGaweDBg2kHdRTLspzMjnaxOdpA3aUyNiBCO6grXPLiIzExUdLS0mT58uWVGsCcOXMkPz/feeC2MKkZLF68uFLPpx3UXNLT0z1SVF8KtAEiQjuoK1xSno+ZM2fK2rVrZevWrRITE+P8vFWrVlJcXCx5eXlqtZubmyutWrW64GuFhIR4nG0OJHDVPXv2bKeNMR7oY8PS6Nu3b/fz6AKHNm3aOG1/2kFGRoaT52P//v2q7w9/+IPSZl0Fczwinv5Q3MrFfqwHgX5gM9YiISFB9eEZ+NatWyuNOUiwLgXmGDHP9mPOAfQpI506dVIafbd79uxR2rTh6667TvUlJSUp3aZNGzl06JCcOHFCevfuLV999ZXTVxvngsqA8TNr1qypppG4x6XYgEj5dnDkyBHn5xgb8dFHHyk9c+ZMp421WDBXjpmzR8RzLsD3snON2Jj3p5kbQ8QzPuTqq69WGv9mYE0qs36SiK47g//hwxgOHCfaXIcOHZTGucSMo9m0aZPqs2N4bOzaWBij4g2fdj4sy5KZM2fKqlWrZPPmzR6DHzBggAQFBalCWwcPHpSMjAyPhFuk9kI7qP3Yrpbjx49L3759PZKd0QYIbYB4w6edj8TERFm2bJmsWbNGQkNDHb9deHi4NGrUSMLDw+XOO++U2bNnS/PmzSUsLEzuv/9+GTJkSK2Pbq/r5ObmSlBQEO2gjnDs2DEpLCyUXr16SYMGDZyMsWfPnpWwsDDaQB2GNkAuBp8WH3bJ91GjRqmfL1myRG6//XYREfnHP/4h9evXl6lTp0pRUZEkJCTIP//5T78MlgQuXbp0oR3UIeyTbrt371Y/X7lypdx7770iQhuoq9AGyMVQz0JnZDVTUFDg4YOrTtBv5u3ruvnmm5V+//33q2RMgUh+fr6EhYX57fVsOxg/frzjgzWP7Il4/m6effZZp415PJo0aaI0nmnH3yvmx8AFtxlfctddd6m+ivz56M/GYE3MUWLGCmEsCuYJ6N+/v9IYX4L+a6wPYZ7TR/+1mc9ARCeTKi4ultdee82vdhBoc4E3Jk6cqDT649966y2lH3744SofU3VRVXNBp06dnFwVt912m7rmm2++UdqMjcCaJRh7hzFWaOfx8fFKYwyJWX9l5MiRqu+GG25QevXq1Urj/Yf367Bhw5Q2a1KZMVYiIldccYXSZi4iEc/6VQsXLlQa69CYc8vx48dVX3nxjsXFxfLee+9dlA2wtgshhBBCXIWLD0IIIYS4ChcfhBBCCHGVS8rzUZvAWhkffPCB0uiD+/bbb5021gzAOhuk8jRq1MiJ+diyZYvqwxwWDz74oNPGeitXXXWV0hs3blQa/aGY2AizNJp5CjDHANoU1nvAvB4Yx5Genq60Gafx+9//XvV9+OGHSmOtFqx5kZ2drTTGn5gaK9VifImZK8WXmg61kTlz5iiNMUR2sD65dO655x4nLuGnn35SfRgnZd6/WEV3xIgRSuM9g/cE5gUZOHCg0macB47jyy+/VBrnLKy3EhcXpzT+PTJjPjDXxvr165XGz4EJQbE2zJEjR5Q2Y19w3sBr7XkG/156gzsfhBBCCHEVLj4IIYQQ4ipcfBBCCCHEVep8zMff//53pYcPH650WVmZ0m+++abTZoxH1WPGEphn90VEvv76a6XNc+5YO+L1119XesaMGUpj3MULL7ygNOYJMeM48LkDBgxQGv2+48ePVxrrN6Df1KwAumrVKtWHnxNjU9B+z58/rzTWyzF9zu3bt1d9zZs3V9r0CftS06EugLkgMK6A+M66deucnByYQwJrcJn3GNYkQrvGXByHDx9W2q7Sa4O/S/MexLiojh07Kj1//nyl8d7/8ccfvY7VnBtwPpw+fbrSu3btUhprt5w9e1ZpzGfy66+/Om2MQ8N4ETvOrcpquxBCCCGEVBYuPgghhBDiKnXO7YLHILEyL/L8888rjW4aUrU0btzYOWrbr18/1WemNRbRLoeK0qnjliUeecOUy3i0z3QH4biwjDYej8Xy1AcOHFC6e/fuSpvH3DCN96uvvqr0pEmTlEY3zLvvvqv0oEGDlM7Ly3PadpnsC41DRB81xy3cugam8yf+Z+TIkU71ZJzH0TbNFOrXX3+96sN7HVOzm0fIRTxdJzh3mPfkM888o/pw3sGSBThPma4OEZFTp04pbZZiwCO/KSkpSkdGRpb7XBHPY8HoMjl58qTTxhT16OYy06tfLNz5IIQQQoircPFBCCGEEFfh4oMQQgghrlLnYj6wFPDo0aO9Xv/4449X5XBIBZw7d05KS0tFROTTTz9VfXhErnHjxk4b/bTvvfee0hjDkZqaqvQvv/yiNB6PNY+ZYoluM25CRGT37t1KY5l4TNOPsSwTJkxw2p999pl4A33MGLcxdepUpfG4snk0F/3NmPrZTNeMR3gJ8Tfp6elOaQK0N7MEgYhIs2bNnLYdJ2KzZ88epfE4a+vWrZXGY6UYW/Hyyy+X+1yMHcP06jgXREVFKY1Hb81j/evWrVN9eKwe56F27dopjfOWmapARKelx5gmLHXRu3dvEeFRW0IIIYQEMFx8EEIIIcRVuPgghBBCiKvUuZgPUrPYsmWLkxb4zjvvVH3oXzR9lnbpbZu+ffsqjWmQx40b57Uf3ys5Odlpo98Wy9ij7xVjKb766iulMQ7JLJWN5+0xtgVjQvr06eO1H1Omp6WlOW38HJiu2fzcZt4TQqqCZs2aOTEfeD9i+XiMdTLBWLGK7keML8HnL1682GknJCSovn379nl9bYxHwXw5MTExStvxbyL/F2dhs2bNGqXNuDQRz+9ozJgxSpsxHiI639AXX3yh+rAEhD3HMeaDEEIIIQELFx+EEEIIcZWAc7tYllWlr49baJhKl1wa/v692a9nvi5u6WEqX28pvvFa3JLEY2r4WvjeppsBX7uicaKLAjU+37TZil6ros9Z0fXmti724b1jvpbd9qcdVPVcQKqGqpoLTHus6J7z5gbEe7uiewRfGysWm9fja1d0v2Kqd1/uT3wvvD9RVzQ34Oc0f484LnMc5nPt97gYG6hnBdgdfuTIEY+88STwyczM9PBPVgbaQc3En3ZAG6iZcC4gF2MDAbf4KCsrk+zsbLEsS2JjYyUzM1PCwsKqe1g1goKCAmnbtq2r35llWXLq1CmJjo72CEKqDLSDS6e22AFt4NKpLTYg8j87OHjwoPTo0YM24AOBbgMB53apX7++xMTEOO6QsLAwGpuPuP2d4WkPf0A7qDw13Q5oA5WnptuAyP/soE2bNiJCG7gUAtUGGHBKCCGEEFfh4oMQQgghrhKwi4+QkBB5+umnPRKjkPKpjd9ZbfxMVU1t+85q2+dxg9r2ndW2z+MGgf6dBVzAKSGEEEJqNwG780EIIYSQ2gkXH4QQQghxFS4+CCGEEOIqXHwQQgghxFUCdvGxcOFCad++vTRs2FDi4+Nl586d1T2kgCEpKUkGDRokoaGhEhkZKZMnT5aDBw+qa86dOyeJiYnSokULadq0qUydOtWjZHKgQxson7piAyK0g/KgDRCRGmwHVgCyfPlyKzg42Fq8eLGVnp5u3XXXXVZERISVm5tb3UMLCBISEqwlS5ZYaWlp1u7du61rr73Wio2NtU6fPu1cc88991ht27a1kpOTrV27dlmDBw+2rrrqqmoctW/QBrxTF2zAsmgH3qAN0AYsq+baQUAuPuLi4qzExERHl5aWWtHR0VZSUlI1jipwOXbsmCUiVkpKimVZlpWXl2cFBQVZK1ascK45cOCAJSLWtm3bqmuYPkEb8I3aaAOWRTvwBdoAsayaYwcB53YpLi6W1NRUGTdunPOz+vXry7hx42Tbtm3VOLLAJT8/X0REmjdvLiIiqampUlJSor7Dbt26SWxsbI34DmkDvlPbbECEduArtAEiUnPsIOAWHydOnJDS0lKJiopSP4+KipKcnJxqGlXgUlZWJrNmzZKhQ4dKr169REQkJydHgoODJSIiQl1bU75D2oBv1EYbEKEd+AJtgIjULDsIuKq2xDcSExMlLS1NPv/88+oeCqkmaAOENkBEapYdBNzOR8uWLaVBgwYekbi5ubnSqlWrahpVYDJz5kxZu3atfPrppxITE+P8vFWrVlJcXCx5eXnq+pryHdIGLp7aagMitIOLhTZARGqeHQTc4iM4OFgGDBggycnJzs/KysokOTlZhgwZUo0jCxwsy5KZM2fKqlWrZPPmzdKhQwfVP2DAAAkKClLf4cGDByUjI6NGfIe0gYqp7TYgQjuoCNpAzfgMVU2NtYNqC3X1wvLly62QkBBr6dKl1v79+627777bioiIsHJycqp7aAHBvffea4WHh1tbtmyxjh496jzOnDnjXHPPPfdYsbGx1ubNm61du3ZZQ4YMsYYMGVKNo/YN2oB36oINWBbtwBu0AdqAZdVcOwjIxYdlWdaCBQus2NhYKzg42IqLi7O2b99e3UMKGETkgo8lS5Y415w9e9a67777rGbNmlmNGze2pkyZYh09erT6Bn0J0AbKp67YgGXRDsqDNkAsq+baQT3Lsiz39lkIIYQQUtcJuJgPQgghhNRuuPgghBBCiKtw8UEIIYQQV+HigxBCCCGuwsUHIYQQQlyFiw9CCCGEuAoXH4QQQghxFS4+CCGEEOIqXHwQQgghxFW4+CCEEEKIq3DxQQghhBBX4eKDEEIIIa7y/wBmEXVAZ7uqlgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACbCAYAAADC4/k2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAArx0lEQVR4nO2deXxM9/7/36GJNWIPQYqWWtrSUjtt7ZSW6qZXubooDS26fdHqctumentRrm4oXezatISqNlqqgitoxXYpJSpiKQkhieX8/vCbcz/v1yQTkcnJzOT1fDzy8HnlM3PmzMz7fPJx3luQZVmWEEIIIYQ4RLHCPgFCCCGEFC24+SCEEEKIo3DzQQghhBBH4eaDEEIIIY7CzQchhBBCHIWbD0IIIYQ4CjcfhBBCCHEUbj4IIYQQ4ijcfBBCCCHEUbj5IIQQQoijFNjmY9q0aVK7dm0pWbKktGzZUjZu3FhQL0V8FNoAEaEdENoAcSeoIHq7LFiwQAYOHCgffvihtGzZUiZPniyLFi2S3bt3S9WqVT0+99KlS3L48GEJDQ2VoKAgb58a8TKWZcnp06clIiJCihX73142PzYgQjvwNwrCDmgD/gXXApKTDeT0YK/TokULKyoqytYXL160IiIirOjo6Fyfm5SUZIkIf/zsJykpyWs2QDvw3x9v2gFtwD9/uBbwB20gO64RL5OVlSUJCQkyZswY+3fFihWTzp07S3x8vNvjMzMzJTMz09YWm+z6JaGhofY4rzYgkrMdNGrUSIoXLy4iIuXLl1fPuXjxotLXXnutPT5x4oSaCw8Pz/F8RURSU1OVDg4OVjosLEzpDRs22OM2bdqouSNHjijdqVMnpffs2aP0wYMHla5fv77SsbGx9vj5559Xc3/++afSy5cvV7pt27ZK79u3T+n169crHRERYY8rVqyo5nr16qX0d999Z4/Pnz8vMTEx+bIDrgWBQUGtBdHR0VKyZEkREZk3b556TvPmzZU2/9ddqlQpj+dbpkwZpV3rjYuVK1cq3bp1a6UvXLhgj1u2bKnmZs6cqXSrVq08nkuDBg2UXrt2rdLm9ZmQkKDm6tSpo3R6errSp06dUhrfZ4kSJXI810qVKqm5lJSUbI917tw5GTVqlNv6mh1e33wcP35cLl686LbYh4eHy65du9weHx0dLa+99pq3T4M4jHk7NK82IJKzHRQvXtw27Guu0eaKt2BDQkLsMW4ezDkR9wsN5/H5+HjzXHI7VunSpZV2LaA5PR7nzdfCY+HCiued22vhAmS+Fh4LXxuPJZI/O+BaEBgU1FpQsmRJ295xLcBr0Nx84Fx2xzXxdE1kdzzz8XiN5HY9Ivh8fC3z+bmtUeamSCT3ax/nzbUFN2i47uCxrsQ9VujZLmPGjJHU1FT7JykpqbBPiRQCtANCGyAitIOigtfvfFSuXFmKFy/udlsmJSVFqlWr5vb4EiVK5LozJf5FXm1AJGc7iIiIsHf45q1YEZFatWopbd5WPH/+vJpr2rSp0uj6uOGGG5ROTk5WGl085q3XNWvWqDm8tTp79myl+/fvr/Tx48eV3rx5s9KNGze2x0uWLFFzZ8+eVfruu+9WGm/79u7dW2m8XR0ZGWmP0RX10UcfKR0VFaXOY+HChWqeawHx5lqwZcsW+3/n7dq1U3Noq2lpafY4t/+1o0vh6NGjSp87d86jvvPOO+3xwIED1dy9996rNLoj0KWD13NGRobS27Zts8flypVTc7hm4Z2RW2+9VelDhw4pjS7ZAwcO2OO//vpLzZluZxGRHj16iMiV3fFw4fU7HyEhIdKsWTOJi4uzf3fp0iWJi4tz85WRwIQ2QERoB4Q2QHLG63c+RERGjx4tgwYNkubNm0uLFi1k8uTJkp6eLoMHDy6IlyM+CG2AiNAOCG2AZE+BbD4efPBBOXbsmIwfP16OHDkiTZs2lRUrVrgFHZHAhTZARGgHhDZAsqdAiozlh7S0NLe0RuL7pKamuvkg84PLDp577jnb/7tu3Tr1GPQLd+/e3R6jXxYjv+fMmaP09ddf7/HxN910k9I///yzPb7xxhvV3M0336w0+lbRr5tbNoxZDRL912XLllW6SpUqSmMU+n//+1+l8TsbMGCAPf7hhx/U3O7du5WuUaOGPc7KypLp06d71Q64FvgnBbUWvP322/a1gSmopi2KiNStW9ceY0zV4cOHlcZiWHgsjMHCmJB69eqpczXBVHe8tk+fPq00nisWYbt06ZI9TkxMVHMPP/yw0m+88YbSGCfz7rvvKn3bbbcp3aRJE3uMnxHG6/z4448icnndXL9+/RXZQKFnuxBCCCGkaMHNByGEEEIchZsPQgghhDhKgQScEuItkpOT7dz+6667Ts1hKWPT34rxIFiG/JVXXlEafciY87569Wqlu3btao+xjPHixYuVfuihh5RetWqV0uhDxnLrZnzKV199peawjDzWFMFS7Rjbgr7cGTNm2OOsrCw1h/5n03eOdVUI8Tbbt2+31wIMVsVrqEKFCvb45MmTag5r9uC6gpixZNm9lhkr8cUXX6g5M0ZDxL1WEa472ELijz/+ULpjx472eNiwYWrObHcgItKlSxel8X1jzR+MPTNjNjDGA8vAu2JZMjIy3Fo25ATvfBBCCCHEUbj5IIQQQoij0O1CfBrzdj52WcXUW/NW7K+//qrmMHUWj7Vjxw6lzTQzEZGGDRsqbaasLl26VM21b99eaUyt9dSYSkTkvvvuU3rChAn2GFP5atasqXTPnj2VxrLxW7ZsURqbZpkpylgmHl1XZpa+j2XskwCkefPmdml07N6M16dZbh1TSDHd3CwjLuLu0sFrBNcKM5Ue00uPHTvm8bW+/fZbpV9//XWlb7/9dqVnzZplj3EtQFcxpvxjV9tu3bopjS4j09XcrFkzNWd21xX531qcF/cr73wQQgghxFG4+SCEEEKIo3DzQQghhBBHYcxHAVK7dm2lhwwZojT69jEN0hPYEn7cuHFKY7qnv1K3bl07jQvTXbGsuSc/7y+//KI0ljXG0sToU8Y0NTMlDn3EmKK6bNkypbHk8iOPPKJ006ZNlf7+++/tMbYmx/e5adMmj7p69epKHzlyRGkzNRf91WfOnFHaLH2O75kQb/Pbb7/ZqbadOnVymzPZuXOnPcbYB7xeMXYC01uxvDrGP+zatcsem2uQiE7JF3GPwRo0aJDS2NIAU3HN6zcpKUnN9erVS2ksI79//36lMZYFn2/+jcH4kJkzZyrtSuvNyMiQlStXypXAOx+EEEIIcRRuPgghhBDiKNx8EEIIIcRRinzMB8YNYK4z1mQwYweio6PVHMZwPP/880pj+dopU6YovW3bNqXNMr733nuvmnv00UeV/uyzz5RGH/ySJUvEH9m0aZPtm0xOTlZzPXr0UNrMt8eYjjp16igdGRmpNObIm2WMRcStZLBZAh3jKJ544gm392CCcRorVqxQGm3OrEvQoUMHNTdx4kSlMa4Ia4hMmjRJaWyzbdY3WbRokZrDz9S0Z5ZX11SuXFnp5557zuPj+/XrpzSW/A4KCrLHWK5/wYIFHo+Nvn3zWCL+891dc8019nvB+C9sM2CWV8e6HBjTgbVyypQp41Hj53nLLbfY461bt6q5xo0bK+2KX3MxderUHI8lInLnnXcqbdYUwvLoGGtx/PhxpWvVqqU0/o3AmC6zrs/27dvVHP7ddH2mWD7eE7zzQQghhBBH4eaDEEIIIY7CzQchhBBCHCXI8rGmDGlpaap+gLdBXxX6ybB1cH7A2hIjRoxQGv2DeQF99RirgrnrmG+O9R3yS2pqqltfg/zgsoOxY8faflL8rh5//HGl//rrL3v89ddfqzkzHkTE/fPDnihYGwBz6s04jr1796q5m266SWmMAXn11VeVxrb22AK8bNmy9hhrFGB9A6x/4Kn9t4jI3LlzlTbjOFx9NFyYfnQRkc8//9weX7x4Ufbs2eNVOyjotcCb9O3bV+n58+crjXEC+L3Mnj1b6d9//13pZ555xh5jm/Zbb71VaaxJg3Vj7r77bqWxn0h+Kai1YMKECfZagPEJGLNlxi5hq3nsWYSxTHj9YV0efC0TjEvDmiAYC4THwjohGK/Sv39/exwbG6vm8PrEtQJ7u+C6g3+PzPeNtYrwM3SRmZkpH3zwwRXZAO98EEIIIcRRuPkghBBCiKNw80EIIYQQRylydT7Qt48xHliTAWtJmD0/0H/+7bffKo11P86dO5e3k/UA1vxHX/+6deuUnjx5stJYK8BXWbdune0vR9/r+++/r7RZG6FBgwZqDutduHoRuPjPf/6jdFRUlNJ33HGH0qGhofb4tddeU3OmX1ZE5KuvvlK6TZs2Sl977bVKY00Ss8cC1jcwz0PEPdandevWSuNnhjZpxgLhsbds2aJ0y5Yt7fGFCxfc+g0FOu+++649fvLJJ9Uc2tvbb7+t9Mcff6z0gQMHPL6W2d/nk08+UXNYtwPBuhYfffSRx8f7Kunp6XY8S3BwsJrDGC2zB1JucRTY1wnXTqx3g/FiZg8vrM/Svn17pc2aPSLu8SbYjwWvT/MaxL9dZr8pEXGLl8J6JVhfCPvMmDF22BcGa4y44kkwHskTvPNBCCGEEEfh5oMQQgghjsLNByGEEEIcpcjV+UCfOfb4wNgJzMM24w6GDh2q5jA+BP1/6HssSEx/tIh7jwCMn8jIyMjX6xVUbn+JEiVsn/bIkSPVYxo2bKh0TEyMPUZfaa9evZTG94u+V7O2hoh7zRYz3gF7sWBNlenTpyuN/RvMOCIR7a8WEbnrrrvssae8fxGRefPmKY02ibEF+DmY8QPY8wNrw5h1QDIzM+Wjjz4K6DofLVq0UPqHH36wx+hPxzggb9bSeOGFF5TGmCKsO+M0BbUWvPrqq3adj0aNGqnH4DVWo0YNe4x1TrBPSW51enBtwPoZZnwP1pFas2aNx+dirY2ZM2cqbdZ3EREx/1xjjJVZ50jE/X3g3z6MWcRzNe0d+8RgTJOrv1VGRoZER0ezzgchhBBCfI88bz7WrFkjvXv3loiICAkKCnKrJGlZlowfP16qV68upUqVks6dOxe5KPiiDm0g8ElOTpYlS5bIzJkzZcqUKW7R8LQBIkI7IDmT581Henq6NGnSRKZNm5bt/DvvvCNTpkyRDz/8UDZs2CBlypSRbt265fu2PvEfaAOBz4ULF6RKlSpuKcguaANEhHZAciZfMR9BQUESExMjffr0EZHLu9yIiAh59tln5bnnnhORy/6/8PBwmT179hXVlvC2nxdzstGvtWTJEqVd7+VqqF+/vtKY0+0k6J/GGiSPPfaY0ngHK6+4fHzesAGR/9nB4MGDJSQkRETce1agv9T0cU6dOlXNmXETIu5xF1jTYsqUKUpjPxazlw4upHjsY8eOKf3ZZ58pjXFGdevWVbpWrVr2+MKFC2pu165dSps9LUQux2KYDB48WGmzP4uIyOLFi+0x1g3AeiSupWPChAnSq1cviY2NldTUVAkNDfWqDfgK2K/l/vvvt8cLFixQcwMGDFA6L/UPsuP//u//7DHGk2DvEuzd4jQFtRZMnDjRjjMy421E3K/fxo0b22PsCYV/EzA+zLXeuMD4BuzPYsZ/jR07Vs1hrBlej1hf6KWXXlLavB5FdJ0qfM9YjwSvX6wHg71cMG6pX79+9vjNN99Ucx06dFDa1Vfm3Llz8sILLzgf87F//345cuSIdO7c2f5dWFiYtGzZUuLj47N9TmZmpqSlpakf4r9cjQ2I0A4CCdoAEaEdEM94dfPhiobHiN7w8PAcu6hGR0dLWFiY/WP+L4/4H1djAyK0g0CCNkBEaAfEM4VeXn3MmDEyevRoW6elpXnV2HLzKn355Zdee63CdLMgGzduVBrLapu3cUXy73bJLznZQdOmTe1brXhLE9PQzBLUmGKKrhBMpf3HP/6h9NmzZ5U+ePCg0qZba86cOWoOb89369ZN6UmTJimNqbV4S9m87ZuYmKjmsFQ7lkDHW8RvvPGG0nj71LzVimm7mHKI6Y75paDXgvxSpUqVHOdOnDihdH7dLMgjjzxij13tBlx88MEHXn2twiYnO9i7d6+d1o4uBEwrNUskYPpr1apVlU5PT1caU8yxFf2hQ4eUvuGGG+wxljzHY+G6gneAsESC6dIR0es0unNdrg8X6OLB1iF4LqaNiYgsW7bMHuNniGUOfv/9dxHJW8kGr975cH3wuJimpKS4fSkuSpQoIeXKlVM/xH+5GhsQoR0EErQBIkI7IJ7x6uajTp06Uq1aNYmLi7N/l5aWJhs2bHBrcEUCE9oAoQ0QEdoB8Uye3S5nzpxRFeH2798vW7dulYoVK0pkZKSMHDlS3njjDalXr57UqVNHXn75ZYmIiMhXFgnxfX777TeJjIykDRQRLly4kG3n0KSkJGncuDFtoAjDtYBcCXnefGzatEmV6nb55gYNGiSzZ8+WF154QdLT02XIkCFy6tQpadeunaxYscIui1vYYOS0GScQyKC/z/Tte4P27dsXiA389NNPdvvsLl26qDnzf1Qi2g+JranRT/7KK68ojemLrVq1UhpjLSZMmGCPsUX5uHHjlMb26Xgu+HxsbW2mGKN/GuND8Ng//fST0h07dlQa08PNNtvYeuDo0aP2+NSpU+qxP//8s4iIvPXWWzJnzhyfXwe8DaZ9Y0xCbrFn+HyMQTLjCv7973+rOWyNXtgU1FpQunRpO+ajdOnSas4spy6i4x+wZDmmjKOdu+IXXPzxxx9KY4uChx9+2B5j7I95zYi4X2+utc0FloLHNGAz7sjMIhJxXw/xfWFMIqZkL126VGkzFRrTcmNjY5V2xWZhnIkn8rz5uOOOOzxeSEFBQfL66697tZcB8X3MvG7aQOBTqVIltUG7cOGCbNq0yQ5+pA0UXbgWkCuBvV0IIYQQ4ijcfBBCCCHEUQq9zofTZGVlKe2p2E0gcebMGaWxhLdZtwJrhBQmp0+ftv2i6O4z/eAi2m9ulr4WEZk4caLSb731ltLdu3dXGv2jmC74zjvv2OOdO3eqOfQRY+tqbMKGMR5YGyA5OTnH87r55puV3rZtm9JYrhljV2bNmqW0WRAK40uw7HRRAz8Pk6FDhyqN3+Hbb7+tNNZfwe8J7dcEy4Xno0OGX9GkSRM71iMiIkLNuWJBXJixFub1IyKSkJCgNJY4x7URa1z07dtXabOmC8Z0PProo0o//fTTSpvxIiLutTtwbTHjVXAOXxuv9dq1ayuNdT6wdofZiqRevXpqDkvOu2IKsf2DJ3jngxBCCCGOws0HIYQQQhyFmw9CCCGEOEqRi/koqmAOOPbpwPoQvsKDDz5o+3lnzJih5rCGhdlCesOGDWqud+/eSnft2lXphQsXKo2fD1ZkNHsyrFq1Ss099dRTSmMMDfpisWYB9lgwj49zWM+kf//+Sp88eVJpjBmJjo5WetSoUTmeFzYIQ196oDNs2DClhw8fbo8HDhyo5kaMGOFRY+wZamTt2rX2GO2tqLBy5Uo77ujPP/9Uc82aNVPa7MeC9TCwpgpeI7t27VIa10YzPk5Erx3NmzdXc1gzpF27dkpjHAbGn2C9l3Xr1uV47OrVqyuNMRwYK7Rjxw6lMabLvL6xHw7GsWH8yZXAOx+EEEIIcRRuPgghhBDiKNx8EEIIIcRRfNPR70WwxwLqosI999yjNNYZ8NXP5cSJE3Z9BYylwDgWswcKvh/s54A58dgHYerUqUrfeuutSj/55JP2GPPlsfYGgrVlQkNDlUafs6t/koj2/YtcbuJlcscddyhdtmxZpdH/bdYoEBF59tln7fGbb76p5v766y+lzc8wKyvLrX9QoIFxBmPGjLHH2J8Ha0Mgpq2KiIwdO1bpNm3aKG3697HfR1GhQoUKdj0PvObQNpOSkuyx2YtMROTgwYNK49qA3zNen+b3LqKvMezVEhYWpjTG62AvF1y38FxLlSpljzHmDWufHD9+PMfzFNExciLusS/33nuvPcZ+NsuXL1e6YsWKIpJ77JIJ73wQQgghxFG4+SCEEEKIo3DzQQghhBBHCfiYD+x7gH4u9Af++OOPBX1KPgH2nkDtK2zevNn2o2IOvNl7QETk+uuvt8fYG8P0lYq4+yw//fRTpbEXx9dff6206bvFXH2spXHo0CGl9+7dq7TZml7EPR5n9+7d9hhrFDzwwANKm/VHRNzjT8qUKaM01gL49ddf7XGvXr08HrtSpUr2ODMzU4oy2M8HNXL33XcrjTEeyNy5c6/mtAKK8PBwKVmypIi4x0aYMR4iOiZr8+bNag6fu3XrVqUxvgtjbMx1RkTH7+B1MG/ePKWx1wvW6sDYM5x3vX8R97oc+LcuLS1NPIHPxzXS7NOSkZGh5jC+pFatWiJy+bPC95wTvPNBCCGEEEfh5oMQQgghjsLNByGEEEIcJeBjPpDixYsr3bhxY6UDNeajU6dOSmPcAfYf8RWCgoLsOIctW7aouSFDhiht5r2bcRIi/8tDd4H1MrCHAvbiGDdunNJmn4S2bduqOfT3Y8wHxh2hvxrrZZi+XIwVQB8zHnvWrFlKY4wH1gowY0pM/7KIyLJly5Q26x2gT5h4xqyhkB1oE9iHoygSHx9vx39hnR7UZhzHsWPH1JwZqyQi0qNHD6WxP8t7772nNPZnMWuMrF+/Xs1hPNg333yjdJUqVZSuW7eu0thXZsWKFfZ48ODBag7rdCBYXwivb4wBMftjYRya2WNGRKRjx44ikrd1gHc+CCGEEOIo3HwQQgghxFEC3u2C7oSEhASlsez4Bx98oDSWQfYX8HZdo0aNlE5NTXXydK6aSpUq2SWV8Xbo9u3blTZdJVjuukGDBkpjijW6oXB++vTpSpslz3/55Rc1d9NNNyldoUIFpdGm8JY6lkjfs2ePPcYSyZj+iqm0mLr3/PPPe5w3P0NX+pwLvFZMN5ivpmr7CtiSHFPBkZkzZyp9+PBhr5+Tv9G8eXPbVZCYmKjmXC0YXJjudHRNYslzdJPecMMNSuP1jK4V87vENHu89jGlGsurp6SkKI2uFLOVPZaYRxtD9y2+D3ytcuXKKV26dGl7jGm46N51uZ7yknLPOx+EEEIIcRRuPgghhBDiKNx8EEIIIcRRAj7mA33RixYtUhrLaJs+NRF3/56/MGDAAKVdqVAuXnzxRSdPxyv06dNHafzuPvnkE3uMvlVMK8NSxJgShynZt99+u9Kmn9gsQyzinpb70ksvKY1+YWzZbZY4x3Nt0aKFx+cePXpUaSwVHRcX5/Hx1atXt8dmrImIu1/dTF/OSyvtogDGXMXExCiN9oit02fPnl0g5+XP1K1b145DwFgKTPE0r0+Ma8JyCrgWjB8/XunPP/9caTPeS0Sn9eKxMEYLU+WxXUJycrLSmCZsgusOloFHzBgOEfdYF1xLOnfubI/x70X79u2V3rVrl4jkLfaLdz4IIYQQ4ih52nxER0fLbbfdJqGhoVK1alXp06ePWzGnjIwMiYqKkkqVKknZsmWlX79+blG1JPDA/yXTDgKbPXv2SGxsrMyZM0cWLFjg1uRPhDZAaAMkZ/K0+Vi9erVERUXJ+vXr5fvvv5fz589L165d1e3YUaNGydKlS2XRokWyevVqOXz4cK7V/Ij/07dvX9pBEeLEiRPSoEED6dmzp3Tp0sW+3UwbILQBciUEWeikygPHjh2TqlWryurVq6VDhw6SmpoqVapUkblz58p9990nIpd9QQ0bNpT4+Hi31uHZkZaW5paH7U0wPxlbFp8+fVppbEmeW5viwgJztL/88kulsaQwxkR4ozx2QdjBN998Y9eumDFjhnpMnTp1lDbjWhYvXqzm0AePdoB1T7DWhllCWUTk1KlT9hhz27H+CMaTYJn4hx56yONrmY+vV6+emlu4cKHSWJ8E634MHz5c6bFjxyr97bff2uN33nlHzU2cOFHp6667zh6fOXNG4uLiZPny5dKjRw+/WAsKEixVnZs/fvny5Ur37t3b6+fkFN60AZH/2cGIESPsmj94HXz88cdKP/nkk/b4wIEDag5jJbCGBa6lZkyHiHtdngceeMAe79+/X81hLA+uM+Z5irj/fcE6Pua6ZLZ4EBF58MEHlf7ss8+UxjiZGjVqKL1v3z6lXd+ZiHudI7RvV+2i8+fPy8qVKyU1NdXtc0TyFfPh+iBdgWcJCQly/vx5FajSoEEDiYyMdPsQXWRmZkpaWpr6If4J7aDo4lrQXQscbaDokh8bEKEdFBWuevNx6dIlGTlypLRt21ZuvPFGEbncuCYkJMTtf5Xh4eFuTW1cREdHS1hYmP2DVRWJf9CqVSvaQRHFsiz7f4OuSrq0gaJLfmxAhHZQVLjqzUdUVJQkJibK/Pnz83UCY8aMkdTUVPsHuzkS/8BMc70aaAf+y2+//SZnzpzJ93FoA0SEdlBUuKo6H8OHD5fY2FhZs2aN1KxZ0/59tWrVJCsrS06dOqV2uykpKVKtWrVsj1WiRAnbj+cEpq9e5PImyuSLL75QGmMHTP8eHstJ8H8TWL8Eff+vvfaa0t5ugW76D71pB9999539+9atW6s59L1OnjzZHuPng30NsJW8666NC+ytgXntZp2Gr7/+Ws2h7/Xll19WGtt/T5s2TWnsLbFz5057jLU2sGcNxpdg3v3IkSOVRt/5m2++aY/nzZun5rCFd2JiosTHx8vRo0ela9euql24P6wFBQnWc0AwTuif//xnQZ5OoXA1NiCSsx0kJSVJcHCwiLjXwwgKClLaXJuxto1Zy0ZEpEOHDkpjPQyshfP000/n+His4YO1iY4fP640tqbHWhu48TLr6TzxxBNqDv9W4R0jrHeC8SldunRR2ryxYMZ3ibjH0LlcbRkZGW6xKDmRpzsflmXJ8OHDJSYmRlatWuUW8NesWTMJDg5WX/bu3bvl4MGDbn84SOBCOwh8LMuS+Ph4OXjwoHTv3t2tmBJtgNAGiCfydOcjKipK5s6dK998842EhobafruwsDApVaqUhIWFyWOPPSajR4+WihUrSrly5WTEiBHSunXrK45sJv5JSkqKBAcH0w6KCF999ZXs27dPOnXqJMHBwXY2x7lz56RcuXK0gSIMbYBcCXnafLjazWMa4qxZs+Tvf/+7iIhMmjRJihUrJv369ZPMzEzp1q2bvP/++145WeK71K9fn3ZQhHDdLjZTc0Uub0qGDRsmIrSBogptgFwJ+arzURAUdm7/448/rjTmj588edIejxo1Ss2hr8tTRHdeQV/ghg0blEbfPwYCP/zww147l+y4krzuvOCyg7p169r9D7D2AfqNzRgQ7J2BVRWxh8/q1auV7tatm9JYyfeZZ56xx2gHGE/z7LPPKo11AzDmA2MrzPgA7Dlz9uxZpdGPizFNaM/oU37rrbfs8c8//6zmDh06lON5nT9/XmJiYrxqB4W9FuQHrIvw6KOPKv36668rjTFZ/kxBrQWjR4+2Y0GwVgf2QDFjuPDaxZgPXLfbtm2rNPZAadKkidKHDx+2x1j/AtchXMcbN27s8Vwwdmjv3r32ODY2Vs01a9ZM6aVLlyqNPWmwKnHTpk2VNt8Xrmm4brhi/rKysuTjjz8u+DofhBBCCCF5hZsPQgghhDgKNx+EEEIIcRTGfADoU8fYgFmzZtljTDXG3H0zJ1vEPQd87dq1V3xeAwcOVBrz4LGXy/jx45XGvHhvU1B+3lq1atkxH+iTdPUTcGHWrIiJiVFz999/v9KuUvAu8HvHugEYM2L2bPjXv/6l5rCGCPqjMZYC4wFWrVqltFlLB/3R+L3mFneEfWVcgYHZnVu/fv3UnOkDxnNJT0+Xu+66izEf/x/sEYW1IzCuB/tw+DMFtRb079/fjqnA69dVVdWFuTZgvALGd2HsWEREhNL4fFzXzfg7rK90/fXXK431MTB2Au0dizea83geAwYMUBpjyzD+BJ+Pa54Zv5JboTdX77CsrCyZPn06Yz4IIYQQ4ntw80EIIYQQR+HmgxBCCCGOclW9XQIZjCNYv3690g0bNrTHWKXvscceU/pvf/ub0lhSOC8lhrEWxHvvvae0mf8dSLRp08b2PVauXFnNdezYUenly5fbY4yRwdgH7LGwfft2pbHnSffu3ZU+cOCAPcbvokWLFkpv27ZNabMHjYi7TxljREw/McYVYWtyjCfBmCX0SScmJipt9pX59NNP1VzPnj2VnjRpkj3GHjJFjUceeUTpUqVKFdKZBC7lypWzY90wRuuXX35R2qzH1K5dOzWHPU+w7xMe2+xZJHK5o7vJXXfdZY///PNPNYexPhhvgjEh2C8Me0qZcRm4bmDtk2uvvdbja+G6hHGEZs2gMmXKqDl8n66YurNnz7rVuMkJ3vkghBBCiKNw80EIIYQQR6HbJR+gSwY1tjwmeWf//v2228HVttnFrl27lDbT7/CxmKaL31WvXr2U3rhxo9KbN29WGtPSTNBF9vvvvyuNpfDx2OhaMdtZL1y4MMc5Efe0QUx3w9ulphtRRKcU43P37NmjtNkmHdP2ihr4vQwaNEhpdHeRvFOqVCnbNeBKv3eB13f9+vXtsdlVV0Tk6NGjSudWpnzcuHFKv/jii0qbHZ3RzYLp6ZiCHRwcrPSJEyeURnfw8OHD7fG+ffvUXEJCgtLo/sUy8+b1K+JensB0NZturOzOy5Xin5d1gHc+CCGEEOIo3HwQQgghxFG4+SCEEEKIozDmg/g0bdq0sf28mC5rpruK6JgPjIV4//33lcbS+JjeiilvmMJ6zz332GP0vWLqXteuXZXGGJDbb79daYytMFvZY7oxllfH8uuYjof+7NTUVKXPnTtnjzFVHFtwnzlzxh4X9VRbjNPp3LlzIZ1J4FKlShW7RDi2rjfjLkREli1bZo/T09M9HhfT7jHeC9tiYHzJDz/8YI8bN26s5jAuDa9fXDt27NihdGRkpNLm+/z+++/VHL62WfYdnyvivg5heXYzNgbP45ZbblHaVZIe1xtP8M4HIYQQQhyFmw9CCCGEOAo3H4QQQghxFMZ8EJ/muuuus0tVYw455rWbLeAXL16s5vr27as0+jCx7ofZxl7EvRW2WSL91VdfVXMzZsxQGtunm2WLRdzjNvC1zXPFGA0soYw1DCzLUtqMHxG57Ec3MWM+sGS1q222iyVLlthjLDlNiLc5efKkHf+FsRJY38asw4PXCF4Do0aNUhrXDvOaEHG/ZsxaOVj/okmTJkpv2bJFabzWsX4JvtbMmTPtMZaBxxoheL1ivMncuXOVxs/JbNmBc64YDxeutQJLvHuCdz4IIYQQ4ijcfBBCCCHEUXzO7YK3iYl/4O3vzXU885YnpjNiB2LzsZj6ibdOz549qzQeG29/4u1E082Ax8bzyq37JJ4rupfMc/M0l908fi/4Wvh8cx7nUJufgWvsTTvgWuCfFNRaYNpfbnZsXmO5XSO4FuCxUeP17GmNwrUBXxuPldv7Mp+fl3Uju9dCVyk+3/wMcztv12Nd/16JDQRZPnaFHzp0yK3lMfF9kpKS3PyX+YF24J940w5oA/4J1wJyJTbgc5uPS5cuyeHDh8WyLImMjJSkpCS3Blcke9LS0qRWrVqOfmaWZcnp06clIiLC7W5BfqAdXD2BYge0gasnUGxA5LId7N69Wxo1akQbyAO+bgM+53YpVqyY1KxZU9LS0kTkcmdNGlvecPozCwsL8/oxaQf5x9/tgDaQf/zdBkQu20GNGjVEhDZwNfiqDTDglBBCCCGOws0HIYQQQhzFZzcfJUqUkFdeecUuKkNyJxA/s0B8TwVNoH1mgfZ+nCDQPrNAez9O4Oufmc8FnBJCCCEksPHZOx+EEEIICUy4+SCEEEKIo3DzQQghhBBH4eaDEEIIIY7is5uPadOmSe3ataVkyZLSsmVL2bhxY2Gfks8QHR0tt912m4SGhkrVqlWlT58+snv3bvWYjIwMiYqKkkqVKknZsmWlX79+kpKSUkhnfHXQBnKmqNiACO0gJ2gDRMSP7cDyQebPn2+FhIRYn3zyibV9+3briSeesMqXL2+lpKQU9qn5BN26dbNmzZplJSYmWlu3brV69uxpRUZGWmfOnLEfM3ToUKtWrVpWXFyctWnTJqtVq1ZWmzZtCvGs8wZtwDNFwQYsi3bgCdoAbcCy/NcOfHLz0aJFCysqKsrWFy9etCIiIqzo6OhCPCvf5ejRo5aIWKtXr7Ysy7JOnTplBQcHW4sWLbIfs3PnTktErPj4+MI6zTxBG8gbgWgDlkU7yAu0AWJZ/mMHPud2ycrKkoSEBOncubP9u2LFiknnzp0lPj6+EM/Md0lNTRURkYoVK4qISEJCgpw/f159hg0aNJDIyEi/+AxpA3kn0GxAhHaQV2gDRMR/7MDnNh/Hjx+XixcvSnh4uPp9eHi4HDlypJDOyne5dOmSjBw5Utq2bSs33nijiIgcOXJEQkJCpHz58uqx/vIZ0gbyRiDagAjtIC/QBoiIf9mBz3W1JXkjKipKEhMTZe3atYV9KqSQoA0Q2gAR8S878Lk7H5UrV5bixYu7ReKmpKRItWrVCumsfJPhw4dLbGys/Pjjj1KzZk3799WqVZOsrCw5deqUery/fIa0gSsnUG1AhHZwpdAGiIj/2YHPbT5CQkKkWbNmEhcXZ//u0qVLEhcXJ61bty7EM/MdLMuS4cOHS0xMjKxatUrq1Kmj5ps1aybBwcHqM9y9e7ccPHjQLz5D2kDuBLoNiNAOcoM24B/voaDxWzsotFBXD8yfP98qUaKENXv2bGvHjh3WkCFDrPLly1tHjhwp7FPzCYYNG2aFhYVZP/30k5WcnGz/nD171n7M0KFDrcjISGvVqlXWpk2brNatW1utW7cuxLPOG7QBzxQFG7As2oEnaAO0AcvyXzvwyc2HZVnW1KlTrcjISCskJMRq0aKFtX79+sI+JZ9BRLL9mTVrlv2Yc+fOWU899ZRVoUIFq3Tp0lbfvn2t5OTkwjvpq4A2kDNFxQYsi3aQE7QBYln+awdBlmVZzt1nIYQQQkhRx+diPgghhBAS2HDzQQghhBBH4eaDEEIIIY7CzQchhBBCHIWbD0IIIYQ4CjcfhBBCCHEUbj4IIYQQ4ijcfBBCCCHEUbj5IIQQQoijcPNBCCGEEEfh5oMQQgghjsLNByGEEEIc5f8BsyMGevsgLQQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACbCAYAAADC4/k2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAApTElEQVR4nO2deXRU5fnHH9CENYQ1hAgBFGQXNZAQlog2gKKymNNqbSt1Q2zwHLDWlrqdH22N7dGKUI7YI4K4FERFICoUwyZLUAJREImCVIIhAaokLFlIcn9/eObt+3yHTDIwuZmZfD/n5PB+eSdz79w8982b+2xNHMdxhBBCCCHEJZo29AkQQgghpHHBzQchhBBCXIWbD0IIIYS4CjcfhBBCCHEVbj4IIYQQ4ircfBBCCCHEVbj5IIQQQoircPNBCCGEEFfh5oMQQgghrsLNByGEEEJcpd42H/Pnz5cePXpI8+bNJSkpST755JP6OhQJUmgDRIR2QGgDxJsm9dHbZdmyZXLXXXfJggULJCkpSebMmSPLly+XvLw8iYmJ8fm91dXVUlBQIFFRUdKkSZNAnxoJMI7jyKlTpyQuLk6aNv3fXvZibECEdhBq1Icd0AZCC64FpCYbqOnFAScxMdFJT083uqqqyomLi3MyMjJq/d78/HxHRPgVYl/5+fkBswHaQeh+BdIOaAOh+cW1gF9oA+fjUgkwFRUVkpOTI7NmzTL/17RpU0lNTZXt27d7vb68vFzKy8uNdthkNySJiooyY39tQKRmO5gyZYpERkaKiMjBgwfV9/Tp00fp3bt3m/Ho0aPV3ObNm5VOSEhQGh8Dt2/fXunu3bsrXVBQYMbfffedmnvggQeUzs/PV/rYsWNKZ2ZmKj1s2DClq6qqzPj06dPii5KSEqXbtm2rNH5/jx49lB48eLAZf/rpp2rO/hmLiHTo0MGMy8vLZd68eRdlB1wLwoP6WgumTZsmzZo1ExHxegKSm5urtH3PpKSkqLm33npL6csuu0xpXGcGDRqkdMuWLZWOjY014+LiYjW3a9cupXHN2rlzp9JjxoxRuqysTOl9+/aZce/evdUc3p9nz54VX+CTCbzf7O+373URkc6dOyudnZ0tIiKVlZWyefNmr3M5HwHffJw4cUKqqqq8Tq5z586yf/9+r9dnZGTI//3f/wX6NIjL2IuBvzYgUrMdREZGms3HpZdqc/UsRB7s+ebNm9c4V9v3iohERET4fL09j9/bokULpfFc8L1wEcBj2/M4h9T2OXDec2092OeO34uvxc8hcnF2wLUgPKivtaBZs2Y1bj7Qru15vP8uueQSn99b2/3oa23AewSP5evePt/3V1dX1/h++FrUlZWV4ovaNh/nzp2r8b1rW1/r4h5r8GyXWbNmSXFxsfnCvxJJ44B2QGgDRIR20FgI+JOPjh07yiWXXCJFRUXq/4uKitTjKQ/2bpaEB/7agEjNdtC/f3/z1/jx48fVHD7iHDdunBmvXbtWzV1++eVK79mzR2l8WoF/qVVUVCgdHx9vxuh2ef7555W+6667fB6rf//+SuNfFbarZPjw4WqusLDQp8ZHs/jXJp7L119/bcb4lxC6oo4cOWLGeH1EuBaQwK4FL7zwghlPnjzZ63ts2rRpY8bo+vj1r39d42tFRL799lulo6OjlUZ3hn0f2O4iEW+35sCBA5XG+wbdLLhu2S4hdAXje9n3sohIly5dlMbrjy7Zbt26mfG2bdt8vjYpKUlEfvz869evl7oQ8CcfkZGRkpCQIFlZWeb/qqurJSsrS5KTkwN9OBKE0AaICO2A0AZIzQT8yYeIyMMPPyxTpkyRIUOGSGJiosyZM0fOnDkjd999d30cjgQhtAEiQjsgtAFyfupl83H77bfL8ePH5cknn5TCwkK5+uqrZc2aNV6Pskn4QhsgIrQDQhsg56deioxdDCUlJV4+NhL8FBcXe/lOLwaPHYwcOdJEUo8YMUK9Bo9np7DaKWki3qli6LPE2Af0cd52221K25HkmJLasWNHpe20PxFvnzKm32EUuv05MR4E0wAx1gWvkR3BLuLtk7Y/yxdffKHmEhMTlbbTAktLS+XRRx8NqB1wLQhN6mstuOOOO0zWBf7awnvOtmO8v/DcTp06pfSJEyeUvuGGG3zOf/zxx2aMcRQYl/HGG28oPXXqVJ/vjVkjdqxabVk6Xbt2VfrLL79UGu+t1q1bK22vibhufP/99+d9r3Pnzsk777xTJxto8GwXQgghhDQuuPkghBBCiKtw80EIIYQQV6mXgFNCAsWECROM7xFLhdu+VhGRzz77zIyvv/56NZeTk6M0pvlhSWWMhcD8e9uXi7n4//73v8UXV1xxhdJXX3210liLw45lQR8wnldtFRYx1gWvS1xcnBlfeeWVas4uKS+iPyf6hAkJNHFxcaaeB8ZprFu3Tmk7FgrrcqDG+kF4T7388stKDx06VOmRI0eqc7RZsWKF0j//+c+VPnPmjNIbN25Uul+/fkqXlpaa8cmTJ9XcLbfcojSuaTfddJPS2FICY0bs92/VqpWaq6nCKVZk9QWffBBCCCHEVbj5IIQQQoir0O1Cgppjx46ZR62YRoqPHWNiYswYSwujW+Cbb75RGl06WIoYH4du2rTJjD2lhT1geh2WPMfHujiPj1rfe+89M05NTVVz7dq1U3rZsmVKDxgwQGlMtxsyZEiN82lpaWoOU4Ztlw3OERJoCgoKjFvRdnWIeLsFbFcluiKx8zPWG0G3J6b4292zRfQ6ZK8LIroNg4h4lR7v27ev0piqi+uSfSw8b1yj0MWKnb6xrQO6rmx38JYtW9Qclrf3nNf52izUBJ98EEIIIcRVuPkghBBCiKtw80EIIYQQV2HMR5gwc+ZMpWfPnq10bm6u0qNGjarvUwoIhw4dkoiICBHRaWYi3iXPX3nlFTNGfyb6P7HcOpY1Rl+tXUpcRJdoxpQ1O/ZExDuGA1P3rrnmGqU7deqktN2mG1t2X3fddUrbvm4Rkb///e9KP/zww0pjylxUVJQZYxt0jLkZP368GVdUVHjZGCGB5OzZsyZ266233lJzeP/arQBatmyp5jCea/Xq1UpjWXJcK3r27Km0fc9hHIZ9P4mI3HfffUp/9913SmMKMWKnv2P8Fp4XaowJwXLqmKprx3Rh6YENGzYo7Unpt9tO1AaffBBCCCHEVbj5IIQQQoircPNBCCGEEFdhzEeIgLnqP/3pT5V+7LHHfL7+6aefrp8Tq2euuuoqE5dgt5MW8V0SHeth7N27V2ksU47vhfn1WFp8zZo1Zjx//nw1h75YrCswduxYpXfu3Kk0tsq2W9ujv/qRRx5RGmNT0DeL5Y+zs7OVtss/L168WM1h/RL7PP0pqxyqoM3Y9xjWZ7j33nt9vteUKVOUxhgjXyxZssTne4UrxcXFxuawXTvGdNk/D6zpg+3gsY4HtiTwxJx58FV7A8urY4sCXAvwWPizxHO3Y0QwVgzvZYznwhgujDfB77/11lvN+Ntvv1VzntpLHjwl6h3HkbrCJx+EEEIIcRVuPgghhBDiKtx8EEIIIcRVGPNxEQwcOFBpjCsIJNjD49VXX/X5+n/+859Kf/jhhwE/Jzew+zlg/QuMAendu7cZHzlyRM1hTAK2sW/RooXS6Jvt2LGj0vfcc48Zf/XVV2pu+PDhStv1R0S8W3hjHRD08959991mjG2vH3zwQaXtNvciIvPmzVMafbJYD+XQoUNm3KdPHzV37bXXKr1q1Soz9ie/P1SZNm2a0v/4xz/q/L3Yxh2pLWbGvr7Yg6OxcM0115hYgwMHDqg5rKdhrw14r2NPKIxfwBisH374QelJkyYpbf8ewD5NGNOxcuVKpR966CGlz5w5ozTWzrHrl+zbt0/N4f2Kn3PcuHFKox3h/f3f//7XjDHWbOvWrUp7ai6VlZV51T2qCT75IIQQQoircPNBCCGEEFfh5oMQQgghrsKYDz8ZPHiwGWMNBew3gD7iiwF7ciDY8wN7u4QqmzZtMn7TCRMmqDmMM7B9t5jLj9fn448/Vhr7N6DvFvP17ZiSvn37qjmsw4A9Ez766COlsRcMxpvYnwv7TuCx/vKXvyiNNUiKi4uVxrgZu0YJ9v9BP69dR8DTcyOcse99BGOMsKfOihUrlEb/vF035ny88847Zvz666/7fG24cubMGWNnQ4YMUXMY32Dfv4cPH1ZzWLcDf3bYnwVriOzfv1/p/Px8M8Y6OxhjZcdRiOj+KSIiX3/9tdKPP/640gsXLjRjrD2EdWjw2P/5z3+UxmuGtWpuvPFGM87KylJzWGNk+/btIuLfOsAnH4QQQghxFW4+CCGEEOIq3HwQQgghxFUY8+EnM2fONGPsLzBs2LCAHuv666834xkzZvh8LcaXYMxCqNKvXz/jo8X8cbvniYjIrFmzzBh96EePHlUac//RL9ytWzelse+B3ecEeyT06tVLaawD0qpVK6XxXMePH6+0nY8/ceJEn+eJ/VgyMzNrPG8RkZSUlBrn8XPg9e/Zs6cZY0xNOPKHP/xB6YSEBDNGf/sLL7zg870w5oPUzu7du01vF4xPwFo6V1xxhRljHQ+7HpCIyOeff670yJEjlca1A+NN7Jgv7Mtk18IREbnpppuUxniS5ORkpRctWqS0XZcH6wFVVFQo/ctf/lJp7DmFawdeU7vGyLZt23ye9+233y4iP64Da9eulbrAJx+EEEIIcRW/Nx+bN2+WW2+9VeLi4qRJkyby3nvvqXnHceTJJ5+ULl26SIsWLSQ1NdUrgpeEN7SB8OfYsWOyatUqWbhwocydO1dVRhWhDZAfoR2QmvB783HmzBkZPHiwVwqfh7/97W8yd+5cWbBggezYsUNatWol48aNk7Kysos+WRIa0AbCn8rKSunUqZOMHj36vPO0ASJCOyA143fMx0033eTlt/LgOI7MmTNHHn/8ceObXrJkiXTu3Fnee+89ueOOOy7ubBsA7N8yefLkGl+7bNmygB7bzrPGHgEY74B1BBqKQNtAdHS06e2C3HnnnUrbOfPY9yAuLk7pHj16KI2vR33zzTcrfd9995mxHWsiIl7nizEfOI8xIFiDJC0tzYzRX401QjZu3Kg05vp7ejB4WLp0qdJ2DyDsUWOfZ/v27U0viPfff1/1nAnHdUDEuy7Co48+asYYp1Mb0dHRPuexFww+YQ4FAm0HcXFxJv7r4MGDag5/J9m9SLCGD9bZwdgInB80aJDSWAfErp1TVVWl5nbv3q20HSckIjJixAil8eeOcYXHjh0z45YtW9Z4HiIiq1evVhp/h6Snp/t8vV3Xp23btmoOj+2peYWf3xcBjfk4dOiQFBYWSmpqqvm/6OhoSUpKMkVIkPLycikpKVFfJHS5EBsQoR2EE7QBIkI7IL4J6ObDk2GBO8POnTvXmH2RkZEh0dHR5gsjcElocSE2IEI7CCdoA0SEdkB80+CptrNmzVKlw0tKShrU2PCROJbLtR89YynZQLe6tt0u+Pgcj4WpT6FGTXbQvXt3U8b722+/Vd+DLoddu3aZMZY8x+uHrhBcIO2SySLerhH7keScOXO8PosNllRGfzem52Gqn/2Is6ioSM3hsbFttp1yKCKyYMECn8e23QF4L2A5e/t6Y+nmCyHY1oLasNsrYKsFBO1x3rx5Pl+P6YrYuiGcqckODh48aFwH6Ea1075FtHsSW1NMmTJF6bfffltpTGdH28a0U3ttwdLtQ4cOVRpdH5jGi2m/6Oa3093RDYguHUwJ3rx5s9JY2h3fzy5HgKUG0G196623iohIaWmpTJ06VepCQJ98ePKEcYEsKiryyiH20KxZM2nTpo36IqHLhdiACO0gnKANEBHaAfFNQDcfPXv2lNjYWNWEpqSkRHbs2OFVPIWEJ7QBQhsgIrQD4hu/3S6nT5+WAwcOGH3o0CHJzc2V9u3bS3x8vMyYMUP+/Oc/S+/evaVnz57yxBNPSFxcnEyaNCmQ502CjM8//1zi4+NpA42EyspK5erzuJLy8/NlwIABtIFGDNcCUhf83nzs3LlTlf32+NOmTJkiixcvlkcffVTOnDkjU6dOlZMnT8rIkSNlzZo1qv12MINlke+///4aX/vaa68pvXPnzos6NvqFL7vsMjM+fvy4mnvkkUcu6liBZtSoUfViAytXrjR+UkzjQv+pndaGaWeYiod+3Pfff1/pW265RWk7BVVEp9/hY+UWLVoojemxdlqqiEhSUpLS2L7aThvEeBH0vWKsAMaPREVFKY0lmdu3b2/GHTt2VHPx8fFmfODAAXVNPNfz6aefljfeeCPk14FAg+0PMF4Jwfs9lKivtWDs2LGmVHpeXp6aw1RQu83APffco+bw/rRLlot4x11guYVTp04pbd+TGBeFbRywFQPGomHa74svvqh0QUGBGbdr107NYZouroGtW7dW+uWXX1b6j3/8o9KlpaVmjPEg2KbBE0DsT/0Wvzcfo0eP9rpgNk2aNJHZs2fL7Nmz/X1rEsIUFxcb3yxtIPzp1auXPPjgg0ZXVFTIwoULzWJJG2i8cC0gdYG9XQghhBDiKtx8EEIIIcRVGrzOR0ODvqu77rqrzt/72GOPBfRcsNyt7ce0y+o2Juw4DzvWSES8GlTZsRF2jRQR7/bThw8fVvpnP/uZ0jNmzFB67ty5SttxG++++66awxoizzzzjNILFy5UGpuyobZLu2M9FywzjbEqdi0OEe+aI1g62razUaNGqTmMe7Hrj2DNG6LBuILaeOmll+rpTEKXHTt2mLo0GO+ArS3sdR3vEawXhCXOr7rqKqUxjgNTf+2YLowlwzoeeE9hDBbe3zhv369Yewhf++mnnyqN54YxhqtWrVLajkvCmiEY3+hpR9Fg5dUJIYQQQmqDmw9CCCGEuAo3H4QQQghxlUYf8/H6668r7ckjrwt2nX0Rb38XxgJgjrediy4ikpKSUuOx8LWNhdGjR5ufSb9+/dQctqu2+4CgfxP9vtjLZfDgwUp7ehV4wHovdgwJ9nN44oknlP7+++99Hhs/h53CKqJrPmC/FfRfY/twbH29Zs0apdF3btfyWL58uZpDH7HdX8Of/H5CLoSqqipp0qSJiHjHLj311FNK5+bmmjGWcsc6OxhngfF1+/fv9zoPG/v+x9oadkFOEe/7DWuGYC8X7M1knwvW9cAYOOyLhMc+cuSI0tXV1Urb17hXr15qDusiefrllJaWeq1nNcEnH4QQQghxFW4+CCGEEOIq3HwQQgghxFUaXcwH+sEuv/xypT0+xbpg+8fPx29/+1uf83PmzFEafW4Xel7hxNmzZ02efXZ2tpo7ceKE0nYdEIyN2LBhg9KYE2/XCBHxrvvx2WefKT1x4kQzxt4RH3/8sdJXXnml0nbPHhGRzZs3K429YEpKSsz4r3/9q5rDmgQYf4J1BuyaISI6bkNExyXh9cV4EtufjT1iCAk0juOY1h7Y0wjjHfbs2WPGeD9ibRvsC4PxJNjjCGNCPH1NRLzj0jC+C2uE4DqFv1MwJtFeh3DdwfguvPcxtgU/N9ZCsvu5YC8dvEaevjHYb8sXfPJBCCGEEFfh5oMQQgghrsLNByGEEEJcpdHFfOTn5yv99NNPK92pUyelc3JyanwvT58BD1ifoTZ+8pOfKO3xZ56PG264wa/3DheioqJMnQ+My0BfrN0z5Ve/+pXP13p6EXhYt26d0mfOnFEaewDZdQSwh0KLFi2U3rFjh9LYF+G2225TGu3KjsPA3hAYC4R9ZTy+WA9oY1lZWUqnpaWZMdZKwdgUG+x/QfwD42vQP09+rDXhiZHA2jnr16+v8fuuu+46pVNTU5X+05/+pDT+DsC+PFgfw67tgb2V1q5dq/S0adOUxhokzz77rNJ4X91xxx1mjHEYaDO4jqCNjR8/XmmscWXHdGGMB/7ueu6550SEvV0IIYQQEsRw80EIIYQQV+HmgxBCCCGu0uhiPpD58+cH7L1WrFjh1+tr84/ZvWHS09Mv6JxCnVOnTkl5ebmIiBQVFak59GEOGDDAjFeuXKnmxowZozT22cF8/Jdeeklp9BPb/Qt69uyp5rDnQqtWrZTGnzv6Zr/88kulP//8czPGmiH4ObD/Csau2PUPRLz923b8Cs5dffXVStvxJGVlZbJlyxYhPzJw4EClhw4d6vP12CcKe4KQH+vdeOrYYL2M9u3bK23XpNm1a5eaw/gurPWEcVGHDx9WGmtF2cfGHlwYb4L9vhCMTWvevLnSdi8n/By4xmHsGdYQwfUT161z586ZcWlpqZqzaw+J/K9eUGVlpdf6VRN88kEIIYQQV+HmgxBCCCGu0ujdLm6C5W8R+zGXiMjs2bPN2G6r3pgYPny4uW6Yooqpt//617/MGFNM0T3x4YcfKo2uEXy0immndhnlmJgYNbdq1Sql7bLvIt7lntHtgq4Tu2Qxptb+8MMPStslkUW8XYHXXHON0naZeBFdkhkf/eP1Hz16tJDzg63VMVUR3QakdhISEowb4qOPPlJzaKt26XEsI45tLLAkOqbx2q4OEe8S4rbLDF0fdul1Ee/7E9s4bNu2TWl0u9hpvugWxfUQy0RER0crjW0eunbtqrTtTsY1C1steI7tT5sFPvkghBBCiKtw80EIIYQQV+HmgxBCCCGuwpgPF3n77bd9zi9fvlzpvXv31ufphARLliwxMRGY6oltte3SxVhuGVvH22XEzwf6iTHF1U5/xZgNjN3B1LPnn39eaUxxs9tmi+h4FWznffDgQaXRb4s+ZbwOGItg+4nRr3vjjTcqbZdbx8/c2EF/OqZjE//JyckxqbaYNooxNBs2bDBjXCcw7qmgoEBpvP9w3cFUXDumC0ueY0wWplzjsTGFFe9B+/UjR45Uc6tXr1YaW0ysWbNGaUzFPXTokNL2Gjd58mQ1h7FnycnJIvJjSq4de+cLPvkghBBCiKv4tfnIyMiQoUOHSlRUlMTExMikSZO8dnplZWWSnp4uHTp0kNatW0taWppXcSgSfnz99ddK0w7Cm3Xr1sn69etl5cqVkpmZ6VUkS4Q2QGgDpGb82nxs2rRJ0tPTJTs7W9atWyfnzp2TsWPHqiqKM2fOlNWrV8vy5ctl06ZNUlBQ4NW1k4QfkydPph00Ig4cOCCXX365XH/99TJy5EiTvkgbILQBUhf8ivlAn9HixYslJiZGcnJyJCUlRYqLi2XhwoXy5ptvmhbwixYtkn79+kl2drYMGzYscGceAqDfF32NCMZ8hBL5+fn1YgcFBQUmr3748OFqDmtv2Lnoffr0UXOYu+8p2e4Ba7BguXX0MXtae4t413TAfHo8NsaIbN26VWnM7bfjT6666io1hyWS8b3z8/N9aowh+d3vfmfGb775pprLzc014+TkZFVyOTExUTIzMyU3N1e6dOnCtaARU1820KlTJ3PfYT0JvOeaNv3f39V4f77++utKYxzU2LFjlcZ2CFlZWUrb9xzWEMHW85WVlUp/8MEHSuM1wfvVPhf7M4qIpKSkKI3xXPg5MK6trKxM6cTERDPG2BQsSf/aa6+JiPfn88VFxXx4fqie2vY5OTly7tw51Qejb9++Eh8fL9u3bz/ve5SXl0tJSYn6IqEJ7aDx4gk4bdeunYjQBhozF2MDIrSDxsIFbz6qq6tlxowZMmLECNNEqbCwUCIjI712VJ07d/aq9OYhIyNDoqOjzRdWliShwbBhw2gHjRTHcUyGQP/+/UWENtCYuRgbEKEdNBYuePORnp4ue/fulaVLl17UCcyaNUuKi4vNFz5mIqHBK6+8clHfTzsIXXJycgLy1yltgIjQDhoLF1TnY/r06ZKZmSmbN29WdQViY2OloqJCTp48qXa7RUVFEhsbe973atasmTRr1uxCTiPoSUhIUBpr8WO+uD/+smDDjm8JpB10797d5PZjW2fsz3LttdeaMf5lhXEU2IIbrz3WZcCaK/b74S9e7CuD74W+1UGDBvk81ssvv2zGGPeCvm+safDpp58qjXFIeJ0WLFhgxui/xhib8vJyKSgokJKSEunevbuqOcK1wD/mzZvX0KcQcC7EBkRqtoPq6mpjk+i2wRgvu3bOuHHj1NzNN9+sNPYtwdo5UVFRSntqWnjYsWOHGWOsGL63xyVV07HsYF0Rka+++krpBx54wIwxa+iLL77weSzsQYWbOlw7du3aZcYYu3L48GGlZ82aZc5/y5YtUhf8evLhOI5Mnz5dVqxYIevXr/daVBMSEiQiIkIF5OTl5cnhw4e9fmAkfKEdhD+O45iNR8+ePVUArghtgNAGiG/8evKRnp4ub775pqxcuVKioqLMX03R0dHSokULiY6OlnvvvVcefvhhad++vbRp00YeeughSU5OZnR7mFNUVCQRERG0g0ZCfn6+nDx5Urp37y5NmzY1T45KS0ulTZs2tIFGDG2A1AW/nny8+OKLUlxcLKNHj5YuXbqYr2XLlpnXPP/883LLLbdIWlqapKSkSGxsrLz77rsBP3ESXFx55ZW0g0bE8ePHpbq6Wg4dOiR5eXmmyJz9M6YNNE5oA6QuNHEw8KCBKSkp8crZDlUmTJigNN50dh8NEZGkpKR6P6f6ori42Ku/wsXgsYOZM2ca/y/2xrnzzjuVPn78uBljvMLatWuVxr4IR48eVdpTW8QD9nax64TgsU6dOqU0zqNd2D0URHz7nAcPHqzmsM7H7t27lUY/LsbNYC0AO7MAPwfel3v27DHjyspK2bZtW0DtIJTXAvzLHmu5IL///e+VfvbZZwN+Tm5RX2tB3759zX3piQPzgL1H9u/fb8Z4j+D9iDV+MJ4B64Bgvxa7/g3+HO3zEPGuq+Opf+IB14IuXboovWTJEjPGWBQ75k3Eu/8K3kt2zygRkd69eytt92vC2BOMH/G8d0VFhbz22mt1sgH2diGEEEKIq3DzQQghhBBX4eaDEEIIIa5yQXU+SGDA3hnEmw0bNhg/L9bP+Oabb5S262f06tVLzaGPcvTo0UpnZmYqjfn2mLt+3XXXmTH6lNFvO3ToUKUxngRrdezbt0/p7t27mzH2WJg4caLSeI3suh0iIg899JDSGCNih4Bh/xvsaWH3fqioqJBt27YJuTDQBog3SUlJJqUb6/JgV2X7fq+tzg5e+3vuuUdpjAHZsGGD0jNmzDBjvAewBhDGl9j3tojIxo0blcb6RFOmTDFjXGfwc2RnZyv9zDPPKI292nDNs88d42Qw7sXTasW13i6EEEIIIf7CzQchhBBCXIWbD0IIIYS4CmM+GpBFixY19CkEPWPGjDF1Puw6HiLevQweeeQRM8a+L+hrzcvLUxr77mDshKd3gYfly5ebsaeja03HwtoamPuPdT0wP7+qqsqMMVbF7r8gIl4dRIcMGaI0fm7sGLp+/Xozxj4VGEdj/zzsmgDEf8aMGaP03LlzG+hMgpf8/Hy59NIff2VhOf+xY8cqbdujXYdDxLtuB9a/wDiN06dPK401f+z7AGM4sE/TypUrlZ45c6bSv/jFL5Ret26d0nadELSZQ4cOKT1+/HilV6xYoXSLFi2UxvgSu+8T9uLBeiWePjL+rAN88kEIIYQQV+HmgxBCCCGuQrdLPbJq1SqlPY8MSd05cuSIecSKLaLRVfLBBx+YMT4WxEep+IjytttuUxofUeLP0m5HjeeBZckPHDigNJY8x9Q/fJxqt7LHVDxM40WXDZ4bgumztgsIH0fjsex0O6aKajD103ZniXinf06fPr3ezynUiYmJMWtBnz591JztIkDdv39/NYfpsJiyj66T1NRUpdGtartd7PLnIt6uy1dffVVpdO+iCxddsoMGDTLjpUuXqjk7/V/kf+mvHjp06KA0upPwOtjnlpCQoObwenvKDdDtQgghhJCghZsPQgghhLgKNx+EEEIIcRUGIZCgZuvWrdK06Y97ZPSPDhw4UGnbl4spa9jeGf2f7777rtKe9F4PGJdh+5Gx7TWm9mHrazy2nUp7vnNNSUkxYyz1jOXWMbYFfbNJSUlKoz/8sssuM2P0daM/207TZaqtBstRYxwP8R871bZVq1ZqDu8xOy1806ZNag7XkbS0NKV37NihNMZ/YezT0aNHzbhr165q7vvvv1f6jTfeUHrAgAFKY/kAjLWw47+uuOIKNYexZXhNMD25qKhIaYxDstP2Mf4L4+88LSGwJYMv+OSDEEIIIa7CzQchhBBCXIWbD0IIIYS4CmM+SFAzYcIEE3+B8Q1Y7nvEiBFmjK/FOAv0xWJsxPDhw5XG9tW27/X2229Xc9im/u677/Y5jzEi6F+1/agRERFqzq43IiIyceJEpXv37q00lntGn7NdH+W5555Tc6NGjVJ6y5YtZowxDoQEmt69e5u4BYxtwnoY9v2OreLtdUJEZM+ePUpj+XVsj7B161al4+PjzRjjvzz1L2qax3UH49jsdUZEx21gLaPk5GSl7ftTxDtWBeNJ8P3sWkjfffedmsvOzlbaUyeJdT4IIYQQErRw80EIIYQQVwk6t4vjOA19CuQCCPTPzfN+dtlufKSHaV3241GcQ43lwCsrK32+Huft9Fh8LabOYpouHhuvHX5OPLavY9X2uWu7hvax0JWC523Pe8aBtAOuBaFJQ6wFeI/Y8ziH9yO+F9o5zuM958vVUNtr/T223T7B3zXL1/17vmPZ349tG2paGzz/1sUGmjhBdocfOXLEq803CX7y8/O9ctwvBtpBaBJIO6ANhCZcC0hdbCDoNh/V1dVSUFAgjuNIfHy85OfnexVdIuenpKREunXr5uo1cxxHTp06JXFxcaYYWCCgHVw44WIHtIELJ1xsQORHO8jLy5P+/fvTBvwg2G0g6NwuTZs2la5du5po5jZt2tDY/MTta4bZGYGAdnDxhLod0AYunlC3AZEf7cBTeZc24D/BagMMOCWEEEKIq3DzQQghhBBXCdrNR7NmzeSpp57yavBFaiYcr1k4fqb6JtyuWbh9HjcIt2sWbp/HDYL9mgVdwCkhhBBCwpugffJBCCGEkPCEmw9CCCGEuAo3H4QQQghxFW4+CCGEEOIqQbv5mD9/vvTo0UOaN28uSUlJ8sknnzT0KQUNGRkZMnToUImKipKYmBiZNGmS5OXlqdeUlZVJenq6dOjQQVq3bi1paWlSVFTUQGd8YdAGaqax2IAI7aAmaANEJITtwAlCli5d6kRGRjqvvPKK88UXXzj333+/07ZtW6eoqKihTy0oGDdunLNo0SJn7969Tm5urjN+/HgnPj7eOX36tHnNtGnTnG7dujlZWVnOzp07nWHDhjnDhw9vwLP2D9qAbxqDDTgO7cAXtAHagOOErh0E5eYjMTHRSU9PN7qqqsqJi4tzMjIyGvCsgpdjx445IuJs2rTJcRzHOXnypBMREeEsX77cvObLL790RMTZvn17Q52mX9AG/CMcbcBxaAf+QBsgjhM6dhB0bpeKigrJycmR1NRU839NmzaV1NRU2b59ewOeWfBSXFwsIiLt27cXEZGcnBw5d+6cuoZ9+/aV+Pj4kLiGtAH/CTcbEKEd+AttgIiEjh0E3ebjxIkTUlVVJZ07d1b/37lzZyksLGygswpeqqurZcaMGTJixAgZOHCgiIgUFhZKZGSktG3bVr02VK4hbcA/wtEGRGgH/kAbICKhZQdB19WW+Ed6errs3btXtmzZ0tCnQhoI2gChDRCR0LKDoHvy0bFjR7nkkku8InGLiookNja2gc4qOJk+fbpkZmbKhg0bpGvXrub/Y2NjpaKiQk6ePKleHyrXkDZQd8LVBkRoB3WFNkBEQs8Ogm7zERkZKQkJCZKVlWX+r7q6WrKysiQ5ObkBzyx4cBxHpk+fLitWrJD169dLz5491XxCQoJERESoa5iXlyeHDx8OiWtIG6idcLcBEdpBbdAGQuMz1DchawcNFurqg6VLlzrNmjVzFi9e7Ozbt8+ZOnWq07ZtW6ewsLChTy0oePDBB53o6Ghn48aNztGjR83X2bNnzWumTZvmxMfHO+vXr3d27tzpJCcnO8nJyQ141v5BG/BNY7ABx6Ed+II2QBtwnNC1g6DcfDiO48ybN8+Jj493IiMjncTERCc7O7uhTyloEJHzfi1atMi8prS01PnNb37jtGvXzmnZsqUzefJk5+jRow130hcAbaBmGosNOA7toCZoA8RxQtcOmjiO47j3nIUQQgghjZ2gi/kghBBCSHjDzQchhBBCXIWbD0IIIYS4CjcfhBBCCHEVbj4IIYQQ4ircfBBCCCHEVbj5IIQQQoircPNBCCGEEFfh5oMQQgghrsLNByGEEEJchZsPQgghhLgKNx+EEEIIcZX/B9TK9gK/C7z/AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACbCAYAAADC4/k2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAApaklEQVR4nO2de1CVZR7Hf3jBuwheQFQSK0Mz01AUzS4OZupaKplddrW2dC1sMme3XWeqnZpN2m0n2zbT2l21i45tmVpqloliFmqgVqRi5gXMQMwALwQE7/7hnHef3/fAgSOHl3MO388MM8+X55yX97z83oeH93cLsSzLEkIIIYQQh2jW2CdACCGEkKYFNx+EEEIIcRRuPgghhBDiKNx8EEIIIcRRuPkghBBCiKNw80EIIYQQR+HmgxBCCCGOws0HIYQQQhyFmw9CCCGEOAo3H4QQQghxlAbbfCxatEh69+4trVu3lmHDhsnu3bsb6kcRP4U2QERoB4Q2QNwJaYjeLm+//bZMnz5dlixZIsOGDZMXX3xR3nnnHcnJyZFu3bp5fG9VVZWcPHlSOnToICEhIb4+NeJjLMuSs2fPSnR0tDRr9v+9bH1sQIR2EGg0hB3QBgILrgWkJhuo6cU+JyEhwUpJSbF1ZWWlFR0dbaWmptb63ry8PEtE+BVgX3l5eT6zAdpB4H750g5oA4H5xbWAX2gD1dFCfEx5eblkZWXJ/Pnz7e81a9ZMkpKSJCMjw+31ZWVlUlZWZmuLTXYDkg4dOthjb21ApGY7mDVrloSGhoqIyOnTp9V7Dhw4oHRJSYk9Pnr0qJq78sorlR48eLDSFy5cUPrUqVNKR0REKN2vXz97nJ+fr+bOnz+vdOvWrZXOyspSOi4uTmm8B3r37m2Pf/rpJzXXqVMn8QR+DrwOJ0+eVLqystIeHz58WM21bNlS6Z9//lm9b+/evfWyA64FwUFDrQWDBw+W5s2bi4hIVFSUeg+uDR07drTHeH+51hMXhw4dUrqgoKDGzyMicvnllyv95Zdf2uO7775bze3du1fpiooKpT/99FOlx44dq/SZM2eU/uabb+zx+PHj1dyaNWuUTk5OVjo3N1dpXPPCwsKUzs7OtsfXXnutx/deccUVInLxd7dw4UK3a1YdPt98nD59WiorKyUyMlJ9PzIyUg4ePOj2+tTUVHn66ad9fRrEYczHod7agEjNdhAaGiqtWrWyxyauhciFp8d8+Fo8Fi4KLVroWwP/8LrOqbpjlZeXe/xZeC54bPyj6+lnmXPVgcfGjRAez9x84DWoTYvUzw64FgQHDbUWNG/e3LY5tGtP9yveI2jz3hyruvebr2/Tpo3H16LbCNes2s7NXDvwc+GxavvcuOZ5Wqdqey/+rLq4xxo922X+/PlSXFxsf+Xl5TX2KZFGgHZAaANEhHbQVPD5k48uXbpI8+bN3R5dFRQUuD0qE7m4Y6rtvzcSWHhrAyI120GbNm3s7+P8ddddp/T+/fvtsemqEBH1GFfE/RHjt99+qzQ+IYiOjlba/GzmY1cRkaKiIqXR1TFmzBil8f34mNh04+DjznPnzimN8/gUZdOmTUrjfzSxsbH22HSriLj/t2O+tqKiQjIzM9U81wLiy7UgIiLCfhLQuXNnNZeYmKh0WlqaPUbX4y+//OJR472Pdo9Bsv3797fH6FJFd+3atWs9nje6gMx7TETk5ptvtsefffaZmktISBBP1ObGxPt92rRp9hjXiffff19p15qH18oTPn/yERoaKvHx8bJlyxb7e1VVVbJlyxa3C02CE9oAEaEdENoAqRmfP/kQEZk3b57MmDFDhgwZIgkJCfLiiy/K+fPn5f7772+IH0f8ENoAEaEdENoAqZ4G2XxMmzZNCgsL5amnnpL8/HwZNGiQbNq0yS3oiAQvtAEiQjsgtAFSPQ1SZKw+lJSUuPnjif9TXFys0tvqi8sO7r33Xtvf+OOPP6rXYHqdGdeBKahdu3ZVGtN0MX4Efxb6Yq+55hp73KVLFzVXWlqqNPqnMcVw6tSpSh85ckRp0weNc5g5gz7XYcOGKY0+afRvm8c3P6OIuAX+9erVyx6Xl5fL0qVLfWoHXAsCk4ZaC2JiYuyMDkyV79mzp9JmtoVppyKe08tF3FNrd+3apfTo0aNrnMdMN1x3MF4E48PwXPr27av06tWr7XHbtm3VHMZ74b09YcIEpXENxHvNjNPB88R04/Xr14vIRZfa999/XycbaPRsF0IIIYQ0Lbj5IIQQQoijcPNBCCGEEEdpkIBTQnxFWVmZVFVViYi7rxbz0k3/anx8vJoLDw/3qLHWBvqQMd/ejCnB+BKMw8Dc/gcffFDpDRs2KO0qVezC9OWi7xUpLi5WurCwUGksk4yYNUmOHz/u8bVmjA36ugnxNXl5eXYsB9adGDhwoNLmPYV1dY4dO6b0d999pzTGaWD9DGynYNYUwrYOGFRrphyLiAwdOlTpEydOKB0TE1Pjz8JaKLhmYZza22+/rTTGmi1cuFDpiRMn2uM9e/aoOYwHc12zyspK+f7776Uu8MkHIYQQQhyFmw9CCCGEOArdLsSvOXjwoO3GMMsYi7i7O7744gt7vHHjRjWH3SHvvPNOpTHNDB/NYol0LNls0qNHD6Vvu+02pdPT05XGEsyY/W6eC6bqnT17Vmm8Jvh4GsuxY4lm83Equl3wMe22bdvsMZaoJsTX3HrrrXZ5dUyHRRdD+/bt7TGmiJvrhIguIy4i8vXXXyuNLkXT7kVERo4caY+xozXeF5imu2PHDqXRvYvrktm5G9cZs+OtiHtTOnTnoqv5vvvuU9p0AQ0aNEjN1bQelpeXux23JvjkgxBCCCGOws0HIYQQQhyFmw9CCCGEOApjPvwY0zeJqaOu9FMXCxYsUPq5555TGkvvBgpjxoyxU8owJQ4xSy5jSiqWYsdUMWz5fccddyj9wQcfKG2WXz98+LDH88Iyxxi3gal96DNNTk62x6bPV0SkTZs2SmNqLZY4xnQ79EmbNjdixAg1hymG5udq6jEfWDJ/2bJlSr/33nv1Or6ZQu1N2/JgIiIiwo5h+umnn9QctjAYMGCAPcaU1FmzZimdm5urNJZjx5LnGLdhrgVJSUlqDuMwMMW/Xbt2Sl922WVKf/jhh0qbab8Y04GlCNLS0pR+5JFHlHaVqneBcW5mmi/+vXnzzTeVdn1Ob7q18MkHIYQQQhyFmw9CCCGEOAo3H4QQQghxFMZ8+BE33HCD0mb9B/S5of7Tn/6kNPqY9+3b54MzdJ5Tp07Zfl6MZ8D6GGZ+PpZe79evn9J/+MMflMbW1Zs2bVIaY0ZMXy36XqOiojyep9m2Ho8lIjJ9+nSlzfbgO3fu9HjeGH+C5ZmxFTnWTjFjSg4ePKjmunTporQZA9JU4xBcYIvxxYsXK71kyRKlvfGNi+h6EBjvgMfCEt6vvfaa0oFaCr9Zs2Z2nALGOuH9bt4nWJ8GYzywZs+UKVOUxlo6GJNlxlrgOvHHP/5RaVyHzRYFIiI5OTlKP/7440qbMSRvvfWWmsN7+cknn1R69+7dSicmJiqNcUvmdcK6KvizXLEuZWVlbvGGNcEnH4QQQghxFG4+CCGEEOIo3HwQQgghxFEY89GIYIzHokWLlMZ8c0+sWLFCaWzNHKgUFBRIixYXzRT7CWBeu+mbxWtn9noQca+1gcdGPy/2NjB9u9imHvtM4O8C+618/vnnSmONEdMusA4A9mpB3yz6/zH2BVtlm71hSktL1Rz6us1rhr7rpga2Xcc6H2gj2LOjNq6//np7bMYAibjHfGAvoQkTJiiN8WF17cXR2HTv3t2u2bF//341hz1VzOuF94hZM0Wk9po+0dHRSmPMjVnnw+zzIuLeJwbXEYzRcq11Lv71r38p/dhjj9lj7AuDaxbek7h2HDhwQGlcT81YGewBhWuDa73F73uCTz4IIYQQ4ijcfBBCCCHEUbj5IIQQQoijMObDQeLi4pRGv7A3MR5r1qxRGutWYL55oNKnTx87RqK2ehlmDALGVaB/E3vlYO0D9H/GxsbWeI7YvwF7JIwaNUrpo0ePKn3jjTcq/cILLyht+qjvvfdeNYc9bDBuCHvY4OfE+hTr1q2zx0OHDlVz+Lm+//57e9zU63zgtbn55puVvuKKK5TGmKPaMOM28L34O8bf2y233KI0xiDNnDnTq3NpLEpLS+36RmachcjFHlAmZtxG9+7d1dzVV1+tNMaP4LrStm1bpbEnilljBPsfYW0irOOBtXOwfgaey7Zt2+wx1unAekMPPPCA0lh7Bq8L1kox41Wwrgr+LFcNEW9qyPDJByGEEEIchZsPQgghhDgKNx+EEEIIcRTGfDgI9vDAvGtPoJ8RfZ7BEuOBnD592vYvYq0E9DuacQfoo0R++eUXpTG/fvTo0UpjzrxZawHz/jF2B3ukmLU0RNx99FjHwezJgHU7MJYA/cA//PCD0niu77//vtJmHZDKyko1d9NNNymNcQ6kZrCeA+rawFownsD4r7/+9a9KYwxSoBAXF2ff12a8kYj7/WvWUAoPD1dzzZs3V7pjx45Ko91jjMzw4cOVNmsIYc2UPn36KI21ODBe7K677vJ4btnZ2fYY40eOHz+u9MqVK5VesGCB0t99953SuJ5ed9119nj9+vVqLjIyUmlXfQ/GfBBCCCHEb/F687F9+3aZOHGiREdHS0hIiKxdu1bNW5YlTz31lHTv3l3atGkjSUlJ8u233/rqfEkAQBsIfo4fPy5bt26V1atXy1tvveX2nyhtgIjQDkjNeL35OH/+vFx77bVuKX0u/va3v8lLL70kS5YskV27dkm7du1k7Nixbmk8JHihDQQ/FRUVEh4e7uYyckEbICK0A1IzXsd8jBs3TsaNG1ftnGVZ8uKLL8oTTzwht99+u4iIvPHGGxIZGSlr165182cFO5MnT1ba9KGJiJ2zXhcwpuPTTz+99BNrQHxtA4WFhbY/9z//+Y+aQz+vWe8AYxvwj2Tr1q2VNn2pIu6+W+wHgT5PT8fGmiNYQ8R1nVxgHwXTTjDO4u9//7vS2KcCfc7Ye2Hw4MFKmzVIsAaIWcOgffv20qJFCykpKRERkby8PHuO60Dj4up/4gJ7v3hTT6g++NoOXn/9dfuex15N2EPFjOnCGKvXXntNaYyTGjhwoNJ4z3mKr8MYLIyBwN8N1hvC+JIvvvhCaU/9qzAmC2NdPvroI6Vzc3OVxg2heS5Yo6qgoEBpV+0Ub3o8+TTm4+jRo5Kfny9JSUn298LCwmTYsGGSkZFR7XvKysqkpKREfZHA5VJsQIR2EEzQBogI7YB4xqebD9d/RvhfYWRkpFvlNxepqakSFhZmfzm1KycNw6XYgAjtIJigDRAR2gHxTKOn2s6fP1/mzZtn65KSkqAxtvnz5ytdH7fL7NmzlcZA30CnJjto166dnQI2YsQI9R4sPWw+esU22JjaOGTIEKXRTYOt6R966CGlTbcMLqT4+BIfEU+bNk1p83OLuKfmmo9q8d648847xRNYGvrQoUNKmymJCJ53enq60q6y3Pv27ZNRo0bJihUrPJ5LbQTzWtCQ4KN8sxR7dWAKpr9Rkx3Ex8fbnxVdH7jBMdcGTGc1n8SIuJdAx1RcLF9/7tw5pc0WB3i/ocsH2xBguiyWPEf779Gjhz3GNPqsrCyP7+3du7fSPXv2VBpbNZipu3h9TTeryP8/pzdtFnz65CMqKkpE3P1BBQUF9hzSqlUr6dixo/oigcul2IAI7SCYoA0QEdoB8YxPNx+xsbESFRWlCiGVlJTIrl273IJ6SHBCGyC0ASJCOyCe8drtcu7cOfUI++jRo7Jv3z6JiIiQmJgYmTt3rvzlL3+RK6+8UmJjY+XJJ5+U6OhomTRpki/Pm/gZX331lcTExNAGmghVVVWqtofLbZWXlydXX301baAJw7WA1AWvNx+ZmZmqXbTLNzdjxgxZvny5PP7443L+/HmZNWuWFBUVyfXXXy+bNm1ySz8ktTN9+nR77O8xHqNGjWoQG4iLi6vRz4vaLEGPpeyxdDDGVYwdO1bpf//730rv2bNHadPfirEn+LOwTTamwGHRpSuvvFJpM31t06ZNag5jW9DnvGHDBqWnTp2qNKbemj5oM+1WRMeAlJSUyAsvvGDrjRs3isjFEs4rVqzgOtCA4O946dKlSickJCh96tQppTFl3dc01FpQUFBg31sDBgxQcxh3Zaa4YqoxpoPi/YjxXtjKYtCgQUqbLQqwbQOWYt++fbvSuE5hyXNsE2EePywsTM2hK8sVk+XCvF9F3FP+U1JSlN67d689xjgY3Dy6spfw83vC683HTTfd5PbLNAkJCZFnnnlGnnnmGW8PTQKY4uJi2zdLGwh+OnbsqIJdKyoqZM2aNbJ48WIRoQ00ZbgWkLrA3i6EEEIIcRRuPgghhBDiKI1e5yOYWLJkidJY18OMSRBxj1kI9loel8KxY8dsPy+WLsYS86Yv/MCBA2oOW1mPHDlSaYzpuP7665XeunWr0p07d7bHWFcB67dgPj2Wax4/frzSWCraLO2OpdqvuuoqpT/++GOl0ee8a9cupXfs2KG0WeodY1ewboB5Lt6UVSbuXHbZZUqPHj26xteivUyZMsXjsXFd2blzp5dn5x9ER0fb8V/Y/iA2NlZp0zaxfgXejxiHgfEMu3fvVtqM8RDRsXkYQ7Vt2zalsd4Qxq507dpVaVzzzFoeaCMYD4bNHs+fP680xg6ZdT1EdOwZlonHY7uuP77OE3zyQQghhBBH4eaDEEIIIY7CzQchhBBCHIUxH/UA2wyj/7223i2rV69WmjEe7ph+XozLwLLLrrbOIu7t4PG9+/fvVxrjbzDmY+jQoUqb/R2wp8KYMWOUXrdundLY2wX911izwMyxv/HGG9Ucxo9gPxaMxbj77ruVRj+wmdvft29fNYc9LUztTU+HpgD2wrj//vuVnjx5stJoX54ICQlRGksfmL9DEfdW6oFKcXGxHcuBdo29mcwaNRirhL2XMGYL46L69eun9ODBg5U2+7fgfYD1MWbNmqX0wIEDlcZ+YNi3JyIiwh7j58C4Now3wWNht+C3335b6VGjRtlj/FuGtVBcMXGVlZVSV/jkgxBCCCGOws0HIYQQQhyFmw9CCCGEOApjPrzEzMd3lZJ2gbUjSP05deqUXW8C+wZgjwUzjgN7ImDNCuypgHUWTpw4oTT66M1OnejnxV4vDz74oMd5jA/AOAyzjwzWCfjmm2+UxlgV/Jyvv/660nhNzeuA1xCviVlLoanHfDzyyCNK//a3v1X62muvVRrjNDy1rEDQt4+/J6wN8fzzzyuNcQUYy+OvhIaG2jaH9W6wV4wZx5GZmenxtVgHBGNEML4BYyXMGC2s04GxZxinZtYLEhF5+OGHPZ6b2XspLS1NzWHMYWFhodL33HOP0uvXr1f6woULSrdo8f/twcqVK9VcfHy80i6bq6iokH379kld4JMPQgghhDgKNx+EEEIIcRRuPgghhBDiKIz58JIuXbrYY29jPLDfyHPPPeeTcwpmwsLCbP8u5rVjbMTJkyftsZmjLnIxdsQkLy9Pacxjj4qKUvqll15S2owBwV4RH374odJffPGF0hMnTlQae21gzwUzPx/rAqDPODs7W+mkpCSlsfcE+qDN+gjYQyQsLExp0//sTcxCoGD2uRHRvS5ERGJiYuzxzJkz1RzGJGDfDLRlrKmCcR2vvvqqPV60aJGaM+vbVHcuI0aMUPq+++5T+uWXX5ZA4Oeff7bvU6xng9fTjIXq3bu3msM4CtPmRdzreJw5c0bpH3/8UWmzZ9e3336r5sLDw5Xu37+/0s8++6zS3bp1UxrvQbOuD/ZXwZoiiYmJSm/cuFFp/JwYI2LGmuGxcO11xb1gDJkn+OSDEEIIIY7CzQchhBBCHIWbD0IIIYQ4CmM+6oHp66sLU6dOVRrjDog7GzZssK8z1krYvHmz0mbPFPRfmnU5RNxrhJj9Gap7P/rVTZ8y+lpjY2OVNvPlRdxjQrAWAPr7TZ8z+pRNv6yIyIABA5TGz2HGKVT3s4qLi+0x5uujr3zIkCH2uLy83O0a+zvY5wbvz0mTJimN/mzzd/HEE0+oOYwLeOWVV5TGPhv4e7jjjjuU/uSTT6QmcnNzlUb7wroWGB8RKJh9nvD6fv3110qb9TbQbjGu4pprrlG6R48eSm/atElp7PVi/h0w7x8R95o+GKuCvVCefPJJpR999NEa34+1izD+C3v8YP8qvL9RmzWDdu/ereaeeeYZpV39q7yp98MnH4QQQghxFG4+CCGEEOIodLvUA0zPrI033nhD6YSEBF+eTlAyYcIEO20RH+lhyfOCggJ7jG3Hk5OTlUZ3BJZMLi8vr/HYItoFhGmSmA6LjyyxXPOOHTs8npupMd0T03JxHm0OS71jGqH5aBYf02LK5pdffmmPvUmxayweeOABpTFlFR9jf/rpp0qvWrVKadPt8vTTT6u54cOHK432iDaB6a8HDx4UXxGobhbkzJkz9lqA98jQoUOVNtPb0Q2Kv2dsb4DuB7O8goi728UsoYAu2Ntuu01pTHdFN+l7772nNB7PPBdMo8djY7l0tIOffvpJaSwZYNosuiT37NmjtKtcgDd/E/nkgxBCCCGOws0HIYQQQhyFmw9CCCGEOApjPhxkwYIFjX0KAceRI0fsVFVME0W/o1ny995771Vz6K/HuAyMb8B0PCzR/PHHH9tjTJssKytTGn3MW7duVRpbY8fFxSk9bNgwqQn0fW/YsEFpjDXAUu8Yb3LnnXfa4+joaI/vNVu5+0vMh1ku/t1331Vz6CNHDh06pDSmNWNcBsYZmHz11VdKYyoutjMntdO5c2f7XsOYLPxdmfcQtn/H3w2mqGIJdExV/vzzz5WeP3++PUabwzg1jNHCcguYlo/vN2PT1qxZo+Z69eql9FVXXaX0Rx99pPS5c+c8vt8s347pytgqZPTo0SJy8feC5eprgk8+CCGEEOIoXm0+UlNTZejQodKhQwfp1q2bTJo0STWXErkYUZuSkiKdO3eW9u3bS3JyslumAAk+8D8P2kFwc+DAAfn8889l8+bNkpaWpjJfXNAGCG2A1IRXm4/09HRJSUmRnTt3yubNm6WiokJuueUW9bj7sccekw8++EDeeecdSU9Pl5MnT8qUKVN8fuLEv5g8eTLtoAlRWFgoMTExMnz4cBkyZIidYkcbILQBUhdCrHr0wi4sLJRu3bpJenq63HDDDVJcXCxdu3aVlStX2uWBDx48KP369ZOMjAy33PfqKCkpcWvd7U+Y/sOMjAyv3otttoONhrCDZ5991va54n/XZsyBiMhnn31mj9u1a6fm0P+JsRIYd4ExHmapYREdW4B1PhYuXKg0+vvR54w+ZMSM+fjggw/U3IwZM5TG3H701Z44cUJptElT79+/X82NGzdOaTMG5MKFC5KRkSEbN26UcePGNdpaYNbumD17tlfvRTBeBkth//e//7XHWJ8Bay6UlpbW61wCCV/agMj/7SA5OdmOn8IaFRg7MWHCBHuM6wTWZPnHP/6hNMYsXHfddUpv27ZNabPNwOHDh9UcloHftWuX0rfccovSGBOCngUzTgPPC9e0kydPKo2xK1jfBNdXM+4Na4TgebqOVV5eLsuXL5fi4mK1RlZHvWI+XHXsIyIiREQkKytLKioqVGBXXFycxMTE1PiHuqysTEpKStQXCUxoB00X1x/m8PBwEaENNGXqYwMitIOmwiVvPqqqqmTu3LkycuRIu0pbfn6+hIaGujXpioyMlPz8/GqPk5qaKmFhYfYXRtySwGD48OG0gyaKZVn2f3yuTAHaQNOlPjYgQjtoKlzy5iMlJUWys7PdUhi9Zf78+VJcXGx/sdNrYLJ06dJ6vZ92ELjk5OQoP/+lQhsgIrSDpsIl1fmYM2eOrF+/XrZv367qwUdFRUl5ebkUFRWp3W5BQYFERUVVe6xWrVq51UnwZzIzM+0x+oARzIUOZsw21L60g1WrVtn9DbDOB/73ZLbGxp4l2N/h+PHjSk+bNk1pbFWPtQDMNtpY4wJ7oGBMB9YBwZ4KZn69iPbVYizLq6++qvTVV19d43mKuNfuMONkRESmT59uj7HmALYt79evn6Snp0txcbFMnjxZ/SPSWGvB+PHj6/V+k9dee03ptWvXKo2t1onmUmxApGY7iIiIsGOS8H7G411++eX2GPsbYf+jrKwspUeOHKn0888/r/TMmTOVNteSY8eOqTnsC3PZZZcpjXEZuG7humOuLS73lguz9pCIyD333KM0xoNlZ2cr7XKbuzB/B+3bt1dzGAPiymDCuiSe8OrJh2VZMmfOHFmzZo2kpaW5GUB8fLy0bNlStmzZYn8vJydHcnNzJTEx0ZsfRQIY2kHwY1mWpKeny5EjR2TSpEluwWW0AUIbIJ7w6slHSkqKrFy5UtatWycdOnSw//MMCwuTNm3aSFhYmDzwwAMyb948iYiIkI4dO8ojjzwiiYmJdY5sJoFJQUGBtGzZknbQRMjOzpb8/HyZMGGCtGzZ0v6vqrS0VDp27EgbaMLQBkhd8GrzsXjxYhERuemmm9T3ly1bZpceXrhwoTRr1kySk5OlrKxMxo4dK6+88opPTpb4L3379qUdNCFyc3NFxL3E83vvvScPPfSQiNAGmiq0AVIX6lXnoyHw9zofpn/fVVipJhISEpTet29fQ5ySX1CXvG5vcNnB2LFj7dx+7JGCcRmmjxLjMLBmQ9euXZXGGBDs7YL+VTMn/ve//72awzoemKtfWy8Y7DHiyiIScbepTz75ROlBgwYpjT7mZ599VmmsX2L2zPjwww/V3GOPPaa0GZtSUVEhq1ev9qkdXMpaYPqm0eeNx1qxYoXS+HvAGg2kbjTUWjBr1iw75qNDhw7qNStXrlTa7KOF9Wrw3LBPzObNm5U240dE3GOfzH/GcY3Cn402hpk8GP+F/ZTM+C8M8sZeQxg7hnU8MKbr1ltvVdqMhcG/Xb/61a+UdtUvqayslC+//LLh63wQQgghhHgLNx+EEEIIcRRuPgghhBDiKIz58BLGfFRPQ/l5u3btateqQN8r1lkx4zTMfgsi7v5PjPH47rvvlL799tuVPnXqlNJmvj3Wc8GaA9gLAnPk0XfralvgYsyYMfYYbQ5rFOCxMb4E64BgDRIzBRJriuD1NvtrVFRUyLp16xo95oM0Pg21Fpj85je/URrv39GjR9tjLOWOPVGw3xHWtNi7d6/SWHvDBGM68H41+zSJuPdbOXv2rNIYe2YG615xxRVqzuz7IqJrL1UHlq3HzuRTp061x1gvCH8frnol5eXlsnTpUsZ8EEIIIcT/4OaDEEIIIY7CzQchhBBCHOWSeruQuvHmm28qjTEf6Lck7iQmJtq581ibA3ttmL5arOEwYcIEpbH+BfZ7WL58udITJ05U+siRI/YY+zNgPv2UKVOUxvgTjLvA2IrTp0/bY+zNgjUK4uPjlcY6IOhjxjoD5rkPHDhQPGHWwcC6KoT4mrvuusuu84E9RNBWzb4lGIeBtTf69OmjdGFhodK//vWvlV63bp3SZs0RPBbGitXWMwpjtrB/1YwZM+wx9o3BdaRNmzZKu3pkucDr8rvf/U5p83NiDB2uG7gG1gU++SCEEEKIo3DzQQghhBBHodvFS7AkLWlY2rZtaz9qxRRWs+y4iC4vjP2HMjMzlcYyyJjuio9xIyMjlTbbU2N6HKah7dy5U2nX53Exbtw4pdFVYpZY7tu3r5rD9t/o/sB5TN3DR7XmNcbHukVFRUqbj69rSzsnpL4UFRXZ9y26XTCl3Fyn0fWBqbVmyriIe4o5ptJjdQrTdYLHxnTTgwcPKo3rFL6/f//+Spv3N7qWO3XqpDSmzg4ePFhpdPFgKXfTFW2udyIix44dU9r1+8Dfiyf45IMQQgghjsLNByGEEEIchZsPQgghhDgKAxiIXxMVFWX7czH9FdvHmylyZqqdiEi/fv2URn/p3LlzlcZ019LSUqXNUsYYB4Tpr23btlUafcZ4bGzZPW/ePHu8fft2NYexFpiah2WRc3NzlcaYEDMVEH3CWL55/Pjx9ri8vNztmhLiS6Kjo93ipVxgzJYZGxEbG6vmQkJClMa2DREREUofPnxYaWw9/+6779pjTGXfs2eP0mZbBhGRgoICj3rHjh1KT5o0qcbzxFgVTI/FtQGvC6YYmzEjeO9jqQJXnBtjPgghhBDit3DzQQghhBBH4eaDEEIIIY7CmA/i1xw6dMjO7b/jjjvUHPpHd+/ebY8xFgLz1G+77TalsVYHlkjHOgJxcXH22CwzLiJyww03KI3tvrt37650bS29N2/ebI+PHj2q5tAHjjVG0GeMtTvQn236kdEHnJOTo7TZchvjXAjxNYcOHbLjq3r37q3msL6NGdeBMR7YSgHv7ZdfflnpRx99VGlsj2DGjCQmJqo5XHcw5grvdXw91gExawBh7BjGgOD9e+bMmRrPW8T9c5l1QbCuB9YLCg8PFxH3ku2e4JMPQgghhDgKNx+EEEIIcRS/c7vgoyQSGPj69+Y6npm6hY/08FG/mR6LbhdMAcNUWjwWPsbFjpDm6/G1eJ74s2v7HHju5vFr+1y1HQs/N2rzZ+HvFI9l/izX2Jd2wLUgMGmotcC0TbRzvA9MjfdnbS5CPH9MOff0s/G1tb3X27XC0/1Z21rgzbHx/bVdQ9exvFkHQiw/u8NPnDjh1q6X+D95eXnSs2dPnx2PdhCY+NIOaAOBCdcCUhcb8LvNR1VVlZw8eVIsy5KYmBjJy8tza85DqqekpER69erl6DWzLEvOnj0r0dHRbgWt6gPt4NIJFjugDVw6wWIDIhftICcnR/r3708b8AJ/twG/c7s0a9ZMevbsKSUlJSJysSsgjc07nL5mmGHhC2gH9SfQ7YA2UH8C3QZELtpBjx49RIQ2cCn4qw0w4JQQQgghjsLNByGEEEIcxW83H61atZI///nPbgVgSM0E4zULxs/U0ATbNQu2z+MEwXbNgu3zOIG/XzO/CzglhBBCSHDjt08+CCGEEBKccPNBCCGEEEfh5oMQQgghjsLNByGEEEIcxW83H4sWLZLevXtL69atZdiwYapdelMnNTVVhg4dKh06dJBu3brJpEmT3Nqd//zzz5KSkiKdO3eW9u3bS3JyslsLen+HNlAzTcUGRGgHNUEbICIBbAeWH7Jq1SorNDTUWrp0qfXNN99YM2fOtDp16mQVFBQ09qn5BWPHjrWWLVtmZWdnW/v27bPGjx9vxcTEWOfOnbNfM3v2bKtXr17Wli1brMzMTGv48OHWiBEjGvGsvYM24JmmYAOWRTvwBG2ANmBZgWsHfrn5SEhIsFJSUmxdWVlpRUdHW6mpqY14Vv7LqVOnLBGx0tPTLcuyrKKiIqtly5bWO++8Y7/mwIEDlohYGRkZjXWaXkEb8I5gtAHLoh14A22AWFbg2IHfuV3Ky8slKytLkpKS7O81a9ZMkpKSJCMjoxHPzH8pLi4WEZGIiAgREcnKypKKigp1DePi4iQmJiYgriFtwHuCzQZEaAfeQhsgIoFjB363+Th9+rRUVlZKZGSk+n5kZKTk5+c30ln5L1VVVTJ37lwZOXKkDBgwQERE8vPzJTQ0VDp16qReGyjXkDbgHcFoAyK0A2+gDRCRwLIDv+tqS7wjJSVFsrOzZceOHY19KqSRoA0Q2gARCSw78LsnH126dJHmzZu7ReIWFBRIVFRUI52VfzJnzhxZv369bN26VXr27Gl/PyoqSsrLy6WoqEi9PlCuIW2g7gSrDYjQDuoKbYCIBJ4d+N3mIzQ0VOLj42XLli3296qqqmTLli2SmJjYiGfmP1iWJXPmzJE1a9ZIWlqaxMbGqvn4+Hhp2bKluoY5OTmSm5sbENeQNlA7wW4DIrSD2qANBMZnaGgC1g4aLdTVA6tWrbJatWplLV++3Nq/f781a9Ysq1OnTlZ+fn5jn5pf8NBDD1lhYWHWtm3brB9++MH+unDhgv2a2bNnWzExMVZaWpqVmZlpJSYmWomJiY141t5BG/BMU7ABy6IdeII2QBuwrMC1A7/cfFiWZf3zn/+0YmJirNDQUCshIcHauXNnY5+S3yAi1X4tW7bMfk1paan18MMPW+Hh4Vbbtm2tyZMnWz/88EPjnfQlQBuomaZiA5ZFO6gJ2gCxrMC1gxDLsiznnrMQQgghpKnjdzEfhBBCCAluuPkghBBCiKNw80EIIYQQR+HmgxBCCCGOws0HIYQQQhyFmw9CCCGEOAo3H4QQQghxFG4+CCGEEOIo3HwQQgghxFG4+SCEEEKIo3DzQQghhBBH4eaDEEIIIY7yP3EyhnxQn8UBAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACbCAYAAADC4/k2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqZ0lEQVR4nO2deXBUVdrGX0ASg0DYEwK0gLIICmggAQFFzIC4IIiCK6ijDhK0wKlSmRmZT8syjoOjNRaKWiOWqKAomwpYrAGUNSwCYlAECUsCqElYE0ju9wfVx/M+lzRp0rnp7jy/qhTn4fRy+/Z7T07uu9VwHMcRQgghhBCPqFnVB0AIIYSQ6gU3H4QQQgjxFG4+CCGEEOIp3HwQQgghxFO4+SCEEEKIp3DzQQghhBBP4eaDEEIIIZ7CzQchhBBCPIWbD0IIIYR4CjcfhBBCCPGUStt8TJ48WVq3bi0XX3yxpKamyrp16yrrrUiYQhsgIrQDQhsgbmpURm+XTz75REaOHClTpkyR1NRUef3112XmzJmSnZ0tzZo1C/jc0tJSOXDggNSrV09q1KgR6kMjIcZxHDl69KgkJSVJzZp/7GUrYgMitINIozLsgDYQWXAtIGXZQFkPDjkpKSlOenq60SUlJU5SUpKTkZFx3ufm5OQ4IsKfCPvJyckJmQ3QDiL3J5R2QBuIzB+uBfxBGzgXF0mIKS4ulqysLJkwYYL5v5o1a0paWpqsXr3a9fiioiIpKioy2mGT3YikXr16ZhysDYiUbQdDhw6V2rVri4jI6dOn1XPi4+OVjo2NNePWrVuruTlz5ijdvn17pXfs2KE0Pv/kyZNK16pVy4ztz34uja996aWXKt2yZUuld+/erXTTpk3NeMuWLQGfm5eXp/RDDz2k9PTp05WOiYlROiUlxYxbtGih5pYvX660/X0UFxfLjBkzKmQHXAuig8paC8aPH2+u8UWLFqnnXH/99Urba0HDhg3V3Lx585ROTk5WOi4uTmm85nr06KH00aNHzfi3335TcwMGDFD6888/V7p///5K79y5U+kzZ84onZCQYMb2uiDivrYHDRqkdFJSktI//vij0nv37lW6U6dOZnz48GE198svvyjt/9xnzpyRlStXutbAcxHyzceRI0ekpKREnSSRsyfthx9+cD0+IyNDnn/++VAfBvEY+3ZosDYgUrYd1K5d2/UL0g/+v60vvvhiNXfRRReV+dhzzfs3PH5wEbA3H/ha9sJXnvfGYw30eud7LTzuOnXqBJxHbR8LPhff61y3wCtiB1wLooPKWgtiY2PNtWBff/45G9uOcTOB11Cg54oEvkZEzm6w/OA1cr7rD48NjwU/ZzCfC48Tj+V86449j8eFnwPfuzzusSrPdpkwYYIUFBSYn5ycnKo+JFIF0A4IbYCI0A6qCyG/89GkSROpVauW6/ZvXl6eJCYmuh5v72ZJdBCsDYiUbQexsbFmR463BZs3b650YWGhGa9Zs0bNoXti//79SqOLYdeuXUrfeOONStt/7axatUrNFRQUKN27d2+l7VvK53o8ujf69u1rxp07d1Zz+DnQXTRp0iSlr7nmGqXtW8YiIhs3bjTj7OxsNYfn3z6uU6dOCcK1gIRyLWjYsKH5a/++++5Tc3i92y6Jn3/+Wc1dccUVSuM11LVrV6VxnUF3RePGjc24bdu2AY8LgzCXLl2qtL2uiIhcffXVZT4fXSG4zqD7Fu+i2Ne6iHuNtN1NuAG88sorlfa7xtA1HoiQ3/mIiYmR5ORkWbJkifm/0tJSWbJkifTq1SvUb0fCENoAEaEdENoAKZuQ3/kQEXnqqadk1KhR0r17d0lJSZHXX39djh8/7gp+I9ELbYCI0A4IbYCcm0rZfIwYMUIOHz4sEydOlNzcXOnWrZssXLjQFXREohfaABGhHRDaADk3lVJkrCIUFha6UihJ+FNQUCD169cP2ev57aBfv34mkvryyy9Xj8nPz1f6yJEjZoz+5K+//lpp9I/u2bNHaUxj69Kli9InTpwwY0ydXb9+vdJ4Xg4cOKA0pq1dddVVStspiY888oiaQ186ZhCgvxuPFeM47NgNTEFE/7Md4X7q1Cl5+eWXQ2oHXAsik8paC0aNGmXivzD7LCsrS2k7xXXTpk1qzk4nFxG57LLLlP7kk0+UxrReTJe14zYwowTXlSFDhiiNawVez7fffrvSdgwJxoqhGwuzVzC+BOPDMK7Dvt4PHjyo5jC2wx+jU1RUJJMmTSqXDVR5tgshhBBCqhfcfBBCCCHEU7j5IIQQQoinVErAKSGhom3btmVWOMW89T/96U9mjL5UjF/AGA7MW1+7dq3SGEth59uvWLFCzdn1RkTORvvbYJ2BZcuWKY21POzYioULF6o59PNiXAzGvqBft02bNkpfcsklZtykSRM1t3nzZqXt+BGsT0BIqDl69KiprIl2j/Vq7PivMWPGqLnFixcrja0T8PpLS0tTetasWUrb1wyWR8f4rS+//FJpu0aIiLvqKGq7HhHGfGDdDqwn1KdPH6XfeecdpTGma9u2bWaM5xtrAPnj2IJZB3jngxBCCCGews0HIYQQQjyFbhcS1hQWFppbrZgSt3LlSqXtjpLo+rjllluUxtufmP5qlw4Xcaes2u6KwYMHqzksv4zHgu+F7iMsi2ynv9opviIiCxYsULpVq1ZK4y1lPIdYxjo3N9eMv/32WzWHzb7mzp1rxsGUVSbkQvD5fMZe0d6wkZmdHnvTTTepOUzfxjRdvD7RvYEdW5s1a1bmY3///XelMb0V3Z7z589XGl1EdjduvHaxdQKuO+hKxjReXEvsEvZvv/22mrvjjjuU9ruG0dUTCN75IIQQQoincPNBCCGEEE/h5oMQQgghnsKYDw9BH931119/wa+Ffspff/31gl8rnImLizOpttjmvmPHjkrbfmBMcdu6davSmO7avXt3pbG8OsZh2L5c9D8nJSUpjSXMcR6/S/QD2+mymCKMz8WYDvT74ntjO3G7ZD2mJ3/66adK2+c/GF9vNPLAAw8ojT7xKVOmKI3l/sn5ad68ucTFxYmIyIYNG9Qcpqw+++yzZmzHTImIdOjQQenjx48r7X8PP3YclIhIgwYNlLZLAbRt21bNlZSUSCDmzZunNH6uiRMnKv3BBx+YMcax2amxIu4SAPh4jB9r1KiR0g0bNjTjQYMGqTm75YPIH2vB+T6vDe98EEIIIcRTuPkghBBCiKdw80EIIYQQT2HMRwjB/G9sf/7MM88ojXEFmKvuOE6Z7/XZZ58pPWLEiHIfZ7D4fD6l//Of/5jxiRMnZOTIkZX23vv27TM55Fg6HP2rW7ZsMWNsU2+XJRZxl0vH7w5jKbANt10LwPaNiui4CRF3a+u77rpL6QcffFDp2bNnK/3TTz+ZMfqb7ZLyIm6fK5ZEt+sEiLhjYexjxXolGB8ycOBAM8Z6ItWBhx56yIxfe+01NYftxDG+C2vDrFq1KuB72bVgsBUAXn8vvvii0lhrIlLJysoyNX9KS0vVnP///Rw+fNiM7VLrIu5aHL1791Ya48HwmsMS6nZMSLt27dQcxqIgGH+C1xHWF5owYYIZYwwWxnthjAfOHzp0SGm7XYKIyLp168wYa6Pg7y6/xviaQPDOByGEEEI8hZsPQgghhHgKNx+EEEII8RTGfASJ3T4ZW6Wj7x7r+KOfMi8vT+kPP/xQaTvmo1OnTmou1HUV7Bokd955p5rLyMhQ2o6nwBz5UNO8eXMTh4DtpT/55BOl7dbXeFw1a+p9NsZ44Dy2kMY6H82bNzdjzM3H52LPBYzpsHtDiLj9xnZre6x1gjUI0G+L/mmMR8HPbfeGqVu3rprDc2DbbzC+3khl6NChStu1OzDmAMG4AYwTOh+2vW7atCngY7H+Dfr+I5Xu3bubGhz2NSHirmlh197Bax2/KztWTMQdB5Wamqo0ri12DQyM9Zk6darSeL1hLZ1bb71VaazdYcdh9OnTR819/vnnSuM81hS55557lK5Tp47Sdlzbnj171ByuDf61OVCcIsI7H4QQQgjxFG4+CCGEEOIp3HwQQgghxFMY8xEkM2fONGO7zoGIu07HokWLlH7ppZeUzszMDPHRlR+skWHnjF999dVq7qOPPlK6Mut6IDVq1DDnFeMKsH7B2rVrzTgnJ0fNYRwF+m2Li4uVnjVrltIDBgwo8/XQb3vw4EGl9+3bp/T27duVRh8z+oXtOA2sC4D+f+zlgvVJNm7cqDT2wLH9408++aSaW7BggdL258D+NtEA1jZ49NFHlQ4U54H1VfAa+uqrr4I6lrfeeqvcj+3fv39Qrx0pbNu2zcR/Yc0fjEF49dVXzfivf/2rmsO6RbhW4DVmx0GJiKxZs0bphQsXlvlaWJNl/PjxSr/88stKf//99wGPxa7Tg/288FrGGiNdu3ZV+rvvvlMaYxDtmkFYGwXXNH8sTjCxiLzzQQghhBBP4eaDEEIIIZ7CzQchhBBCPIUxH+cBc6HtnG+M8cC4gMWLF1fegZ0HzG2fNGmS0ui//u2338z4X//6l5r797//HeKjKz8tWrQwNUjQ79i5c+cyn4d1UbC3ix27IyKSlJSkNMZd+H2afmx/KfaC2Lt3r9Lon0bQd4t1P+weDOivxnoHO3bsUNrucSHi7gWDNQzsnjZY/wD7CfXo0cOMMWYmGkhMTFT6pptuKvOxZ86cUfrdd99VOpiYjXPh729UnWnfvr2pJ4H9WrC+xMMPP1zm62A8jl27ScQd44H1hXDd6datmxljPQy0A4yJwPovjRo1Uhrj7+z6Qrfffrua++abb5RevXq10gkJCUrjmrd8+XKl7bof9u8HEXe84wcffCAi7t5SgeCdD0IIIYR4StCbjxUrVshtt90mSUlJUqNGDZkzZ46adxxHJk6cKM2bN5e4uDhJS0tzdcck0Q1tIPo5evSoLFiwQKZNmyZvv/22q4swbYCI0A5I2QS9+Th+/Lh07dpVJk+efM75V155Rf773//KlClTZO3atXLJJZfIwIEDq0X5ZXIW2kD0U1paKo0bN3aVcPZDGyAitANSNkE7EgcNGqRq2ds4jiOvv/66/OMf/zD+qA8++EASEhJkzpw5cvfdd1fsaKsA9LnZPjrs6VGVMR7ou3/llVeUxl8SeOyjR482Y6wFEQyhtoHNmzebegoYG4F+3Y8//tiMMW4C63o8/fTTSmPNkBMnTijtry9QHjAH/uTJk0rbfXRE3D0VsHaH3atj//79ag5jQNCnPGbMGKWxvxD6s21f+hNPPKHmnn32WaXtz2nHP0XLOjB8+PByPxa/l4rGeEQDobaDjRs3mrUAr5lvv/1WaTv+DmOw8JrB/kjYJwZ/B2C83M8//2zGGN+Fx4lxFrVq1VIa403s+ksiIn/5y1/MeNq0aWoOYz6w7scPP/ygNPZ5wtgXu84NHjee0yFDhojI2fUH487KIqQxH7t375bc3FzV4Cs+Pl5SU1NdwS9+ioqKpLCwUP2QyOVCbECEdhBN0AaICO2ABCakmw//DhKjahMSEly7Sz8ZGRkSHx9vfnDnRyKLC7EBEdpBNEEbICK0AxKYKs/fmjBhgmpNX1hYGFbGhimWNhVxTwQL3hKzz5mIyLhx45TG23nz589XGm/HY1lgrynLDtq0aWPcFPiZ0HXUunVrM8Zy31hO3k5fFXGXU7/33nuVvuuuu8p8b0wBxnLrdvqqiPu7XLVqldKYsm2Xa7fTW0Xc7dNxobfbYou4Syjj7VP7WK+55ho1t3LlSqVtFw++z4UQbmsBpiUHAkvRVxRM823ZsmWVHYvXlGUHHTp0MG5CdBf27NlT6d27d5sx2hBeI7hW4Llv2LCh0ngNXXfddWaM6wSGKKDreNeuXUpjiQBsj2C7cbBlBJZTx5Ri/By4nuLnst0u2GoAfy/6Y3iqLNXW/6Xhh8jLy3N9oX5iY2Olfv366odELhdiAyK0g2iCNkBEaAckMCHdfLRp00YSExNlyZIl5v8KCwtl7dq10qtXr1C+FQlTaAOENkBEaAckMEG7XY4dOyY//fST0bt375bNmzdLo0aNxOfzybhx4+TFF1+Udu3aSZs2beS5556TpKQkEw1LopPvvvtOfD4fbaCacObMGTl69KjRfhdMTk6OdO7cmTZQjeFaQMpD0JuPDRs2yA033GC03zc3atQoef/99+Xpp5+W48ePy2OPPSb5+fnSp08fWbhwoctHFylg+Vsb9KGFGtt/iDEe6AvEUu/Dhg1Tevbs2SE+Ok3fvn0rxQY2bdpkSktjGXNMHbPbTaNPEovhYeqxHZEv4k5Zfeedd5S2y7VjG2xM60U/6Pr165W2rycRd2qu3ZYbI//RDvC4sVQ+lgFHv6+dUoepeDb5+fmq/Lo/3fCll16Sjz76KCLXAYzxwHboiJ2SiameFaVLly5KYyq9DX7nWHrcayprLYiNjTXxX7j2fv3110qPHDnSjP/3v/+puUsvvVRpXOMxZgtbB8yYMUNpu/Q4ptFjyj6Wybfj1ER0fJeIO9bHTr21S62LiAwePFhpjEnEdef+++9X2v5jQkRf/5idhMftX5uDqd8S9OajX79+rjr6NjVq1JAXXnhBXnjhhWBfmkQwBQUFxjdLG4h+GjRooILjSkpKJDs729S3oA1UX7gWkPLA3i6EEEII8RRuPgghhBDiKVVe5yPcwfoXx44dM2PM6UYfG/rbzwfmfLdp06bMx2JL+BEjRgT1XpHCkCFDjH942bJlag5rXNj1M7AmBdYBwHx7bIyGvsu6desqbftiMV4kOzs74GthnQ/0QWOsge3m3Lp1q5pDf/+HH36odIcOHZReu3at0ljz4KGHHjJjtF/M9e/evbsZFxcXuz53pIE+9EDxXiI6hRTtqaIEE5CJ32llx3dVFTt37jRtDrp27arm8Pq26xphmfFt27YpffjwYaUx5io9PV1pLLfuL/ku4o7RwDo6eO3XrKn//sdYGKz7Ua9ePTPGNQvLwmNMHMa5YQo0lkW/7bbbzBjXMIyDWbhwoYi4Y8oCwTsfhBBCCPEUbj4IIYQQ4incfBBCCCHEUxjzcR7+9re/KW1X5rNr+ovodsciIsuXL1d67NixSt94441KY8lh2zf5zDPPqDm7amA0Y7fRRp88+mbtc4K9XM4Xw4H599gaO1CPFIx1QH80xqqgfxrjONDPa7euxz4x6DPGXH30MaNPGT+3Xa8CY47QV967d28zxtiTSOTVV1+t6kMw3HLLLVV9CGGHz+czdTQw3gHr+tiN67A8O8Y5Ye8XXMex98vzzz+vtF2TBdcJrIdhX8siujaRiKjaOSIiX331ldL33HOPGf/4448SCIwbWrNmjdJ9+/ZVGs+hvS5hI0Ast+GPJykqKpJvvvkm4HH54Z0PQgghhHgKNx+EEEII8RRuPgghhBDiKYz5CJJRo0aZ8eTJk9Uc+mmD7fewdOlSpW3/HuaiVxeOHDli4hKw/kWg3i7YYwF739g9TETcPmQ8348//rjS9nf/7LPPqrkFCxYoPXfuXKWffPJJpW+++WalsVeMbRcYy+Kve+Dn0KFDSjdq1EhpjAHBGJGCggIzvuyyy9Qc9rywY3Aw/iYSsWsolAe7bsK8efNCeixNmzYN6etFA8XFxeY6RrvH3iOPPfaYGe/evVvN4bWNsRMY+4M9pezfASIijRs3NmOslYH9gjB2AmttYF2ehx9+WOk33njDjO0GryLuuke47nTr1k1p/H2Da2ZpaakZYxyb3WNG5I84tmB6u/DOByGEEEI8hZsPQgghhHgKNx+EEEII8RTGfASJXav/5ZdfVnPB5uYvXrxY6QcffFDp6hrnYRMTE2PqfGA/m86dOytdq1YtM8aaIBgfkp+fr7Tds0dEJCUlRenPPvtM6d9++82M7TgJEZFHHnlEaawVs3PnTqUx7gJ9sXZdEIzDePvtt5XGebQhjH3B3H477mHPnj1qbvv27UrbPTOw10N1wLaxW2+9tQqPpHrQtm1bY6/Yuyk1NVXpzMxMM8a4J7wGmjVrpjTWAMIeP9jH58SJE2aMcRVYVwdrQ+F1M23aNKUxhsuu64O1n7AOjx2LIiKyYcMGpa+55hqlMQ7OXqfq1Kmj5rAOkv84g6n3wzsfhBBCCPEUbj4IIYQQ4incfBBCCCHEUxjzESS2Tw9zndGXiPz+++9K33vvvUqjL5Gc9Uv6/abYhwR7Nvh8PjPGc92iRQulN27cqPT111+v9KZNm5TGGBC7DgPGcGA8CR53jx49lMYaGffdd5/SixYtKvO9hg8frjTGEWHtCuxjgXn5dh8a9HXjY3Nycsz4zJkzQv4AazBgrQmsU4H2R9zExcWZ2APb9s6FHcOFMR+4bmDcBfZywX4tGNcwYMAAM8ZaGQsXLlQa7QBrF2HfGTueRETHo2BNETseUcQdi4b60ksvVRrrneAaanP8+HGl/XF5dm2Q88E7H4QQQgjxFG4+CCGEEOIpdLucByyFbadNYgnkWbNmKW23HBdx335v2LCh0nS7uMnOzja39DAVzE53FdHuDkwzw7RRfC28jdu9e3el8fXs7xZLJv/8889Kr127Vul+/fopjSWW0Q4SExPNGN0meFu2TZs2Sq9fv15pLPdcWFiotO2est1Y53qsbf9FRUUul0+kYbczEBGZMGGC0u3atVPaTl3ElGdMe8RUb0zBxFTdt956S2m0v+rIkSNHzHnDsgbo6rTPV8uWLdUcppzid4Np+uhKwZLn48ePN2MsQ45pu126dFE6OztbaXTdX3vttUrbKa/+ddEPln3/8MMPle7bt6/S6GaZPXu20rfddpsZ22UMRETi4+OlovDOByGEEEI8hZsPQgghhHgKNx+EEEII8RTGfACDBg1SGv17dnnb9PR0NTdlyhSlsTU6tku++uqrlcb0PHI2Lc6flojn58Ybb1Tajq3YvHmzmsOUU/wuVq1apTT6ONEPnJGRYcZDhgxRc5jGa/uERdzl1DGVD7FT3vA4sCw8puphPAr6ge+++26l7XLsrVu3VnPTp08v872iIdUWfd6oQwmmLWP5fmzrzpiPsynn/jiH0aNHqzmM6bKvf7wGMG4Kr3WMw8D4HIwFsp//zTffqDmME8LXwrRdLHm+YMECpe24DoxVmTFjhtK4XmJ6N8bM4Xvb6bRYqgDXofbt24uIu2xAIHjngxBCCCGeEtTmIyMjQ3r06CH16tWTZs2ayZAhQ1y7xFOnTkl6ero0btxY6tatK8OGDXNF85PoAyOnaQfRTV5enqxevVoWL14sy5Ytky1btrgeQxsgtAFSFkFtPjIzMyU9PV3WrFkjixYtktOnT8uAAQPU7Znx48fLF198ITNnzpTMzEw5cOCA3HHHHSE/cBJeDB06lHZQjTh27Jj4fD7p2bOnJCcni+M4IiK0AUIbIOWihuNfNS6Aw4cPS7NmzSQzM1Ouu+46KSgokKZNm8rHH38sd955p4ic9UtdccUVsnr1atUavCwKCwtDkkN8ofzf//2f0s8995zSkyZNMmNsaYyg/w8//5gxY5TGWgGRRmXYwe233278vJjXjr5cuw7FXXfdpeaw7gL6Q7HEMpYeRp9nSUmJGWPcBZYlx3LNeLcQ297bcUUiurQ71jNAHyu2vsbYAmwffuTIEaXtGiN4vvEv1ssuu8yMjx8/LkuXLpX58+fLoEGDomItqEp++eUXpTFOwQZtANs2zJ07N3QHVg5CaQMif9jB3//+dxMzsXXrVvUYrEljx3hhbAPW7cDrD9vY4zWD16dNcnKy0kuWLFEa48NwHcL3iouLU/rbb781Y6zZg6/95ptvKm2vWSIiWVlZSuM6lpaWZsZTp05Vc3369FF65syZInK2vPrhw4eloKDAVcYeqVDMh79WvL92flZWlpw+fVoddMeOHcXn88nq1avP+RpFRUVSWFiofkhkQjuovvg3WP7CebSB6ktFbECEdlBduODNR2lpqYwbN0569+5tmuPk5uZKTEyM6y+/hIQE11+pfjIyMiQ+Pt78BNrhk/ClZ8+etINqiuM4JvK+U6dOIkIbqM5UxAZEaAfVhQvefKSnp8u2bdtc6T3BMmHCBCkoKDA/5+tWSMKT9957r0LPpx1ELlu3bnWlD18ItAEiQjuoLlxQnY+xY8fKl19+KStWrFB18xMTE6W4uFjy8/PVbjcvL0/1p7CJjY11+eCqkgceeEBprLX/0UcflflczMXv2LGj0nj7cN68eRdyiGGJHRMRSjs4fvx4me2a8S8iu6+J7Rv1H5MN+jexB4MdZyHibsttx0pgK2tcLLHfA8ZOYE0SfLwd54H+6BEjRkgg1q1bpzT2nUHsXH/0X2Pvori4OMnKypJDhw5Jv379VPvwaFgLIgWMC8CaNlXFhdiASNl2kJWVZdYC/90VPxjbZMc34LqM/ZCw9gbGOl1++eVKY8yHXW8D29Zj7QyszYHxKHhHaNy4cUq3bdvWjDGmA+tGYf0gPJb9+/crjWvgpk2bzHjYsGFqzg4qFvkj3qS4uNgVH1IWQd35cBxHxo4dK7Nnz5alS5e6mlglJydL7dq1VZBNdna27N27V3r16hXMW5EIhnYQ/TiOI1lZWbJv3z7p37+/XHLJJWqeNkBoAyQQQd35SE9Pl48//ljmzp0r9erVM7u0+Ph4iYuLk/j4ePnzn/8sTz31lDRq1Ejq168vTzzxhPTq1avckc0kMsnLy5PatWvTDqoJ3333nezfv1/69u0rF110kfnL8+TJk1K/fn3aQDWGNkDKQ1CbD3+bZ2wJPnXqVHnwwQdFROS1116TmjVryrBhw6SoqEgGDhzouj1Eoo/27dvTDqoR/nLWS5cuVf8/a9Ysefzxx0WENlBdoQ2Q8lChOh+VQVXn9q9fv15p9JOtXLnSjNGf3r9/f6XRB4f9BzBX+uDBg0EdazhRnrzuYDhXnQ/0A6O/dPfu3WaMfl6MD8nMzFR65MiRSmNdEKyv0bRpUzPu0qWLmrPjoETEdV7wFzbGfGAcx+eff27G+Dl69Oih9K5du5TGyqMDBgxQevv27UrbtTswbmbw4MFK2z7h06dPy6effhpSO6jqtaAqCabOB4K2jP18KpvKWgv69+8vF1109u9lvHOCdmJrjIFZvny50vhaWJ/pqquuUhqvMbtOCMaG+dOO/eDvl9TUVKWx1wvGYXTu3LnM48LrFdcwjFXBOBncCtgxXHiOMLbF3weqqKhI3nzzzcqv80EIIYQQEizcfBBCCCHEU7j5IIQQQoinXFCdj2jm1VdfVfqVV15Rum/fvucci7j7g6APbvjw4UpHcoyHV+zatUtq1aolImeDWm38wa1+Vq1aZcboD0VfKvosp02bpjT2isC0crsOCPp1sR4J1hXAXhz4XvPnz1fajsPYsWOHmkMbe/TRR5Xet2+f0lgUEFMe7TgljEXB+iR23RrsX0MqxlNPPaX0O++8Y8Zob9WFwYMHm5omWCcEYynsOAw7FkzEHdswffp0pXv37q00xk7gddG9e3czxpohuMYH6hEl4l7jsHjfggULzBjjXJo3b670lClTlMYYQ3+chh9cp+xjxffC8+9/Ln6eQPDOByGEEEI8hZsPQgghhHgKNx+EEEII8RTGfADoE//qq6+UDlSZ79dff1V648aNoTuwaortQ8T6Gfjd2LER6O+89tprlcZ+DfjdYcyIXdNCROT33383Y7vPi4i7CN+yZcuUxlLkGCNi5/KL6H4s9mcUEbn//vuVnjt3rtLYXwhjM7BHw5o1a8wY+xqhPV9xxRVmjPFOpGLYtV1E9PnFnlA7d+5U2v4Oo4lff/3VxFRgzQqMy7jjjjvMGK8vjJnBWAesH4S2jbF+GFdlgzEgWBPos88+UxprkmAMhX09Y68lrNtx7733Ko2fA3u/YE0Rf5dyEfc6geuK3wb98XnlgXc+CCGEEOIp3HwQQgghxFPodjkPmOq0aNGiKjqS6knr1q1NeXX8LtANkJ2dbcYxMTEBH4suHLtVtYhIkyZNlMb0OzvlFW9XYotzvCWMrjsskZ6VlaW0fZsXSzvPmTNHaUwjTE5OVhpvA9tl4kVE1q5da8aYiocuG/ucnjlzRkjl8cUXX5gxusOqC4cOHTItFrB098CBA5V+7733zHjQoEFqDlNl0bXRrl07pfGa69Chg9K2q2TFihVqDsut47qCLSNwLWnWrFmZr4euYnQl2+uhiLu8ALZLQJetvS5hqYK9e/cq7V+bg3G/8s4HIYQQQjyFmw9CCCGEeAo3H4QQQgjxFMZ8kLAmJibGxHxgqWKMZ/jxxx/N+IYbblBzhw4dUvrdd99V+sknn1Qay5hjeqyd/upv8+0HYyMwpgPTfvPz85VOSEhQOjMz04zRH41puZgmiH5fTMvcv3+/0rYv3T6fIu70Y7sdeFFRkaxbt04IqSzi4uJMjATGcNWpU0dpu01Abm6umuvUqZPSGD+CcRiYkoqpuXb8Q7du3dQcpsZjvAmWRMf4Eoy7smO8cJ3Btg2YYoxxbosXL1a6a9euStvXMx4HniP/OcV030DwzgchhBBCPIWbD0IIIYR4CjcfhBBCCPEUxnyQsKakpMSUUrbL/YqIbN++XWk7/x59reiLnDhxotJYQwTLCWP9DLuEOrabxpx4uwy5iNsHjXEbW7duVXrPnj1mjDUG8LhRY/2NBg0aKI0xJHZ9hOHDh6s5PCd2q3LW+SCVzZVXXmliO/AaCdQ2AOMV0Fbt60vEXWujVatWSuN7+3w+M8ZrOScnR2msq4NxGT/99JPS06dPV/rWW281Yyyjn5KSovQbb7yhdFpamtJYF8SOYxPRNUZw3cjLy1N6y5YtIuL+HgLBOx+EEEII8RRuPgghhBDiKWHndsHb2yQyCPX35n89+zYeujPwFp9d2hfTzvC5mB6L83hrNtB74XPxViqWHMbXRpcQztuvh6+Fx4X6fOcM39t+L3xuoM/hH4fSDrgWRCaVtRbY13Qwa8H5ri98LX9qvx8sZx/oGsN1B98bn4trBc5j9147zRePG1OAz7fO4OfE69v+3Pjcss6//9/y2EANJ8yu8H379rl8bCT8ycnJceWRVwTaQWQSSjugDUQmXAtIeWwg7DYfpaWlcuDAAXEcR3w+n+Tk5LiKwJBzU1hYKK1atfL0nDmOI0ePHpWkpCTXLr0i0A4unGixA9rAhRMtNiBy1g6ys7OlU6dOtIEgCHcbCDu3S82aNaVly5ZSWFgoImerz9HYgsPrc4bZHqGAdlBxIt0OaAMVJ9JtQOSsHbRo0UJEaAMXQrjaAANOCSGEEOIp3HwQQgghxFPCdvMRGxsr//znP10NbEjZROM5i8bPVNlE2zmLts/jBdF2zqLt83hBuJ+zsAs4JYQQQkh0E7Z3PgghhBASnXDzQQghhBBP4eaDEEIIIZ7CzQchhBBCPCVsNx+TJ0+W1q1by8UXXyypqamybt26qj6ksCEjI0N69Ogh9erVk2bNmsmQIUMkOztbPebUqVOSnp4ujRs3lrp168qwYcNcbZDDHdpA2VQXGxChHZQFbYCIRLAdOGHIjBkznJiYGOe9995ztm/f7jz66KNOgwYNnLy8vKo+tLBg4MCBztSpU51t27Y5mzdvdm6++WbH5/M5x44dM48ZPXq006pVK2fJkiXOhg0bnJ49ezrXXnttFR51cNAGAlMdbMBxaAeBoA3QBhwncu0gLDcfKSkpTnp6utElJSVOUlKSk5GRUYVHFb4cOnTIEREnMzPTcRzHyc/Pd2rXru3MnDnTPGbHjh2OiDirV6+uqsMMCtpAcESjDTgO7SAYaAPEcSLHDsLO7VJcXCxZWVmSlpZm/q9mzZqSlpYmq1evrsIjC18KCgpERKRRo0YiIpKVlSWnT59W57Bjx47i8/ki4hzSBoIn2mxAhHYQLLQBIhI5dhB2m48jR45ISUmJJCQkqP9PSEiQ3NzcKjqq8KW0tFTGjRsnvXv3liuvvFJERHJzcyUmJkYaNGigHhsp55A2EBzRaAMitINgoA0Qkciyg7DrakuCIz09XbZt2yarVq2q6kMhVQRtgNAGiEhk2UHY3flo0qSJ1KpVyxWJm5eXJ4mJiVV0VOHJ2LFj5csvv5Rly5ZJy5Ytzf8nJiZKcXGx5Ofnq8dHyjmkDZSfaLUBEdpBeaENEJHIs4Ow23zExMRIcnKyLFmyxPxfaWmpLFmyRHr16lWFRxY+OI4jY8eOldmzZ8vSpUulTZs2aj45OVlq166tzmF2drbs3bs3Is4hbeD8RLsNiNAOzgdtIDI+Q2UTsXZQZaGuAZgxY4YTGxvrvP/++87333/vPPbYY06DBg2c3Nzcqj60sODxxx934uPjneXLlzsHDx40PydOnDCPGT16tOPz+ZylS5c6GzZscHr16uX06tWrCo86OGgDgakONuA4tINA0AZoA44TuXYQlpsPx3GcN954w/H5fE5MTIyTkpLirFmzpqoPKWwQkXP+TJ061Tzm5MmTzpgxY5yGDRs6derUcYYOHeocPHiw6g76AqANlE11sQHHoR2UBW2AOE7k2kENx3Ec7+6zEEIIIaS6E3YxH4QQQgiJbrj5IIQQQoincPNBCCGEEE/h5oMQQgghnsLNByGEEEI8hZsPQgghhHgKNx+EEEII8RRuPgghhBDiKdx8EEIIIcRTuPkghBBCiKdw80EIIYQQT+HmgxBCCCGe8v+ocBTW6X36sQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACbCAYAAADC4/k2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqqElEQVR4nO2deXBUVdrGX0CCbAkQSCBACCBIABFlB1llEdxAdMByRlQU0aCDuA36uYAMsZwSEEEZpABHhwGjsgqIggRRFgFBgxCRRcKSACoJARKY5H5/UPfOeZ8mnTTp3HR3nl9Vqs6T08vt2+89ObnvVs6yLEsIIYQQQlyifGkfACGEEELKFtx8EEIIIcRVuPkghBBCiKtw80EIIYQQV+HmgxBCCCGuws0HIYQQQlyFmw9CCCGEuAo3H4QQQghxFW4+CCGEEOIq3HwQQgghxFVKbPMxc+ZMiYuLk6uvvlo6deokW7duLam3IgEKbYCI0A4IbYB4Uq4kerssWrRI7r//fpk1a5Z06tRJpk2bJklJSZKamipRUVFen5ufny/Hjh2T6tWrS7ly5fx9aMTPWJYlZ86ckZiYGClf/n972eLYgAjtINgoCTugDQQXXAtIQTZQ0IP9TseOHa2EhARH5+XlWTExMVZiYmKhz01LS7NEhD9B9pOWluY3G6AdBO+PP+2ANhCcP1wL+IM2cDmuEj9z4cIF2b59u4wfP975Xfny5aVv376yadMmj8fn5uZKbm6uoy022Q1Kqlev7ox9tQGRgu2gTZs2UqFCBRERGT58uHrO6dOnlW7VqpUzTktLU3P4vnXq1FE6JiZG6e7duyudmJiodI8ePdSxm1x99dVKb9y4Uen4+Hil8/LylN69e3eBj2/durWaO3funNK9evVSesaMGeKNunXrKn3mzBlnfNVVVxU4JyJSr149Z5ybmytTpkwplh1wLQgNSmotiIuLc/6bvu6669RzcnJylP7jjz+ccbNmzdRcZmam0nj94fX5888/K43Xwfnz551xXFycmjt27JjS9evXVxrvDuCaZp5LEZFrrrnGGe/fv1/NNW7cWOmUlBSlcV1p2rSp0tnZ2Up37drVGeM5O3nypNItWrQQkUvf3VtvveVx3JfD75uPU6dOSV5enkRHR6vfR0dHy969ez0en5iYKBMmTPD3YRCXMW+H+moDIgXbQYUKFZzNB/5RR12lSpUC5ypWrKh0WFiY19eqWrWq0viHGB/vbQ7fu1KlSkrj4ofvZT6+cuXKag7/QFerVk1p/JwIHsuFCxcKPI7CNlkixbMDrgWhQUmtBeXLl3f+WOM15e0awmsAn4sbALwm8PF4XZi6sMfiseB74/NRm9dcYWtYYZ+zsGM1z0Nh5xDPWVHcY6We7TJ+/HjJzMx0fvA/VlI2oB0Q2gARoR2UFfx+56N27dpSoUIFycjIUL/PyMjwuMUrcmnHhLsmEtz4agMiBdtBv379nN+vX79ezeFrme6N/v37qzncqe/atUtpvGX54YcfKm26GES0uwNvQeJi+dtvvyndr18/pd944w2vx2reLsVbwPgf5fLly73O4383+LmPHz/ujPEWMP4307NnT2d89uxZQbgWEH+uBW3atHGujfz8fDUXGRmptOme/Prrr9Xc0aNHle7du7fSeBclPDxc6c8//1zpe++91xnj3cEbbrhBafxcpsvmcsdqXmMi2n2Mr4XnGF3J+Hi8m4Huqe+//94Z16xZ0+trJycni4jIf//7Xykqfr/zERYWJu3atZO1a9c6v8vPz5e1a9dKly5d/P12JAChDRAR2gGhDZCC8fudDxGRcePGyYgRI6R9+/bSsWNHmTZtmpw9e1YefPDBkng7EoDQBogI7YDQBsjlKZHNx7Bhw+TkyZPy8ssvS3p6urRt21ZWr17tcQuYhC60ASJCOyC0AXJ5SqTIWHHIysqSiIiI0j4M4iOZmZkevtHiYNvBc8895/gqb775ZvWYX375RWkzVuLNN99Uc23atFEaU2l/+OEHpXFhRJ/nunXrnDGmz2HMxoEDB5TGGJERI0Yo/d577yndp08fZ/zxxx+rOfTbNmzYUOlnnnlG6ddee03pu+++W+mJEyc64/vuu0/NYXrj0qVLnfHFixdlzZo1frUDrgX/o3Pnzs54+vTpaq59+/ZK33LLLUqvWbOm5A7sMpTUWhAfH+9kvuFagKm2ZmwTxnfhNXLw4EGlMQ4DYynMlH4RHYd12223qTlMJ8Z1BNNdce348ccflTYzWlq2bCm+MH/+fKXvuOMOpTHW5ffff3fGTZo0UXOHDh1S2j7fFy9elNWrVxfJBko924UQQgghZQtuPgghhBDiKtx8EEIIIcRVSiTglBB/YVY1nDVrlppDn+VHH33kjO1yvzYDBgxQGiuF2nnqNsOGDVN65syZSpuxFHv27FFz3ko9i4j885//9PraQ4cOVdr086JPGUs9d+zYUWmMN8Gyx1j63TynmMu/b98+pU1/NdY3IMWjVq1aSk+aNMkZt2vXTs1h2B4+N1To3r27E+OEn/HEiRNKm7V2zJLkIp5xFR06dFAaX/vw4cNKY2xEbGysM8YS5lhxGMutY9VRjAfDUu/md33jjTeqOUxdfvLJJ5XGJn5Yxdms6yGir++5c+equb59+yptf45Cm8mZzynyIwkhhBBC/AA3H4QQQghxFbpd/MjUqVOVxjTBhx56yM3DCQkyMjKcW63oUpg9e7bSZiljbLKEaWZYKhxLPReWgb59+3ZnjN8zln42b5mLiGzevFlpLHmOzzdv1WLpdryFjLeIV61apTTegsZyyGZZ6hUrVqi5GjVqKL1ly5YCj5n4BqYlmi5EEc8S4CYLFixQetmyZf47sAAiOzvbWQuwDPmYMWOUNt2A2N4AU2tHjhypdFJSktJ2eq8Ndq41U1JxHWnevLnSeCzYwgDbODRo0EDpl156yRk//PDDas5ck0Q8S7vj2oGuKixRb64tmJL/5ZdfKn3XXXeJiG5MWRi880EIIYQQV+HmgxBCCCGuws0HIYQQQlyFMR9+BOMEOnXqVEpHEjq0adPGSYvFVtYYQ2OWLsayxFiOGcupYwllM55BROSDDz5Qeu/evc4Yfa3ox01NTVW6SpUqSk+YMEFps8S5iE7tw3LMmNaL8Sf9+/dXGlNrsTS3GQOC5esfffRRpc00wNzcXJkyZYqQooE2kJ6ervTlWsrbYIwHNmjzpa15MLF7924n/gJjto4fP6602R5hw4YNam7QoEFKf/LJJ0pjGwFMfz116lSBx4jXPsZZZGdnK43r0ldffeX1+Wa5gYsXL3p9bbOTsIjn36PvvvtOaUw5NlPrMS4N1167jLwvtsc7H4QQQghxFW4+CCGEEOIq3HwQQgghxFUY81GCYI42+te3bdvm5uEEJceOHXP831hKHP2rixcvdsZmG3oRz3oYGPOBred37typ9Jw5c5Q2YynM+A8Rz/x7LO3+1FNPKY0tvDMzM5Xu1q2bM0YfMJ6TJUuWFHicIp4+WSwzb5ZgnjFjhpr7+OOPlTbjEnzJ7y+LoE2MHj1aaaxLg/Fjzz//vDOeNm2amgvVGA+kW7dujs3h9YkxH2a9DLRNjHtq27at0lirA2Mrtm7dqrQZI2LXIbHBtgOosfUCxk1h7JoZn1K/fn01h+dg4MCBSpv1SEQ8PzfakdmaAdcJLBtfp04dEfE8V97gnQ9CCCGEuAo3H4QQQghxFW4+CCGEEOIqjPkoQbB9edeuXZVmzEfhNGrUyPE3FtbXxOz9grEP/fr1Uxpz/bHnQpMmTZRu2LCh0ubro+8Uv3dsi/3qq68qjfn2+Ph169Y5Y6z/gD1Vnn32WaWxhTd+js8++0zps2fPOuOsrCw1Z/t1bUyfsC++3rIA1lQYNmyY0th3wzzvIiIzZ85U+p133nHGZSXGA0lNTXXqTeA1hzVpzHgw/C4wXgTjGfCawZo/MTExSsfGxjrjL774Qs1h/AjGi6BdYDwYrlNmbyb8HHi9Hjp0SGm0m9q1ayu9Zs0apc1YFqx1cu211yptx4BgTIs3eOeDEEIIIa7CzQchhBBCXIWbD0IIIYS4CmM+/AjWe0Aef/xxpf/zn/8ojX41IvKvf/3L8fM2a9ZMzaWkpCjdt29fZ4yxDLt27VK6UaNGSletWlVp9IdiXxnz+fv371dz+L2iH3jlypVKY40HrN0RFxdX4GvffvvtSoeHhys9b948pfEcmnU9RHQPh1q1aqk5jOu48cYbnXFOTo7H5ypLmLVYRESmTp2qdLt27bw+H3t6zJ49W+lz584V4+hCgwYNGjh1NH7++Wc1hzV/zPgGPHdmDygRkeXLlyuN8ThDhgxR+ssvv1TafH28ZsaOHav00qVLlca/GY0bN1Yaa7qYvWAwxgNrb+Aahv1ZVq9erfQdd9yh9JEjR5wx9rtJSkpS2l6j2NuFEEIIIQELNx+EEEIIcRVuPgghhBDiKoz58CPLli1TetasWUo3b97cq2bMhyeRkZFOPY+DBw+quRo1aiht9j3o3r27mmvZsqXSmAOPuf6LFi1SGvvypKenO2OsETJu3DilsYZDRkaG0ma9DBHPHg1mbY42bdqINz799FOl77vvPqWxNsC+ffuUfuCBB5yxeT5FPHtkmPVMfMnvDxVM+5s8ebKaKyzGA2MW0N/uT9D3f+rUqRJ7r5IkJyfHqWuDfbMwrqN8+f/9X92jRw81h/WVMP7LjLESEcnLy1MaY0bMHiv4WhgbgTFaGG+C/VqwH4tZEwjPAYKxKb169fKqMf7EPIdVqlRRcy1atFDajltjbxdCCCGEBCw+bz42bNggt99+u8TExEi5cuU8KklaliUvv/yy1KtXTypXrix9+/b1+O+KhDa0gdDn5MmTkpSUJG+//bYkJiZ6VJikDRAR2gEpGJ83H2fPnpXrr7/eo/yvzRtvvCHTp0+XWbNmyZYtW6Rq1aoyYMAAycnJKfbBkuCANhD65OXlSVRUlPTv3/+y87QBIkI7IAXjc8zHwIEDZeDAgZedsyxLpk2bJv/3f/8nd955p4hcqtMQHR0tS5YskeHDhxfvaAMc9O3/8MMPShfmrw8F/G0D8fHxTj8TjFfAviZm3wP027Zu3VppzMdPTU1VGp+P/R3MfPbIyEg1t3v3bqVxoUW/r+lbFfH0+5q9I+bOnavmMN4kISFBaYwBadWqldIbN25UukOHDs4Y42R+/fVXZ1yzZk31uc3voqysA+a5vummm7w+FuN8sP5DccD4Enxts+eRiGePpHfffVdpjPW5UvxtBykpKVKhQgUR8eyvgvFfZjwS9mrBfisYc4Wvjdcz1uUx623Uq1dPzfXp00fpb7/9VmmszbF+/XqlcR0y6/TguoGvdc899xT4XBHP+kNYy8NcGzAO7dZbb1XajqMptTofBw8elPT0dFXsKSIiQjp16iSbNm267HNyc3MlKytL/ZDg5UpsQIR2EErQBogI7YB4x6+bDzsDIDo6Wv0+OjpaZQeYJCYmSkREhPODXTdJcHElNiBCOwglaANEhHZAvFPqqbbjx49XqYlZWVlBa2xYFhvdBGXB7XKlFGQHR44ccUoqY6t6vJ1spi/i4obphV9//bXSeEsSy6mjTZpuGzwOLNVuWZbSWNY4IiJCaXS7mK4TLNv9/vvve9XZ2dlejw3TEG+77TZnPGfOHDWH6XWHDx92xpiGeyUE+lrw1ltvKT1q1KgiPxdbK6B9FYbpNkS3CN7qx+8YMd2TIp4l9s0UzczMTJ+O0x8UZAf5+flSrlw5EfG8fkePHq206SLEa/v7779X2n5NGyzVjnde8Pya7olVq1apuREjRiiN7l/bjWQzaNAgpY8ePap0z549nTG2dUAXLP49QjcLup/w+jbPi1lq/XLvZa+Bubm5kpycLEXBr3c+7A+D/s2MjAyPD2pTqVIlCQ8PVz8keLkSGxChHYQStAEiQjsg3vHr5qNx48ZSt25dWbt2rfO7rKws2bJli3Tp0sWfb0UCFNoAoQ0QEdoB8Y7Pbpfs7GyV03/w4EHZuXOn1KpVS2JjY2Xs2LEyadIkadasmTRu3FheeukliYmJkcGDB/vzuEmA8cMPP0hsbCxtoIyQm5urKvLat3jT0tKkVatWtIEyDNcCUhR83nxs27ZNevfu7WjbNzdixAiZP3++PPfcc3L27FkZNWqUnD59Wm666SZZvXq1R3pSWQBbjN9///2ldCQlT/fu3UvEBu69917Hx4rt5OfPn+/xWBvT5yvi6bfFcsyFlSLG7/LPf/6zM8bURSyTjylxWNr9xRdfVHrGjBlKm6XLX3nlFTWH7b87deqkNLbwxrRMTOUz3xtreJip47/++qv6PuzshcmTJ8u///3vkFgHMDbiiSeeKPCxGPOC5fhTUlK8vpfdQsAGy7U//fTTXp9fHDA2rbhxHiW1FsTHxzvnCdvD4zVmfiaMFcO00SZNmii9Y8cOpbGEgtnWXkTUXZznn39ezWHcBZZfMOOmLgdu0kw7+eabb9Tco48+qjSm2Xfu3FlpTEHGOBrz2LBcQJ06dZS2z5Ev5dV93nz06tXLI4DOpFy5cjJx4kSZOHGiry9NgpjMzEzHN0sbCH0aNWqkAjBzcnLk+eefd2pG0AbKLlwLSFFgbxdCCCGEuAo3H4QQQghxlVKv8xHKoJ8X88lJ4cyePdvxc959991qDvPxzVgLLGM8ZswYpYcNG6Y05sBjG+34+Hilz58/74y3b9+u5rDc+h9//KG02bZexLPuANYl6N69uzPG2AKMD0Eba9u2rdLYCNLMRBDR9RLssvY22IrcbAMfiraNZfC9uZvR/+4raI9mnQt8b/Sr79q1S2mMN0EwhmHKlClFPs7SpFq1ak7NH/yMWCLdLDWOdXTw2sbS7BgTctdddyndrVs3pTds2OCMMU4KrwuzFpGIZ/2hfv36KT179mylzfgwLJ++d+9epTHGA+PYMGbOjC0T0esYxnxg7Jht/6VWXp0QQgghpDC4+SCEEEKIq3DzQQghhBBXYcyHi6DP+L777lO6uH7jUOTkyZNOTr9Z3E5E9yER0bn92HsAc9p/+uknr/P42thj5LvvvnPGWA+iZs2aSmPMx4kTJ5TGugroJz548KAzxl4PGAeDNQ3wvW2fuQ3WDTHjBzA98k9/+pPSZi0V9BcHI0OHDlX6H//4R5GfO2nSJKULq+th1okRudRq3sRbfAn68keOHKl0YTEfeKxY5yNQOX36tBP/hSXbsZ6Geb1im3qMfTCvZRHPdRn7RGGMVtOmTZ3xvHnz1Fx+fr7S2D+lQ4cOSpt9YkQ8Yz6WLVvmjFu1aqXmGjVqpDSuI4mJiUrjWoG1U8y4ObQprFdi123xpc4H73wQQgghxFW4+SCEEEKIq3DzQQghhBBXYcyHi6APDn23mG+OdSzKIv369XP8ib///ruae++995Q2/ZKYAx8dHa009ibA+hkvvfSS0pjXbh5L7dq11dzWrVuV7tOnj9LYThztAv3XZv6+WVtDxDPWokGDBkpPmzZN6SFDhiiNfWXM84Q1B9A+q1Sp4oyxDkAwgueisNolZi2OwuK1XnvtNaWfffZZr49H3/ljjz3mjM0eRiKePT0QrFPx2WefeX18oHLw4EGpUKGCiIhHV1yz7o6ISJs2bZzx8uXL1Rz2U+nRo4fSn3zyidKzZs1SGs/fmjVrnDH2icH+KnafKhuMs2jZsqXSCxcuVNrsI4XrYceOHZXGODW8fjHWpWvXrl5fzwTXTzvGzv5+igLvfBBCCCHEVbj5IIQQQoircPNBCCGEEFdhzIeLYO4+9t3AWADGfIj8+OOPTm4/5shjHYYvv/zSGWO/C8xpt+NIbPBcY/+VxYsXK232ikH/J9YFwB4p+L1jnQXsvWH6/zG24Nprr1UabWzgwIFKm3UCRDxjEcw6BZs2bVJzGBdj+tWDsbcL1tqIi4vz+nisM/Phhx86Yzw3GJvz8MMPK23btI3Zl0hEZPjw4Urfcsstzvipp55Sc+hnx9otn3/+udK+9N8IJFq2bOnUqfnxxx/VHPZv2b9/vzPGGj4Y24DxSti7BWtxLFq0SOkbbrjBGeN3Ub9+faUx/gavsfDwcKV3796tdFRUlDNu3LixmtuxY4fSe/bsURpjXWJjY5XG+BNzjcR1Bfvj2PFfeB14g3c+CCGEEOIq3HwQQgghxFW4+SCEEEKIqzDmowTBuv7oJ0P/IMYGkEv1NWzf4+bNm9Uc+jBNXzaeS9RmXxIRkUGDBin95ptvKo09VMzeMNu3b1dzGDtw/fXXK236o0U841Fq1aqltOnvR/8z9pJYsGCB0vh487VEPG3SjCHBeBH0+5o+Zl98vaUF+t/Hjx+vNMYNYA2Vv/3tb0qb/YMmT56s5m699ValTV/95RgwYIDS2F9k9OjRzhhjNrC3C8YnhUINFhGRyMhI5zrGeAeMjTC/mzvvvFPNmb2SRER69+6tNJ5f89yLiPTs2VNpM2bLrH0j4tkPqVq1akpjPxa8Hlu3bq30008/7YyXLFmi5jCO7dChQ0o3a9ZMaW/9g0REfv75Z2eMa+2NN96otB33VthrmvDOByGEEEJchZsPQgghhLgK3S4liFkWW0Rk1apVSmPb9rFjxyr94IMPlshxBRMNGzZ0bmViiXRMOzVTlfEW+pEjR5RGl8KWLVuUxtRIdK2Yre3RlYG3gPG9z507p/Q111yjNKYCJiUlOWNMjcVUW2ybPWPGDK/vjWW8H3/8cWeMbom+ffsqbbqPfGmlXVqg+6EwN6eZui3i6c4wW5rfdNNNag5vlxcGumlQm7fz//jjDzWH5fyzs7N9eu9g4dSpU06K8vHjx9UcatO9gans6A5HlyGmOZvXhIjI6tWrlTZbGuBr4Xf1/fffK43rFGLamIhuAYCpsVhuvXnz5kpj6Xe0Z3RHme4lfC4et+2qwnPrDd75IIQQQoircPNBCCGEEFfh5oMQQgghrsKYDxfB1s4Y80E8Wb58uePnNVO/RDz9oWaJb2xljWmSc+fOVRpT3t577z2lMd4kKyurwGPu37+/0gcOHFAa22pnZmYq/cwzzyhtxg9gKhv6kDEduVevXkpj6i3GC3zwwQfOuHPnzmoO40XMEte++HqDBWx3gDZh+sGxJLevTJo0SekzZ84onZKS4owxtTY1NbVY7x0sXHXVVc5agHFU3377rdL33HOPM0Y73rZtm9K333670uvXr1caYykwXdacxzYNWGYfjxtbM2C5dYy1MGOBMIYQU/YxZXjp0qVK16xZU+kTJ04onZaW5oy7d++u5jCOxo758qV0P+98EEIIIcRVfNp8JCYmSocOHaR69eoSFRUlgwcP9th15+TkSEJCgkRGRkq1atVk6NChkpGR4deDJoHHvn37lKYdhDZbt26VjIwMOXr0qBw7dszjv0MR2gChDZCC8WnzkZycLAkJCbJ582b54osv5OLFi9K/f3/VhfOpp56S5cuXS1JSkiQnJ8uxY8c8OvmR0GPIkCG0gzLEkSNHpFq1ahIVFSW1a9d23EG0AUIbIEWhnOVLPVTg5MmTEhUVJcnJydKjRw/JzMyUOnXqyIIFC5xy1Hv37pX4+HjZtGmTh+/tcmRlZRWa+xysoI9tw4YNSpu1I0S0vzAYyleXhB288MILTtngdevWqcdgiWW73baIZ60NrJ2B+fc1atRQOj4+Xmn8rkyfJ/qMu3TpovTKlSuVRt8q1nP57rvvlF6zZo0zRt8rxmw88sgjSuO1hLn82G79oYcecsaFxb2YMTZZWVny0UcfycqVK2XgwIEBuRZUrlxZ6b///e9Km59dxNOHXpKgvb7yyitKY02GQMafNiDyPzuIiIhwbM5sYy/iWWemRYsWzhhtCOOT8K6dHVdi0759e6UxRqtly5bOGGMhjh07pnTDhg2VLqyWTo8ePZQ24zywXHp6errS+Kcd7XnPnj1KY9n48PBwZ4zxXlhDxF4r8vLyZM+ePZKZmamefzmKFfNhfwl2L4rt27fLxYsX1Qls0aKFxMbGegTS2OTm5kpWVpb6IcEJ7aDsYm+O7Q02baDsUhwbEKEdlBWuePORn58vY8eOlW7dujnR+Onp6RIWFubxX2R0dLTHrswmMTHR2dVGRER47AxJcNC5c2faQRnFsiznbo39XyBtoOxSHBsQoR2UFa5485GQkCApKSmycOHCYh3A+PHjJTMz0/kx03tI8ICpq75COwhevvnmG48UwyuBNkBEaAdlhSuq8zFmzBhZsWKFbNiwQdW1r1u3rly4cEFOnz6tdrsZGRkeOfM2lSpVKjOt5DHOABdsrA9hxogEeoS42a7cn3Zw4MABJ5bDrEEhIjJhwgSlzRgEbEn+1ltvKW22phbRQXIinnEXWE/DbCmNbbQnTpyoNNYYwbgL1NgnxPRBow2h7xt9zNhfqE+fPkpjrQCzjwz60fFz9uvXT2bNmiWnTp2SxMREefLJJ525QFwLzp8/r/S4ceOUxmsMe/YgZl8dbDmOboVPPvlEaaz3gN8rxhUEI1diAyIF20Hnzp2dawHrY6xdu1Zps94E1gcaNGiQ0hjjYfYsEvGMt+vdu7fS5lqBMVcvv/yy0itWrFB6wYIFSsfFxSn9yy+/KG3GomG8V5s2bZTGTFSMOaxXr57SaJNmjBTWVMJeV3Y/oRLr7WJZlowZM0YWL14s69at8wj4a9eunVSsWFEZQmpqqhw+fNgjCI+ELrSD0MeyLJk1a5Zs3rxZJk2aJFFRUWqeNkBoA8QbPt35SEhIkAULFsjSpUulevXqjt8uIiJCKleuLBERETJy5EgZN26c1KpVS8LDw+WJJ56QLl26FDmymQQnGRkZUrFiRdpBGSE5OVkOHDggL774olSuXNm5i3f+/HkJDw+nDZRhaAOkKPi0+Xj33XdFxLNk87x58+SBBx4QEZGpU6dK+fLlZejQoZKbmysDBgyQd955xy8HSwKX5s2b0w7KEHZp9RdeeEH9/tNPP5XHHntMRGgDZRXaACkKxarzURKEcp0PZObMmUrbF6yN6ZML9JiPouR1+4JtBzVq1HBiOdBHj8HOZr0NjG3A6Hr0yR8/flzppk2bKo21AEy/L9YfiYyM9PrcESNGKI0+aXzvHTt2OGOs//Doo48qjdfOddddpzTGcXz88cdKm752jEXBXkRmnEJubq5Mnz7dr3ZQltaCUKKk1oLrrrtOKlSoICLi8fpm/I2ISO3atZ0xXl+YfYO9lvDxGAuBRdLMeDC73IANxpJhfAnGn7z++utK47pkpi1jvSCM70pISFB6zpw5SptxayKea6K5FpjnU0SkY8eOSp86dUpELq0vS5YsKfk6H4QQQgghvsLNByGEEEJchZsPQgghhLjKFdX5IP4B+2pgzAcRGT58uON7/OKLL9Tc4MGDlTb9oXZwtE2TJk2UNvvmiHjmp2/cuFFpTA0cOXKkMx41apSaQ18sxllgnxjs64G1AqZMmeKM7733XjWH/R2mT5+u9Pr165W2feY2eF7MeBO7p45NcnKy0mbNAfyMhPibsLAwueqqS3+y+vXrp+aw7sSnn37qjLGeBfZi+vbbb5XGHkZ25WYb7Ili1mTBOCm8Pu3YCBus/4LVXLHfkLmuVatWTc1hXZry5fW9Bexvhesp9o0y41WwxD3W/LHrqpj1VQqDdz4IIYQQ4ircfBBCCCHEVbj5IIQQQoirMOajFFm2bJnS6KMjl3yLdswH+m6x/8OSJUucMcY2YC8IjIXIzc1V2u7MafPmm28qbdYcwWqN2K8Ba47MmzfP63ujz9n0b2MZczxOBOtkLF26VGnM9TcLQI0ePVrNtWvXTmnTr+6Lr5eQK6Fr167ONY8xCNi3xOx5hKWs1qxZozTW3jB7moh49uDCa8qMjcI4tK+//lpp7L+ya9cupfFzvP3220qbsRYYk3Xy5Eml8XPb8TI2uC5hnQ+zlgf2iTl69KjSdm+jvLw8KSr8a0cIIYQQV+HmgxBCCCGuQrcLCWgyMzMlLCxMRDzT0LBs+YABA5zx5MmT1Ry6XQ4cOKB027ZtlU5JSVEa27EvXrzYGc+ePVvNNW/eXOmpU6cqjSXR8Tbv3Llzlf7tt9+cMZaGnjBhgtJ4jvA2KJb0x/d6+umnnfGqVavUHH6uv/71r8743LlzHq4sQvzJjh07HNdBTEyMmkPXiZl2v3LlSjXXvn17pdFusUT6tm3blMb2B/Xr13fG2PIBU4LRtY6t6tFNg2XNzbTfQ4cOqTl0S2NrBbzWTdeUiGfavXm95+TkqDk8Z7YbOicnR3bu3ClFgXc+CCGEEOIq3HwQQgghxFW4+SCEEEKIqzDmgwQ0TZs2dVLKsLw3lhM2S4+/+uqram7Lli1K9+/fX2lsXb1v3z6lb731VqXN2Assj967d2+l7TQ0m/fff1/pgQMHKv2Xv/xFaTPdDn3E6J/GeJJffvlFaUzvjo2NVdosDd+hQwc1h+ffjFXBdGFC/E1eXp6UK1dORERuvvlmNbdo0SKl09LSnPG5c+fUHF4TjRs3VhqvV4zxwHgxMzUeYzSSkpKUxmsKWzFgG4fs7GylzZgQTJ3FmKzXX39daSwTjzEegwYNUtos/R4ZGanmMG7GPv9MtSWEEEJIwMLNByGEEEJchZsPQgghhLgKYz5IQLN161Ynh79nz55qbv/+/Uo/88wz6nkmGB+COfLp6elKm3UCRDz9q2YLecynRz8vlkDHNtkYt/HRRx8pbZZz7tSpk5qrW7eu0g888IDS48ePF29gzIdZ3nnz5s1qbuzYsUrv3bvXGWMdAEL8Te3atZ21YM6cOWquatWqSputF66//no1h6XBzWv5cq+F5OfnK/3NN984Y4wfiYuLUxrXHSxxjjEeWNq9QYMGztiuf2SDnwNf2zxOEZH4+HilMe7NLGF/8OBBNWeWeRfxrLNSFHjngxBCCCGuws0HIYQQQlwl4Nwu2ImPBAf+/t7s1zNvJeKtfUzvNOfxFiSWR8fXunDhgtd5b24XPA7s8FrYa+Ox4bGb6WuYNoivhbeE8bXx2Hw5h97e234df9oB14LgxI21AO0YtZ2SK+Jp42jXqPF6Rbylkxb22oVdf/je3p6PpdoLey6uDd6ufXw+fmbU9vm2f18UGyhnBdgVfuTIEY/+FCTwSUtLU/7I4kI7CE78aQe0geCEawEpig0E3OYjPz9fjh07JpZlSWxsrKSlpUl4eHhpH1ZQkJWVJQ0bNnT1nFmWJWfOnJGYmBiPnXhxoB1cOaFiB7SBKydUbEDkkh2kpqZKy5YtaQM+EOg2EHBul/Lly0uDBg2cSNvw8HAam4+4fc7MbAx/QTsoPsFuB7SB4hPsNiByyQ7szrG0Ad8JVBtgwCkhhBBCXIWbD0IIIYS4SsBuPipVqiSvvPKKKhZDvBOK5ywUP1NJE2rnLNQ+jxuE2jkLtc/jBoF+zgIu4JQQQgghoU3A3vkghBBCSGjCzQchhBBCXIWbD0IIIYS4CjcfhBBCCHGVgN18zJw5U+Li4uTqq6+WTp06ebRIL8skJiZKhw4dpHr16hIVFSWDBw+W1NRU9ZicnBxJSEiQyMhIqVatmgwdOlQyMjJK6YivDNpAwZQVGxChHRQEbYCIBLEdWAHIwoULrbCwMGvu3LnW7t27rUceecSqUaOGlZGRUdqHFhAMGDDAmjdvnpWSkmLt3LnTGjRokBUbG2tlZ2c7jxk9erTVsGFDa+3atda2bduszp07W127di3Fo/YN2oB3yoINWBbtwBu0AdqAZQWvHQTk5qNjx45WQkKCo/Py8qyYmBgrMTGxFI8qcDlx4oQlIlZycrJlWZZ1+vRpq2LFilZSUpLzmD179lgiYm3atKm0DtMnaAO+EYo2YFm0A1+gDRDLCh47CDi3y4ULF2T79u3St29f53fly5eXvn37yqZNm0rxyAKXzMxMERGpVauWiIhs375dLl68qM5hixYtJDY2NijOIW3Ad0LNBkRoB75CGyAiwWMHAbf5OHXqlOTl5Ul0dLT6fXR0tKSnp5fSUQUu+fn5MnbsWOnWrZu0bt1aRETS09MlLCxMatSooR4bLOeQNuAboWgDIrQDX6ANEJHgsoOA62pLfCMhIUFSUlJk48aNpX0opJSgDRDaABEJLjsIuDsftWvXlgoVKnhE4mZkZEjdunVL6agCkzFjxsiKFSvkq6++kgYNGji/r1u3rly4cEFOnz6tHh8s55A2UHRC1QZEaAdFhTZARILPDgJu8xEWFibt2rWTtWvXOr/Lz8+XtWvXSpcuXUrxyAIHy7JkzJgxsnjxYlm3bp00btxYzbdr104qVqyozmFqaqocPnw4KM4hbaBwQt0GRGgHhUEbCI7PUNIErR2UWqirFxYuXGhVqlTJmj9/vvXTTz9Zo0aNsmrUqGGlp6eX9qEFBI899pgVERFhrV+/3jp+/Ljzc+7cOecxo0ePtmJjY61169ZZ27Zts7p06WJ16dKlFI/aN2gD3ikLNmBZtANv0AZoA5YVvHYQkJsPy7Kst99+24qNjbXCwsKsjh07Wps3by7tQwoYROSyP/PmzXMec/78eevxxx+3atasaVWpUsUaMmSIdfz48dI76CuANlAwZcUGLIt2UBC0AWJZwWsH5SzLsty7z0IIIYSQsk7AxXwQQgghJLTh5oMQQgghrsLNByGEEEJchZsPQgghhLgKNx+EEEIIcRVuPgghhBDiKtx8EEIIIcRVuPkghBBCiKtw80EIIYQQV+HmgxBCCCGuws0HIYQQQlyFmw9CCCGEuMr/AzDP/EMYzmcuAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAACbCAYAAADC4/k2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAqx0lEQVR4nO2deVhVZR7Hf0qgloq4oSi4p5nmimhaVpqktmhmTjVpexZOOU6P5dM2WRNlNlk9lk2LZsvYkGlpajWomAUq5J7SYirEElaCKyCc+aPnnnl/3ysXrlwO916+n+fh8Xx9D/e+9/A7Ly/nt9WzLMsSQgghhBCHqF/bEyCEEEJI3YKbD0IIIYQ4CjcfhBBCCHEUbj4IIYQQ4ijcfBBCCCHEUbj5IIQQQoijcPNBCCGEEEfh5oMQQgghjsLNByGEEEIchZsPQgghhDhKjW0+5s+fLx07dpSGDRtKXFycbN68uabeivgptAEiQjsgtAHiTr2a6O3ywQcfyOTJk2XBggUSFxcn8+bNk6SkJMnMzJTWrVt7/N7y8nLJycmRJk2aSL169Xw9NeJjLMuSI0eOSFRUlNSv//+9bHVsQIR2EGjUhB3QBgILrgWkIhuo6GSfM2jQICshIcHWZWVlVlRUlJWYmFjp92ZlZVkiwq8A+8rKyvKZDdAOAvfLl3ZAGwjML64F/EIbOB1niY8pKSmRjIwMmTVrlv1/9evXl5EjR0pqaqrb+cXFxVJcXGxri012A5ImTZrYx97agEjFdjB+/HgJDQ0VEZHOnTur74mMjFR6+/bt9nGvXr3U2K+//qr0oUOHKpy/iEjjxo2VbtCggdJLliyp8L1++uknj+/18MMPK/32228rPWTIEKXz8vLs4wMHDqixs87StzDOpbCwUOmQkBClDx8+rPTx48ft41atWqmxiIgIpcvKyuzj4uJiWbBgQbXsgGtBcFBTa8HAgQNtex8/frz6HrwvMjMz7eNzzjlHjYWFhSlt3l8iIrt371Y6Pj5e6ZMnTypt3jP9+/dXY/jXP7qbunbtqvTZZ5+ttGvtO93c2rVr53Hebdq0Udq8X0VEmjdvrrR5zUREunTpYh9nZ2erscsvv1zpb775RkRESktLZdmyZW7r6enw+ebj0KFDUlZW5vaLITIyUvbu3et2fmJiojzxxBO+ngZxGPNxqLc2IFKxHYSGhtqLRcOGDdVYo0aNlDYXFRzD78UFCDcXeD6Om7/E8bVwQ4C/8HGBwfM9zRXPxcUJ54lzw7ng95u6smuEi5lI9eyAa0FwUFNrwVlnnWXbf2X3p3mfeLJxPFfEfcOA9wHavfl6ntaJ070Xno/a09w9febTfW9lnwu/39O6U9l6WhX3WK1nu8yaNUsKCwvtr6ysrNqeEqkFaAeENkBEaAd1BZ8/+WjZsqWEhIRIfn6++v/8/Hy3x0Aif+zecAdHAhtvbUCkYjsICQmx/3r46quv1Bi6GMydfUpKihrr2bOn0uXl5UoXFRV51KdOnVK6e/fu9jG6J9q2bSuewEevsbGxSuPj6H79+tnH+BdHRkaG0rm5uUoXFBQoPXz4cKX79u2r9IoVK+zj8PBwNbZq1Sqlx4wZYx/jX3giXAuIb9eC7t27239h41OTnJwcpU27Rnfh4sWLlZ48ebLSv/zyi9Lo3sC1w3RXuNwPLvCJz8iRI5VeuXKl0oMGDVK6tLRU6aZNm9rH+ARm69atSqP7FtcGdLl26NBBadO9hE828Pq71ld0SXnC508+wsLCZMCAAZKcnGz/X3l5uSQnJ7tdDBKc0AaICO2A0AZIxfj8yYeIyIwZM2TKlCkycOBAGTRokMybN0+OHTsmt956a028HfFDaANEhHZAaAPk9NTI5mPSpElSUFAgjz32mOTl5Unfvn1lzZo1bo+gSPBCGyAitANCGyCnp0aKjFWHoqIiN18z8X8KCwuVP7K6uOzg9ttvt/2N+/fvV+fExcUp/d///tc+xlQv9CFv27ZN6ZtvvllpjNs4evSo0mYqLvqI8b0wyhz9pehT3rlzp9JRUVEVzgtTgnEueC8lJSV5HDevG/p5W7ZsqbT5OV2ptr60A64FgUlNrQVPPfWUHfP06aefqnNiYmKUNlNvmzVrpsYwZgOzQhAMeL3qqquUNrPXzLTb0703xniY97aIe8wEvvell15a5XMxtuyWW25ROj09XWlPqbjdunVTY2vXrlXalTJcUlIiixcvrpIN1Hq2CyGEEELqFtx8EEIIIcRRuPkghBBCiKPUSMApIb5i586ddnU99Eli6fBRo0bZx1gTBPPl0W+LdQjQd2uWexbRdT62bNmixrB+AcZloM8Zyzt37NixwvP37dunxjC2BdMXsdS7WTJZxL1yoVmKun379mpszZo1SpvXoKSkRAipSU6dOmXX28F6N1jLwwxmHThwoBqbO3eu0rgWYK0ObH733XffVThHrNPx4osvKt27d2+lcU3DteTPf/6z0uZagDV8cN3A2jsYg4El6h955BGlzc+Cay2uYa55n67qcUXwyQchhBBCHIWbD0IIIYQ4Ct0utUifPn2UxnSma665xj6+6aab1Bg27sGug9OnT1d66dKlZzrNWmXKlCl2k7i0tDQ1hmmlJvhY9ueff1Ya3TBYZhxdIfjY0Xy9Fi1aqDHsVIkunWPHjimN5dmxFPxvv/0mFYEphmgXmFI8YsQIpc1OwCK65DKmCN99991K79q1yz5Gt1RdA+0HdWWgSwvtj4js2bPHTv/+/vvv1Ri6D82003feeUeNzZgxQ+mNGzcqjWtHZU3UzLns2LFDjWE5AGzTgGn26CLCTrPme2ODyvXr1ysdHR2t9BdffKE0drWdOXOm0uY1RfctrmmuFhClpaVqXfAEn3wQQgghxFG4+SCEEEKIo3DzQQghhBBHYcxHDYLlqN944w2lMcXLE1gFHzWW6Z03b57SmDq6evXqKr93bZKcnGyXP8bPPGnSJKXN8urXXXedGsP4BfQZo98X/an9+/dX2iwtjq2p0e+Lflv0A2ObbUyXfeaZZ+zjG2+8UY1huXRMgcP+GWbZaRGREydOKG3G0fTq1UuNYcyNmVYXjKm2eP9eccUVSt922232MbYjx1gcBO3RtF0Rd9tGG6uLhIWF2TEPeH926tRJ6c6dO9vHGPuAafhYphxTzM2OvCLudjBx4kT7GNs0mPeuiHu8F8aqYGzf119/rbQZt4HrxAUXXKD0jz/+qPSvv/6qNF4zjDsy0/gxjfeJJ55Q+siRIyLyx3pS1fhCPvkghBBCiKNw80EIIYQQR+HmgxBCCCGOwpgPH4I+8kcffVTp8847T2n0kx88eFDpTZs2VXjurbfe6nEuWDsCff2BQo8ePew8e2zjjD5N04f5ww8/qDFPJZFF3GuuYC4/5rmb1xd9qagnTJig9ODBg5V+4YUXlEb/v1muHX3IWCcAYw2wpTfODWMJTF85tujGuiqu3H4Rd795IIK1cdB/j7U7ML6mOlx22WVKf/jhh0qbMUx1Nf6joKDAjv/C+xVLjZv1NHDtxPgcXCtcdYVc4FqLsRLmPfXyyy+rMVzzsWYIzg3jUTDW4oYbbrCPt27dqsbwGuBagDEh5u8XEfe1xIzpwhglrOXhil3xZh3gkw9CCCGEOAo3H4QQQghxFG4+CCGEEOIojPnwIegHw1x9BOs9oA/ujjvusI8TEhK8mgv6Kb/99luvvt9fOHz4sF1TA+NYDh06pLTZbwVrNGCdDowXwTgL/Nk0btxYabN+xu+//67GsG4H9j3Zu3ev0mY+vYjIypUrlb799tvtY2zZjT7jKVOmKI35+FjfpG3btkqbsS5YgyA+Pl5pTzFJ/gj+XF577TWl0eeNLckRs/4D9r3p3r270m+++abSWJcHGT58uNLh4eH2cV2N+YiNjbVjJj766CM1hm3vzZiPnJwcNYaxD1g7JyUlRemhQ4cqjeuOWdcH3wt7K2GsCsYNxcbGKo09qcyeKt98840aw5o+uAZiDBfWQsKaIubagPF2ERERSrvWR+yZ5Qk++SCEEEKIo3DzQQghhBBH4eaDEEIIIY7CmI9aBH3/6OedM2eOfWz6fEXcfYUZGRlKf/bZZ76YYq3z888/27n9mI+PcRxm7ATW6UDfKfpm0e+LMQwff/yx0qbPHmMDUlNTlcZaG+hbxdz4Ll26KG2+/m+//abG0G+7YMECpc8991yl0Q+MNQvMeiZY1wN9zP7OsGHDlF64cKHSZv0UEff78bnnnlO6Xr16Spu9MExfvIh7XZ0//elPSm/YsKGiaZMKWLVqlR2HdPHFF6sx/NkNHDjQPt6/f78aw94sV199tdIY32DGj4i4x06Y9y/2bsH7Ddew7du3K92zZ0+lsZ+VGVOBsSgYo2X2nxIRGTt2rNJmnxgRkdzcXKXNvk8YIzdmzBilXWvWyZMn5ZNPPpGqwCcfhBBCCHEUbj4IIYQQ4ijcfBBCCCHEURjz4SDR0dFKo2/R7KtRGehXw/4hwcKhQ4dsX+aQIUPUGPbCMXsZmH0JRESys7OVxjgM0795OrDHwr59++zjFi1aqDHssYB+X4zfGTFihNKZmZlKHz9+3D42a7+IiKxfv17pwsJCpTFOA+tPYG0AMx4FY5Awrsisd+BNfr9TJCYmKo21NbAGw6hRo5TGPjjVAXt2mLVbRNzrgCBm/Eqg9mmqLu3atbPjv9atW6fGsK+W+bPD+w/vgY0bNyqNcVBYK+f8889X2uzLg7F4WD8Ie71gXY9zzjlHaYwfM+OOMG4If7/ceeedSmP9IIxhat++vdJmLAvWF8J5utYG1vkghBBCiN/i9eZjw4YNctVVV0lUVJTUq1dPli9frsYty5LHHntM2rZtK40aNZKRI0e6VVUkwQ1tIPjJzs6WdevWydKlS+Xdd991yyaiDRAR2gGpGK83H8eOHZM+ffrI/PnzTzs+Z84ceemll2TBggWyadMmOeeccyQ+Pj4oWm6TqkEbCH5KS0slIiLC7bGxC9oAEaEdkIrxOuZj9OjRMnr06NOOWZYl8+bNk0ceeUSuueYaERFZvHixREZGyvLly91y3YONRo0aKf3UU08pPXnyZKWbN2/u8fWKiors44ceekiNvfHGG2cyxRrH1zYQExNj1+xAP2+/fv2UNvuvfPfdd2oM+6ugfxT7ZeDPEuMFTP8oxgZg/AjWFOndu3eFryXiHl/yzjvv2MdYF2DZsmUe5425/unp6UrjdTDrgmA/IPyL1dW7aMOGDaoPhL+sAxMnTlQaa55g7IQvYzwqw6wRIuIef4L9R8xeTe+9916NzcuX+NoOIiIi7LUA62lg3yGzbw/2Tlq6dKnSeH/i9b300kuVxtcza3dgzMeVV16pNNaWwdoa+AQR64KYawfGuWAMB34uV18cF1gLCeuXmPWGcF64nrr6W2FNFE/4NObjp59+kry8PNXAKTw8XOLi4twCZ1wUFxdLUVGR+iKBy5nYgAjtIJigDRAR2gHxjE83H3l5eSLiHkEfGRlpjyGJiYkSHh5uf+FfYiSwOBMbEKEdBBO0ASJCOyCeqfVU21mzZsmMGTNsXVRU5NfGZqZzYtojlpxFt0BlPPnkk0qbqY0rVqzw6rUCjYrswLIsu8Qwts3GR4HmI79WrVqpMVwA09LSlL7++uuVxkfwmNZmptqimwR/7ujSQX/3K6+8ojSW6j777LPtY2xljWmEmGKM99Ill1yiNLqyzO/v2rWrGsPrb5Zzrqz9fFXw9VqAv+A8/cJzGpwLpkgjpo317dtXjaHLJtCpyA6OHj1qp9piqvKePXuUNtNp0RWCqfCu13SRkJCgNLoY0P1ouoCwXMKiRYuUxvsP1ylc09CdZIKfC1P40abQdXz06FGPczGvC96HeL+7vrfWUm1d/ixcPPPz8918XS4aNGggTZs2VV8kcDkTGxChHQQTtAEiQjsgnvHp5qNTp07Spk0bSU5Otv+vqKhINm3a5FYgigQntAFCGyAitAPiGa/dLkePHlURuD/99JNs27ZNmjdvLjExMTJ9+nR56qmnpFu3btKpUyd59NFHJSoqSsaNG+fLeRM/Y8eOHRITE0MbqCOUlpaqaHpXtHtWVpacf/75tIE6DNcCUhW83nykp6er1COXb27KlCmyaNEimTlzphw7dkzuuusuOXz4sAwbNkzWrFnjlubjL2D7cozbMGM8RERuvvlm+xh9ZN7y7LPPKj137lyl0Sfnz1x00UU1YgPh4eF2Shj6U/Fn16FDB/sYYzQwZQ3TLrG9tNmSW0SkW7duSptp05iKt3r1aqVTUlKURh/zRRddpLT5l6KILmOO34vtwTHFGONN3n//faXNFFkRkT59+tjH6H/GOb377ru2/vzzz0VE5Omnn5b33nsv4NYBf8e0bUzD9beYj5paC3Jzc+04o+eff16NYdlyMyZh8+bNagzbGWBqPLY3QBcRxl2Zqbd47+O5ZjkAEZGdO3cqjW0ycG1YvHixfTx06FA1lpSUpDSmvWJpB4wBQffYb7/9Zh9jnBGuaa64NG9Sbb3efFxyySV2AODpqFevnsyePVtmz57t7UuTAKawsND2zdIGgp+2bduqgOuSkhJZvHixvPrqqyJCG6jLcC0gVYG9XQghhBDiKNx8EEIIIcRRar3OR22Dvn+Mw8Dy1L7kwQcfVBpLYz/wwAP2MdZvqCs0bdrU/hlgXjv6Yr/88kv7GFvJY0lkrLWBvkr0h+L5Zt0V9JXia1144YVKo38a/cRXX3210ps2bbKPMb9+7dq1SmOra5wbxhGZMR4i2t4xtgDLL5v2irUQiG/Zu3evffzVV1/V4kxqjwMHDkj9+n/8vYytKrAuj3lPYRzf119/rTTW5SkpKVEaS7l36tRJaTP+AWOo8H7dtWuX0phGjJVff/nlF6XNaq/4WlhuHe0E6xFt3bpVabNuj4jIbbfdZh/PmTNHjQ0aNEhpV1xecXGx25pUEXzyQQghhBBH4eaDEEIIIY7CzQchhBBCHKXOx3z07NnTq/NNf6BZ56AquNpKu2jRooXS9913n9Km//3pp59WY9nZ2V69d6BSUFBg+xPRP4r+UDPWYsCAAWoM/Zm7d+9Wetq0aUofOXJEacxzN33KWHPg/vvvV3rLli1KYzwJ9vnAPjT79++XisC4DGyjjf0e8LXXr1+vtNl7AmufYFVKM+XeU/o9qRxsh+6KbTidxnPrCqNGjbLXAozDQDuOi4uzjzFWCeMyzD5NIu7xXXh/Yhygua7v2LFDjWHvpWbNmimNMSEYx7Z9+3alzT5PeG+jXYwaNUrpyj4Xzm3NmjX2Ma4beK4r1gzfwxN88kEIIYQQR+HmgxBCCCGOws0HIYQQQhylzsd8oL8e86yxf8unn35qH3tTx15E5J577lEa6/pjzZG7777bPu7atasaGzt2rNKlpaVezSVQaNKkie1jxZgP9HH++OOP9jH6JLGexaRJk5RetWqV0hiPgz1VTLu44YYb1BjWGDFrNIjoXH0R954L0dHRSpt1CtDmsG6HWetExL2miHmNRETuuuuuCud65ZVXqrHc3Fylzz//fPsY+2MQDfr+sceHK5bBBda0MXVdja8pKiqy70PsWfTQQw8p/frrr9vHuG5gjQqzh4nIH81STbD+EvZPMuNxsOfJ8OHDlf7++++VHjlypNIYq4bxJeY6b/Z8EnHvSYM2h/GNWDvK7B8kouNLMDYF6ya51iFv6v3wyQchhBBCHIWbD0IIIYQ4CjcfhBBCCHGUOh/zgWDdf1+C/nrs7bJs2bIKv7dHjx5Ko8/4999/r+bs/JOysjLbN4nxOJ7Afiro1/3hhx+UxvgRrJeBOfFmDAnGg+DPGXP3MT4H/an/+c9/lG7Xrl2Fr11QUKA05vZjvZLLLrtMaawhYvbIwPoIaGNvv/12hfOqa5j1UUTcff3YrwfrxmCMB2Le/9hn45133lF6+fLlHl8rUImOjrZjILBvCd5DZjwDxlE899xzSps1QUREBg4cqHRlMTZmnIPZD0VE5Oabb1b6jTfeUPree+9V+ttvv1XajLsQ0fWFxo0bp8YwNgVrbpjriIh7jaCMjAylzbo+WFMJaxe54r+8iT3kkw9CCCGEOAo3H4QQQghxFG4+CCGEEOIojPmoRUaMGFHlczGvGnuVBCvFxcW2zxXroBw4cEBpM7bi+PHjagxrqmDuP2qMlcA6K6Y/Fc/FXP727dsrjbU3sMbI3//+d6U/++wz+9jVQ8EF+mk7d+6sNObyd+rUSel+/fop/eqrr9rHGOeCsSvmNSsuLnbrrxFs4OcfNmyYfbxgwQI1hn03fAnGj1x++eVKb926VWmMPwlUtmzZYq97WMfnzTffVNrs3YTxSBdddJHSHTt2VBrvT6xhg7FQ5vdj/6OZM2cq/fPPPysdExOjNNbtMWv8iOjeMXgN8vPzlY6Pj1d64cKFSuOah2uc+Xo4b4wvccWeeRP7xScfhBBCCHEUbj4IIYQQ4ih149l9EIBpU/g4PVhp3bq1NGzYUEREPv/8czWGjyRN98W6devUGD6CxJLn2Oa+W7duHudllsPetm2bGuvVq5fS+DgTS5zj5zBTWEVExo8fbx9jy258zLt582alMbUW7ejZZ59V2iz3bKbdiri7k8zPURfsEVOg8drXFuiKw1YCZst3EZGPP/64xudUE5SVlbmlxLtAd6Lplsb7D9NZN23apDSWCMf3RG26P/A+wJLmOBdMYUWN7T/Mlgf4OTBtF90wODf8HCUlJUrv27fPPsaU3969eyt98OBBEdGl5iuDTz4IIYQQ4ijcfBBCCCHEUbj5IIQQQoijBH3MhytewAWWT0ef2r///W+lKyt77A0RERFKT5482eP55ntjKl9hYaHP5uXPbNu2zS5fPnHiRDWWnJystJnyhimkWBr8jjvuUHrevHlKT506Vent27crbZYl79+/vxrDFDhswY3twNFHb8Z4iOjUPvTvf/LJJ0pjmiDa/zfffKN0bGys0mbZfoybwVbk5jXx5X3ir2CKZnU+c2W+cYwjuu++++xjTJnE+CRMy//oo4+UxpRob1L+a5M9e/bYcQpYKhxLoJsxXhjnhO0QMIUfS7djrASWazdLqL/88stqzFUOviKw7QO+NpYxN+N1cJ74+wTjTSr7uf/rX/9S2oxdw9TxL774QmlXrFhxcbFbbF5F8MkHIYQQQhzFq81HYmKixMbGSpMmTaR169Yybtw4yczMVOecPHlSEhISpEWLFtK4cWOZMGGCW9QtCT4wE4J2ENxs3rxZcnJy5MCBA3Lw4EG3BncitAFCGyAV49XmIyUlRRISEiQtLU2++OILKS0tlVGjRsmxY8fsc/7617/KihUrJCkpSVJSUiQnJ0euvfZan0+c+Bfjx4+nHdQhsrOzpUmTJtK2bVtp06aN/dibNkBoA6Qq1LMq6xfsgYKCAmndurWkpKTIxRdfLIWFhdKqVSt5//335brrrhORP+opnHfeeZKamiqDBw+u9DWLiop8WpoY203feOONSqelpSmNdREw59sTWCr3zjvvVBrzsDE2ADHLbD/55JNVnkdtURN2MHPmTNtvinEX6Ktt1aqVfZybm6vGsPaGuUCKiHTo0EHppKQkpVu0aKH0nj177GNswY0+dix/jbn8bdu2VRpjCcw4D3zChPn3GFeE47t27VLavGYiIocOHbKPzfgPEfdy6+YvkYKCApk9e7asWrVKRo8e7ZdrQXVB378vYz6wxsKDDz6o9EsvvWQfd+/eXY1hef7WrVsrjXE/GC92//33K/3ee+9VNO0q4UsbEPm/HYwfP96O18C6Hhj3snTpUvsY2x/guVg6HFvNm9f+dNr8HbJo0SI19swzzyiN7RDMujoi7vcrlitfu3atfYw/R7QLjP/CNS06Olpp/N23evVq+xjLvpeWlirtWjdOnTolmzdvlsLCQrfy7Ui1Yj5cH7558+Yi8seFLS0tVRe0R48eEhMTI6mpqad9jeLiYikqKlJfJDChHdRdXEF9rs0PbaDuUh0bEKEd1BXOePNRXl4u06dPl6FDh9p/Vebl5UlYWJjbX/SRkZFufzW5SExMlPDwcPsLd2MkMBg8eDDtoI5SXl5uZ924IuxpA3WX6tiACO2grnDGm4+EhATZtWuXLFmypFoTmDVrlhQWFtpf2DGQBAZvvfVWtb6fdhC4JCUl+SSIkDZARGgHdYUzqvMxbdo0WblypWzYsEG1C2/Tpo2UlJTI4cOH1W43Pz/frR21iwYNGlSaC10dsNcFxnxgjXpsvb5mzRqlzTbu6Ks3871FRFq2bOnVXNEfj75cf8bMu/elHViWZQczutw6LrD3iOnrNns7iLjXTcB6Ly+++KLScXFxSmMfBDMfH21s0qRJSuNj41mzZimdnZ2t9IYNG5Q2Yz6wzgfOC0O4cFOAPmYcN38G+FroK09PT5e0tDTJysqSESNGyIoVK+wxf1wLqsvy5cuVxtb21WH+/PlKY1yBCWYYdunSRWmM4Zg7d67SGEeDcQrVjflwcSY2IFKxHYSEhEhISIiI/L+XiAu8Jmacx6233qrGcE3Hvk9YD+Nvf/ub0thTxYw9w/pBGH8zduxYpY8fP6409pnB+9OsKYTXAGv+YP0hrNOD6xRmrH355Zf2MdYDwn5UrmtSXFzsth5WhFdPPizLkmnTpsmyZctk7dq1bkE/AwYMkNDQUFX8KTMzUw4ePOg3TZhIzUM7CH4sy5K0tDQ5ePCgxMfHuwWn0gYIbYB4wqsnHwkJCfL+++/Lxx9/LE2aNLH9duHh4dKoUSMJDw+X22+/XWbMmCHNmzeXpk2byl/+8hcZMmRIlSObSWCSn58voaGhtIM6wurVq2Xfvn1y2WWXSWhoqJw4cUJERE6cOCFNmzalDdRhaAOkKni1+Xj11VdFROSSSy5R/79w4UK55ZZbRETkhRdekPr168uECROkuLhY4uPj5ZVXXvHJZIn/cu6559IO6hDp6ekiIvLZZ5+p///oo4/knnvuERHaQF2FNkCqQrXqfNQEvs7tR3/oww8/rPSUKVN89l7esnXrVqXRHxhIlQCrktftDS47mDt3rjRq1EhExC09D2uwmPn5GNOBfl2znoXr/UyGDh2qdOfOnZU268dgPwaMTcEeDNhbAvPx0edsxnns3r1bjWHBJrP+iIh7LQCsaYB+YfO6YN8JrHNhnutNfn9V8bc6H1dccYXSDzzwgH1s9hUSca8zg79w0T7xXsd+JN6A8U7YB2XOnDlKYywL9rfylppaC2bPnm3XLMG6PT/++KPSZi8nM05PxD3O4sILL1Qa4y6wfgbW6THnsmPHDjWG9x/23cF+QViLA+M0zPolPXr0UGN4r+zdu9fja2H8Y0JCgtLmWoG1TzD+y7XulJaWypo1a2q+zgchhBBCiLdw80EIIYQQR+HmgxBCCCGOEvQxHwjmXT/++ONKuwImXWBfBE9gr4d//OMfSmPPj5ycHKUxDiGQqCk/78MPP2z/DLC3C6Z3mpUQsWYK+igxpx199ujXxT4ypo1inMVNN92k9AcffKC0q1aBC4ytwPgTcy7YPwh7LKDPuW/fvkqjDxp7u7iqU4q4xyVgfxvzXjp58qQ8/fTTQR3z4Qm8zj/88IPS2BsjmKmptWD06NF2vBTW2sD724zrwLgKvJf/+c9/Ko0xM9hvBWNAzBojrvg0FxgrgTUwcBx/h2CMlnk/YG0T7DGFdabwtXAc6w2ZdUQwjg3jiFzxdyUlJfL2228z5oMQQggh/gc3H4QQQghxFG4+CCGEEOIoZ9TbJZBBXz7mNqMmtUtsbKxd5wLz79GPbubzY30XBGMdsI/O9ddfrzT68E2/Mb4W9sbAGA7sW4GxK1iz4NSpU/Yxxhag7xtrhmBcEcZtoJ/YVTxMxL0mAdYn2bJli32MsSd1DewdRHzPddddZ8dfYE8jrN9k1mBBm3/33XeVxpohhw8fVhpjI/D1pk6dah+vXr1aje3bt09pvPex5sixY8eUxniyyMhI+xjj1LBWDPYew3gSjPHAtcSsI4LxIlho1PVaWHvJE3zyQQghhBBH4eaDEEIIIY5S59wuJLB45pln7NQ3fGzYtWtXpc0UOHyciam36G5A8HyzRbeIdvngPJ599lmlX3vtNaXxUSo+/hw2bFiF41h+uaSkROmIiAilsSQ4lm7//PPPlTZLTeOj1u+//15pM9UW50GIr3nwwQelfv0//l7GrrjYqM50fWK6NqaoXnrppUqb7QxE3F316PIxS+djym9YWJjSeH926NBBaax8YbpZRERWrFhhH0+cOFGNodsE3TDopnY1g3SBZSjM65KRkaHGli1bpvTFF18sImL/fKoCn3wQQgghxFG4+SCEEEKIo3DzQQghhBBHYcwH8WvOO+8822+KMQhYIt0s54vpq2bZcBH39vBXX3210qZvVURkwIABSvfp08c+XrlypRqbMmWK0q+//rrHcYylwBbgZjwF+nnRf52amqo0pghfddVVSmOKsRkTMnbsWDWGbeJN/3Z1WsATUhW6du1qx39h+ivez2b6LN7L1157rdJmyriIe7q6K57BxYcffqi0mR7bv39/NbZ7926lMeYDy62PGTNGaWynYJZ6x3u/WbNmSvfr109pbO+BcW8Yi7Zx40b7GFNocV6u2DGzLEBl8MkHIYQQQhyFmw9CCCGEOAo3H4QQQghxFMZ8EL8mKyvLLuuNOfBY0tvMiT906JAaw3x7LBWOJdB79+6tNLbKnjt3rn1sxn+IiOzfv1/p4cOHK435+NiuGvPtzdiWnTt3qjEsBR0fH690YWGh0lj+OSQkROmGDRvax4sWLVJjsbGxSpvxJKzzQWqaLl262PcxtiDAGC/zfsaS5nv37lUaa4Zg7AS+F8Z/ZWVl2cfYAgJLnOP9O3ToUKVxbTDvRxEdX5KXl6fGzHLoIiI7duxQGmuKYCl3rGdixnRdcMEFauz5559X2lXqHddoT/DJByGEEEIchZsPQgghhDiK37ldvHlsQ/wHX//cXK/nKXULx8x0T0wNw/lhGWA8H90IOG6m9qH7B+dV2WtX9l7mOM4b3xu/FzWej69nXidvPofr2Jd2wLUgMKmptcC0XbRNT/cgtmWozK4xbRzvTyyvbr53ZfcyztPb9zLHK7v30aVaWedpvC7me+E8K7qmrn+rYgP1LD+7w7OzsyU6Orq2p0G8JCsrS9q3b++z16MdBCa+tAPaQGDCtYBUxQb8bvNRXl4uOTk5YlmWxMTESFZWlioeRSqmqKhIoqOjHb1mlmXJkSNHJCoqyqumQpVBOzhzgsUOaANnTrDYgMgfdpCZmSk9e/akDXiBv9uA37ld6tevL+3bt7ejlZs2bUpj8xKnrxl2jfQFtIPqE+h2QBuoPoFuAyJ/2EG7du1EhDZwJvirDTDglBBCCCGOws0HIYQQQhzFbzcfDRo0kMcff9ytQAypmGC8ZsH4mWqaYLtmwfZ5nCDYrlmwfR4n8Pdr5ncBp4QQQggJbvz2yQchhBBCghNuPgghhBDiKNx8EEIIIcRRuPkghBBCiKP47eZj/vz50rFjR2nYsKHExcXJ5s2ba3tKfkNiYqLExsZKkyZNpHXr1jJu3DjJzMxU55w8eVISEhKkRYsW0rhxY5kwYYLk5+fX0ozPDNpAxdQVGxChHVQEbYCIBLAdWH7IkiVLrLCwMOutt96ydu/ebd15551Ws2bNrPz8/Nqeml8QHx9vLVy40Nq1a5e1bds2a8yYMVZMTIx19OhR+5ypU6da0dHRVnJyspWenm4NHjzYuvDCC2tx1t5BG/BMXbABy6IdeII2QBuwrMC1A7/cfAwaNMhKSEiwdVlZmRUVFWUlJibW4qz8l19++cUSESslJcWyLMs6fPiwFRoaaiUlJdnn7NmzxxIRKzU1tbam6RW0Ae8IRhuwLNqBN9AGiGUFjh34ndulpKREMjIyZOTIkfb/1a9fX0aOHCmpqam1ODP/pbCwUEREmjdvLiIiGRkZUlpaqq5hjx49JCYmJiCuIW3Ae4LNBkRoB95CGyAigWMHfrf5OHTokJSVlUlkZKT6/8jISMnLy6ulWfkv5eXlMn36dBk6dKj06tVLRETy8vIkLCxMmjVrps4NlGtIG/COYLQBEdqBN9AGiEhg2YHfdbUl3pGQkCC7du2SjRs31vZUSC1BGyC0ASISWHbgd08+WrZsKSEhIW6RuPn5+dKmTZtampV/Mm3aNFm5cqWsW7dO2rdvb/9/mzZtpKSkRA4fPqzOD5RrSBuoOsFqAyK0g6pCGyAigWcHfrf5CAsLkwEDBkhycrL9f+Xl5ZKcnCxDhgypxZn5D5ZlybRp02TZsmWydu1a6dSpkxofMGCAhIaGqmuYmZkpBw8eDIhrSBuonGC3ARHaQWXQBgLjM9Q0AWsHtRbq6oElS5ZYDRo0sBYtWmR9++231l133WU1a9bMysvLq+2p+QX33HOPFR4ebq1fv97Kzc21v44fP26fM3XqVCsmJsZau3atlZ6ebg0ZMsQaMmRILc7aO2gDnqkLNmBZtANP0AZoA5YVuHbgl5sPy7Ksl19+2YqJibHCwsKsQYMGWWlpabU9Jb9BRE77tXDhQvucEydOWPfee68VERFhnX322db48eOt3Nzc2pv0GUAbqJi6YgOWRTuoCNoAsazAtYN6lmVZzj1nIYQQQkhdx+9iPgghhBAS3HDzQQghhBBH4eaDEEIIIY7CzQchhBBCHIWbD0IIIYQ4CjcfhBBCCHEUbj4IIYQQ4ijcfBBCCCHEUbj5IIQQQoijcPNBCCGEEEfh5oMQQgghjsLNByGEEEIc5X/pq4CO6M1zBwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "0c9ba2bc", + "metadata": {}, + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Let's visualise MNIST images with noise:\n", "def show(index):\n", " plt.subplot(1,4,1)\n", + " plt.axis('off')\n", " plt.imshow(train_dataset[index][0][0], cmap=plt.get_cmap('gray'))\n", " plt.subplot(1,4,2)\n", + " plt.axis('off')\n", " plt.imshow(add_noise(train_dataset[index][0][0]), cmap=plt.get_cmap('gray'))\n", " plt.subplot(1,4,3)\n", + " plt.axis('off')\n", " plt.imshow(train_dataset[index+1][0][0], cmap=plt.get_cmap('gray'))\n", " plt.subplot(1,4,4)\n", + " plt.axis('off')\n", " plt.imshow(add_noise(train_dataset[index+1][0][0]), cmap=plt.get_cmap('gray'))\n", " plt.show()\n", "\n", @@ -1878,151 +1629,18 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "3aa422bb", "metadata": {}, "source": [ "### UNet model\n", "\n", - "Let's try denoising with a UNet, \"CARE-style\". As UNets and denoising implementations are not the focus of this exercise, we provide the model for you in the following cell. " + "Let's try denoising with a UNet, \"CARE-style\". As UNets and denoising implementations are not the focus of this exercise, we provide the model for you in the following cell." ] }, { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [], - "source": [ - "# Adapted from https://discuss.pytorch.org/t/unet-implementation/426\n", - "\n", - "import torch\n", - "from torch import nn\n", - "import torch.nn.functional as F\n", - "\n", - "\n", - "class UNet(nn.Module):\n", - " def __init__(\n", - " self,\n", - " in_channels=1,\n", - " n_classes=1,\n", - " depth=3,\n", - " wf=4,\n", - " padding=True,\n", - " batch_norm=False,\n", - " up_mode='upsample',\n", - " ):\n", - " \"\"\"\n", - " Implementation of\n", - " U-Net: Convolutional Networks for Biomedical Image Segmentation\n", - " (Ronneberger et al., 2015)\n", - " https://arxiv.org/abs/1505.04597\n", - " Using the default arguments will yield the exact version used\n", - " in the original paper\n", - " Args:\n", - " in_channels (int): number of input channels\n", - " n_classes (int): number of output channels\n", - " depth (int): depth of the network\n", - " wf (int): number of filters in the first layer is 2**wf\n", - " padding (bool): if True, apply padding such that the input shape\n", - " is the same as the output.\n", - " This may introduce artifacts\n", - " batch_norm (bool): Use BatchNorm after layers with an\n", - " activation function\n", - " up_mode (str): one of 'upconv' or 'upsample'.\n", - " 'upconv' will use transposed convolutions for\n", - " learned upsampling.\n", - " 'upsample' will use bilinear upsampling.\n", - " \"\"\"\n", - " super(UNet, self).__init__()\n", - " assert up_mode in ('upconv', 'upsample')\n", - " self.padding = padding\n", - " self.depth = depth\n", - " prev_channels = in_channels\n", - " self.down_path = nn.ModuleList()\n", - " for i in range(depth):\n", - " self.down_path.append(\n", - " UNetConvBlock(prev_channels, 2 ** (wf + i), padding, batch_norm)\n", - " )\n", - " prev_channels = 2 ** (wf + i)\n", - "\n", - " self.up_path = nn.ModuleList()\n", - " for i in reversed(range(depth - 1)):\n", - " self.up_path.append(\n", - " UNetUpBlock(prev_channels, 2 ** (wf + i), up_mode, padding, batch_norm)\n", - " )\n", - " prev_channels = 2 ** (wf + i)\n", - "\n", - " self.last = nn.Conv2d(prev_channels, n_classes, kernel_size=1)\n", - "\n", - " def forward(self, x):\n", - " blocks = []\n", - " for i, down in enumerate(self.down_path):\n", - " x = down(x)\n", - " if i != len(self.down_path) - 1:\n", - " blocks.append(x)\n", - " x = F.max_pool2d(x, 2)\n", - "\n", - " for i, up in enumerate(self.up_path):\n", - " x = up(x, blocks[-i - 1])\n", - "\n", - " return self.last(x)\n", - "\n", - "\n", - "class UNetConvBlock(nn.Module):\n", - " def __init__(self, in_size, out_size, padding, batch_norm):\n", - " super(UNetConvBlock, self).__init__()\n", - " block = []\n", - "\n", - " block.append(nn.Conv2d(in_size, out_size, kernel_size=3, padding=int(padding)))\n", - " block.append(nn.ReLU())\n", - " if batch_norm:\n", - " block.append(nn.BatchNorm2d(out_size))\n", - "\n", - " block.append(nn.Conv2d(out_size, out_size, kernel_size=3, padding=int(padding)))\n", - " block.append(nn.ReLU())\n", - " if batch_norm:\n", - " block.append(nn.BatchNorm2d(out_size))\n", - "\n", - " self.block = nn.Sequential(*block)\n", - "\n", - " def forward(self, x):\n", - " out = self.block(x)\n", - " return out\n", - "\n", - "\n", - "class UNetUpBlock(nn.Module):\n", - " def __init__(self, in_size, out_size, up_mode, padding, batch_norm):\n", - " super(UNetUpBlock, self).__init__()\n", - " if up_mode == 'upconv':\n", - " self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2)\n", - " elif up_mode == 'upsample':\n", - " self.up = nn.Sequential(\n", - " nn.Upsample(mode='bilinear', scale_factor=2),\n", - " nn.Conv2d(in_size, out_size, kernel_size=1),\n", - " )\n", - "\n", - " self.conv_block = UNetConvBlock(in_size, out_size, padding, batch_norm)\n", - "\n", - " def center_crop(self, layer, target_size):\n", - " _, _, layer_height, layer_width = layer.size()\n", - " diff_y = (layer_height - target_size[0]) // 2\n", - " diff_x = (layer_width - target_size[1]) // 2\n", - " return layer[\n", - " :, :, diff_y : (diff_y + target_size[0]), diff_x : (diff_x + target_size[1])\n", - " ]\n", - "\n", - " def forward(self, x, bridge):\n", - " up = self.up(x)\n", - " crop1 = self.center_crop(bridge, up.shape[2:])\n", - " out = torch.cat([up, crop1], 1)\n", - " out = self.conv_block(out)\n", - "\n", - " return out" - ] - }, - { - "attachments": {}, "cell_type": "markdown", + "id": "ce6e4ffe", "metadata": {}, "source": [ "The training loop code is also provided here. It is similar to the code used to train the image classification model previously, but look it over to make sure there are no surprises." @@ -2030,55 +1648,56 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, + "id": "22e3196a", "metadata": {}, "outputs": [], "source": [ - "from tqdm.notebook import tqdm\n", + "from tqdm import tqdm\n", "\n", "def train_denoising_model(train_loader, model, criterion, optimizer, history):\n", - " \n", + "\n", " # Puts model in 'training' mode:\n", " model.train()\n", - " \n", + "\n", " # Initialises progress bar:\n", " pbar = tqdm(total=len(train_loader.dataset)//batch_size_train)\n", " for batch_idx, (image, target) in enumerate(train_loader):\n", "\n", " # add line here during Task 2.2\n", - " \n", + "\n", " # Zeroing gradients:\n", " optimizer.zero_grad()\n", - " \n", + "\n", " # Moves image to GPU memory:\n", - " image = image.cuda()\n", - " \n", + " image = image.to(device)\n", + "\n", " # Adds noise to make the noisy image:\n", " noisy = add_noise(image)\n", - " \n", + "\n", " # Runs model on noisy image:\n", " output = model(noisy)\n", - " \n", + "\n", " # Computes loss:\n", " loss = criterion(output, image)\n", - " \n", + "\n", " # Backpropagates gradients:\n", " loss.backward()\n", - " \n", + "\n", " # Optimises model parameters given the current gradients:\n", " optimizer.step()\n", - " \n", + "\n", " # appends loss history:\n", " history[\"loss\"].append(loss.item())\n", - " \n", + "\n", " # updates progress bar:\n", " pbar.update(1)\n", " return history" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "afdc53ce", "metadata": {}, "source": [ "Here we choose hyperparameters and initialize the model and data loaders." @@ -2086,12 +1705,15 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, + "id": "98818e5f", "metadata": {}, "outputs": [], "source": [ + "from dlmbl_unet import UNet\n", "import torch.optim as optim\n", "import torch\n", + "import torch.nn.functional as F\n", "\n", "# Some hyper-parameters:\n", "n_epochs = 5\n", @@ -2102,7 +1724,8 @@ "history = {\"loss\": []}\n", "\n", "# Model:\n", - "unet_model = UNet().cuda()\n", + "unet_model = UNet(depth=3, in_channels=1, upsample_mode='bilinear')\n", + "unet_model = unet_model.to(device)\n", "\n", "# Loss function:\n", "criterion = F.mse_loss #mse_loss\n", @@ -2120,8 +1743,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "851ee8bc", "metadata": {}, "source": [ "Finally, we run the training loop!" @@ -2129,80 +1752,10 @@ }, { "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ec1658b2fc3849c98f19d6f34d78de55", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/937 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "649578f4", + "metadata": { + "lines_to_next_cell": 1 + }, + "outputs": [], "source": [ "# Loss Visualization\n", "fig = plt.figure()\n", @@ -2253,8 +1788,8 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "31ee6225", "metadata": {}, "source": [ "### Check denoising performance\n", @@ -2264,104 +1799,29 @@ }, { "cell_type": "code", - "execution_count": 39, - "metadata": {}, + "execution_count": null, + "id": "aeada78c", + "metadata": { + "lines_to_next_cell": 1 + }, "outputs": [], "source": [ "def apply_denoising(image, model):\n", " # add batch and channel dimensions\n", " image = torch.unsqueeze(torch.unsqueeze(image, 0), 0)\n", - " prediction = model(image.cuda())\n", + " prediction = model(image.to(device))\n", " # remove batch and channel dimensions before returning\n", - " return prediction.detach().cpu()[0,0]\n" + " return prediction.detach().cpu()[0,0]" ] }, { "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAg/ElEQVR4nO2de3CU5fXHT0CScEkCAZIQIdzKTZCL4RYQCiWCgFgotLS2IrYjioGBYmuLU7Vl2maG6bTUimWmIzBeEAqFWpByaUAQBSIoYLgEkGiCQCAiCZCQxOT9/eHs+3vOd9ldNrv7Zjf5fmZ25vnmeS/PvjnZJ/uc55wTZVmWJYQQQogDNKnvARBCCGk8cNIhhBDiGJx0CCGEOAYnHUIIIY7BSYcQQohjcNIhhBDiGJx0CCGEOAYnHUIIIY7BSYcQQohjcNIhhBDiGCGbdJYvXy5dunSR2NhYGTZsmOTm5obqViRMoQ0QEdoB0USFIvfaunXrZNasWbJixQoZNmyYLFu2TNavXy/5+fmSlJTk9dza2lq5cOGCxMXFSVRUVLCHRoKMZVly/fp1SU1NlSZN/v9/mEBsQIR2EGmEwg5oA5GFJxu43YFBZ+jQoVZWVpata2pqrNTUVCs7O9vnuUVFRZaI8BVhr6KioqDZAO0gcl/BtAPaQGS+0AaQuyTIVFVVyeHDh2Xx4sX2z5o0aSKZmZmyf/9+t+MrKyulsrLS1haTXkckcXFxdttfGxDxbAfz58+XmJgYERE5duyYOic+Pl5p13EiIm3atFF9u3fvVrp3795Kf/3110rfdZf+02jatKnbeF00a9ZM9d26dUvpfv36Kf3ll18q/fnnnyudkpKi9N69e+12cnKy6uvSpYvS169fV7pHjx5Knz59Wuno6GilExIS7Hbfvn1V386dO5Xu37+/3a6srJTly5cHZAeebCA2NtbjNx1/Pi/wWH+/PflzL7w2nhvoWPy5dyDH+7pWbW2t3bYsSyorK5UN3I6gTzolJSVSU1Pj9seRnJwsp06dcjs+Oztbfve73wV7GMRhTOP01wZEPNtBTEyMPZnghztq8wPUnIBE3CcNPBf/uHDSQW3+seG1ampqlI6NjfU4ztudj/3mUgWOw9e18Dn48wxx3L6uLRKYHXiygaioqJAsr4VyyS6YH/z1eW9f17pdv69z6n332uLFi6W0tNR+FRUV1feQSD1AOyC0gcZB0L/ptGvXTpo2bSrFxcXq58XFxW7LBiL6P1nSMPDXBkQ820F5ebn9zaFjx46q7/z580rfd999dhuXgnAZqnnz5kqfOXNG6W9/+9tKv//++27jdWEuM2GfiMgHH3ygNP4nmJ+fr3RiYqLSAwYMsNudOnVSfZcuXVK6oKBA6a+++krphx9+WGl8X/fcc4/dfu+991Rft27dlC4sLLTb1dXVggTrs6C2ttbjf8/osDaXrXwth/m7lO/PkpiTy2m+7h3Ma+G4zed/p/cN+jed6OhoSU9Pl5ycHPtntbW1kpOTIxkZGcG+HQlDaANEhHZAbk/Qv+mIiCxatEgee+wxGTx4sAwdOlSWLVsmN2/elMcffzwUtyNhCG2AiNAOiDshmXRmzpwpV65ckRdeeEEuXbokAwcOlG3btrk5FEnDhTZARGgHxJ2QBIcGQllZmdq2SSKD0tJSty3MgeCyA3PL9KuvvqqOmTp1qtK9evWy2xs2bFB9ffr0UfrDDz9UevLkyUqfO3fObTwm5pbsvLw81ff0008rvXr1aqUfeOABpW/evKn0gQMHlC4pKbHbuP26RYsWSuPvAMfds2dPpY8ePaq0+beHW1/ffvttpTMzM+12VVWVrF27Nqh24LKB5s2b276EQPw0vrYx+6I+/TD++I98jTMQ/xIea2rLsqS8vNynDdT77jVCCCGNB046hBBCHIOTDiGEEMcIyUYCQoJFVVWVvW48e/Zs1YfpZL744gu7XVFRofpatWql9KOPPqo0BiJi/Af6YczYm+eee071bd++XWkzfkhEpHPnzkpjip4OHTooPXbsWLt96NAh1XfhwgWlMUMBxiNduXJF6dGjRyttZgrAZ4b+I/PemEYomHjzd9SnD8e8nq97BToWbwR67UCeoT9xUS74TYcQQohjcNIhhBDiGNwyTYJCqLZM9+jRw07WOXjwYHUMfvU37QZTr6SlpSl98OBBpTFNDia3NBN8usbniY8//lhp3OZ89epVpe+++26l27Vrp7S5zbm8vFz1Xb582eu97733XqVv3LihNC7lmVvJMWM1Xmvfvn12u6amRs6ePRuSLdPeskwj4fJxFkn1fwLZQo3La5WVldwyTQghJHzgpEMIIcQxOOkQQghxDG6ZJmHNk08+aW/7xVIGWEnU3LaLW3hxezX6Mj755BOlzW3Ktzvf3FKN69fDhw9XGrdvo88G+7GEw+HDh+32yZMnVd/48eOVxtIAmM4HyzBg1VKz0iiu9aM/acSIEXa7qqpKzp49K6HALOLmq2SAt23MiC//D26b93Z+sEsZ1KdPyJ9nWJdx8psOIYQQx+CkQwghxDE46RBCCHEM+nRIWPOPf/zDjtPp27ev6vvoo4+UHjNmjN3G9XiMu7nrLm3606ZNUxrLQGN8i1kGGktdm2UPRNzLJmA5ASwhgDFG5vt2le52gX4tfEb4PjCOxyxPLSJy7do1u33r1i3Vd/HiRaXHjRvn8dj6wvy9o78Bf+eYIig2NlZpjM3CuCVv7xntz1tJgNvdy5/UNEigZbpD7U/iNx1CCCGOwUmHEEKIY3DSIYQQ4hiNzqczY8YMpZ944gmlMVU8rtu++eabdhvXy0MVp9CYSU9Pt9P1p6enqz7Mn2au2ScmJqo+/D12795daYyN6d27t9JY+sCMf0E7QD/J6dOnle7UqZPS+D4wjmfr1q12G8tuY3yRWd5BRGT69OlK5+fnK41lFszzsQ9LHZj+oerqagkHzDglfI5YnmLSpElKd+vWTWn0s3z22WdKm/40jIdCvxzGmKF/DPPxod8FS1Z4OxZ9Vy6fqIuqqiqv53vr8+WbuhP4TYcQQohjcNIhhBDiGJx0CCGEOEaj8+ksXbpUaayj4osnn3zSbuO+/ePHj9d5XIGCa8b4PrHMcaQQExNjr2fv3btX9U2dOlVp8/fRvn171WfG1Yi4r++bfhORb+oDmaB/YMqUKXYbyzhv27ZNaYwHGTBggNKYe23Pnj1KT5w40W6jr2rBggVK79ixQ+lPP/1U6TfeeEPpAwcOKG36gNCm0H9k5phDP0EwMXOvoQ8B42HMPHhYf8l8jiLuZcTxPWBM1JAhQ5Q248IQtDd8lpjLLy8vT2n0LZs+R/zMQpv43//+p/TmzZuVRr9fZWWleCIUMTv8pkMIIcQxOOkQQghxDE46hBBCHKPR+XQwLgfri2C9EoyLMNeBcU0X66hgbAfGZ/jCrAlz5coV1Yf1YJDCwkKlI9Wnc/bsWTvuANeuW7durbTpx8G8bGadGBGRf//730qXlJQojXEW2G/mS0OfDtbX+c53vqM0xn8sW7ZM6VmzZik9aNAgu41+FXyfmPcN88LNnj1baYx9Mm0Wbeahhx5S2vQdoP8jVPiTNwzjpzZs2KD0unXrlMZYGfS1de3aVWmznhD66fDv0/wd4jhF3J+tt7xu6HtCe8Jz//vf/yqNcTz4TM3r+aoTVBf4TYcQQohj+D3p7N27V6ZMmSKpqakSFRXl9h+jZVnywgsvSIcOHaR58+aSmZnp9t8WadjQBho+58+fl4KCAjl+/LgcPXpUysrKVD9tgHjC70nn5s2bMmDAAFm+fPlt+5cuXSovvfSSrFixQg4ePCgtW7aUCRMmhE3qcxJ6aAMNn+rqaomNjXVLH+SCNkA8EWUFsEgXFRUlmzZtsuMlLMuS1NRUeeaZZ+QXv/iFiHwT75CcnCyrV6+WH/7whz6vWVZWJgkJCXUdkqPg+vnAgQOVNmvbi7jv8/eF+QeK+bvQ94T+jqysLKX//ve/+3VvfyktLZX4+Pig2IDI/9vB7Nmz7TgdjF0wa7+IuPttTLZv3670ww8/rDTmzTP9aSLusRFmHrKCggLVh3nbME5izZo1Sv/1r39V+lvf+pbS5rcIzKP1gx/8QOk//OEPSmM+sfLycqWxztBbb71lt3/0ox+pPvShueKPFi9eLDNnzpR169ZJaWmpxMXFBdUGYmNj7zhexHw++Kx84avGDcYEmTaCtXhSUlKURp8P1m/CuDLMZWfeC2PGcOJ//fXXlUb7wtpQeC9zSsBn4i0Xm2VZUl5ebn8WeCKoPp2CggK5dOmSZGZm2j9LSEiQYcOGyf79+297TmVlpZSVlakXiVzqYgMitIOGBG2AeCOok45rt0hycrL6eXJysttOEhfZ2dmSkJBgv/zd4UXCi7rYgAjtoCFBGyDeqPct04sXL5ZFixbZuqysLGKMDVNd7N692+vxOTk5db4XpqjHpT3cSovbQcMdT3Zw+fJlewkI3zMuYZjbdnEpbu7cuUrjdnbchnrixAmlcUnCTDWPW2kxpQluu//tb3+r9KhRo5TGNCbmchsuo7788stK4xIYprnp2bOn0h9++KHSQ4cOtdu4xRi3AZvH4pbyunAnnwW+vAHmkhguj/laosPjEW8lqHHZEpdcMfUMpl3yVTrbtDdcmhs7dqzSH3zwgdL4OeWrNDYumd0pd3psUL/puD4EMMahuLjY7QPCRUxMjMTHx6sXiVzqYgMitIOGBG2AeCOok07Xrl0lJSVF/UdfVlYmBw8elIyMjGDeioQptAFCGyDe8Ht57caNG2qnT0FBgRw5ckQSExMlLS1NFi5cKL///e+lR48e0rVrV3n++eclNTXVLSMwaVgcO3ZM0tLSaAONhJqaGrWk5lp+LCoqkr59+9IGiEf8nnQOHTqk1hBda7CPPfaYrF69Wp599lm5efOmzJkzR65duyb333+/bNu2zW2NkvgmKSnJbr/yyiuqD9eXlyxZojSm9Ag1o0aNCokNFBUV2Vtf0feB79Fcq8bSBZhaHrflX758WWnctozr5jt37rTbuDX3yJEjSv/pT39SeuPGjUrjGjymKTFLG+NW7gcffNDrtb/3ve8pffToUaVxfT81NdVuY5qnffv22e2SkhJZv369rV0lt//4xz/Km2++GVQb8LaF159jfflsfIGpfszr+9pajOeixm3L6Icxt7ZjWQT0B+G5gZSY9vW+TH2nPh2/J50xY8Z4vXhUVJQsWbLE7UOQNGzMvfm0gYZPu3btZPz48bb++uuvZdeuXXY8GG2AeIK51wghhDgGJx1CCCGOUe9xOsQzZiobX+WX8/PzHRmT0/Tv39+OUcD3jLE2bdu2tdtYbrpz585Kv/rqq0qb/jMRke7duyuNcSim38W8r4jII488ovSWLVuU/vjjj5XGtDkY92OmQMJyA+gjOXfunNK5ublKY8wQljYwr4fvGYM977nnHrt969Yt2bVrlziNtxgTf304oSjN7AJ9cQiO1YzLEdFlUdC3iTFCmB7KF978Nv6UkrhT+E2HEEKIY3DSIYQQ4hicdAghhDgGfTphxMiRI5X+9a9/7fFYDLLDfF8NhXbt2klMTIyIuMfDYKlm07eC6d1d13CBfhP0X2DdF7OUgYj2AWFerevXryuNcTdYJgHX4PHeZllkLK/esmVLpWfMmKE0xgChDwhLOpj51NAfZMbwiIi89tprdjtcylWb+PI3+IpB8fd6/uDrXpgCyIzHwhIq6CP0VWI6kHxqwXgG/KZDCCHEMTjpEEIIcQxOOoQQQhyDPp0wYtKkSUqb+ZawFo+3CowNia1bt9q+HPRnmJUpRXQq/UcffVT1YdwO5rpCnw/6YdDvYtahMdPBiLjH/LRo0UJpjGcZPny40oWFhUqbeeCwCBraweDBg8UbWGcISx+bOeiwxhDGgpmxT9XV1W553UKBk36VQK4V6DjNGCgR9xx6Ju+9957SWFLC19h8pTXzRl1yr/GbDiGEEMfgpEMIIcQxOOkQQghxDPp06hGsg4G1Ucw19RdffFH1oU+ioTJo0CA7DxXmrzp16pTS9913n93+/PPPVR/GzgwbNkxpVz0YF5ijzKxpIyLy3e9+125j/BDG/GBM0IABA5TGWJmysjKlTT8M+mDQ14R1gdCfhHWB9u7d6/F6cXFxqu/xxx9X+l//+pfdDqU9RkVFefQthCKOpC74e1+sh4X1nSZMmKC0GSP1/vvvqz7M7Ye2HkrfVV3uw286hBBCHIOTDiGEEMfgpEMIIcQx6NOpR375y18qPWjQIKW3bdtmtzGHVmPh6tWrdszMyZMnVd9Pf/pTpTdt2mS377//ftWHPhmsV4Jr8pWVlUpjPrQjR47YbbPWiYjI6NGjlUa/CfqbcD0ffT5333233T5z5ozq69ixo9LoXzp27JjSHTp0UBrfl3mvHTt2qL7169crbb5vjOkJJnXNFVZf/p3b3Rt9ONiPNXImTpyotOmncZUEd4F1phC8dzB9POa16dMhhBASdnDSIYQQ4hhcXnOQyZMnK/38888rjVtllyxZEvIxhTvl5eX28houQeDSkbnlHEtZV1RUKL1mzRqlzZT+twOXMLp162a327Rpo/quXr2qNG71njlzptK49XvevHlKv/zyy3Ybl8O+//3vK/3OO+8ojVu/CwoKlO7Vq5fSZgoVXDZMTExUOi0tzeO4gkkkbplGjaUfMIXTb37zG6WxBPrSpUvtNpYy8Pc9+1vS4U7P5fIaIYSQsIOTDiGEEMfgpEMIIcQx6NMJIbgu+9JLLymN21u3bt2q9IEDB0IzsAgiLi7OLvGAz8v0KYjotP99+/ZVfWYpAhFdAlpEpHv37kqb29VF3Lcam74PLBnty8eDaetv3ryp9OrVq5U23xf6/XBbM14bUy29++67SmMJavNe+HxxG/ry5cvttlPlqpFAfDi+fBuBpPXHbcr4nLEUvblVXUTkP//5j9JmaXBMOYT3Qo2EKi0OfTqEEELCDr8mnezsbBkyZIjExcVJUlKSTJ061a2w061btyQrK0vatm0rrVq1kunTp7sVFSINDwxapB00bLZv3y7nzp2TU6dOSX5+vnzxxRdux9AGyO3wa9LZs2ePZGVlyYEDB2Tnzp1SXV0t48ePV8sDP//5z2Xz5s2yfv162bNnj1y4cMFr1TvSMJg2bRrtoBFx5swZSUxMlC5dukjnzp3tpRXaAPFFlBXAAt+VK1ckKSlJ9uzZI6NHj5bS0lJp3769rFmzRmbMmCEi38Qg9OnTR/bv3+9Wlvd2lJWVuaUFiRTQ54A+mfT0dKU//fRTpbG0AfaHO6GwgwULFtilpDdu3KiOmTVrltKmf6NHjx6qr7y8XGmMOcEy0JiSCGMjUlJS7PaJEydUH5YEwHLWeK3WrVsrjel+zBgYLMmA6XpMP4uIe2wY+rr27dvn8XqYzufKlStKx8bG2u3S0lJZs2aNbN26VSZOnBhUG4iNja2X+BtfPh9Tox8FPwueffZZpRcsWKA0xmr95Cc/UdosYY7jwHv5Ipg+HfMZWZYlFRUVUlpaKvHx8R7PCcin46o77/oDPnz4sFRXV6vAp969e0taWppbLXcXlZWVUlZWpl4kMqEdNF5czm3XJgraAPFEnSed2tpaWbhwoYwcOVL69esnIt/8txgdHe32n1tycrLbf5IusrOzJSEhwX5hFDSJDIYPH047aKRYlmV/q3ftnqMNEE/UedLJysqSvLw8Wbt2bUADWLx4sZSWltovTF9CIoOVK1cGdD7tIHLZu3evz0zHdwJtoHFQpzidefPmyZYtW2Tv3r0qtXpKSopUVVXJtWvX1H84xcXFag3cJCYmxl6zj3Qw1gN9OMiiRYuUjjQfjokZZxBMOygpKbHLEKA/A3dCuXK0iYicO3dO9aFfBfO2tWrVSuk33nhDaYx36dy5s93GeBZcY8cYDHwfK1asUBr9NKZdYWlrLNGQkZGhdFJSktJYIgPLWbtiom4H5pCrqKiQAwcOSGFhoWRmZqrYkmDaQCC5wQLBmw9HxHs8TP/+/ZV+5JFHlMZcgGZ+PRH3HHmmbfv7HiO6XLVlWTJv3jzZtGmT7Nq1y632e3p6ujRr1kxycnLsn+Xn50thYaHbHwNpuNAOGj6uJbXCwkJ58MEH3SZt2gDxhF/fdLKysmTNmjXy9ttvS1xcnL02m5CQIM2bN5eEhAT52c9+JosWLZLExESJj4+X+fPnS0ZGxh3tViGRS3FxsTRr1ox20EjIzc2VgoICGTdunNx11132f+4VFRUSHx9PGyAe8WvScVWsGzNmjPr5qlWrZPbs2SIi8pe//EWaNGki06dPl8rKSpkwYYK88sorQRksCV969uxJO2hEnD59WkTc0wVt3LhR5s6dKyK0AXJ7AorTCQWRFKdjruuLfBOnYoJr/Vie+s9//rPSYfar8Atfe/P9xWUHaWlp9tr5Aw88oI7BGi7mOviQIUNU32effaY05sX75z//qTTW1xk8eLDSZiYOLBmNcTZTpkzxOhaM88FcbOb6P9bPMZevRNz9SbgEfu3aNaXNMsgi2teFPsmBAwcqnZuba7erq6tlx44dQbUDlw3ExMTYfoxA86UFAl7b9LNg3NevfvUrpTHuBnMB/vjHP1baFY7iwltMkC/fk6/PFW/PzNe5WK465HE6hBBCiD9w0iGEEOIYnHQIIYQ4BuvpBMCcOXOURh8Ogj6fSPbhOMXkyZPt2A30P+DatplvDVOt9OnTR2mMicKYKfSrHDp0SGkz9uby5cuqD3PoYWQ9Xht3c124cEFpMz4GHfd4bK9evZTGPHAI+sWmT59ut83caiIiu3fvVrqkpMRuR0I9HX99G/7E5ZjPTUTkoYce8nouPku0CW++qvr83PD2jFhPhxBCSNjBSYcQQohjcNIhhBDiGPTp+IlZJ37+/Pn1OJLGQW5urh0PgalWMO/Y1atX7fbYsWNVn7daMCIib731ltI9e/ZUGn0jZlyGKyDWBcZYYB4urKdjxnuIuL9Ps9YKXgtzwiUnJyt98eJFr9dGX4Pp42nXrp14w/RFVVVVucUn1QeB+Dtqa2uVxpgn7Dd9d88884zqw5x3pv9L5JskqSZYxgFz4pn3DjQWydf55jMMxM/lCX7TIYQQ4hicdAghhDgGl9f8ZNSoUXYblyoQ3JZ748aNkIypIdOpUyc73T4uFfXu3VtpczkIU8fjUhym18flNm8p/kVEpWrC0gTPPfec0q5cZC4++ugjpXHb8oQJE5Q2l1pwuSMvL09pTF1z7733Kr1hwwal8bmY6VnOnz+v+jDtk1kuory8XF577TUJBVFRUR6XhALZWuwrhQ72u6qiuhg3bpzdRnvB5dxly5YpjaXssaRDKNP7+Lq2t2cYjHHwmw4hhBDH4KRDCCHEMTjpEEIIcQz6dILI0aNHlTbXfEX0ll5yZ8TFxdl+ByzjfPDgQaVNHw+Wo27fvr3SWEIafRu4FRlLY7ds2dJuY2mCd955R+nCwkKlsewCrpt36dJFaTP9D5arxtRLmJJn3759SuM2YNza261bN7uNPhpM32+mbqmurpZww9/tvvhsEDzeVcRS5Js6Qib4e1q5cqXXawUznU8w/TDe/D11vTa/6RBCCHEMTjqEEEIcg5MOIYQQx2C5ahIUQlWuesSIEXaaGPTDYOoQ8/5YQvqrr75SGn00eDyWCPjkk0+U/vLLL+02xm9gSWiz5IKIe0odfG5YvsD0VWEqFozxQV/U5s2blR4xYoTS+ExNvyP6KDE1kOkHq6qqktdffz3k5ar9IdCPNl8+HvN94vgwTgfBNDdYGgJ/z/7g61xfqWu8PTdfMT0sV00IISSs4KRDCCHEMcJuy3SYrfaROyTYvzfX9cyqmbgt15vG7dVVVVVez8V+XLbydr6va+NYMGUKbtf2dj4uneC9cenE1/HenpP57G937u36gmkHrmvV9ZqBjsXX+d4yP/u7rdmX9gd/7+1vv6/zfFZoDTefzvnz593K+5Lwp6ioyM0vEgi0g8gkmHZAG4hMfNlA2E06tbW1cuHCBbEsS9LS0qSoqCioDuqGTFlZmXTq1MnRZ2ZZlly/fl1SU1PrVFvDE7SDutNQ7IA2UHfC2QbCbnmtSZMm0rFjR3tnUnx8PA3NT5x+ZqHYbUg7CJxItwPaQOCEow1wIwEhhBDH4KRDCCHEMcJ20omJiZEXX3zRrbgR8UxDfGYN8T2Fmob2zBra+3GCcH5mYbeRgBBCSMMlbL/pEEIIaXhw0iGEEOIYnHQIIYQ4BicdQgghjhG2k87y5culS5cuEhsbK8OGDZPc3Nz6HlLYkJ2dLUOGDJG4uDhJSkqSqVOnSn5+vjrm1q1bkpWVJW3btpVWrVrJ9OnT3dL5hzu0Ac80FhsQoR14ImJtwApD1q5da0VHR1srV660jh8/bj3xxBNW69atreLi4voeWlgwYcIEa9WqVVZeXp515MgRa9KkSVZaWpp148YN+5innnrK6tSpk5WTk2MdOnTIGj58uDVixIh6HLV/0Aa80xhswLJoB96IVBsIy0ln6NChVlZWlq1ramqs1NRUKzs7ux5HFb5cvnzZEhFrz549lmVZ1rVr16xmzZpZ69evt485efKkJSLW/v3762uYfkEb8I+GaAOWRTvwh0ixgbBbXquqqpLDhw9LZmam/bMmTZpIZmam7N+/vx5HFr6UlpaKiEhiYqKIiBw+fFiqq6vVM+zdu7ekpaVFxDOkDfhPQ7MBEdqBv0SKDYTdpFNSUiI1NTWSnJysfp6cnCyXLl2qp1GFL7W1tbJw4UIZOXKk9OvXT0RELl26JNHR0dK6dWt1bKQ8Q9qAfzREGxChHfhDJNlA2GWZJv6RlZUleXl5sm/fvvoeCqknaAMkkmwg7L7ptGvXTpo2beq2w6K4uFhSUlLqaVThybx582TLli2ye/duVTQpJSVFqqqq5Nq1a+r4SHmGtIE7p6HagAjt4E6JNBsIu0knOjpa0tPTJScnx/5ZbW2t5OTkSEZGRj2OLHywLEvmzZsnmzZtkl27dknXrl1Vf3p6ujRr1kw9w/z8fCksLIyIZ0gb8E1DtwER2oEvItYG6m0LgxfWrl1rxcTEWKtXr7ZOnDhhzZkzx2rdurV16dKl+h5aWDB37lwrISHBevfdd62LFy/ar/LycvuYp556ykpLS7N27dplHTp0yMrIyLAyMjLqcdT+QRvwTmOwAcuiHXgjUm0gLCcdy7Ksv/3tb1ZaWpoVHR1tDR061Dpw4EB9DylsEJHbvlatWmUfU1FRYT399NNWmzZtrBYtWljTpk2zLl68WH+DrgO0Ac80FhuwLNqBJyLVBljagBBCiGOEnU+HEEJIw4WTDiGEEMfgpEMIIcQxOOkQQghxDE46hBBCHIOTDiGEEMfgpEMIIcQxOOkQQghxDE46hBBCHIOTDiGEEMfgpEMIIcQxOOkQQghxjP8DoRoMkbAR2wsAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAhnUlEQVR4nO2de1BV1/XHFxhAIw+fgKj4iBp8pBpRkfhMYsVHGzXmYTppTB9GEzQ1ZkbHmVardUJtG+u01dhpE62JxsRETTVKavGdigrVKBpNfAWsgq8IPkHg/P7IcH57fS/c65V7Dxf8fmaY2V/2ueceDgv2PWvttVaQZVmWEEIIIQ4QXNMXQAgh5N6Biw4hhBDH4KJDCCHEMbjoEEIIcQwuOoQQQhyDiw4hhBDH4KJDCCHEMbjoEEIIcQwuOoQQQhyDiw4hhBDH8Nuis2jRImnbtq3Ur19fkpKSZO/evf56KxKg0AaICO2AaIL8UXvtgw8+kBdeeEGWLFkiSUlJsnDhQlm9erUcO3ZMoqOj3b62vLxczp49KxERERIUFOTrSyM+xrIsuXr1qsTFxUlw8P9/hqmODYjQDmob/rAD2kDtoiobqOxAn9OnTx8rNTXV1mVlZVZcXJyVlpbm8bV5eXmWiPCrln3l5eX5zAZoB7X3y5d2QBuonV9oA8h94mNKSkokOztbZs6caX8vODhYhgwZIrt373Y5vri4WIqLi21tseh1rSQiIsIee2sDIlXbQWpqqoSFhYmIyM2bN9VrevXqpfTx48ftcWlpqZoLDw9X+syZM0ofOXJE6YcffljpkJAQpfPy8uxx79691dw333yjdEZGhtLPPPOM0ps3b1a6c+fOSjdu3Ngef/vtt2ouJiZG6Rs3bih98uRJpZs1a6Z0UVGR0qGhofa4S5cuaq5///5K79ixwx7funVLfvvb31bLDqqygfvuu89+0gnU/w++vi48ny+f9PBc7s7t6X3NvzPLssSyLGUDleHzRefixYtSVlbm8scQExMjR48edTk+LS1N5syZ4+vLIA5jGqe3NiBStR2EhYXZi055ebmau//++5WuX7++Pb59+3aVcyL6n6vId//Y8H1NcNExdYMGDdy+tl69em6vBd8br808n7s5EZGysjK3142vdzeP14kLN86LVM8OqrKBoKCge969FqiLDs5bluXxNTW+e23mzJlSWFhof5mfIMm9A+2A0AbuDXz+pNOsWTOpV6+eFBQUqO8XFBRIbGysy/HmJ1lSN/DWBkSqtoOcnBz70zi609LT05XOzs62x4MGDVJz+Mn62rVrSqekpCidmZmpNLr2WrVqZY/RVXflyhWlx40bp/Tp06eVxieI3Nxcpc2gLB578eJFpdu3b6/0Aw88oPRHH32kdLdu3ZQ23V7oykO3Ybt27ewxPq2J+O5/QXl5eZWfnt19qvbk8qrsU7ovj3d3rLfuOPN4b55U7uZazPN5cvOZtmlZlos3ojJ8/qQTGhoqiYmJyo9dXl4uGRkZkpyc7Ou3IwEIbYCI0A5I5fj8SUdEZNq0aTJ+/Hjp1auX9OnTRxYuXCjXr1+Xn/zkJ/54OxKA0AaICO2AuOKXRefZZ5+VCxcuyKxZsyQ/P1969Ogh6enpLgFFUnehDRAR2gFxxS/JodWhqKhIoqKiavoyagSMO3Tq1MkemzEEEZGzZ886ck13SmFhoURGRvrsfBV2MH/+fHuX1KlTp9QxuBOrefPm9njjxo1qLikpSemWLVsqvWbNGqUxuW3gwIFKm9uz8XeD8aCePXsqjf9w9+/frzTGrs6fP2+PO3bs6PZcGE9CfeHCBaUPHjyotOmzx3uwa9cupX/0ox/Z4+LiYlm8eLFP7aDCBswt0/7E223K5vHVea2I6w5H3FVoHo/pAJ7iKE5tv7YsS0pLSz3aQI3vXiOEEHLvwEWHEEKIY3DRIYQQ4hh+2UhAKqdFixZKz507V2n010+fPt0enzt3zn8XFsAcOXLEjt2MHDlSzX366adKt27d2h6jTxn1gQMHlMa4jFmORURk3759Sk+ePNkeb9u2Tc2NGDFCacylwbweLDdjxotEvisxU8Hly5fVnJkrIyKyYcMGpbt27ao05scMGzZMaTNP55FHHlFzo0aNUvrSpUuVXqOvcZej4st4hbdxGHfxL0+5NBiLw9JHZhxPROTEiRP2GGM61Y3R+Cr/6E5fxycdQgghjsFFhxBCiGPQveZHcEvv1q1blTa3RFfG22+/bY8DbGe7Y1y6dMnePopuLHQtmVWQzQrIIuJS+Ra3maJu0qSJ2/mdO3fa47Zt26o50xUi4uoanThxotIdOnRQGl1577//vj3Grd64jbxNmzZKe6pCbf4cIiJ9+/a1x+gGxNJBZrkeLLBaF3HnxsItz2gv+Dv+/e9/r3T37t2VXrJkidILFiyo8jq8LbFTHXeap3PdCXzSIYQQ4hhcdAghhDgGFx1CCCGOwZiOH8Et0RjDwRIlo0ePVrqwsNAfl1WriI+Pt8vdY3mkv//970p/+OGH9hi7eTZs2FBpbAFw9epVpbFB3EMPPaS02TJg06ZNag63GqN/H1sXYJmcPXv2KG3GZTBWNWXKFKUxDoOtC44dO6Z0o0aNlDZbC+B1Y4zy6aeftsc3btyQf/7zn+IPgoODq+wc6k1MobotACq7rqqOxQ6tr7/+utLYhRXjfngvr1+/bo+xRA5u1/YU4/H0c7nbou4L+KRDCCHEMbjoEEIIcQwuOoQQQhyDMR0fMnToUKWfeuoppTGGM3z4cKXRl09EGjdubLc2wHjE7Nmzlf7f//5nj7GEP7Za/vjjj5X+zW9+ozSW/Mf3NkvVDBgwQM2ZbbNFRGbMmKH0kSNHlJ43b57S69evV9psBT1hwgQ1t2XLFqWxnXV0dLTSaGOYX2LGEQ8fPqzmEhISlDbjP2VlZeIvvCm14sv21d6A8a4+ffoojSWcsDXJpEmTlMYyTaYN+LvNg7vz++K9+aRDCCHEMbjoEEIIcQwuOoQQQhyDMZ1qgK0KsF5SfHy80s8++6zSjOF4Jjw83I7pvPfee2oO632Z9dKwdlqPHj2UxljHv/71L7fXkZ+fr7QZM8I240OGDFEa21fPnz9faayPNmbMGKW/+OILe4w/F+YTYT26rKwspbGFgxkrENE2izFIvIdmm21sBeEvfFWG/27O5W4e7emnP/2p0phzh7XX/vOf/yiNvxd/xll8eQ/vBD7pEEIIcQwuOoQQQhyDiw4hhBDHYEynGixdulRp7KuCvnvMDSGeycnJsXMgVq1apeaKioqUNv3iFXGgCjDP5uTJk0pjfAjzLh5++GGl//vf/9rjJ598Us1hbSzsQ4N+cfT3FxQUKG32wDHjOyKucRczziLiGuMxc5lEXPNrzHtqtqMWcc11aty4sT2uqXbV3uDptTiPtecQM56GOXlYfw9jhunp6Up7ipVUJ//I2+O9ud9sV00IISSg4aJDCCHEMbjoEEIIcQzGdLzErK+WnJys5tCv/Y9//MORa6rLtGzZ0q7xdeLECTUXFxentJk3df78eTWH/XLM/iQiIiUlJUoPGzZMaexvYtbNw1jd+PHjlc7JyVH6F7/4hdIYp8FYgtnzJjY2Vs09+OCDSn/00UdKo58d42BmvEhEZNSoUfYY848w56dfv372GO9fIOJtHg7GMxo0aKD0448/bo9ffPFFNYf3ecWKFUpjnM9TDMfsmeOpfw7G6TzFpqoD83QIIYQENF4vOjt27JAf/vCHEhcXJ0FBQbJu3To1b1mWzJo1S1q0aCENGjSQIUOGyNdff+2r6yW1ANpA3efSpUuybNkymTdvnsyYMUO+/PJLNU8bIFXh9aJz/fp16d69uyxatKjS+d/97nfypz/9SZYsWSJ79uyRhg0bSkpKil+3VJLAgjZQ9yktLZUWLVq4tFivgDZAqsLrmM7w4cNd+sBUYFmWLFy4UH75y1/avuHly5dLTEyMrFu3TsaNG1e9q60BzFwEEZG3337bHkdERKg59NWjT9xbzF4nmDdSWlqqNOaZ1BS+toHS0lL7PmCPmx07diht1g3bt2+fmuvWrZvSmEeRm5ur9Jtvvql0ly5dlDZzVnAO62ahT/3y5ctKYz4MXsvYsWPt8SeffKLmBg0apDT6+/v376805ulgbMHs84K5Sc2bN1f6gQceEBGRd999V/2d+NoGgoKCqowduIuFVLfWGt5LjCGaPXCwft5f/vIXpXfv3q00/v3ie2Gul3nvcQ7jchhPunnzptIY8/EmLuPuHtZIns6pU6ckPz9fFTyMioqSpKQkl5teQXFxsRQVFakvUnu5GxsQoR3UJWgDxB0+XXQqKvHiqh8TE+NSpbeCtLQ0iYqKsr9at27ty0siDnM3NiBCO6hL0AaIO2p8y/TMmTNl2rRpti4qKgooY5s+fbrSLVu2tMdYcmTlypXVei8sd56UlGSP0U2CgduJEycqvWvXrmpdi9PciR18++23SicmJiptthvA16L74oMPPlAaXUkzZ85UeuDAgUqb7s5t27apuc8//1xp3L6NpWuwBQa658yyOBhDQRcu2gmW+zl06JDb480W1LhFGEu5NGzY0B7v3LlTqosv/he4c/F4606LjIxUOjU1VWlzy/Rnn32m5jDmjaWOsE04tqj4/ve/r/Sjjz5qjzEuhmWTcAs+bnXHJ0h0/7pzUXpbcqcyfPqkU5FDgDehoKDAJb+ggrCwMImMjFRfpPZyNzYgQjuoS9AGiDt8uui0a9dOYmNjJSMjw/5eUVGR7NmzxyWRktRNaAOENkDc4bV77dq1a3L8+HFbnzp1Sg4cOCBNmjSR+Ph4mTp1qsybN086duwo7dq1k1/96lcSFxdX5dZKUjc4ePCgxMfH0wbuEcrKylSVhwqXT15ennTt2pU2QKrE60UnKytL+RcrfLDjx4+XZcuWyfTp0+X69evy0ksvyZUrV6R///6Snp7uUmq+tvD0009XOYdxFNz66gn0g5tlRRDcqti5c2elsT2u0zGdAQMG+MUGzp07Z8dPsD043r8nnnjCHmM5GGzTnJKSovTmzZuVxljJxYsXlTbLvqA/v2fPnkpj/A23y06ZMkVpsxSNiI4voc2hC8qMs4iIvP/++0p36NBBaWxXYMYWOnXqpOaef/55e/zVV1/JwoULbV3xQfSNN96QFStW+NQGysvLbfv3puS/J9yVmhFx/fkxrmduikhLS1NzZnzxTsCyS3PmzFHajMN89dVXai48PFxpjAmi/eE2edxC7W+8XnQGDx7sNpgUFBQkc+fOlblz51brwkjtorCw0P4HSBuo+3Tq1Elee+01WxcXF8vixYvlrbfeEhHaAKka1l4jhBDiGFx0CCGEOEaN5+kEOr7Yl14B5uG4i+GI6LyUkSNHqrlXX31VaSynj3kC2dnZd3ydgURwcLCLr70CzHcx4y4///nP1Rz6tbF0zUMPPaQ0ljw5fPiw0s8995w9xvI82CIay5DgtmFsc37gwAGlzRIzf/vb39QcxmgqStNU0KxZM7fvjdfepEkTe7xx40Y1h6WWiouL7XFNtTbwVOrG3RzalZmjJCKqooKIa+6XaW9YXgivC/NyMD5pltQR+a6Cg4nZJgVjiJi3g++FZXIQb8sDuXvtncAnHUIIIY7BRYcQQohjcNEhhBDiGIzpAOhfR5/4qVOn7DH63hH0rZq11Cpj+/btSptbUvG9MMbjy/yFQCIhIcHO7diyZYuaw/pUZlzmvffeU3MY+8Daa02bNlXazEkREZf8ErOWVkJCgprDWlZnzpxRGnNrMK7SsWNHpc04S9euXdXckSNHlMZYAOZkYP061OZ7Yc4P5oaZcTIzvuNPqtOuAI/F3xPGdPBvH/NfzJgQzqG94P8CrPXXpk0bpTEXx4zjYA6ZpxhMddpXe7q/Nd7agBBCCHEHFx1CCCGOwUWHEEKIYzCmA6B/Hn3kx44ds8dYQwvBFtPYuwT9pWYMR8R9zKhHjx5Knz59WmmME9RWli9fbvvD0Q/eqFEjpc1+L+ifR5879uLBvJ2tW7cqjb87059vFr4Uce2f0717d6Xbt2+v9Ndff620u5wPtAmM8aDGnA6sH4b5Iqb/H1t6Yz6I2dran+3SzZ+/qpwtb88j4rmnDeZXYdzKXRwL/7axNxH+n0F7xb5HZiwZ43T4Wk+xK0/4Ox7MJx1CCCGOwUWHEEKIY3DRIYQQ4hiM6QBYbwnBPi3VAXu4uIvDYExh6NChSmOttZqqheVrJk6caPvDsRaY2UxQROe/YP8cjEegXxz75Zg+dBHX3irm+dC3j+f+97//rfTkyZOV/t73vqe02adFROd87NmzR81FR0crjX2UevXqpbSZXyTimudj2v+bb76p5rCenRlXvHXrlk//NvyBp5wTjNFevnxZaYzxnDx50h5jHUBPsSfMxULQBsxYG54bYzaeYjLe1FbzdCxrrxFCCAlouOgQQghxDC46hBBCHIMxHS/Jzc312bmwFpvZN0VE98GYNWuWmsOaWUuWLPHZdQUShYWFdsxk7Nixam7Tpk1Km3kWOTk5ag7zV7AeGvbPefzxx5XGXAizTt7+/fvVHOZQYZ28YcOGKf3ggw8q/corryht9sjBXj1YHw3zizC3CXurYI0wM+cIY00ffvih0i1btrTH/owhBgUF+SR3xFOeDv4MGOfD2J2Zm4Q5PuHh4UpjL56+ffu6PR7zysycP7RFjEVhjMdTfMmXPcPuBD7pEEIIcQwuOoQQQhyD7jUA3TL46Dp9+nR7vG7dOjWHj+f4OI6tCwYNGqT0Cy+8oLT5SI5buRcsWKA0lkKvK9SvX992AWFpENz++9hjj9ljdHHt3btXaXSt4P3DUvPo0vjxj39sj5s3b67msAVD7969ld63b5/SWBIFWwiYZXWwxTm24TZbE4iIrFmzRuk+ffoojVvxzW376OLp1q2b0qYbx5+tDXzlXkPQrYSlfNAmcBu9Wc7o0UcfVXNmiSA8VsR1+zVqtDfz9bidGrd2Y3qA0+4zT/BJhxBCiGNw0SGEEOIYXHQIIYQ4RpAVYA6/oqIil3YCNQmWnTe3r86ZM0fN/eEPf1D6+vXrSg8fPlzptWvXKo2tENwxY8YMpTFmgXED3CrrawoLC13aMFeHCjto3769veUTY15YdmX27Nn2GEu44L3HGATGzN555x2lcWtyXl6ePU5JSVFz+HvMzMxUGlsyoI/+j3/8o9Lp6en2OCYmRs19/PHHSuP22EuXLim9c+dOpV9++WWlzbI6GMPAlg3mduuSkhJZtmyZT+2gwgbq1atXZUzHU/tqd3MY1wsJCVEaUxiw9YhpU/g7xL9HjA1j3C42NlbpCxcuKG2WP8JY0+7du5XGrd64hdpdy2lvMe+pZVlSWlrq0Qb4pEMIIcQxvFp00tLSpHfv3hIRESHR0dEyevRo1dRM5LudE6mpqdK0aVMJDw+XsWPHSkFBgU8vmgQe+ERIO6jbHDp0SNauXStLly6V5cuXS0ZGhssxtAFSGV4tOtu3b5fU1FTJzMyUzZs3y+3bt2Xo0KHKjfTaa6/J+vXrZfXq1bJ9+3Y5e/asPPnkkz6/cBJYjBkzhnZwD1FQUCBdunSRUaNGyciRI20XDW2AeKJaMZ0LFy5IdHS0bN++XQYOHCiFhYXSvHlzWblypTz11FMiInL06FHp3Lmz7N6926X0Q2UEWkznrbfeUnrChAn2GP3npp9fxDWHAsEyI5jv4a60COaoYAxjw4YNSuMTqT/whx0899xzdowEWwQ8//zzSptxF/zkjSX+i4qKlEb/Pn4ix3+WZg4LtjLAfKxRo0Ypjb9XfK+jR48qbZbJiY+PV3OY35GVlaU0lmfBHKLBgwcrbbbtxp8Dr9tsnV1cXCzHjx+XjRs3yvDhw31qA8HBwXbsoDr5Ovhab2M8ycnJSk+bNs0ed+jQQc1h/AtznjCuh9eCcRozRov/V/BvG+NBZlsEkVoe06n4x1eRkJadnS23b99WQdmEhASJj493uYkVFBcXS1FRkfoitRPawb1LRbC6IvhOGyBVcdeLTnl5uUydOlX69etnZyrn5+dLaGioyyoeExPjsrujgrS0NImKirK/sDAeqR307duXdnCPYlmW/bRW8aREGyBVcdeLTmpqquTk5MiqVauqdQEzZ86UwsJC+wtdVKR2gFuMvYV2UHs5d+6cT8rg0AbuDe6q9trkyZNlw4YNsmPHDtUWODY2VkpKSuTKlSvqE05BQYHLPvQKwsLCXOoMBRKYx3D48GF7/Otf/1rN4SczT5/U0M3wzDPPKI2thwMZs8y9L+2gbdu2dj4Ixh/wXCtWrLDHr776qpr74osvlMbYCMYrsHXEX//6V6XN2mxYd+sHP/iB2+vET/9Yp8u8lyI6loW5I++++67S2MYc83SwBhjOm/kgeN3YHrxXr16SmZkpxcXFMnz4cFm/fr16baD9L/AUy0CNsRBsYWG2E3niiSfUHLarwJ8Z40XZ2dlKY+zNjOmgvWAOHl53dfBHzTuvnnQsy5LJkyfL2rVrZcuWLS69PRITEyUkJEQFcY8dOya5ubkuQThSd6Ed1H0sy5LMzEzJzc2VlJQUl34wtAFSFV496aSmpsrKlSvlk08+kYiICNs3GxUVJQ0aNJCoqCj52c9+JtOmTZMmTZpIZGSkTJkyRZKTk+9otwqpvRQUFEhISAjt4B5h//79kpubK4899piEhITYu+hu3rwpkZGRtAFSJV4tOhXbh9HNsXTpUnnxxRdF5LsSHsHBwTJ27FgpLi6WlJQUWbx4sU8ulgQunTp1oh3cQ5w4cUJERD777DP1/TVr1tguadoAqQzWXiM+wV+119544w07poP5CJiDYu6Katu2rZrD3BfscYM5GlivCnuWYN0xE6y516JFC6UxQI55OphTZPZ4Qn89tuH2lDtm1lYTcc33Mvvx4M+MmE8sN27ckAkTJgR07TVvwXNhro2ZF4buxWbNmimNOXhYiw3r3GGujZmPhbbpCU/3xJslwF2uk2VZcvv2bdZeI4QQEjhw0SGEEOIYXHQIIYQ4xl3l6RDiFMXFxbbf2MyREnH1o/fr188eY94E1hHD+lXog8aaZphXYfr30T+PNfWwDh7GgDAuY9Y0ExHp2bOnPT548KCaw1yvkSNHKh0REaE0VgMfN26c0gsWLKhyDuv7mffAF8mhd4OnGIM3eDoef89m7A7r72EujaeeNt5cm6cacr6M4Xh6ranv9Lx80iGEEOIYXHQIIYQ4BhcdQgghjsGYDglo4uLipEGDBiLimnuDPvaTJ0/aY8zp2bRpk9JYCwvjQ1gJOSEhQemFCxfa4/nz57t9L3wt+vsxToN5OuY8xoPwWDw31v/DnKDXX39daTN2lZ6erubM2JKIyOnTp+3x7du3pSbA+IUv0w49ncv8XWB+FF4XznuK8XgTp/H2Hvgz5nMn8EmHEEKIY3DRIYQQ4hh0r5GA5siRI3a5e2wBjGX6Dx06ZI/RXYZborH0PJaDwaKU6NYaMGCAPcaS99ieGrdr48+BVZfxvUwXGLZPx5L4eC5shYBbqLHl9zfffGOP+/fvr+Z27NihtNnS4ebNmy5bw/2BP91pns7t7r2qW5rGG3eaL9tNV4Y3pYTMn5tbpgkhhAQcXHQIIYQ4BhcdQgghjsGYDgloBgwYYLcw6NChg5rbu3ev0uY8lvA3t/dWNo/trJEzZ84oHRoaao+xfQBuH8b20wiWsUdttsrG2AFuxcVt5FjuB4+PiYlR2mwXja/FVtJm/MefZXCCg4P90jbZ263F1Wmj4M+WC9XdIu1N/Agx7cmyrDuKbfFJhxBCiGNw0SGEEOIYXHQIIYQ4BmM6JKA5efKkXQYHS/5jWZw9e/bYYyzhP2bMGKU//fRTpTHG06NHD6Xj4uKUPn78uD1u06ZN5RdfBVgGH9sTDB48WOnPP//cHmMr906dOimN9wj99UVFRUpnZmYqbbZNTkxMVHNZWVlKjxgxwh7funVL/IUZV/A2H8bEUywE413urgO1p9d6OhdSnXwkT3k83pzbm5jOncInHUIIIY7BRYcQQohjBJx7zd8VTol/8PXvreJ8ptsGy8OgS8fcqoxbh90dW9m5b9y4oTR2EjW3CHvrWsLtxXit7ubxuvFYnEdXiqf3Ml+PP5e7e1ox9keV57vpTunN+e/03NVxQzl5vJOVtiv73Xh0HVoB9l/+zJkzLuXYSeCTl5cnrVq18tn5aAe1E1/aAW2gduLJBgJu0SkvL5ezZ8+KZVkSHx8veXl5LsUaSeUUFRVJ69atHb1nlmXJ1atXJS4u7q6CilVBO7h76ood0AbunkC2gYBzrwUHB0urVq3sXTaRkZE0NC9x+p7hjipfQDuoPrXdDmgD1ScQbYAbCQghhDgGFx1CCCGOEbCLTlhYmMyePdulyCCpmrp4z+riz+Rv6to9q2s/jxME8j0LuI0EhBBC6i4B+6RDCCGk7sFFhxBCiGNw0SGEEOIYXHQIIYQ4RsAuOosWLZK2bdtK/fr1JSkpyaU18b1MWlqa9O7dWyIiIiQ6OlpGjx4tx44dU8fcunVLUlNTpWnTphIeHi5jx46VgoKCGrriu4M2UDX3ig2I0A6qotbagBWArFq1ygoNDbXeeecd6/Dhw9aECROsRo0aWQUFBTV9aQFBSkqKtXTpUisnJ8c6cOCANWLECCs+Pt66du2afcykSZOs1q1bWxkZGVZWVpbVt29f65FHHqnBq/YO2oB77gUbsCzagTtqqw0E5KLTp08fKzU11dZlZWVWXFyclZaWVoNXFbicP3/eEhFr+/btlmVZ1pUrV6yQkBBr9erV9jFffvmlJSLW7t27a+oyvYI24B110QYsi3bgDbXFBgLOvVZSUiLZ2dkyZMgQ+3vBwcEyZMgQlw6L5DsKCwtFRKRJkyYiIpKdnS23b99W9zAhIUHi4+NrxT2kDXhPXbMBEdqBt9QWGwi4RefixYtSVlYmMTEx6vsxMTGSn59fQ1cVuJSXl8vUqVOlX79+0q1bNxERyc/Pl9DQUGnUqJE6trbcQ9qAd9RFGxChHXhDbbKBgKsyTbwjNTVVcnJyZNeuXTV9KaSGoA2Q2mQDAfek06xZM6lXr57LDouCggKJjY2toasKTCZPniwbNmyQrVu3qqZJsbGxUlJSIleuXFHH15Z7SBu4c+qqDYjQDu6U2mYDAbfohIaGSmJiomRkZNjfKy8vl4yMDElOTq7BKwscLMuSyZMny9q1a2XLli3Srl07NZ+YmCghISHqHh47dkxyc3NrxT2kDXimrtuACO3AE7XWBmpsC4MbVq1aZYWFhVnLli2zjhw5Yr300ktWo0aNrPz8/Jq+tIDg5ZdftqKioqxt27ZZ586ds79u3LhhHzNp0iQrPj7e2rJli5WVlWUlJydbycnJNXjV3kEbcM+9YAOWRTtwR221gYBcdCzLsv785z9b8fHxVmhoqNWnTx8rMzOzpi8pYBCRSr+WLl1qH3Pz5k3rlVdesRo3bmzdf//91pgxY6xz587V3EXfBbSBqrlXbMCyaAdVUVttgK0NCCGEOEbAxXQIIYTUXbjoEEIIcQwuOoQQQhyDiw4hhBDH4KJDCCHEMbjoEEIIcQwuOoQQQhyDiw4hhBDH4KJDCCHEMbjoEEIIcQwuOoQQQhyDiw4hhBDH+D/YeG1aYv1EoAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAio0lEQVR4nO2de3BU9RXHT6B5ISEYHgkRIu+CPGuAQHkUmQhCBaFoQW0BtSIQnFKmQ8u00il9pKMzlsKg1JkCVYooBURQsBA0iIZ3AXlFQJRASIC2yUIISSS3f3Ry+zvfze6yye7N7ub7mcnM/ea3d/e3d0/2l3vO75wTZVmWJYQQQogDNGnoCRBCCGk8cNEhhBDiGFx0CCGEOAYXHUIIIY7BRYcQQohjcNEhhBDiGFx0CCGEOAYXHUIIIY7BRYcQQohjcNEhhBDiGEFbdJYvXy4dO3aUuLg4ycjIkP379wfrpUiIQhsgIrQDookKRu21t956S6ZNmyYrVqyQjIwMWbJkiaxfv17y8/Olbdu2Xs+trq6WwsJCSUhIkKioqEBPjQQYy7Lk+vXrkpqaKk2a/P9/mPrYgAjtINwIhh3QBsILTzZQ2wMDzqBBg6ysrCxb375920pNTbWys7N9nltQUGCJCH/C7KegoCBgNkA7CN+fQNoBbSA8f9AGkG9IgKmsrJRDhw7JwoUL7d81adJEMjMzJS8vz+3xFRUVUlFRYWuLRa/DkoSEBPvYXxsQ8WwHkyZNkujoaLfXEBFJTExUeteuXfbxqFGj1FhZWZnSMTExSu/YsUPpvn37Ko3/abdq1co+Pn36tBrr2LGj0ocPH1b6oYce8jhvEZF77rlH6W7dutnHx48f9zovPDcuLk7p2NhYpQsKCpS+ePGifZySkqLGzPcsInLt2jX7uKqqSt5999162YEnG4iLi7PfJ34/4Pv35/ujIe+efL0PJ/F2zfCOBed5+/Zt9TwVFRVuf6dIwBeda9euye3btyU5OVn9Pjk52e2PU0QkOztbfv3rXwd6GsRhTGP01wZEPNtBdHS0vUDgQoFfoE2bNvU4VlVVdcfn1vZa+Mdmnv+Nb+g/IzwXnxsXAjy/ZpGt7bVwDOfl6xqhxsebc/E2j9rGcT6B+i6Iiory+KVcny/rUHLZhdJcTHBevrSn35k0+O61hQsXSmlpqf2D/3mRxgHtgNAGGgcBv9Np3bq1NG3aVIqLi9Xvi4uL3W7XRf733xP+B0XCG39tQMSzHZSVlUllZaWIiFy9elWNme4dEX0HgTuk8L8v02Ul4u4imzFjhtInTpxQ2vxCjI+P9/papaWlSt+6dUvpfv36KY13ZeZ76dmzpxrzdUd27Ngxpbt06aL0v//9b6XbtWtnH+OXPt6htWjRwj6u+YxMAvVdUF1d7dG95s3946+r3knXvpOv5csF6W28urra62PN63+n7yngdzoxMTGSnp4uOTk59u+qq6slJydHhgwZEuiXIyEIbYCI0A5I7QT8TkdEZP78+TJ9+nQZMGCADBo0SJYsWSJlZWXy1FNPBePlSAhCGyAitAPiTlAWnSlTpsjVq1dl0aJFUlRUJP3795ft27e7BRRJ5EIbICK0A+JOUJJD64PL5XLbCktCn9LSUuXjry81dvDcc8/ZcYuzZ8+qx/Tv31/poqIi+zg/P1+NYczh6aefVnrbtm1KY6yjR48eSpvbonfu3KnG7r33XqXPnTvn9bkuXbqkNP5JmtukJ0yYoMYKCwuVxhhHnz59vD4ed86VlJTYxwcOHFBjvXr1UtqMPVVVVcnOnTsDagc1NmBumfaFPzEdf7ct+7M929dr+xtn8Qdf59bnK9/bc1uWJeXl5T5toMF3rxFCCGk8cNEhhBDiGFx0CCGEOEZQNhIQEijuueceOz/kww8/VGN33XWX0mYez8SJE9XY+fPnlT558qTSzZo1UzopKcnra125csU+7ty5sxpzuVxKo38b81a+/vprpTFG9MMf/tA+bt++vdd54TXCGA/GZbBET+vWre1jjJlhTpBZsLOiosJt3oHCnzItdX2eupxvvjbOA/NbfGk8H6tYmI+vb6yqPqWD8LGmbrA8HUIIIcQTXHQIIYQ4Bt1rfvLAAw/Yx2PGjFFj6OrIyspSGm9r16xZozQWO/ziiy/sY7wdbyx88cUXtlsnPT1djZkViUW0SwzdTJgXguVW7r77bqXxeuNWY7O6Lm6B7t27t9K4fRtL8GCZnOHDhyt948YN+3jz5s1qbOTIkUq3adNGaV8FQFu2bKm0eR3Mkjgi7i5Jc1t5bWVwGoJAFs705ZYyryW6WNFW0V2L7jMsw3Tw4EGl//Wvf9nH6I71RX23bwca3ukQQghxDC46hBBCHIOLDiGEEMdgTAfArbNm10MRkR//+Mf2McZwEG/bC0VEnnjiCa967dq19vG6devU2Hvvvef1tSMFs9w9xmX27t2rtBlbwTI2qLHD5pdffqn0fffdpzTGeMzYyfXr19UYdinFdgKffvqp0tOnT1f6gw8+UNpsbTB48GA1tmfPHqWxTYK5rVlEx4dE9NZvER1fwhYMuNXbjD2FSkynPvEIX438sK3Eww8/bB8PHTpUjaGtYlsI3CKN7SzefPNNpdevX28fm7He2s71tR0b8bbFOhjxHd7pEEIIcQwuOoQQQhyDiw4hhBDHaPQxnebNmyv96quvKo1xFm+gbxXzMzB/wxfma5sl50UaT0zn9OnTdvn9Vq1aqTH0uZs5Jpg3cfnyZaUxloHxCuxsiaVsLl686PFczB8aO3as0hiXwZbSGFccN26cfYxxlq5duyqN+UmdOnVSGq9h9+7dlTbjURgbwBI8Zt6Ov7kjdSWQeTgIxnSmTJmitFmOSESkQ4cOHp8LYyHYQiI6OlrphIQEpadNm6a0GU8yY70iIp988onSWIbJzCmrjfrk6dTl8+CdDiGEEMfgokMIIcQxuOgQQghxjEYf0/nud7+rtD8xnDNnzij9zDPPKH3kyBGlBw0a5PW10Ids5gE999xzagz963PmzFEaYxjhSnJysh27wVgJ8p///Mc+PnHihBrD+No3v/lNpfF6Pvroo0q/9tprSk+dOtU+fuONN9SY2WJBRGT16tVKY7wJfe5YT+3UqVP2MeaGoU89IyNDacwtwRwh85qJ6DgZxh2OHj2q9IMPPmgfV1ZWyscffyyhDF6r+Ph4pWfMmKH0vHnzlE5MTFTajHkVFBSoMdTYstxsISHinheG9jhixAj7GGNJmMOHrdexrQfaG8aygg3vdAghhDgGFx1CCCGOwUWHEEKIY0RZwW6e4Ccul8vNdxpIsAcO1jjy9dpmHMf0aYu4+3H9BeMIP//5z+3jb33rW17Pxf4b2K452DGe0tJSt1yW+lBjB08++aQdZ0Bf9saNG5U2r5GZRyPiHk/DelR4fTEmhPkwZt037GGDtbHQh469VTCHA3urmHXiMM8G/fVmrElEZMeOHUpjng/OHeOUJth7Z9SoUfZxeXm5zJw5M6B2UGMDsbGxdjzGV16It3HsJfT9739f6Z/97GdK47XGz/Grr76yjzGOcuDAAaUxzw6/Z/r06aO02bdLRGTgwIHiCYzLbdiwQenly5crjXUGMabjrVabt5wey7Lk1q1bPm2AdzqEEEIcg4sOIYQQx+CiQwghxDEaXZ7O5MmTlfYnhiMiMnr0aPu4vjEc5O9//7vSZl/0f/zjH2oM/a4DBgxQ+pVXXlF60qRJgZii41y6dMmOeXz22WdqDOuK5ebm2scYN8EeN1hzD58bYx3Yj8fMwXryySfVGPa4wX45u3btUhrjSVu2bFHazCnCvDL032NsoVevXkpj7A/rdJm9gXyFe80+P8HspxMVFWXHEvwJQWOeEcZNMKZj1u4Tcf8bw1jdypUr7WO0H3wszgXtC3OGbt68qbR5fbEuIM4bv+PMHkki7jEe83tGRMcYffXiYe01QgghIY3fi87u3btl/PjxkpqaKlFRUfLOO++occuyZNGiRdKuXTuJj4+XzMxMrztiSORBG4h8rl27Jlu2bJGVK1fKsmXL3HbR0QaIJ/xedMrKyqRfv35ut2g1vPjii7J06VJZsWKF7Nu3T+666y4ZM2aM21ZNErnQBiKfr7/+Wlq3bi3f+c53ah2nDRBP+B3TGTt2rFt/kBosy5IlS5bIL3/5S3nkkUdEROT111+X5ORkeeedd9xyCJzA7GMu4u5f98WyZcuUvnDhQr3ndKeYvVG+973vqTHMUUHfK75vfB+LFi1SGvf615VA20CzZs1sfzj2bLn//vuVNnMD8HpgrbXjx48rjX5w/M/90qVLSnfr1s0+/utf/6rGcJ6/+93vlH788ceVxl4qP/rRj5TeunWrfdy2bVs1Nn78eKUxlwTzjbD3D+aimLEGrPNm5nolJSWpx5aXl9vHDfk9YMYY4uLi1NiECROUxv5WmK+C1wp7bZmxOYyLYG8tjEVh3o55/UREioqKlDa/dzC+iAs/fm5YU+6f//yn0liPz3wv2LMKMW39TuNtAY3pnD9/XoqKiiQzM9P+XWJiomRkZEheXl6t51RUVIjL5VI/JHypiw2I0A4iCdoA8UZAF52a1Tk5OVn9Pjk52W3lriE7O1sSExPtH2/d+EjoUxcbEKEdRBK0AeKNBt8yvXDhQpk/f76tXS5XQI1t2LBhSmPJEeTQoUNKv/322wGbS33AbbRYMgdb2KJrAVsfrFmzRmmzbAe2KXYCT3YQHx9vu9dwe6bZLhnB9gBnz55VGl1guI0ZywYVFhYqPXz4cPsY3RXYAhpdfVjmZtWqVUqjC9h0A33wwQdqDF0ts2fPVhpL5qMdoRvR/Oxx0TDL8YjodhHYzqEu3Ml3gT+tlXHbfMeOHZXGUi24TRm3n7///vseH49bxtHNifPG1/r888+V9vY9hd9R2PbkscceU7pdu3ZKr1ixQumFCxcqbbbiCEYbhIDe6aSkpIiIuy+0uLjYHkNiY2OlRYsW6oeEL3WxARHaQSRBGyDeCOii06lTJ0lJSZGcnBz7dy6XS/bt2+eW0EQiE9oAoQ0Qb/jtXrtx44ZyVZw/f16OHDkiSUlJkpaWJvPmzZPf/va30q1bN+nUqZO88MILkpqa6lb1mEQWx44dk7S0NNpAI6Gqqkpu3Lhh65qt0AUFBdKrVy/aAPGI34vOwYMHVdntGh/s9OnTZfXq1bJgwQIpKyuTmTNnSklJiQwbNky2b9/uFmMIVbC8eSB81cFg8+bNSmMcwCzRIeK+jRK3SZrnY7znThg+fHhQbKBZs2b2tk2MMaSmpiptxqWwPTX63LOzs5XGx2MLYNyqfOzYMfsYYzjml3Ft5+L2WtzOjXEbM66BbYwxJvPiiy8qjaWC+vfvr/TLL7+s9ODBg+1jjJeYfwsul0vFpmrK5f/+97+Xv/3tb0H7HvBVdsVbjAe3MWPsEuMsvuJn5mvhvDCO52s7MZ6PsRQzBolpG0uXLlXaLGUkIjJ37lyl0cX50ksvKW2WccI22xhrqksZHL8XnZEjR3q9gFFRUbJ48WJZvHix35Mh4YvZQ4M2EPm0aNFCZs2aZevKykpZuXKlnctCGyCeYO01QgghjsFFhxBCiGM0eJ5OsMHcgkgF2yJguXPcm49gCfxQISEhwW4zfOXKFTVWUVGhtJk7g5nveD3QV425Cj169FAaS8+bPnf0c2NehNkGQcQ9BoRxDsyFMF8L84uwlhnmkixYsEBpTM7E+J3ZZgFjURjTMN93XXz7dQFd+6jNWApeK2xngXPGdgTYugTjNBh38UZ9r495rTE2ha0LXnvtNaUzMjKUNtuMi7jnK5nxXYz5YWy0Ljl9vNMhhBDiGFx0CCGEOAYXHUIIIY4R8TGdxgrWGvNF165dgzST+lFRUWH77dF33aVLF6XNDHjMRUhLS1N6586dSmN5eGxlYD63iKjy/JjLderUKaXT09OVxrL2mFeBWftmo0Qsgd+3b1+lfdUaxFL1WIvNjONgHAzbJJgxkmC2q/anRbX5WHzvGN/F2BnGSjBm46uemlNg62sE843eeustpbEGHf7tm7lamN+HcdS6wDsdQgghjsFFhxBCiGNw0SGEEOIYER/TQd+8L7CFrdkyOpzYv3+/0tieGd8ntsMOFQoKCmwfNvZWwTbRpq8aYzplZWVKYw8SzG/BNs54vhkbwRwe9JFfu3ZNacz3wHwYjLOY+SYDBw5UY2jfnTt3VhpjexgDGjBggNJm2/I//OEPaqx169ZKmzGSQPj6PREVFWXHT/zJ00F85ZTg+zNbkou4X0vztXzFnXDc33iQt8fjc+P73Lt3r9LY/wnft2m/vp67LvBOhxBCiGNw0SGEEOIYXHQIIYQ4RsTHdPwFe8xjX5VQ7a+DYAwCa3SFCzdu3LDzLbD2F+Yb3HffffYx1hgbPXq00llZWUpjn5l7771XafSpm3kp2B8H824wfnb58mWlMVaA+STm+0T/PNbNQp+7y+VSGvMuXn/9daWffvpp+xjzhbBPkPla/uTS+IuvViqeHovvHZ8H41B43TMzM5U2eyiJ6HbcgX7//sRwfPXywb99XzXjzPNr6h56em5/6s/Zz+H3GYQQQkgd4aJDCCHEMbjoEEIIcYyIj+n85je/URp7SWBdLOxXj779cInpYN0prDOFfPzxx8GcTp1p2bKlnaeDNaUef/xxpZcsWWIfP/DAA2rso48+UvrZZ59V+uDBg0pj/bSEhASlzV4rvnJHEDMWIOJeDw1zb8xaWxjXQp861kDDOl1m3EvEPQa0dOlSj+di3Tczv6guvv07xbyevvJbzHlgLTX8jDGfCuMVGNM5fPiw0mYOH+Zi+boevuIy3sb9zfHBPkJoAzhuxhjRPgIRu+KdDiGEEMfgokMIIcQxIt69hluHd+/erTS61xBs57to0SL7+O23367n7IKH2bpZRLchrg1s7xwqtGjRwnY/4ZZWLNluvkdsGY3bXd99912l0cWA24U/++wzpc2tx2brARF3l+z58+eVTk1NVRrdhtiGwWyjjPNEeza3PIuIHD16VOl9+/Ypja20n3rqKfv4vffeU2PYVtt8rmC61/zBdCOje+2NN95QGrePo0sWWzvgNntzK/umTZvUGLZDx+uDbitf7jV/to2juxbbdqB94ud68uRJ+xi3naMLku2qCSGEhDRcdAghhDgGFx1CCCGOEfExHeRPf/qT0g8//LDSWM4c9eLFi+3j8ePHq7H58+cr7eT2aiwJ88QTT/h1PpbTDxVu3rxp++bN2IaISFJSktKmPx+3PGNbBPS5Y2wPy/o/+uijSptzeeyxx9QYxn9wizRur8U4DcZ4zBgQjmGLBmwpPXToUKV/8IMfKI1tu83yQXh927dvr/RXX31lH5vtF0IFjOlgbG358uVKY9wF2z7gtvkJEybYxxhvXLlypdKnT59WGj9Hf7ZQ41Z2fG2M4cyZM0fpxMREpXGLvjl3LBWEMRx/2jvY59zRowghhJAA4Neik52dLQMHDpSEhARp27atTJw4UfLz89Vjbt26JVlZWdKqVStp3ry5TJ482e0/PRJ5nDlzRmnaQWSTm5srR44ckby8PNm3b5/b94AIbYDUjl+LTm5urmRlZcnevXtlx44dUlVVJaNHj1bbkn/yk5/Ili1bZP369ZKbmyuFhYUh25WSBI5JkybRDhoR58+fl3bt2knfvn2lV69etmuFNkB8EWXVo67B1atXpW3btpKbmysjRoyQ0tJSadOmjaxdu9b2gZ8+fVp69uwpeXl5MnjwYJ/P6XK53HyOwaRHjx5Kf/LJJ0q3bNnyjp8L/9s7dOiQ0ujnDSS/+MUvlMacAwTbM5tfBugLv1OCYQfjxo2zfdjoT8ay/mbehdl2WcQ9NwbzVR588EGl8c8C23+bbZ8xF8xXO2q0b4wV7NmzR+lmzZrZx+i/R5vDuMtDDz2kNJYDQv785z/bxwsWLFBjmLdjXv8bN27Itm3b5P3335exY8cG1AZiYmLsGAfGOnxpEywNhfkseO3Gjh2rNJbFMeOoWH7owoULSmM8CeeC8V+MAZn5Mr169VJjWNoLv9Mw3whbVLz88stKm3FvX/lEJpZlya1bt6S0tNTtb9OkXjGd0tJSEfl/wPHQoUNSVVWlPpwePXpIWlqax+TDiooKcblc6oeEJ7SDxkvNPyo1X3C0AeKJOi861dXVMm/ePBk6dKjdpKqoqEhiYmLc7g6Sk5PdmmrVkJ2dLYmJifYP7jIi4cHgwYNpB40Uy7LsHXs1xSRpA8QTdV50srKy5Pjx426dNf1l4cKFUlpaav+Y1XtJ+FBf1yHtIHw5fPhwQO5KaAONgzrl6cydO1e2bt0qu3fvVn7QlJQUqayslJKSEvUfTnFxsaSkpNT6XLGxsW4tUZ0EfaeY1/D8888rPW3aNPvY9LWLuLdFQO1v7kwgwb34L7zwgtJ1jePUYMYaAmkHHTp0sH9fWFioxjA3yawZhbXTDhw4oDT669HlEx8frzT6qM14HcbPsO7d1q1b73jeIiIlJSVKmzkd+FrYGhuvIY7j54x5OsOGDbOPzdL9Iu5xsXPnzsnZs2fl2rVr0rt3b1X6PxS/CzCXCON2X375pdJvvvmm0p9//rnSU6dOtY8HDRqkxu6//36lsR06thrBRRtjPGb8Ce8A8XsI4y4Y39ywYYPS+D691VPzFkMLSp6OZVkyd+5c2bRpk+zatUs6deqkxtPT0yU6OlpycnLs3+Xn58uFCxfcvgRI5EI7iHwsy7IXnH79+rkVjaQNEE/4daeTlZUla9eulc2bN0tCQoLtm01MTJT4+HhJTEyUZ555RubPny9JSUnSokULef7552XIkCF3tFuFhC/FxcUSHR1NO2gk7N27V4qLi6VXr17StGlTe/dWeXm5tGjRgjZAPOLXovPqq6+KiMjIkSPV71etWiUzZswQEZE//vGP0qRJE5k8ebJUVFTImDFj5JVXXgnIZEno0r17d9pBI6LGLY0tIzZu3CizZ88WEdoAqZ165ekEA6fzdPzF7EXx05/+VI2NGDFC6ZrdXE6wa9cupTEf4y9/+YvSnnYQ1RVfe/P9pcYOevfubfu/sQ8I5llcvHjRPsZcBYyTYJ0tzH/BzHnMqzBzcbBuG8ZNMGbzyCOPKI1179CuzPgR9oC5cuWK0p9++qnSmAOE8QDsBTRw4ED7uHPnzmps27ZtSrdq1co+rqqqks2bNwfUDgKdp4P4OhdrnGGNPDNmO2XKFDWGcT3zWom42xPaI2qciwnW8sO22ps3b1YavxswnmTGdPy5npZlSXl5eXDzdAghhBB/4KJDCCHEMbjoEEIIcQzGdAII7pfH4oZYM8kfsLbTkiVLlMb6X/j4YBOsmE5mZqbt/8a4DObSmJSXlyttxipE3GuWYW4C1qcaPXq00mbcBuNjWMML4ypnz55VGuMsmDtmzh3zrWpKUdVg9rgRcc/rwbhMcnKy0mb/KOxfhHTp0sU+rqiokJdeeikoMZ3Y2FiPsYX6xHR8gc+FMURzm7h5LUTce9pgng5ed7TlW7duKW3mauHmDayjWFvlf0/PJeL9mjGmQwghJKzhokMIIcQxuOgQQghxjDrVXiO1g77SNWvWNNBMIoekpCTbl465N8jRo0ftY+whgnXEMOcH83TM8i0i7v1QzBJQWEsM67y1a9dOacytwbma7wPPx5716K/H2AHGePr06aP0wYMHlTafH2OUWA/MzAfBvJJgUZ8Yjq/wNT4XPh6vvfmea6ps14C5WVgmyFvel4h7jNZ8PH7mmBeGnwXGK/G1vIHXIBAxM97pEEIIcQwuOoQQQhyD7jUS0qSnp9uuCbONroh7+XizLAm6FLCUPJYlQdcdulJwu6zpSkUXFZbFQXcaltjBdtZYvd10323cuFGNde/eXWnc6o3buXErK7r2zDYEWGMRXZTmFvZguteioqI8unX8cf/4cp/5mz1iurXwXLQ33MKP4PnoAvPWbsDXNfDHneYLb9coKK0NCCGEkPrARYcQQohjcNEhhBDiGCyDQwJCsMrgjBo1yt4uiiVdsBwIahOzDbOIyIkTJ5TGlr64tbhr165Kmz563C6L/neMH/Xs2VPpM2fOKI1tuY8cOWIfY1sE3OqN2/axHBJ+RuZzi+iWzljOB9s1m+V7qqqqZMOGDUEpgxMXF+extUF98PerL5Cv7S/mXP2N0dQ3dmXi7RqwDA4hhJCQg4sOIYQQx+CiQwghxDGYp0NCmvz8fNuHjeVmzDL8Iro8CObdYGwDW4ljHg6Wj8E8CzPuguVisH0w5uFs375daW+5MiIiU6dOtY+TkpLU2Llz55TGlso4b7yG2P66TZs29jG2ksDyK2Y5fsxLCSRmDKI+7ai95brcyfn+xEZ8levxFVfBuI2p8Vx8X4GMVfmat/nazNMhhBAScnDRIYQQ4hgh514LsR3c5A4J9OdW83zm7Tu6yLBUjVmWBMfwXNQ4f6zc6+218LHmtuPaXgvH8Xx0VZnne5tHba+F474qFJvn+6peXNtjA2kHNc9lPmd9nr++cwvk1mNf5/pTbiaQ8/KFt9eq7fOqjZDL07l48aJb+14S+hQUFLjlddQH2kF4Ekg7oA2EJ75sIOQWnerqaiksLBTLsiQtLU0KCgoCmnQYybhcLunQoYOj18yyLLl+/bqkpqYGtLAg7aDuRIod0AbqTijbQMi515o0aSLt27cXl8slIv/LoKah+YfT1ywYFSRoB/Un3O2ANlB/QtEGuJGAEEKIY3DRIYQQ4hghu+jExsbKr371K4mNjW3oqYQNkXjNIvE9BZtIu2aR9n6cIJSvWchtJCCEEBK5hOydDiGEkMiDiw4hhBDH4KJDCCHEMbjoEEIIcYyQXXSWL18uHTt2lLi4OMnIyJD9+/c39JRChuzsbBk4cKAkJCRI27ZtZeLEiZKfn68ec+vWLcnKypJWrVpJ8+bNZfLkyVJcXNxAM64btAHPNBYbEKEdeCJsbcAKQdatW2fFxMRYK1eutE6cOGE9++yzVsuWLa3i4uKGnlpIMGbMGGvVqlXW8ePHrSNHjljjxo2z0tLSrBs3btiPmTVrltWhQwcrJyfHOnjwoDV48GDr29/+dgPO2j9oA95pDDZgWbQDb4SrDYTkojNo0CArKyvL1rdv37ZSU1Ot7OzsBpxV6HLlyhVLRKzc3FzLsiyrpKTEio6OttavX28/5tSpU5aIWHl5eQ01Tb+gDfhHJNqAZdEO/CFcbCDk3GuVlZVy6NAhyczMtH/XpEkTyczMlLy8vAacWehSWloqIv/vKnno0CGpqqpS17BHjx6SlpYWFteQNuA/kWYDIrQDfwkXGwi5RefatWty+/ZtSU5OVr9PTk6WoqKiBppV6FJdXS3z5s2ToUOH2i2Yi4qKJCYmxq3tcbhcQ9qAf0SiDYjQDvwhnGwg5KpME//IysqS48ePy549exp6KqSBoA2QcLKBkLvTad26tTRt2tRth0VxcbGkpKQ00KxCk7lz58rWrVvlww8/VE2TUlJSpLKyUkpKStTjw+Ua0gbunEi1ARHawZ0SbjYQcotOTEyMpKenS05Ojv276upqycnJkSFDhjTgzEIHy7Jk7ty5smnTJtm1a5d06tRJjaenp0t0dLS6hvn5+XLhwoWwuIa0Ad9Eug2I0A58EbY20GBbGLywbt06KzY21lq9erV18uRJa+bMmVbLli2toqKihp5aSDB79mwrMTHR+uijj6zLly/bPzdv3rQfM2vWLCstLc3atWuXdfDgQWvIkCHWkCFDGnDW/kEb8E5jsAHLoh14I1xtICQXHcuyrGXLlllpaWlWTEyMNWjQIGvv3r0NPaWQQURq/Vm1apX9mPLycmvOnDnW3XffbTVr1syaNGmSdfny5YabdB2gDXimsdiAZdEOPBGuNsDWBoQQQhwj5GI6hBBCIhcuOoQQQhyDiw4hhBDH4KJDCCHEMbjoEEIIcQwuOoQQQhyDiw4hhBDH4KJDCCHEMbjoEEIIcQwuOoQQQhyDiw4hhBDH4KJDCCHEMf4LSQ31F/oItFsAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiM0lEQVR4nO2deXRU9fn/n4AkbCHsiRECCCKLBRQhBMQDyCJaKYrUoi1LEQWDZanag6duHCSntVVOPYA9tkA5itBUwlbAQthEWUoAkS1aZQlCwlYStiwk9/dHf3O/n+c9yQyXzNyZSd6vc3LO5z2fO/d+5s6T+cx8ns/zPFGWZVlCCCGEuECNUA+AEEJI9YGTDiGEENfgpEMIIcQ1OOkQQghxDU46hBBCXIOTDiGEENfgpEMIIcQ1OOkQQghxDU46hBBCXIOTDiGEENcI2qQzd+5cad26tdSuXVuSk5Nl9+7dwboUCVNoA0SEdkA0UcHIvbZs2TIZPXq0fPDBB5KcnCxz5syR9PR0yc7OlubNm/t8bllZmZw+fVpiY2MlKioq0EMjAcayLLl8+bIkJiZKjRr/9x2mMjYgQjuINIJhB7SByKIiGyjvwIDTs2dPKzU11dalpaVWYmKilZaW5ve5OTk5lojwL8L+cnJyAmYDtIPI/QukHdAGIvMPbQC5TQJMcXGxZGVlyYwZM+zHatSoIQMHDpQdO3Z4HV9UVCRFRUW2tpj0OiKJjY21205tQKRiO3j22WclOjpaRETOnz+vnlNWVqb0nXfeabdbtmyp+rKyspQeNGiQ0s8884zSL774otKDBw9Weu7cuXa7VatWqq9FixZK47f0w4cPK22+bhGRunXrVqhvv/121dekSROl4+LilF66dKnP/oYNGyrdpk0bu71//37V17VrV6UzMjLs9o0bN2TPnj2VsoOKbCAmJsa+h/ie+8LfryP8rAnmZ4/TseDxpnY6Tn/nRnz1Y9+NGzfUdUpLS5UNlEfAJ53z589LaWmpxMfHq8fj4+Pl6NGjXsenpaXJW2+9FehhEJcxjdGpDYhUbAfR0dESExMjIiK1atVSffgB5DlORKROnTpe5zHBD3bEPJeISL169ZQ2x4LH1q5dW2n8R8Wx4OvAfvP8eG58nfi68J75OjeeD4/Fa992m/fHR2XsoCIbiIqKss/rZJktnJbknI7F16QT7LE4mXTKO9bf+UO+e23GjBmSn59v/+Xk5IR6SCQE0A4IbaB6EPBfOk2bNpWaNWtKXl6eejwvL08SEhK8jo+JifH6tkUiG6c2IFKxHZiPN27cWPXhUlPbtm3t9s6dO1VfcXGx0vPnz1d6yZIlSp8+fVppczkNr43f7EpKSpQuLS1VGn+d5ObmKt2nTx+lT5w4YbfxVxEuGyYmJirdrVu3Cs8l4r3UZzr3/X1jNe93cXGx1z0P1GdBWVnZLX3Tx3uF53C67ORkWauyv0wqs9Tn77lO+v29jpo1a6rnmcttFRHwXzrR0dHSvXt3yczMtB8rKyuTzMxMSUlJCfTlSBhCGyAitANSPgH/pSMiMn36dBkzZozcf//90rNnT5kzZ45cvXpVxo0bF4zLkTCENkBEaAfEm6BMOk899ZScO3dOXn/9dcnNzZVu3brJ+vXrvRyKpOpCGyAitAPiTVCCQytDQUGB17ZOEv7k5+dLgwYNAnY+jx0MGzbM3oHVrl07dcwdd9yh9L59++z29evXVd/dd9+tNAav4Vr0V199pXRhYaHSv/zlL+32+vXrVd/FixeVHjFihNKrV69WGn1AGDSZn59vt9u3b6/6evfurfSsWbOUnjZtmtIbN25U+q677lLavIfoH8Kt3WfOnLHbJSUlsmLFioDagccGoqOjK9y95uY2Z1/Xquw2ZidUdidcsK5tWZYUFxf7tYGQ714jhBBSfeCkQwghxDU46RBCCHGNoGwkICRQDBgwwI5rWbhwoerr2LGj0mYanMuXL6u+Ro0aKf3DDz8ojT6fbdu2Kd2vXz+lt2/fbrevXbum+jp06KD0unXrlH7iiSeUxpQwmNrm3nvvtdvff/+96jt06JDS3bt3V3rLli1KP/jgg0qvWrWqwuefOnVK9Z07d07p++67z24XFhbKihUrJNiEiw/H33MxRsiMZxHx9ik6iRHCc/tLDeQ0bsef3+ZWr+OBv3QIIYS4BicdQgghrsHlNRLWFBcX20sTI0eOVH2ffvqp0s2aNbPbZ8+eVX247ITbkt9++22lhw4dqjQmqPS1rR+3NWPamyNHjiiN27sxbY65bIXjwvQ+TZs29XluXE7D+/Ddd9/Z7f79+6u+CxcuKH38+HG7jdup3cJpKptbPba8480lM0zfgzbQpUsXpU1bFfHeZn/s2DGlzbRMly5dUn24lIxb8FHjPfNV+8bJ0hyX1wghhIQdnHQIIYS4BicdQgghrkGfjkPMtCOffPKJ6sMU9V9//bXS/rZkmtl4RUSys7Pt9t69e50Ptgqwa9cuOw3OwIEDVR/6aUyfQ/369VXfhx9+qDRua8ZUNQcOHFD6P//5j9KPPvqo3cZUNPg+Ll68WOkpU6YojVu/cauyWd0TbcYsLyAiXmUEMB2JaVMi3r4Ys2QDbuXG0hLmuTFNkFtUpoSAk2qdIt5F60z/GfobUZsVWUX+l+LH5L///a/SeO/NrfHoP8It01988YXSaLv4nldmG7rpD6JPhxBCSNjBSYcQQohrcNIhhBDiGvTp+MHjT/BgpmLB+Ivz58/71H379lUa08oPGzZMadMvsWHDBtWHcSW7d+/2GntVoF27dvYaNpZmxrXs2NhYu40xJeh3wdgFM+ZExDsOB31EZjqarl27qr4HHnhA6V/96ldKYxmFzp07K41r42YKH/QrzJkzR2kcC/p0MN0Plo02/ZB4LMYXmbEnOK5AEhUVZftX3EyDEx0drTTeS/N9HjJkiM9zZ2RkKI33El+XGS8lon1ASUlJqg/tp1WrVkpjiXKMA/MVx+MkPQ99OoQQQsIOTjqEEEJcg5MOIYQQ16BPxw89e/ZUevny5XZ7xowZQb32U089Zbfnzp2r+jBd/vTp05X+29/+FryBuchtt91m+9VwTR39WKbfBksAfPvtt0qj7wPjXcxSzCIizz//vNIrV6602++++67qQ98d+vY+++wzpWvXrq00+u9+8Ytf2G2M4XnzzTeVxviOgwcPKm2WfxARmTdvntKmXxHvWbdu3ZQORe61QJZexpxj6JfCeJhOnTopbcY04Xu2c+dOpQ8fPqw05sxDfJVGQF/TpEmTlMb+rVu3Ku3vnjmJfWKcDiGEkLCGkw4hhBDX4KRDCCHENejT8QP6DXCtNpgsW7bMbuO+/Y8//ljp0aNHK11VfDo1a9a017Mx/uXkyZNK//Of/7TbEyZM8Hns1atXlcb1e4zzee+995Q266WMGjWqwvGLePuHMDbmnnvuURr9LmbuLIwXwnH26tVLafRtYX5A9JOZ9XWwxPKePXuUNn0a/komRwL+fBlY4tz0Z2DJcvSHYV0j9IGhf8lXjRssvY5xOmgTeC6M06kMjNMhhBAS1nDSIYQQ4hqcdAghhLgGfTp+wLxEocJf3razZ8+6ORzXuHLliv0e7Nu3T/XhOrlZdx7zTWEtGFy/xzozWNP+3LlzSpu52bAWSk5OjtKm/0fkf/nkTL755hulMYYjPT3dbqOvCseNPp3ExESlMe/bT3/6U6XN14L553DN3vRbuPV/4iTGxN+x6IfC14A2gj6dS5cuVXiuK1euODo3Ph9zPrZs2dJuDx8+XPXh/wH6obHWkZNYp0DGRXngLx1CCCGu4XjS2bZtmzz22GOSmJgoUVFRsmLFCtVvWZa8/vrrcvvtt0udOnVk4MCBXjs5SNWGNlD1ycnJkR07dsi6deskIyPDa1ccbYBUhONJ5+rVq9K1a1evtCwefv/738uf/vQn+eCDD2TXrl1Sr149GTJkSMjK2RL3oQ1UfUpKSiQuLs4rnZAH2gCpiCirEot0UVFRkpGRYa8xWpYliYmJ8utf/1peeuklERHJz8+X+Ph4WbRokfzsZz/ze86CggKvteSqCq7bYp43MzakR48eqm/79u1KT5s2TWmMqQg2+fn50qBBg4DYgMj/2cHs2bPt3GT4TdlcUxfR9V8w59iPfvQjpdG3gXm3MB7mq6++UtrMbxUfH6/60P+DPh+zNoqISJs2bZS+4447lDb9URcvXlR9rVu3Vvrvf/+7z3Nj7A36n8xaLJjnrWPHjkp77veoUaMkNTVV5s6dK/n5+RIbGxtQG4iJiQlJPR20CYx3MetpoT1dvnxZafTT4fuA+ffwXo8bN85uDx48WPV98cUXSs+cOVPp06dPK433MFD56yzLkqKiIvuzoMLn3PLVyuHYsWOSm5srAwcOtB+Li4uT5ORkr0SEHoqKiqSgoED9kcjlVmxAhHZQlaANEF8EdNLxrOviN7/4+HivNV8PaWlpEhcXZ/+ZuzRI5HErNiBCO6hK0AaIL0K+ZXrGjBkqLX9BQUFYG1vdunXLbd8M48ePV/rJJ59Uunv37kqbqVpeffVV1Ycp6fPz8x2NJdyoyA4aNmxoL2PgtlPcimwueeF7c+zYMaXN0tYi3ltcMY09foAmJyfbbVx6w+U0TIMzduxYpXErOKbs6dChg93GZUNcOunXr5/Sa9euVRq3guPrMlPw45IRpu8375GvtC03S6g/C/wtO+Hym7l0ia8fl0Hr1aunNJaJQHu79957lTZLVJvpnkRE/vznPyuN9ub0dQWbgP7S8eSUysvLU4/n5eV55ZvyEBMTIw0aNFB/JHK5FRsQoR1UJWgDxBcBnXTatGkjCQkJkpmZaT9WUFAgu3btkpSUlEBeioQptAFCGyC+cLy8duXKFZX19tixY7J//35p3LixJCUlydSpU2XWrFly1113SZs2beS1116TxMREryhaUrU4cOCAJCUl0QaqCaWlpapyqKc6ak5OjnTu3Jk2QCrE8aSzZ88e6d+/v609a7BjxoyRRYsWySuvvCJXr16V5557Ti5duiQPPPCArF+/3mtLYKTw8MMPK/3OO+/YbUwpHmjMf+q9e/eqvnDz4fTt2zcoNrB7927bV2Nu5xXRKf9F9Lo6+jpMv4iIXiMX0fdaxHtNHkv+mjuzRo4cqfo2btyoNJadwG3KmOLo888/V3rVqlV2G7dyt2jRQmn0D+G5cYv1oUOHKuzHdP0DBgyw20eOHJFXXnnF1p988omIiMyePVs+/vjjoH0OBCMtS0VgahosfzFmzBi7jWU3MBwCt8Hj+4igX8ZMbYPhEuhDDKTPxsn9vdljHU86/fr185urZ+bMmV57xUnVxtybTxuo+nTs2FF+8pOf2LqkpETWrl0r8+fPFxHaAKkY5l4jhBDiGpx0CCGEuEbI43TCHVwPNWNnjh49qvqWLFmiNJakXbBggc9rmX4CEZHnn3/ebmdkZKi+l19+WemKcuFFOsePH7fTkWDMhq9YHEzhMmTIEKUxHXyTJk2Uxjge9AGZQY7oa8IASLM0gYh3vBGmor///vuVNmM4MH0K2qdZQrq8fixfvX//fqXNUgi7du1SfVgy3bTXwsJCr5igUODEf4FuAoy1wXuNZSLMnXhYchx9MqjRh2jGR5U3FrOUCfoIMQYNr2Wm6xEJrh/sZuAvHUIIIa7BSYcQQohrcNIhhBDiGvTp+GHdunU+dSBZtmyZ0qbPaP369aoP08NXVZ9Onz597NgOTOFuxkmI6PuFPhyMuUD/w9NPP600xgA99NBDSpt5yd59913Vh2UU0BeCvqimTZsqjfnVzK3JmJ9vzZo1SqN/CON4sOTy0KFDlTbr3aBfoWHDhkp//fXXdjtcylWb/U5jevB4jLXB98lM84OxWVu2bFF68+bNSqMfBusMmXkERUQmTZpkt834KBHvWCv0D6HtO4njYblqQgghEQ0nHUIIIa7BSYcQQohr0KcTxph1Wn7729+qvilTpiiNe/ExDiVSSUpKsl+bmbVY5H9JRk2aNWtmt3FNHNe5zfyBIt6+OvRfYO4sc20bk1h++OGHSpu1d0S0L0TEe90cx2rm/EJfFNZhwTLHWB4AfQlm3JmItjksB46+KLMmTGFhocoR5xa+/BNOfTj+fB2Yj2/FihV2G//fvvzyS6UxFyDG8GFMEOZWNK/1zDPPqD6MIUNfFJbKDiTmPbtZfw9/6RBCCHENTjqEEEJcg5MOIYQQ16BPJ0LB+jDoc8A4k0hlzpw59nr3k08+qfowj1iPHj3sNq6h47o2+id69+6tNJZaxhomZlwK1qh58MEHlW7cuLHS6CvBsaL/zlzPHzt2rOrDHHM7d+5UGuN6UHuKr3kw68Lgub755hulzXuIPopAEqpcYaWlpUqfOHFC6bNnz9pt9P/ge2zGdZUHxtKgvnz5st1Gnw2OE23dSWyTiLO4nVuBv3QIIYS4BicdQgghrsFJhxBCiGvQpxPGmDVdRo4cqfqw1klV8eEgycnJdswN1oI343IQjLPBmB6MXzl58qTS6NPBPGTt2rWz2ytXrlR9CQkJSmNuLKzVg/V4sC6Teb5///vfqu/ChQs+z43XxvuCtVfMOB/0TZk+DHxuMGNBfOHEx+DvWPRtoK8EMWNp/MXd+Kvdg/34fNNvWK9ePdWHdb0QJz4bN+AvHUIIIa7BSYcQQohrcHnND4MGDVJ6w4YNrl171qxZdnvw4MGqb+bMma6NI5R06tTJToNjbhsV8S4xvW/fPrsdFxen+sytwCLey2m4JIYlAbCUuLmN+b777lN9uD0WlzewRHTbtm2Vxi2x5nvfs2dP1YdlFfBcmGIfl2a6du2q9Jw5c+w2lofALep9+/a125iaP5A4KVfga+kItyHjsbjkhe8DLnmZ77OnpLoHXJrDcfobN9r2Sy+9JBWB2/nxXPi68XW6DX/pEEIIcQ1OOoQQQlyDkw4hhBDXqPY+HdxC+te//lVpTDEeTJ/O+PHjlZ44caLdxrLEb775ZtDGEU4cO3bMTu2/Z88e1demTRule/XqZbfT09NV36uvvqo0bvHF7cC47p2YmKi0WZIaU55cu3ZNabNcQHnXRj8LrvdfuXLFbr/99tuqD30yaCcPP/yw0p7S3x6ysrKUNtPmY9kDs2y2iN5WHsxy1VFRUbafojIpcdDXgT4aBG0Ay4fg++wEPDfagFmeWkT7JP/xj3+oviNHjiiN70Vly3YHGv7SIYQQ4hqOJp20tDTp0aOHxMbGSvPmzWX48OGSnZ2tjiksLJTU1FRp0qSJ1K9fX0aMGOEVaEeqHt9++63StIOqzdq1a2XevHny1ltvyezZs2XZsmVex9AGSHk4mnS2bt0qqampsnPnTtmwYYOUlJTI4MGD1c/wadOmyerVqyU9PV22bt0qp0+flieeeCLgAyfhxeOPP047qEZkZ2dLr169ZOLEiTJu3Dh7Wy5tgPgjyqrEIum5c+ekefPmsnXrVnnwwQclPz9fmjVrJkuWLLHT0B89elQ6duwoO3bsUGvuFVFQUOAVYxFMMLU77o9/7LHHlMY188rwhz/8Qenp06crPXfuXLttxuyIeKdpCQeCYQdTpkyxfTqYauT48eNKd+nSxW5jrAyWE87NzVXaLL0s4u3r27Rpk9LmGjzGqKCPB30HGPOD10Yba9mypd3GMgj4urDMAh6PY8P/NfMeo/8S76lZguHs2bPym9/8RtauXStDhw4NqA3ExMRU6NPxFe/iz5eB7wv6bDDNEsaJmffSXxog9OFgaY0XXnhB6ddee01ps6zE008/rfpwlcFpXE5l0uRgefCioiLJz8/3SjOlxnPTZy8Hj5PdUy8kKytLSkpK1D9Vhw4dJCkpSXbs2FHuOYqKiqSgoED9kciEdlB98Ux+jRo1EhHaAKmYW550ysrKZOrUqdKnTx+55557ROR/3x6jo6O9viXGx8d7fbP0kJaWJnFxcfaf+a2ORA69evWiHVRTysrK7B1VnTp1EhHaAKmYW550UlNT5eDBg7J06dJKDWDGjBmSn59v/+Xk5FTqfCQ0LFiwoFLPpx1ELh999JHXMt6tQBuoHtxSnM7kyZNlzZo1sm3bNpWjKiEhQYqLi+XSpUvqG05eXp5XbisPMTEx9pp9KPC3RhxMHw6u4/7ud79T2lwz95dmPdSY5bIDaQfNmjWzY0uaN2+u+jzfqj1cvHjRbmO6988//1xpLNuMZRNwnOjrM/04Zg4yEe8cZbhGjrmy0Jfw6KOPKr1w4UK77Snz4OG7775TGtf3MS8c+inQr2Gef8qUKapv7dq1Sp85c0ZWrVolR44ckdGjR8v7779v9wXSBpy4nX0d6y/XGsZ94XuO5THM/0l/Y8T3eMKECUq/8cYbSqM9Tp482W7je46fDU7jbJwc7+vz8mbfJ0e/dCzLksmTJ0tGRoZs2rTJ603q3r271KpVSzIzM+3HsrOz5eTJk5KSkuLkUiSCoR1UfSzLklWrVsnhw4dl/Pjxti/HA22AVISjXzqpqamyZMkSWblypcTGxtprs3FxcVKnTh2Ji4uT8ePHy/Tp06Vx48bSoEEDefHFFyUlJeWmdquQyCUvL09q1apFO6gmHDx4UPLy8uTnP/+5xMTE2FkTrl+/Lg0aNKANkApxNOnMnz9fRET69eunHl+4cKGMHTtWRETee+89qVGjhowYMUKKiopkyJAhMm/evIAMloQv7du3px1UI06cOCEiIn/5y1/U48uXL7dTuNAGSHlUKk4nGLgdp3Pu3DmlcR3XSe0JLBX8xz/+Uelnn31WafThzJgx46avFW7425vvFI8dPPTQQ3atEsz9haWYzdiH+vXrqz70dfzwww9Kd+7cWem7775b6W3btiltxkmNHj1a9WEJaNyFhT4gzH/25ZdfKm3m+MLcaZizC6+NNWEwjqdp06ZKm+Ww0WeG98zMS1hcXCyLFy8OqB14bKBWrVq238FJPR1/JaLRPzZixAif5968ebPS5mcH2hu6Hsw8iiIio0aNUhpzPGIexo0bN9ptzK2Gr8tfqWwnOPWnlZSUBDdOhxBCCHECJx1CCCGuwUmHEEKIa1T7ejrTpk1TevHixUoPGzZMabOOiicC3wPWlPdXq+edd95xNNbqSOfOne3YDdPfUB5mnfoLFy6oPlwHT05OVrpdu3ZKx8fHK71r1y6lx4wZY7dxXFjDBn04hw8fVtrjlPeA24/N/GpoU2iDmNPr008/VbpDhw5KY8yH6ZvA4Mz+/fsrbcYbYV68QGLW0ymv72bxl5MM/WP4/9y+fXulTd+zGa8o4l3nCP16+/btU/rll19WGu3NtF8cN2p/fhgn9XSc1uK5GfhLhxBCiGtw0iGEEOIanHQIIYS4RrX36eCaN66trlixosLn4lo8ngtzVWVkZNzCCKs3ly9ftv0FGEOF6+RmzRFcv/eUXfCQnp6u9I9//GOl8flYV2nQoEF22/QliXj7j8y6SCIi//rXv5TGPHAYW2Om+Mf1e6zYibE06B9CnxCeb/fu3XYbY4LQT2b6pvA1u4WTXGuoccz79+9Xuk+fPkpjHI9pf3hvMPcf1sNavXq10mbeQBHvfGpm7I0/H05l/TDm8U7zuN0M/KVDCCHENTjpEEIIcY1qv7yG5X5xqyMJLb1797a3AX/00UeqD8sHm0sSuDyBW4txiyumycGqlZgC5eDBg3YbU5jgtmVMS4LLhKdOnVL6kUceUdpMbYOvA+vYoP2aS44iIuvWrVMaUzeZpbOx2BqmjTHLJhQVFclnn30mwSaQKV1QHzlyRGlcEsPlRnPpCcveo8aS5ggu56LNVKb8QGXwd8/McQaltAEhhBBSGTjpEEIIcQ1OOoQQQlyj2vt0SHizefNm25eA/oqrV68qbaaTX758uerDFP5muQARkbZt2yqNW43vvPNOpc0UMZg+BX1NmPIEU/CYpb7LO95MXYN+B/TJYLkHrH2F/qO9e/cqbb4uvAd4rHltt7ZMOylt4A98LqbywZCI4uJipU0/DG6b91deHseJ/jInfplgpKq52WvdCvylQwghxDU46RBCCHENTjqEEEJcgz4dEtbUq1fPXu/GdfMDBw4obcakYAr/77//XukuXboojeUGzHQwIiKtWrVS2ozzwXEMGDBAaSzde/bsWaXRL5OYmKi0GUuWlJSk+jAFfp06dZRG35YZWyPi7Ysx/TjoZ0C/lhkzVFhYGLQ4HdNH4c+Hg/EuN3teEW8/jL80OmY6Gn9lE5z6Qnz5afzFzvg7VyDxNa6K4C8dQgghrsFJhxBCiGuE3fJaMLf7keAR6PfNcz5zmypuab1x40aFGre34jISpiXBftR4PnMs/s6N4/Z1rvIw+zEDNV4b06fgPfJ3D83z+VuWMV+npx2MFCxOlnDc/PwI1bWcLq+5RXnvV3lEWeEy4v/PqVOnvFLWk/AnJyfHK59ZZaAdRCaBtAPaQGTizwbCbtIpKyuT06dPi2VZkpSUJDk5OV6OWFI+BQUF0rJlS1fvmWVZcvnyZUlMTPRynlYG2sGtU1XsgDZw64SzDYTd8lqNGjWkRYsWdpbfBg0a0NAc4vY9i4uLC/g5aQeVJ9LtgDZQecLRBriRgBBCiGtw0iGEEOIaYTvpxMTEyBtvvCExMTGhHkrEUBXvWVV8TcGmqt2zqvZ63CCc71nYbSQghBBSdQnbXzqEEEKqHpx0CCGEuAYnHUIIIa7BSYcQQohrhO2kM3fuXGndurXUrl1bkpOTvVLNV2fS0tKkR48eEhsbK82bN5fhw4dLdna2OqawsFBSU1OlSZMmUr9+fRkxYoTk5eWFaMS3Bm2gYqqLDYjQDioiYm3ACkOWLl1qRUdHWwsWLLAOHTpkTZgwwWrYsKGVl5cX6qGFBUOGDLEWLlxoHTx40Nq/f7/1yCOPWElJSdaVK1fsYyZOnGi1bNnSyszMtPbs2WP16tXL6t27dwhH7QzagG+qgw1YFu3AF5FqA2E56fTs2dNKTU21dWlpqZWYmGilpaWFcFThy9mzZy0RsbZu3WpZlmVdunTJqlWrlpWenm4fc+TIEUtErB07doRqmI6gDTijKtqAZdEOnBApNhB2y2vFxcWSlZUlAwcOtB+rUaOGDBw4UHbs2BHCkYUv+fn5IiLSuHFjERHJysqSkpISdQ87dOggSUlJEXEPaQPOqWo2IEI7cEqk2EDYTTrnz5+X0tJSiY+PV4/Hx8dLbm5uiEYVvpSVlcnUqVOlT58+dvng3NxciY6OloYNG6pjI+Ue0gacURVtQIR24IRIsoGwyzJNnJGamioHDx6U7du3h3ooJETQBkgk2UDY/dJp2rSp1KxZ02uHRV5eniQkJIRoVOHJ5MmTZc2aNbJ582ZVNCkhIUGKi4vl0qVL6vhIuYe0gZunqtqACO3gZok0Gwi7SSc6Olq6d+8umZmZ9mNlZWWSmZkpKSkpIRxZ+GBZlkyePFkyMjJk06ZN0qZNG9XfvXt3qVWrlrqH2dnZcvLkyYi4h7QB/1R1GxChHfgjYm0gZFsYfLB06VIrJibGWrRokXX48GHrueeesxo2bGjl5uaGemhhwaRJk6y4uDhry5Yt1pkzZ+y/a9eu2cdMnDjRSkpKsjZt2mTt2bPHSklJsVJSUkI4amfQBnxTHWzAsmgHvohUGwjLSceyLOv999+3kpKSrOjoaKtnz57Wzp07Qz2ksEFEyv1buHChfcz169etF154wWrUqJFVt25d6/HHH7fOnDkTukHfArSBiqkuNmBZtIOKiFQbYGkDQgghrhF2Ph1CCCFVF046hBBCXIOTDiGEENfgpEMIIcQ1OOkQQghxDU46hBBCXIOTDiGEENfgpEMIIcQ1OOkQQghxDU46hBBCXIOTDiGEENfgpEMIIcQ1/h8ANXbA5vmQ5gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgtUlEQVR4nO2de3BU5fnHn0CTAOYC4ZIQIeUiCAKKXBJCQKlNoWIdQZyxaqeAIGpDK8XaGf6otk6H9NfpWKctlbEtMB2hWFrwQilagyRgA5QAUu5UkIRLQgJNwiXJ5nJ+fzh7+j7fze5yspuT3eT7mdmZ88179pz3nH2y7573eZ/nibEsyxJCCCHEBbp1dAcIIYR0HTjoEEIIcQ0OOoQQQlyDgw4hhBDX4KBDCCHENTjoEEIIcQ0OOoQQQlyDgw4hhBDX4KBDCCHENTjoEEIIcY12G3RWrVolQ4YMkR49ekhWVpbs27evvU5FIhTaABGhHRBNTHvkXnv77bfl29/+tqxevVqysrLk9ddfl02bNsnJkydlwIABAd/b0tIiFy9elMTERImJiQl310iYsSxLrl27Junp6dKt2/9+w4RiAyK0g2ijPeyANhBd+LOB1nYMO5mZmVZeXp6tm5ubrfT0dCs/Pz/oe8vKyiwR4SvKXmVlZWGzAdpB9L7CaQe0geh8oQ0gX5Iw4/F4pKSkRFasWGH/rVu3bpKbmyvFxcU++zc0NEhDQ4OtLSa9jkoSExPtbac2IOLfDhYvXixxcXEiInL58mX1ns8//1zp5uZme/srX/mKaistLVU6OTk54PVUVFQofeHCBaUTEhLs7fPnz6u2kSNHKl1VVaX0nXfeqXRZWZnSV69eVXrw4MH2dlJSkt9+iIhcunRJ6draWqXHjBmj9Je+pL8C9u7da28PHz5ctZ0+fVrpXr162dtNTU2yd+/ekOzAnw307NnTftIxP2MRcfQEFGxf/O5BHcrTlpvfa8HOFcp14BNMU1OTOm9TU5OygdYI+6BTVVUlzc3Nkpqaqv6empoqJ06c8Nk/Pz9ffvKTn4S7G8RlTEN2agMi/u0gLi5O4uPjRUQkNjZWteEXpon3PV7wvd6BzB+4f/fu3f2eG/8Rg/UTz43teC7zeMGuw+m5A10n7hvoHngJxQ782UBMTIx9XPzCDOeg097vjxRCuY5buf/Bjt/hq9dWrFghNTU19gt/9ZGuAe2A0Aa6BmF/0unXr590797dZ3qioqJC0tLSfPaPj4/3+VVKohunNiDi3w527dpl/8Kur69XbTk5OUqbU2B///vfVduoUaOULiwsVHrYsGFKT5gwQenPPvvM7/Fu3ryp2m7cuBHw2DU1NUrX1dUpnZ6errT5JHXy5Em//RARGThwoNI9evRQes+ePUrj04o5/YbTl5MnT1ba/Czr6+vlk08+Ue3h+i5obm62fz07mfIKdUrLyRNBJE2fOe1LOJ98boWwP+nExcXJxIkTpaCgwP5bS0uLFBQUSHZ2drhPRyIQ2gARoR2Q1gn7k46IyPLly2X+/PkyadIkyczMlNdff11u3LghCxcubI/TkQiENkBEaAfEl3YZdB5//HGprKyUl19+WcrLy2X8+PGyfft2H4ci6bzQBogI7YD40i7BoaFQW1sbdDkriTxqamp8lvOGgtcOHnjgAdvvcPHiRbXPjBkzlDZ9Or1791ZtuJR49OjRSqO/6F//+pfS48ePV/ovf/mLvY1LRLOyspQ+e/as0lOnTlX6wIEDSqMPyPS77Nq1S7UNGTJEaVyejUuq+/btq7S5HFtE+4yuXLmi2nCVnnndTU1NsmvXrrDagdcGevTo4dd3EIqPpz1Xo4W6/BrbnXxNt7S03PK+wfoSMMgTzmVZlng8nqA20OGr1wghhHQdOOgQQghxDQ46hBBCXKNdFhIQEi48Ho89b4zzxBgPY8bSYLqXhx56SOlDhw4p/dFHHyldXV2t9FNPPaW0GVGPfhGcU8flwehvwrgc9Pls3rzZ3sY59uvXrwfsd25urtLoX8I4HtN3gL4pj8ejtHm/I8w1LCLO41nCmeYGj4WfG2qMl8LPxUw3g3FdqNH+MJNEsGwc5rUE8021BT7pEEIIcQ0OOoQQQlyD02sdyI9//OOA7ffff7+9jcuDg4GJE3fu3BlQRyrmtAJOC5SXlys9btw4exuzK+P1fvrpp0rjlBYumd69e7fS5tLj2267TbV9/PHHSs+cOVPpc+fOKY2pbfr166f0XXfdZW+jzbz44otKL1q0SGnMX4ZLqN98802ln332WXv7r3/9q2rD7Nh9+vSxtxsbG8UNnEyZBVt27DR5aKD343QZTmnhZ4oZvDGd0b333qv0iBEj7G2sQ4RL2ysrK5Xev3+/0h988IHSx48fV9r8LNtj2pRPOoQQQlyDgw4hhBDX4KBDCCHENZgGJ4yg3+WVV14J2N6RYGXNUH087ZUGZ9iwYfZ8+fTp09U+uDzY9FcEm5/HdPtmxUoR32WoPXv2VNo8vllBU8TXh4P2jCl3br/9dqVxObeZbgaPHWzpbVFRkdJYefPYsWNKm8vQMT2P6VcQETl48KA67unTp9slDU58fLzfIm6B/Cyhpp5BAn1Vol/vm9/8ptJPPPGE0qY/TMQ3PRGWeDCPj/6iYPcEQwuwCu7vfvc7pd955x2/+wbCsixpaGhgGhxCCCGRAwcdQgghrsFBhxBCiGswTieMuOnDwTgcM6bnVs6NsSTtmeY9FPr162f7KbZu3araMjMzlTbnxTGm5MiRI0qXlpYGbJ82bZrSWFbBnCfHlCUYI5SSkqI0Xge2YxmFjRs32tvog0FfwOXLl5XGEtMYE4Q+ILNUwrVr11QbxpqY6VacptMPF4Hs1qlNB3Nv4/HMezdlyhTVNn/+fKUHDRoU8Fz4OWCsjelzxTLimJ4oNjZWafw/GTlypNILFixQ+syZM/b21atXVRv6PtvyufNJhxBCiGtw0CGEEOIaHHQIIYS4Bn06IYB+k2B+FKf50Mw8W8HytCG4P/qbooUhQ4bYOdcwngVLBJixNzgnjiWlsVw15iRLS0tTGn065hw+zmvj/Pzp06eVxlIIjz76qNJmKQMRHY+E+ebQ74JgvxGM+ykoKLC38R7guc1ceBj/01448buEOwQRY6LM2Bn0y9XU1CiNsVkYO4NxY5j3rqSkxN5GPwv2C/8vnnzySaWXLFmiNMagmT4h7DcSqAyCP/ikQwghxDU46BBCCHENDjqEEEJcgz6dMII+G6d+GCTU9wciWurpVFZW2j4SjBPBmBUzXgbnyFNTU5XGWAfMdYVxFRj3Y8YroD+jqqpK6d/85jdKL126VOnXXntNaSydbfoKMQ4Ha6vgfD/6Zc6fP6/0woULlTbjk9Dv8N///lfpYcOG2duNjY0+dVncIJx+G6dxPaYNYM2a//znP0qjjwdz+2EeQYyHMUEfIvp00Edz9913K4154vD/yCxDjrYdqOw2fTqEEEIiDg46hBBCXIODDiGEENegTycEgsXZuEmwWj4I1tOJVK5du2b7dC5duqTaHnjgAaXfe+89e3vSpEmqDX0bY8eOVRpjULDeiZmPSkTHMmCdGYyxWLx4sdI4h465sgYOHKi0mcsN+33z5k2l0ZeFeeEefPBBpYcPH+63bxi7hOfetWuXvd3U1CRuEEpNnFD9P+hLMf0uWHcGfYZYAwfzpQXrm9mOfhX0dWLet6lTpwY8d3FxsdLnzp2zt53UGKJPhxBCSMTheNApKiqShx9+WNLT0yUmJkZVmRP5YrR7+eWXZeDAgdKzZ0/Jzc31icgmnRvaQOentLRUjh49Kvv27ZPdu3f7rJqjDRB/OB50bty4Iffcc4+sWrWq1faf//zn8qtf/UpWr14te/fuldtuu01mzZoVNJ0C6TzQBjo/jY2NkpCQoJZNm9AGiD9irBAmOmNiYmTLli0yZ84cEfni1016erq8+OKL8oMf/EBEvlifnpqaKuvWrfOpG94a3rroJDDow8H6OAj6m8Lt0/HWRQ+HDYj8zw5ee+01O+4ArwH9FZ988om9PXv2bNVmzlO39l6MSUGNOc7MOAuMe8BYmqFDhyodrCYJ+lnMuAkEfU8YE4Qac9BhfR3Tv4T3APO4jRs3TkREfv/738uMGTNk586dUlNTI4mJiWG1gfj4eNu3EErdJ/yqC2cNKSe+j1tpR5sw7XXChAmq7aWXXlI6OztbafwcN23apDTaSKB8fehPMrEsS+rq6uzvAr/H8NvSBs6ePSvl5eWSm5tr/y05OVmysrJ8nFVeGhoapLa2Vr1I9NIWGxChHXQmaAMkEGEddLwrgDD6OzU11Wd1kJf8/HxJTk62X5iBl0QXbbEBEdpBZ4I2QALR4UumV6xYIcuXL7d1bW0tja0VcPrMaRmF9kypEw782cHu3bvtKZ89e/ao9+DSUHMayky7L+KbwgWnuDB1Tf/+/ZXu1auX0mZJaSx1PW/ePL/9EvH9Mj569KjSOL2Rk5Njb3untLx8+umnSr/11ltK4/JYnGbEqRdzaTm24bSOOYBcv35dQuVWvguclpQO1IY6lCXVTt+L58Yl1VjG4+mnn7a30b4wFdKVK1eUXrdundJr165VGsuABOpnOKYow/qk4zVYjBWoqKjwiZPwEh8fL0lJSepFope22IAI7aAzQRsggQjroDN06FBJS0tThaBqa2tl7969Ps4t0jmhDRDaAAmE4+m169evqwyqZ8+elUOHDklKSopkZGTIsmXL5Kc//amMGDFChg4dKj/60Y8kPT3dXuFGOieHDx+WjIwM2kAXobGxUWVG9mZGKCsrkzFjxtAGiF8cDzr79+9Xy229c7Dz58+XdevWyQ9/+EO5ceOGLFmyRKqrq2XatGmyfft2nyWqxBcnJaYjzWczffr0drGBiRMn2u/DuerCwkKlH3roIXsbfWCYLgaXfmLfsB3T4Jg+DCx7gOc6ePCg0uinwJQ9ffv2Vdr0AaEfC1PsoH8J74N5j1o7txlHgz40855UVlZKUVGRrb3pc1auXCnr16+PyO+BcC6Rdnou9IVgKY2HH35Y6RdeeEFpM9USLqfeu3ev0r/4xS+UNkMJRL74wWCCtu7kPrUlDY7jQWfGjBkBDx4TEyOvvvqqvPrqq04PTaIYc20+baDz079/f1mwYIGtPR6PbNiwQd544w0RoQ0Q/zD3GiGEENfgoEMIIcQ1OjxOpysRrPxAoNgbTFsTLeWmQ2Xbtm12aYMvf/nLAfc1Y1SGDBmi2jAoEUtGb968WWmM85k7d67SZmwElio4ceKE0hjzg6WKR48eHVB/8MEH9vYjjzyi2jAOB+f7Z82aFfDYf/rTn5Q244CmTJmi2nbv3q20mVLfrdIGoRDO0tYi2vcRLAYIy58/9dRTSi9atEjp3r17K22WGV+/fr1qW7NmjdJo69iXQKlskFDiovzBJx1CCCGuwUGHEEKIa3DQIYQQ4hr06bQjoZYfMGNxuooPB7njjjts/wrOi2NMypgxY+xtLDfw2GOPKY2lrzE2BnOtYY4z03eCeccwBuNb3/qW0pjT7NSpU0pjYcSRI0f6fe9Xv/pVpTEmo6amRumtW7cqjTFDpt8GSyykpKQobZZBaM8YmJiYGPv4TksE4HGCncfJsU0bQHvBPHXf+973lMbMDPg5mX48EZGNGzfa2xg/hf40zOPmZnzSrcAnHUIIIa7BQYcQQohrcNAhhBDiGvTphIDTuJtAPpvW2onIhQsX7Dgd9Ffcc889Spup8NFPgnPmw4YNU9p7Di/oO8GcYaaPB302WPHyo48+Uvrq1atK33HHHUpjjjmz9g/O33/44YdKY3wSxhth/AfO/5vvv++++1Tb+++/r7R5z5qbmyXSCNWXESy+xSzT8Pjjj6s2rHmD9XHQL/Pmm28qjfnUzHx+mDsNP0PU6IsKZ7xSW3Kv8UmHEEKIa3DQIYQQ4hocdAghhLgGfToOMevWBKp3I+Lro8H8aSQ4KSkpdjwI1nJPT09XuqyszN7GuJu7775bacxZhjVw0OeDMVZmzZLS0lLVhn4XzHdmVtQU8fU3YYyRGUuDMUF4Tz7//HOlMWYoISFBafTxmIXZsA7Q17/+daWvXbtmb3s8Hvn3v/8t7U2wOjVO/Djo+zDjjkR0HSMRkZycHKWffvppe9uMpRLx9f/gZ75y5UqlzcKYIr5+G/O6gsXhhNNn0x7H5pMOIYQQ1+CgQwghxDU46BBCCHEN+nSAUGreYNyN6f8hbeP48eP2HLZZ60XE1y9j+jewps3kyZOVxpxjn332mdIYOzN27FilT5486fdcL730ktJLlixRGv1LZq0UEZGMjAylN23aZG/jXD/W6kHfVHJystJmbImIvg4RHX8ULD+YmXusPevpOPEjmPuiPyKYDwdt4plnnlF69uzZSg8cONDeRlvEXH3/93//pzT6cPD9gfw26C/CGDOMmQolhspJrjvG6RBCCIk4OOgQQghxjS43vYbTY8Gm0wIRapqNYH0xwX51lZQ6U6dOtZf97tu3T7WdPn1aabO88vjx41UblrrG9DB47xMTE5XGNP8lJSX29p133qnaVq9erTSmpsE0OKixhMPMmTPtbSzJcNdddymNy5zxOtAucNm5ORV44MAB1YZLiN977z17u6PS4ARaMo3/n2aaJBGRadOmKY0lpO+//36lccrr+PHj9vY///lP1YYlJHBpO34uuEwe7bVPnz72Nk6vXbhwQekzZ84ojcvs8bNyUg4C9zX7wuk1QgghEQcHHUIIIa7BQYcQQohrdHqfjtOS0QimrnHiKwn13IHO21VS6hw8eNBeEvq1r31NtZk+HBGdBgdLE+DSYPSz4NJi9J1gqnkzBUx9fb1qGzp0aMBj4fJZnKNfv3690uYy6REjRqg29LtUVVUpbS5rFvnCR2ZiXgeeC8s54NJw0y/WUT6dQH5VXEo8a9YspRcuXKg0LsnHazJ9OCK6tDfeG0w3tHjxYqW/8Y1vKI3+MrOchYhOtXTo0CHV9u677yqN9hSMUFLdtMWvzScdQgghruFo0MnPz5fJkydLYmKiDBgwQObMmePzC7K+vl7y8vKkb9++kpCQIPPmzZOKioqwdppEHriSjHbQuTlx4oQcO3ZMDhw4IIcOHfJZMSVCGyCt42jQKSwslLy8PNmzZ4/84x//kMbGRpk5c6aayvj+978v77//vmzatEkKCwvl4sWL8uijj4a94ySymDt3Lu2gC1FZWSkDBgyQ0aNHy8iRI+0pGdoACUaMFUKuaq/hFRYWyn333Sc1NTXSv39/2bBhgzz22GMi8sUvotGjR0txcbHPHHxr1NbW+syvh0I403y7TahxQG7THnbw7LPP2r4DTNufkpKitPnUjbELf/jDH5T+85//rDSWvsZj9+vXT+m6ujp7+9ixY6oNfQETJkxQGuN4MHVNXl6e0mY8jBmvISJy9uxZpd955x2lMb7L9EOI+MZwmOmCMDUQ+slMX1Z9fb0cPnxYtm3bJg8++GBYbSA+Pv6W/xfM/fAzfOutt5TGPqBvLlhqGvO7BUuUoz8M7Qd9NmgDly9fVtr8XNE3fPToUaXxcwpGoHLWwUpHmNqyLKmrq5OamhqfmCiTkHw63lxM3g+3pKREGhsbJTc3195n1KhRkpGRIcXFxa0eo6GhQWpra9WLRCe0g66Ld6D1Doq0AeKPNg86LS0tsmzZMsnJybGTIZaXl0tcXJxPYajU1FQpLy9v9Tj5+fmSnJxsvzDpHokOpkyZQjvooliWZSct9WZIoA0Qf7R50MnLy5MjR47Ixo0bQ+rAihUrpKamxn6Zy15J9LBmzZqQ3k87iF7OnTunphvbCm2ga9CmOJ2lS5fK1q1bpaioSOWJSktLE4/HI9XV1eoXTkVFhU9KdS/x8fE+JXVDIZLLCQTLjxbN+dJuv/12ezucdnD06FE73gJXyGHqffMXdFZWlmrbtm2b0jg/j7/IcQoI0+CbvhCMhcEcXj/72c+UxhgNLGWM8SBHjhyxt9HvgDnmsNQBxu0MGDBAaYxX8vcUIuJ7zyZPnixFRUVy8+ZNmTt3rrz99tt2W0d9F5ifBR4LywlgSXL0AeH1ojb9NuizQX8Qru7DPILol8G4MNMG0B+Efhf0KQaL2wnk0wnmS2v30gaWZcnSpUtly5YtsmPHDp8guIkTJ0psbKz6Jzp58qSUlpb6fEGQzgvtoPNjWZYUFRXJmTNn5JFHHvFxHNMGiD8cPenk5eXJhg0b5N1335XExET7V1FycrL07NlTkpOTZdGiRbJ8+XJJSUmRpKQk+e53vyvZ2dm3tFqFRC8VFRUSGxtLO+ginDp1SqqqqmT27NkSGxtrr76qq6uTpKQk2gDxi6NB54033hAR3/Qua9eulQULFoiIyC9/+Uvp1q2bzJs3TxoaGmTWrFny29/+NiydJZHLyJEjaQddiIsXL4qI7xLtzZs3y/PPPy8itAHSOiHF6bQHocbp4Br2QDVq2oLpdyksLPTb1pruzARbm+8Urx2MGTPGnktHP011dbVPH7xgSegrV64ojb4Os2aN9/yB9s/MzLS3Me5m0qRJSpt5s0R8a6/07NlTaSyVbfpEsO4KlkXGOkHoB8M6LXPnzlXazCGGsSKY5830TXk8Hlm/fn1Y7aC1OB0nsWvYD6x7lJOTo/T06dOVxu8h9On06tXL3sZMC9u3b1cavytwkQTG6QSKEYqkr2z06TQ0NLRvnA4hhBDiBA46hBBCXIODDiGEENfodPV0gtWZCRbHE8lxPl2RsWPH2n4KzGiOPh1vNLyIrz+iqKhIabQT9LN8+OGHSptxSCK6Rg7WqPnb3/6mtOn/EfH1FWBsDMaxmH4WjNPB65w9e7bS6Gt44oknlN6zZ4/SZrwJ1oTBc5s+Daxd4xaB/BuYV+7gwYNKm7EvIv9bKOUF/UcY72Jec1NTk2oLFkuD+2M7niuS/DgmrKdDCCEkouGgQwghxDU46BBCCHGNTufTCQZ9NtHF5cuX7blzzBOGvpNRo0bZ25WVlaoN34txON4M2V4aGxuVHj58uN8+Yj/Qr4KxNJg+KjU1VenExESlsW6NCfqLvNme/bVv3bpVabwPZn0ezBGHsSNmX7CtvXDi28AcZJgjL1DOsVs5l9mOx0Zfh5O6NKHi1P/j5NzBruNW4JMOIYQQ1+CgQwghxDW63PQaiS6qq6vtFCCnTp1SbQMHDlTanBLD1PHLli1Tev/+/UqXlJQojVNeWLrZXDJtLtUW8V0+jMtjx4wZo7S5JLq195upnHbt2qXaMD0Ppmo5fPiw0lg6G6fFzHNjSiksBWD2BaeXwklMTEybpnGCTZfh9FuwqaNA01bB+ud0Os1JuYFQl1O7vRybTzqEEEJcg4MOIYQQ1+CgQwghxDXo0yERTUJCgu1nuPfeewPua/p4MG0N+jpwWfLgwYMD7o9Lqs1yBehnwbQ2mK4H07OMGDFCaVwWbZavfuGFF1QblsJGf1GwlDtmyWURfR9w2Tn6ucwyCugfaS+c+k5MgvkunB470PFC9ZM48WGF28fjpB9cMk0IISSi4aBDCCHENTjoEEIIcQ36dEhEc/36ddu/gvErWALA9Dn88Y9/VG1YygBTz2MpZiwJgCWozfLX2C/0o2DaGywnMG7cOKWxJLVZYnrlypWq7cknn1Qa0/Wj7wq5evWq0seOHbO30aeDvgLznng8Hp/SE+HCPC+m/EefgulbChY75NQfEc44Hacpd5wcO1TamhbnVq+BTzqEEEJcg4MOIYQQ14i46bVIrZBHAhPuz817PHO6JFCWYxGRuro6exunVvC9mEUaU9XgEuBA78f34rHxvXjsYPub7fhevAd4LMTJdeM9xH3NfnqPG0478B7LyRROW6Z7nPanPY7VGb73Wvu8WiPGirCrPX/+vE/MBIl8ysrKZNCgQWE7Hu0gOgmnHdAGopNgNhBxg05LS4tcvHhRLMuSjIwMKSsrk6SkpI7uVlRQW1srgwcPdvWeWZYl165dk/T0dB8nbyjQDtpOZ7ED2kDbiWQbiLjptW7dusmgQYPs4lJJSUk0NIe4fc9wtVY4oB2ETrTbAW0gdCLRBriQgBBCiGtw0CGEEOIaETvoxMfHyyuvvCLx8fEd3ZWooTPes854Te1NZ7tnne163CCS71nELSQghBDSeYnYJx1CCCGdDw46hBBCXIODDiGEENfgoEMIIcQ1InbQWbVqlQwZMkR69OghWVlZsm/fvo7uUsSQn58vkydPlsTERBkwYIDMmTPHJ618fX295OXlSd++fSUhIUHmzZvnk64/0qEN+Ker2IAI7cAfUWsDVgSyceNGKy4uzlqzZo119OhR65lnnrF69+5tVVRUdHTXIoJZs2ZZa9eutY4cOWIdOnTImj17tpWRkWFdv37d3ue5556zBg8ebBUUFFj79++3pkyZYk2dOrUDe+0M2kBguoINWBbtIBDRagMROehkZmZaeXl5tm5ubrbS09Ot/Pz8DuxV5HL58mVLRKzCwkLLsiyrurraio2NtTZt2mTvc/z4cUtErOLi4o7qpiNoA87ojDZgWbQDJ0SLDUTc9JrH45GSkhLJzc21/9atWzfJzc2V4uLiDuxZ5FJTUyMiIikpKSIiUlJSIo2Njeoejho1SjIyMqLiHtIGnNPZbECEduCUaLGBiBt0qqqqpLm5WZUeFvmiFHF5eXkH9SpyaWlpkWXLlklOTo6MHTtWRETKy8slLi5OevfurfaNlntIG3BGZ7QBEdqBE6LJBiIuyzRxRl5enhw5ckR2797d0V0hHQRtgESTDUTck06/fv2ke/fuPissKioqJC0trYN6FZksXbpUtm7dKh9//LEqmpSWliYej0eqq6vV/tFyD2kDt05ntQER2sGtEm02EHGDTlxcnEycOFEKCgrsv7W0tEhBQYFkZ2d3YM8iB8uyZOnSpbJlyxbZsWOHDB06VLVPnDhRYmNj1T08efKklJaWRsU9pA0Ep7PbgAjtIBhRawMdtoQhABs3brTi4+OtdevWWceOHbOWLFli9e7d2yovL+/orkUEzz//vJWcnGzt3LnTunTpkv26efOmvc9zzz1nZWRkWDt27LD2799vZWdnW9nZ2R3Ya2fQBgLTFWzAsmgHgYhWG4jIQceyLOvXv/61lZGRYcXFxVmZmZnWnj17OrpLEYOItPpau3atvU9dXZ31ne98x+rTp4/Vq1cva+7cudalS5c6rtNtgDbgn65iA5ZFO/BHtNoASxsQQghxjYjz6RBCCOm8cNAhhBDiGhx0CCGEuAYHHUIIIa7BQYcQQohrcNAhhBDiGhx0CCGEuAYHHUIIIa7BQYcQQohrcNAhhBDiGhx0CCGEuAYHHUIIIa7x/zh4PWZInXJ0AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgpklEQVR4nO2de3RU1fXHd4AkvELCMzGF8GhBUZRHIBDeaBRBBCy0altR6xLUpKtIXba0Fimrbfr4o1QXldpVsFYRCwIKClrCqyiPJoIQkSjIOyQElCS8kpDc3x9dc39nf4fMcDMzd2aS72etWet8c+7cOXNnZ87cs8/eO8ayLEsIIYQQF2gW7gEQQghpOnDSIYQQ4hqcdAghhLgGJx1CCCGuwUmHEEKIa3DSIYQQ4hqcdAghhLgGJx1CCCGuwUmHEEKIa3DSIYQQ4hohm3QWLVokPXr0kJYtW8rQoUNl9+7doXopEqHQBogI7YBoYkKRe+3NN9+UGTNmyOLFi2Xo0KGycOFCWbFihRQVFUmXLl18Preurk6Ki4slISFBYmJigj00EmQsy5LKykpJTU2VZs3+/zdMIDYgQjuINkJhB7SB6KI+G7jWgUEnIyPDys7OtnVtba2Vmppq5ebm+n3uiRMnLBHhI8oeJ06cCJoN0A6i9xFMO6ANROcDbQBpIUGmurpaCgoKZO7cufbfmjVrJllZWbJjxw6v46uqqqSqqsrWFpNeRyUJCQl226kNiNRvBw888IDExcWJiEhxcbF6TmJiotJff/213c7IyFB9hYWFSvfp00fpq1evKn3x4kWle/bsqXReXp7drqysVH0dO3ZUumvXrkqfPXtW6a+++krpsrIypUeNGmW3hw8frvpOnTql9LFjx5TGu4mKigql8ZqmpaXV29e6dWulb7zxRrt95coVmT9/fkB2UJ8NxMbG2nc64fx+wNcO5t2Xv3ObGvvq6up8asTfuH31Y19tba3dtixL6urqlA1ci6BPOmfPnpXa2lpJTk5Wf09OTpaDBw96HZ+bmyu/+tWvgj0M4jKmMTq1AZH67SAuLs6edFq00OYaGxurtNnfsmVLn8fGx8cr3bx5c6VramqUxvOZr+VvXJ7xX8+4rzUW8/n4xY/jwtfCfvNL/VpjMa8LnsvfuUUCs4P6bCAmJiYil9dCOSYnk44/7e/cTvqv57X8nT/su9fmzp0r5eXl9uPEiRPhHhIJA7QDQhtoGgT9TqdTp07SvHlzKS0tVX8vLS2VlJQUr+Pj4+O9fnWS6MapDYhcnx2kp6crXVJSorS5NPSf//xH9d1www1K4/IO/mofOHCg0vn5+UpPnjzZbn/55Zeqb8+ePUrjWAYNGqR0q1atlE5KSlK6c+fOdnvdunWqb9q0aUrj0tz777+vNL6vm2++Wel9+/bZbVyK6969u9InT56023gHJRK874K6urp6fz37+lUd6qU4X+cP9C7I13IbOunxThmXilH7uy5mv9+7FmMslmWp5bZ6n+P3CIfExcVJenq6WvOuq6uTvLw8yczMDPbLkQiENkBEaAfk2gT9TkdEZM6cOfLwww/L4MGDJSMjQxYuXCgXL16URx99NBQvRyIQ2gARoR0Qb0Iy6dx///1SVlYm8+bNk5KSEhkwYIBs2LDBy6FIGi+0ASJCOyDehCQ4NBAqKiq8tsKSyKe8vFzatWsXtPN57GDSpEn2Div0A2Bke1ZWlt3evHmz6sMt0t26dVO6R48eSqMPx9yOLSKydu1au42+jmHDhimN25bPnTun9NKlS5UeMGBAvWO7fPmy6hs5cqTShw8fVhr9Xug/Gjx4sNKmnwY/z0uXLiltbs2trq6Wv/3tb0G1A48NmFumEV++j2B/tYVyt5q/sZq+E/R7oQ8QPyfUuDMzEN+U+VyPT8efDYR99xohhJCmAycdQgghrsFJhxBCiGuEZCMBCT649j5lyhSlzVQpIiITJ05UGtd1o4XJkyfbfojTp0+rPozc37hxo93GeJS9e/cqjalr0FeC696ov/vd79rtfv36qb4tW7Yo/eGHHyqNqWyGDh2qtJleRkTkG9/4ht3u1KmT6sM193Hjxim9YcMGpTElD/p8zJiPoqIi1Ye+BHPb85UrV8QNnMSYBEo4syDga5s+nTvvvFP1TZ06VWm0t7feektpjL/yFVvj73o25BrxTocQQohrcNIhhBDiGlxeixKWLVum9Le+9S2fx2Nal2hdXnvjjTfsJR/cmoy39mZmadymfPz4caXNlDki3kt37du3V/r8+fNKm6lpcPkClzZxq7e5XCYi0qZNG6UxS/Cnn35qt+fMmaP6Fi9erDRmw0ZWr16tNC7XmemC8Prisp+5/FZdXe3zdaMRf5mfnaSL8XduBJe8zESvmPoIt83jUvGaNWuUDnfyVN7pEEIIcQ1OOoQQQlyDkw4hhBDXoE+HRDRJSUl2GpydO3eqPvSdmNugCwoKVB/6UTDdO/orcGvxoUOHlDZ9RJhCZ/369UpjWpwjR44onZqa6nNsZkoRXK9H3xXmNPvss8+Uxi3V6Ktq27btNdsiIu+9957SvXv3ttu4pdwtnGyRDrbfxdexvvw/DXkt83PF0hiYcgY/Nzw3+gydjjVQeKdDCCHENTjpEEIIcQ1OOoQQQlyDPp0IZuzYsXYb1+6RixcvKo3rttHKoUOH7HQ3HTt2VH0YS/Pf//7XbqMf5V//+pfSGOeEpQtee+01pXv16qW0WUJgwYIFqg/LV2NaEn8lA959912lzZINuN6O6ZF8+YNEvEsbYLlqs7w1loPA9CsHDhyw26H06TQ09T4+L1BfhRPfh1MfDqZ0wtcy0y7h/wGWrz569KjS6Ad0ktrGyfu43uvLOx1CCCGuwUmHEEKIa3DSIYQQ4hr06UQQuP9+1apVdttfCeAXXnhBaYy/iFYmT55s55Fbvny56issLFTazJ8WFxen+mbPnq20mcJfxHud/OOPP1Y6ISFBaTNGpbi4WPX9/e9/V/rBBx/0eW5PHJIHzAs3ffp0u33hwgXVh3E4+Ll/9dVXSqPvBUsdm/FMmL8Pr6mZ562qqkoiAdMfEWiOsWCm9fcXx4O+uCFDhij9yCOP2G20l1OnTin9ySefKI153Jz4pvwdy9IGhBBCIhpOOoQQQlyDkw4hhBDXoE8njGCOpGeffVZpXG83wZKzCxcuDNawIor8/Hx7Dfupp55SfaWlpUofO3bMbqPPBmNnsMQ01pm54447lN6xY4fSZgwVxlhMmDBBacwZh7ExuJ7/+OOPK23GI23fvl31jR49WmkslT1jxgylzTgcEd91hLDEN+av27p1q90OZVxYTExMvb4DJ7Ey/vwTgeZPCwSzjpGIyE9/+lOlO3ToUO840LbRx4P1mrBUO/p8GhoXdb3wTocQQohrcNIhhBDiGpx0CCGEuAZ9OmHkz3/+s9JmfiV/LFq0SOmysrKgjCnSuOWWWyQ+Pl5ERE6ePKn6sI7NzJkz7fbLL7+s+gYOHKj0Bx98oDTGt2A9ne7duyuNsRAm6Dfp27ev0vn5+UpjjXszhxw+//bbb1d9OG7M0Yc1cG699ValMWbIjA8pKipSfbjWP2bMGLtdXV3tlfMrHJhjRD8T5ihDAvFX+PP3+Hvtxx57TOnMzEylzfeCsVfvvPOO0vv371e6urra0VidwDgdQgghEY3jSWfbtm1y7733SmpqqsTExMiaNWtUv2VZMm/ePLnhhhukVatWkpWVJV988UWwxkuiANpA46ekpEQ2btwoy5cvl6VLl8qJEydUP22A1IfjSefixYvSv39/r+UdD3/4wx/khRdekMWLF8uuXbukTZs2Mn78eLly5UrAgyXRAW2g8XP16lVp37691zKQB9oAqQ/HPp0JEyZ4xSF4sCxLFi5cKM8995xMmTJFREReffVVSU5OljVr1sgDDzwQ2GijnLvvvlvpqVOnXvdzMe/Yb37zm2AMKegE2wY+//xzO07nzJkzqg/z0Zl1aDCXGn7ZmTE9IiITJ05UesOGDUqPGzdOaTOGpX///qoPa9ZgPNbBgweVxv8n9KWsXLnSbmOOMzNWRkRk6NChSuN1QF/U2bNnlS4pKbHbmKcN4408+cA2bdqk4kxC+T3gxB+B8VOhjLNB3wbGiWHeOqz39L3vfc/n882YNMyziDFmaOtuvu/rIag+nSNHjkhJSYkqOpWYmChDhw71Cq7zUFVVJRUVFepBopeG2IAI7aAxQRsgvgjqpOP5lZScnKz+npycrH5BmeTm5kpiYqL96NatWzCHRFymITYgQjtoTNAGiC/CvmV67ty5MmfOHFtXVFQ0GmPDVCuvv/660lhuGTl37pzdxrQYWOI42qnPDsaNG2cvV2FJbtw6atoNpuXHbaO4tInbfXFZCr8szaVSXIpLTU1VGrdAY3kCXMbC7drmEhpeA7QDLMO9ceNGpTG1Em6vNbf24jhw6/e6devs9p49eyRQ6rMBX2lwnGyLdroU5GRZCs+NGrfs5+TkKI3febgVfsmSJXYby5ljqXV/6XyCmd4n7OWqU1JSRMQ7J1Zpaandh8THx0u7du3Ug0QvDbEBEdpBY4I2QHwR1EmnZ8+ekpKSInl5efbfKioqZNeuXfXuciGNC9oAoQ0QXzheXrtw4YIcOnTI1keOHJG9e/dKhw4dJC0tTWbPni2//vWvpXfv3tKzZ0/55S9/KampqY52apHoY9++fZKWlkYbaCJUV1erZULPrroTJ07ILbfcQhsg9eJ40snPz1fbRz1rsA8//LC88sor8uyzz8rFixdl5syZcv78eRk5cqRs2LDBa429MYLLAfPmzVPaiQ9HRKfFweC7SGPUqFEhsYE1a9bY20eHDx+u+jp16lTv83DnE5YEwEBFTC2Pv8j37duntJnKBktGY6oaLD380UcfKe1J8+PhpZdeUtrcKn7XXXepPvRVYels7MeS6ImJiUofPnzYbu/evVv13XbbbXa7pKREbRv3bEH/7W9/K6+//npQbcCX38CXfyLYPhwnZRRw63pubq7PfvTzrV+/Xul//OMf9R6L+Eu5E8wt1A3x6TiedMaOHeu33sKCBQtkwYIFTk9Nopjy8nJ70qUNNH5SUlJUfFFNTY1s3LjRnjBpA6Q+mHuNEEKIa3DSIYQQ4hphj9NpTPz+979Xevr06Y6eb67biohs3rw54DFFOy1atLB9OpiGBVOJmH4vDEzEYwsKCpTGsgm9evVSGv1xZozQ/fffr/rS0tKUxih8LMmAKXZefPFFpc0YDkxjj6WI0fdkljkWEfnwww+Vxvc1YMAAu/3Xv/5V9aEfwixfjb6jcOHLj+PUl+HEf9SnTx/V98c//lFp0x8m4h2bdfz4caXnz5+vtOnvRZ+NPx9OMPF3Ta4H3ukQQghxDU46hBBCXIOTDiGEENegTycAJk2apLTTlO3ow3n++ecDHlNj47bbbrPjWGpra1Uf5t0y067gmjmue6N/AnOrXb582ac2fRiY/wz9Senp6Upj/rRRo0YpjXm4zJgiLI+BcTb4PrAcBKahwX7Tt3XHHXeoPkzPb76Pq1evihsEM2+Y09dCbfrDnnnmGdWHeerw+hQWFir99NNPK41xeWaZBjd9OIi/a3I98E6HEEKIa3DSIYQQ4hqcdAghhLgGfToOMf04//znP1Ufrq8jZWVlSmM+JlzrJ//zpXh8ORgLgbE1Zv40zBv2wx/+UGmMi8B6OlguGNfRzbo13bt3V31vvfWW0l9++aX4YsyYMUpj/Z3OnTvb7S1btqg+LHWNfi/MxYZ1WqZNm6a0GSOEfjH0B5mls/HYYBJKv42v18Fy16gfeughu33PPfeoPvQ3Yt2i3/3ud0p//PHHSqP/zMSpXyuU1y/s9XQIIYQQX3DSIYQQ4hqcdAghhLgGfTp+wLXa1157zW77K6eLPpzvfOc7Sn/++ecBjq7xU1ZWJrGxsSIicvr0adWH6+atW7e224MHD1Z9b7/9ts/X6devn9K4bm7mJBMR+eY3v2m3T506pfr69++vNNY/adu2rdJmHjcRkY4dOypt+gonTpyo+tAXZda4EfGOFzly5IjSK1euVNo8P8YbXblyRWkzxieUPp2YmBj78wjEP+HPF4L96McbOXKk0rNmzar3WIyzWbt2rdJmPaZrgedriO/Eg1MfUDDz110L3ukQQghxDU46hBBCXIOTDiGEENegTwfA9faf/exnSvvz45i8+eabSm/btq3hA2uiHD161I6PmDJliupDX8qgQYPsNsa6oC/DPFZEJCEhQWnMtbZhwwalzXopS5YsUX2ZmZk+x2nG+Ih417jBXGx79uyx219//bXPcQ8ZMkRpjMvBmKJPPvlEabNez+TJk1Uf1jMy43YakoOrIfjzT5jaqS8D43BMv52IyKOPPqq0WasIc9hhLaytW7cqjX4+xNfY/V1rX9fkenByPHOvEUIIiWg46RBCCHGNJr+8httCcSujWZLXKbiUQZyTkpJib5nGbc/33nuv0uaWXkxz8/3vf1/ps2fPKm2mdBHx/tyTkpKU3rVrl93u0qWL6sO0NxkZGUpjmnss9YxLYuZWcEyVhOWmcRnx0KFDSj/44IM++3v37m238/LyVB+mBjJLKIeytEFDt+k6fR6msfrBD36gdFZWltLmsqm5BCrinfYGl+1RV1ZWKo3X01zGwlABf4SyHATT4BBCCIloOOkQQghxDU46hBBCXKPJ+3R+8pOfKB2IDwfxV+qA+GfEiBHSsmVLEfEuZYBbkc0tveirwy2tRUVFSntKYnvA7cJYxsJMRY8pd3AbM/pCduzYoXTPnj2VxhIOZj+mAiovL1cat/SPHz9e6fXr1ys9YsQIpc2t4mi/6GsKR2mDYG7Nxi3SN998s9LTp09XGrerm/4z3GKP1w79duizCWSbcqBpcZBQl5LgnQ4hhBDXcDTp5ObmypAhQyQhIUG6dOkiU6dO9frFeOXKFcnOzpaOHTtK27ZtZdq0aVJaWhrUQZPI44svvlCadtC4OXDggGzevFnWrl0r7777rlcwrghtgFwbR5PO1q1bJTs7W3bu3Cn//ve/paamRu666y61jfPpp5+WtWvXyooVK2Tr1q1SXFws3/72t4M+cBJZ3HfffbSDJsSZM2ekV69eMmbMGBk5cqS9JEMbIP6IsQJYwCsrK5MuXbrI1q1bZfTo0VJeXi6dO3eWZcuW2euhBw8elL59+8qOHTtk2LBhfs9ZUVERUl+ImbpCxNsvgGv7TsA4kvnz5yuNKUcaG6Gwg0mTJtlxOlguGWNSzHLVGFeD/iB/ZZsPHDigNPpdzPgWjN/AlCclJSVKo7/p0qVLSmMMx6ZNm+w2+ntuvPFGpTHeA8sRpKWlKX3s2DGlzRiQNm3a+DyXmX6/vLxcli1bJu+9955MmDAhqDbQokWLev0QTr6+sFwAvr+FCxcqjZ8rXlvThrA8xauvvqo0psXBNDhYZhzHan4u/tLc+CvZ4AQn19eyLLl69aqUl5f7TBcWkE/H48T0fJEXFBRITU2N+rBuuukmSUtL83KeeqiqqpKKigr1INEJ7aDp4tlI4AlWpQ2Q+mjwpFNXVyezZ8+WESNG2AWwSkpKJC4uzutXZnJystevPQ+5ubmSmJhoP7p169bQIZEwMmzYMNpBE8WyLHvnoGcHGG2A1EeDJ53s7GwpLCyU5cuXBzSAuXPnSnl5uf3AinskOsBMy06hHUQv27Zt89pO3BBoA02DBsXp5OTkyLp162Tbtm3StWtX++8pKSlSXV0t58+fV79wSktLvdbjPcTHxwfkR3EKrm8G8tqrV69W+he/+IXSBw8ebPC5ow0zvimYdmDGf+AvZPSFmP4K9F1gWQkzx5iId6wN+mWwVLEZ34LHYuwMvi9/y0ZoN2Yp7dTUVNWHudNQx8XFKY3xSpi+3/z/QL8X5vy6dOmS5Ofny6lTp2TMmDEqBihc3wXm+H35RUS8fWtYkhzjeDzxYh5Mfwf++EabQH8Q+nCCmR8tlLnWgoGjOx3LsiQnJ0dWr14tmzZt8nKupqenS2xsrEoUWFRUJMePH/eqMUIaL7SDxo9lWZKfny8nT56U22+/3cspTxsg9eHoTic7O1uWLVsmb7/9tiQkJNi/PBMTE6VVq1aSmJgojz32mMyZM0c6dOgg7dq1kx/96EeSmZl5XbtVSPRSWloqsbGxtIMmwkcffSRHjx6V0aNHS4sWLeydbZcvX5Z27drRBki9OJp0XnrpJRERGTt2rPr70qVL5ZFHHhERkT/96U/SrFkzmTZtmlRVVcn48ePlL3/5S1AGSyKXPn360A6aEJ4lQCx/sGrVKnnyySdFhDZArk1AcTqhINRxOrje6ZlIPcyaNcvn883jc3JyVJ/TOheNCX97853isYPx48fbcTpYpwaXd00/Tt++fVUfrrGjX2HcuHFKY6nxe+65R+nt27fb7X379qk+9JPceuutSpeVlSmN5aoxvsv0F+D7wjouHTt2VBonhfT0dKVxA8DAgQOlPrBctVlHqKamRlatWhVUO/DYQPPmze3/WycxJ+jTwRx46Mf7+c9/rrTprxbxrtH08ssv222Mw0F/oz/wfeHYTfB7xt9XuL+4nWD5jyzLkpqamtDG6RBCCCFO4KRDCCHENTjpEEIIcY0m59MhoSFUPp1Zs2bZsRvoC8EaJWY8C+ZlQ1/I+++/rzT6NnDdOyMjQ2kz/qV79+4+x2XmThP5/1QxHszaPCLefhfTt2Am1BQRadWqldJYp6WwsFBp/IwwLsZ87fz8fNWHeQofeughu3358mV55plnXPfp+Pr6Qr8Ixiyh/wszIOD3EL5/X/V00O+C4/b3Pnz5dBB/uddCCX06hBBCIhpOOoQQQlyDkw4hhBDXoE+HBIVQ+XRGjRplx1f0799fHeOJ3/FgVqWsqqpSfbhG7smG7AH9KhgThK9tJqPcvXu36nvuueeUxpiNDz74QOlRo0YpjfEhhw8fttvow8H/FcwPhj4gLCtg+sFERE6fPl3vc1Gbedxqa2tl//79IffpIL5iUPzFvqCPB/0weDzalPna/mJhAo2NMY93em63crG5Uk+HEEIIcQInHUIIIa7RoNIGhLjF3XffbS8ZYcnp4uJipc2tyFgGAcs6FxQUKI1LK5gmB5fbzLT4kydPVn1YbhrHPWbMGJ/nxuPNFPtYFnn48OFKm0uMIt6pa/CaDRkyRGlzeQ1zLJrLfCKiskVXVVXJ/v37JRTExMTYS0ROSjHjsfgZ43KZ02Uop6Wcg3UuN88diqU53ukQQghxDU46hBBCXIOTDiGEENegT4dENHv27LG3Rvvb8uopJCYiXoXCEhISlMY0OZ06dVL6zjvvVPqNN95Q2ty6jGWNV65cqTT6On784x/7HBtiblXGEstYUhr9FDNmzFD6nXfeURq3UJvXFP0/uJXbfC183VDhZHuwv63FTl8LMe0x0PIC/l7biS8lUD+Mr7E5vYbXgnc6hBBCXIOTDiGEENfgpEMIIcQ16NMhEc3hw4dtnwmmi8GUL507d7bbtbW1qg9LSqN/AtPJYFp/jPsxU9lj+QAzfkVEJCsrS+m9e/cqjT4dLLNgxvFgGpxBgwYp3aNHD6XPnTundO/evZXGUgjm+dAXhT40s4x2KEu119XV1VvawJdGXwbaBPoIUePxTvwygabB8dUfaMod/KzQJ+nrGjr1TV0L3ukQQghxDU46hBBCXCPiltciLOk1uU6C/bl5zmcucfhLW2JumcalEazmiecyn3ut43EZytT43mtqahxpfC3sN9+Lv/eF7wOXTvB94/sylw39XSNzmcbTDqYdeM7V0HP6WxoKVAdCKL/ngvm+GnKsv/cWcZNOZWVluIdAGkBlZWVQS1J47MD0xezZsydo5w8lGzdudO21Iu2aBNMOPDZgWVZIvqRD6YeKJoJ9HfzZQMTV06mrq5Pi4mKxLEvS0tLkxIkTQa3T0pipqKiQbt26uXrNLMuSyspKSU1NdVTX3R+0g4bTWOyANtBwItkGIu5Op1mzZtK1a1epqKgQEZF27drR0Bzi9jULRdE92kHgRLsd0AYCJxJtgBsJCCGEuAYnHUIIIa4RsZNOfHy8PP/88xIfHx/uoUQNjfGaNcb3FGoa2zVrbO/HDSL5mkXcRgJCCCGNl4i90yGEENL44KRDCCHENTjpEEIIcQ1OOoQQQlwjYiedRYsWSY8ePaRly5YydOhQ2b17d7iHFDHk5ubKkCFDJCEhQbp06SJTp06VoqIidcyVK1ckOztbOnbsKG3btpVp06ZJaWlpmEbcMGgD9dNUbECEdlAfUWsDVgSyfPlyKy4uzlqyZIn16aefWo8//riVlJRklZaWhntoEcH48eOtpUuXWoWFhdbevXutiRMnWmlpadaFCxfsY5544gmrW7duVl5enpWfn28NGzbMGj58eBhH7QzagG+agg1YFu3AF9FqAxE56WRkZFjZ2dm2rq2ttVJTU63c3NwwjipyOXPmjCUi1tatWy3Lsqzz589bsbGx1ooVK+xjPvvsM0tErB07doRrmI6gDTijMdqAZdEOnBAtNhBxy2vV1dVSUFCgqi02a9ZMsrKyZMeOHWEcWeRSXl4uIiIdOnQQEZGCggKpqalR1/Cmm26StLS0qLiGtAHnNDYbEKEdOCVabCDiJp2zZ89KbW2tJCcnq78nJyd7lQwm/8vEO3v2bBkxYoT069dPRP5XWjkuLk6SkpLUsdFyDWkDzmiMNiBCO3BCNNlAxGWZJs7Izs6WwsJC2b59e7iHQsIEbYBEkw1E3J1Op06dpHnz5l47LEpLSyUlJSVMo4pMcnJyZN26dbJ582bp2rWr/feUlBSprq6W8+fPq+Oj5RrSBq6fxmoDIrSD6yXabCDiJp24uDhJT0+XvLw8+291dXWSl5cnmZmZYRxZ5GBZluTk5Mjq1atl06ZN0rNnT9Wfnp4usbGx6hoWFRXJ8ePHo+Ia0gb809htQIR24I+otYGwbWHwwfLly634+HjrlVdesQ4cOGDNnDnTSkpKskpKSsI9tIjgySeftBITE60tW7ZYp0+fth+XLl2yj3niiSestLQ0a9OmTVZ+fr6VmZlpZWZmhnHUzqAN+KYp2IBl0Q58Ea02EJGTjmVZ1osvvmilpaVZcXFxVkZGhrVz585wDyliEJFrPpYuXWofc/nyZeupp56y2rdvb7Vu3dq67777rNOnT4dv0A2ANlA/TcUGLIt2UB/RagMsbUAIIcQ1Is6nQwghpPHCSYcQQohrcNIhhBDiGpx0CCGEuAYnHUIIIa7BSYcQQohrcNIhhBDiGpx0CCGEuAYnHUIIIa7BSYcQQohrcNIhhBDiGpx0CCGEuMb/ARboIOwg/tvoAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjMElEQVR4nO2deXSU5fXHL0sSloSwByLEAIJsApY1LIKKrMWCSFsrSKlHWRJl0dKDPxRFS07tqVDaqK0WLFQEsSyHRSibYSk7RWSHCiUICVAg7ElI3t8fnnn73O9kZvKSyZtJ8v2cM+c83zwz77zzzp15Mvc+995ylmVZQgghhLhA+eI+AUIIIWUHLjqEEEJcg4sOIYQQ1+CiQwghxDW46BBCCHENLjqEEEJcg4sOIYQQ1+CiQwghxDW46BBCCHENLjqEEEJco8gWnZSUFImPj5dKlSpJ586dZdeuXUX1VCREoQ0QEdoB0ZQritprixYtkueee04+/PBD6dy5s8yaNUsWL14sx44dk7p16/p9bF5enpw7d06ioqKkXLlywT41EmQsy5Lr169LbGyslC//v/9hCmMDIrSDkkZR2AFtoGThywbyu2PQ6dSpk5WYmGjr3NxcKzY21kpOTg742LS0NEtEeCtht7S0tKDZAO2g5N6CaQe0gZJ5QxtAKkqQyc7Olr1798qUKVPsv5UvX1569+4t27dv97p/VlaWZGVl2dpi0esSSVRUlD12agMivu1g3LhxEhERISIi0dHR6jEnTpxQ+uzZs/Z4+PDham7u3LlKP/DAA0rfunVL6Zo1ayr973//2+t8PXTq1EnNLVu2TOn77rtP6W7duildu3ZtpdPS0pTet2+fPW7ZsqWau379utKRkZFKt2vXTumTJ08qvXPnTqVv3rxpjwcNGqTm9u7d6/O8s7OzZeHChYWyA182EBYWZv/Swe8H/AXk7/vD6XcLHtvfr63Cfm85eXxhf/UFei5/x8dfMHfv3lXHzcvLUzaQH0FfdC5duiS5ubkSExOj/h4TEyNHjx71un9ycrK89dZbwT4N4jKmoTq1ARHfdhAREWEvOpUqVVJz4eHhSles+D9zrlKlis+5/B6bk5NT4GOLiOTm5qpzNMEPJj4WX0flypWVxuOZj8c580s6v/N2cmwRkQoVKvg8z7CwML/PJVI4O/BlA+XKlfP5RViUbjcni46bFPV5+Dt+Qa5JoPMr9t1rU6ZMkczMTPuG/+WRsgHtgNAGygZB/6VTu3ZtqVChgmRkZKi/Z2RkSL169bzub/4nS0oHTm1AxLcdnD592v4PG11g8fHxSnfp0sUev/3222pu7NixSq9atUppdHndvn1b6fvvv1/pqlWr2uNTp06pufPnzyv92GOPKY3/zY8cOVLpgwcPKj1s2DB7PG/ePDX3xBNPKB0bG6v01q1blT59+rTS+IuwZ8+e9vj48eNq7s6dOz4fa/5C8hCs7wLTHVQYN5YTV5zT53IzLBDIxRjo/k6Pb5KXl6e0+avesizlAfBF0H/phIeHS/v27WXDhg323/Ly8mTDhg2SkJAQ7KcjIQhtgIjQDkj+BP2XjojIpEmTZOTIkdKhQwfp1KmTzJo1S27evCmjRo0qiqcjIQhtgIjQDog3RbLo/OQnP5GLFy/KG2+8Ienp6dKuXTtZs2aNV0CRlF5oA0SEdkC8KZLk0MJw7do1r62xJPTJzMyUatWqBe14Hjto2rSpHS9o27atug/GUlq0aGGP69evr+YwVoDxCtzWjNuD69Spo7QZO8Htv7gFGq/LpUuXlMb4xubNm5Xu06ePPV6yZImaw9jVd999pzRuK69Vq5bScXFxSh87dswe7969W81h/Mi8b05Ojqxfvz6oduCxAXPLdGEozHbrQPPBjqv42yXmNKYTiGBt17YsS3JycgLaQLHvXiOEEFJ24KJDCCHENbjoEEIIcY0i2UhASFFglmgR8c6tMbPcsRTH4cOHlf7Xv/6ldPPmzZXGHCAzXiSiS9WYZV5ERL744gulr169qjRuF8ZSNliix4wBYVwF82ywrE3Tpk39Ptdf/vIXpfv27WuP8Zo0bNhQafOaYv5GKFLY2AfmIvmLs6AuSP6KCVa18FdAszBlbfKbd1JK6F6uKX/pEEIIcQ0uOoQQQlyD7jUS0jRr1swug4PuHdyq3KRJE3uMbgDc8oxbpNFNhVs+MzMzlTZL7qSkpPg9FpaPMbcai3hXtH7kkUeU3rFjh/hi9OjRSj/zzDNKo0sI3YStWrVS2tyGjue5evVqpcePH2+Ps7KyZOPGjT7PszCY72VRFrsM5NLCa2nOm2WR8ruvP9eciLd7ErVZlgltEY+Fz4XHCmZ5H7rXCCGEhDRcdAghhLgGFx1CCCGuwZiOQ8wSJy+//LKaGzJkiNKtW7dW2mkpDLPbJfrLP//8c6WxCVlpYf/+/bbvHEu4YLmZQ4cO2ePs7Gw1V716daUfffRRpbdt26b0gAEDlP7oo4+UXr58uT1+4YUX1By2UUD97LPP+n1u3NZsbl3G1gXYWA197Oj/37Nnj9J4HcwOqdjeAbdrm9cU41bBxF8TN39beJ3GIzCGg11YMS744IMP2uOf/vSnaq5Xr15K45ZpbL6H1w+12R4Ct/vjdwPOoz0Fs0vpvbSd4C8dQgghrsFFhxBCiGtw0SGEEOIabG0AVKpUSeknn3xS6ddee80eP/TQQ36Phfvjsd0ygj5lzPcwMUu+iHjHILC/fFGXKSmq1gajRo2S8PBwERFZsWKFus+rr77qdQ4eLl++rOZu3Lih9N///nelzfIv+d3/Bz/4gdJbtmyxx71791Zzbdq0URpbRGO+EWo897p169rjpUuXqjnM6cGWDPjxxrjYm2++qbRZNgd73mA7iO7du9vj7Oxs+fOf/+x6a4PCfH1hPAzzpbBcUdeuXX3qBg0aqDn8vN29e1fpihV1OB1za/Czb7bmQNvEVhnTp09Xeu3atUrj95C/Ej2BSuRgTCc3N5etDQghhIQOXHQIIYS4BhcdQgghrlHmYzo1atRQev369Uq3a9dOadNXa+Y0iIh88MEHSl+4cEHpzz77zO+5YOtgM+9n3Lhxag7L3yONGjVS+syZM37vX1iKKqbToEEDO9aFdcOOHDmi9Llz5+wxxiMwxwRL/l+8eFFprKWFrRKuXLlijzEnCNsFvPLKK0pj3kR6errSixcvVtqMZeFjMUaDeTjLli1TGl8Hxv46dOhgj83XKOId9/rvf/9rj+/cuSO//vWvQyqmg4/xxAY9YJ4X1q3DeC7GWcw6datWrVJz33zzjdIYh8EYD9obtjA384AwB6hy5cpK43dYUlKS0thqA2PJTlo2MKZDCCEkpOGiQwghxDW46BBCCHGNMld7Df28uKcdYzjfffed0maezt/+9regnhvGXX7/+9/7nMOWyKWVli1b2vkUAwcOVHNt27ZV+ttvv7XH6OfGWAj6sc1cGBFvH/tf//pXpc26W/v27VNzQ4cOVXrTpk1KN2vWzOexRLzjd2YuTWJioprDOlt4rJMnT/o8loh3fTUzz2fQoEFqDnOEzLgi1hIrKgpTNwxz8LDd+dNPP600xnsxJmvqEydOqDl/cZKCnCv2MjLf5/fff1/Nmb2dRETq16+vNOblOMm9CYT5Oj0xnYCPKfDRCSGEkELCRYcQQohrcNEhhBDiGmUupoM9MdB/jjWTzBiOSPDjOAXlhz/8YbE8b3Fz4cIFuy4V1jDDOJeZe7Nu3To1N23aNKXRLz579mylMdaBsROzzlvPnj3V3P79+5XG3BiM6SxZskRpzHEw80nw2P369VP68OHDSnfs2FFpjPEsWrRIaTPO8cc//lHNYbzTjDtg3klRESgeYcYY8LOM1zU+Pl5pjOuhvc2fP19p0/4C1VoL1LsnEGa/LMxjxPwj7KGE8Umc90dRpHHylw4hhBDXcLzobN68WQYNGiSxsbFSrlw5r4xny7LkjTfekPr160vlypWld+/eXjs7SOmGNlD6SU9Pl71798qmTZtkzZo1XtU3aAPEF44XnZs3b0rbtm0lJSUl3/l3331XZs+eLR9++KHs3LlTqlatKn379i3SdrYktKANlH7u3r0rUVFR0rJly3znaQPEF45jOv3795f+/fvnO2dZlsyaNUumTp0qP/rRj0REZN68eRITEyPLli3z6iNeHGAdIvwQjBo1SunPP/+8yM/JA/pezV4pnuvpAfNO/vGPfyht1sVyk2DbQIMGDew8HawzhnkUZi282NhYNbdy5UqlMbdh1qxZSuN7gXXezF4sZn6QiHefn6lTpyqNORjDhg1TevPmzUqbMaDhw4erOfQ0YM0us+eNiMiMGTOUnjhxotJmXlpkZKTPY9erV08mTZokIt/3curXr58cOHBARNz9HgiU/2KC9c8w/oU2sHv3bqUxxmPGbZzGbDBWgnEZ7PVjxnTN+ngiOt4jInLw4EGlMT5Z3OU2gxrTOXXqlKSnp6umVtHR0dK5c2fZvn17vo/JysqSa9euqRspudyLDYjQDkoTtAHij6AuOp5quVjhNyYmxquSrofk5GSJjo62b9hFkZQs7sUGRGgHpQnaAPFHsW+ZnjJliv0zXeT7cuZFaWznz59XGt0VWOrDTbCUur/t2biddfz48UVyTm7hyw6io6Nt1wO6DXC78HvvvWePsWTOhg0blMaSJ+iWwnbg2MrYtCNsPYyuTTxP3LKK222rV6+utOkaRHcYttFOTk5WunHjxkqjm9ZsgyyiFwp0y3z11VdKz5w50x6b1/5e8WUDpjsokDvNvC+6uPC6oxsTNbqt8H1y4tpDsD01ujKfeuoppc33Hcv54AaNOXPmKB3MEkWFec0egvpLx/PBzcjIUH/PyMjw+lB7iIiIkGrVqqkbKbnciw2I0A5KE7QB4o+gLjqNGjWSevXqqf8qr127Jjt37pSEhIRgPhUJUWgDhDZA/OHYvXbjxg2V1Xzq1CnZv3+/1KxZU+Li4mTChAnyzjvvSNOmTaVRo0by+uuvS2xsrAwePDiY501CjAMHDkhcXBxtoIyQm5ur3E0et1ZaWpq0atWKNkB84njR2bNnjzz66KO29vhgR44cKZ988olMnjxZbt68KS+++KJcvXpVunfvLmvWrPHyQxYX2FLaTXAbLrZVGDFihM/H4jZcbIlc3PTo0aNIbKBq1ap2TAdjChhLMeM0GJtr37690qtXr1Ya0wAuX76sNLZ1NtsXHD9+XM3h1tsGDRoojW0XcOs3lskxt8ebcRQR71bZGKPB7bGebc0ezBbfIiKdO3e2x/fff7+aM7eGX79+XcU8PCXtZ8yYIZ9++mlQbaBcuXJ2LCHQdl9/rZYxHhGo5H+gGA62avYHxnDQdn/xi18oPXr0aKXvu+8+e3zo0CE196tf/Upp3NrttK2Cv9cS6JoWBMeLTq9evQL2JZ8+fbrXFyop3Zh90WkDpZ/o6Gj1j8/t27clKSnJ/qeONkB8wdprhBBCXIOLDiGEENco9jyd0ozZzldEZO7cuUp37dpVacwjGDNmjD3GcjxlJVv78uXLdkkQbJ+MeUxm6XlsEY0lUHA77vLly5Vu3bq10qZPXUSXtcf6Y2Yrgvyea9WqVUpjXhq23zDjIHisL7/8Umnckmy2exARuXr1qtJYJt+MZWHrYbPCgMj3pW08FGVrg2CVbcHjBGqt7CRegTEbfCy+L88//7zS2GIFy+CYcZzf/OY3ag7zi5y2TXBCyOXpEEIIIf7gokMIIcQ1uOgQQghxDcZ0ggj69idPnqx0oBgOtlXAOENZxMzTwbgBtif4v//7P3uM+SoYo8EcDMx3wdgH5vGYLTEw5wf9+82bN1f6xz/+sdI7duxQGuM2ZvzIbN8g4h1r2rlzp9JYMw7rcGGLDDMegNfAbHsgIjJhwgR7fOvWLdm2bZuUZJy0whbR7zM+tlGjRkq//PLLSj/zzDNKo21jTPK3v/2tPcbW6XheeN5o64HwF7cJdE0KAn/pEEIIcQ0uOoQQQlyDiw4hhBDXYEynEJjtpEVEFi9erDTma+zfv19pLBHCGI43ERERXq18PWCOydatW+2x2d5XRFSRWhGRmzdvKo11uLBWG/rcTb93t27d1By2Qf7lL3+p9J49e5T+4osvlL548aLSZo8bs+6hiHeOBvbXQZvq0aOH0mijZmfPvn37+j1vs78Rtn13Cyd5I4HyfZzOm3FDfF9ee+01pfF9wb5eKSkpSi9atEhps0YevuZAsSgnPYgQJ48taD4Vf+kQQghxDS46hBBCXIOLDiGEENdgTMch3bt3t8eBYjhYY+u5555TGvMgipO33nrLHmPfGswZcJM6derYtccw12bNmjVKm/1f2rRpo+bMXjAiIq1atVL6woULSmMMJzU1VWmzlhbmXGBdvI8++kjpo0ePKt2xY0el161bp3R8fLw9NnORREQaN26sNPrVMUeoevXqSqPP3oxTYg4QnpcZuzJ76wQbs58O4i9+4bRmG94f860wJ8VsSDdt2jQ1Fxsbq7TZRVVE5L333lPajKWJfN8qwsR8XYHycpz0HMpPmzjJ8WFMhxBCSMjBRYcQQohrcNEhhBDiGuWsYDWrCBLXrl3zyr8oTtq1a6f0u+++a48ff/xxNVeSYjjY6+fAgQP2GK9/Qfz1ZrvqYOCxg7i4ONuH/corr6j77N69W+latWrZY/SRm/EeEfHK/Tl27JjSNWrUUBrr6pk+eTMeJuLdH+frr79W+uOPP/Z7bMx5adKkiT2uX7++msP6fenp6Uqb/XFEdHxIROSbb75R2rTZ06dPqznMMzPPMzc3V06cOBFUO/DYQFhY2D3FdAIRqI4YHmvEiBFKm/XQ8LHLli1T2vzeEBE5ceKE0hhD9HcuTmIyIoFfJ/buMe+PNQn9xY8sy5K7d+8GtAH+0iGEEOIaXHQIIYS4BrdMA1gSH1vDmi41LAs/Y8YMpYvTnWa6ZES8Wzuju8nciluUrYed0rFjR/vnv1l2RcS7FfO+ffvs8c9+9jM1d+rUKaWx5D+WMcEWAVjGxNwujzazcuVKpatWrar0s88+qzSWzenZs6fSly5dssfoShk2bJjSWD4F3ajoNsStvmvXrrXHZukVEZGKFfXXxRNPPGGPs7OzvVxGwcJJmRYnW6YDuZnQJqZMmeLzvJYsWaLm3nnnHaXPnj2rNLbKduIi89diQUS7mUVE4uLilMbPDX7et2zZYo8zMjLUXKAW3wWBv3QIIYS4BhcdQgghrsFFhxBCiGswpgNgS+nevXsrbZbEHz58uJrDtsNu8sYbbyg9duxYpa9cuaL022+/rfSf/vQnexxKu+hbt25tl8HB7cDogzfbE+DrxdIzZrsAEe/4HG41Hj9+vNJmjMdzfh5wWzP60OfNm6c0xt8qV66stBlbwddltrIW8S6/8tRTTyk9e/ZspbHEvtkOG8vgoDZft5OtysHEn60G2k6NsRCztJGIyM9//nOl8X01t+XPnDlTzWFrb4yFOG3zbJajwcc+9NBDSuN5d+jQQWksybNixQql0cZMgvE+85cOIYQQ13C06CQnJ0vHjh0lKipK6tatK4MHD/ZKqrtz544kJiZKrVq1JDIyUoYOHeq1A4KUPnDnEu2gdHPgwAGZP3++zJo1S1JSUrx27InQBkj+OFp0UlNTJTExUXbs2CHr1q2TnJwc6dOnj3I5TZw4UVasWCGLFy+W1NRUOXfunNdPfFL6GDJkCO2gDJGeni4PP/ywDB8+XIYNG2a7f2gDJBCFKoNz8eJFqVu3rqSmpsojjzwimZmZUqdOHVmwYIE8/fTTIvK9L71Fixayfft26dKlS8Bjul0GB3Mo0BcbFRWl9KuvvmqP0Y8bbMz99S+99JKa81xfD+jLN33zIt4xnM8++ywYp6goCjuYNm2aHTvAHBTMPzDjGxiDGTVqlNIYR8H2AomJiUpHRkYqbbaJxlYQGBvAcjJoc9huAN9LM7cGY08DBgxQ+ssvv1QaW2nPnz9f6UaNGiltfvZ27dql5vB9M70cmZmZMn/+fFm9erX0798/qDZQsWLFAscS/OXp4DEwFjd06FCl8fOdlZWltNmGHFuO430DxXDw3DD3y3yfRo4cqeZwIUd7wpJQr7/+utLorTLLXjkpM2RZlmRnZxdtGRxP3SdPot3evXslJydHBd+bN28ucXFxXi/cQ1ZWlly7dk3dSMmEdlB28dTo8iyQtAHii3tedPLy8mTChAnSrVs3u7lWenq6hIeHe620MTExXjuPPCQnJ0t0dLR9w2KJpGTQpUsX2kEZxbIseyHxFC+lDRBf3POik5iYKAcPHpSFCxcW6gSmTJkimZmZ9i0tLa1QxyPFw5w5cwr1eNpBySU1NdVri/m9QBsoG9xTnk5SUpKsXLlSNm/eLA0aNLD/Xq9ePcnOzparV6+q/3AyMjK8/NweIiIivPyXboK+VozhmLkfIt41uYLJxIkTlZ46dao9xv8YkQULFiiNbY0xnyPYmDkcwbSDtWvX2jW/zFbhIt7XxIx3YBl+jCFg/bPjx48rjbWyUG/dutUeo/8av4DRhnCnX4sWLfw+l2kXDz/8sJrDOBe2e8DcMdw9hi0ezFgg1g48dOiQ0pZlydatW+X06dPSv39/FdcIpg2YcYXC5IngY9F++vTp4/fxWPvPjHlhDCdQqByvO8bWBg4cqLTZEh1bkJubN0S827j/7ne/UxrfR39tFfCaFaaVhH18J3e2LEuSkpJk6dKlsnHjRq8L1b59ewkLC1PJR8eOHZMzZ85IQkKC45MjJRPaQenHs+CcOnVKBg0a5PXPGm2A+MLRL53ExERZsGCBLF++XKKiomzfbHR0tFSuXFmio6Pl+eefl0mTJknNmjWlWrVq8tJLL0lCQkKBdquQkktGRoaEhYXRDsoIW7ZskZMnT0rfvn0lLCzM/jV3+/ZtqVatGm2A+MTRovPBBx+IiEivXr3U3+fOnWuXXpg5c6aUL19ehg4dKllZWdK3b195//33g3KyJHRp1qwZ7aAM4WnHgCVUlixZYpdgog2Q/HC06BQkpadSpUqSkpIiKSkp93xSoQT6O/1t46xdu7bSZr8REe8+F2+++abS6KIw+5dgzCY1NVXpuXPnKh2MvhdOwL35wbKDyMhIrxprHrZt26a06aM3+92I6PwqEe8cFKyjZ+bh5IfpWjbjOyIijz32mNJ16tRRevLkyUqjXeB7beZR4LHMmKqIt48dc5kwfwtjPGZNOXxdJgMHDlTboe/cuSNTpkxRsbKS9l2A/YKwNhvG7jDGaIL9qrCGI9Z4xFBFlSpVfJ4LxpawNTb2zrp48aLS2H4+UO6NP7BddUFg7TVCCCGuwUWHEEKIa3DRIYQQ4hrspxMA9OOasQCM9wSq7YQ+T/QZ+4vbFHfMprho1qyZnbuBORxt2rRR+ttvv7XH6DPH+lKXLl1SGmuSjR49WmnMojdjJUlJSWpu/fr1SmM+yOrVq5Xu2bOn0vlt1PGACZNYxw2v0Z07d5QeMWKE0rdv31b65MmT9viBBx5Qcxj/Me27KHswlStXrsD5IP7OA4/hKePlAeOAmBOFfWnMfBn8POJnH+OSGFe5ceOG0hhTNDdsbNmyRc1hTyR8z81ePCLe3ztIsPKifMFfOoQQQlyDiw4hhBDX4KJDCCHENcp8TAd9qZ7y/B7WrVundPv27e1xoJpxGAf4+OOPlf7000+VNv3pIt6+2LKOJyHRA9avMnOoOnfurObwWuJjMcdq7dq1SmPehFkBGWutYS4MlvI3bUhE5J///KfS6Efv16+fPcbePNixE/vnYH+oo0ePKo1xGzO/BK/Zf/7zH6XNGA/GEYKJkziNv8f5qzEm4v0+TJ8+Xeknn3xSaYwpmuBnH3NrsDbggQMHlD516pTS5veUp42Eh0DxtEC9fJzg77mYp0MIISTk4KJDCCHENQrVrroocLtdNQkOgVrUOsVjB+PHj7fdmPPmzVP3Md1OIiJXrlyxx1iWHysbN27cWGl0Q6ErCV2fZvsB3ILqqT/nAUvuoLsD3bRo/+a25h49eqg5LFOP+vHHH1cat29jSwfzteB54Jbpr7/+2h7fvXtXduzYEVQ7uJd21f4I9FWH25rx/uhuRDeXSSDXO9qMU5eZSWGvTWHK4GB78Lt37xZtu2pCCCHECVx0CCGEuAYXHUIIIa5R5rdMk9AmPj5eKleuLCLe24ExbmOWpomNjVVzuAV14cKFSmNZe9zW/OCDDyodGRlpj7FVMZaqadWqldIYZ8FYlXlsEZG9e/faY4w7mC2iRUSaNm2qNJbcwfI/GBczt4pj3GHQoEFKm3EIt8oyBYpfFCYWgq8BXz9qc9s9Pi8eC58L40NO2kIXNoYTzHhRkberJoQQQgoDFx1CCCGuwUWHEEKIazCmQ0Ka8PBw23c+ePBgNbdv3z6lzdjHgAED1BzGOi5cuKA0lvjHfBZsD16/fn17PGzYMDWHMRosc797926lzZI6IiJHjhxRumXLlvY4Pj5ezWEbZGxfjaVdkCZNmih9/fp1e4wxjCVLlihtloHJyclR198tnJTIwfsGim1g2RwnZamcxp78xXACHc/p6wxmuwK2qyaEEBLScNEhhBDiGiHnXguxqjykgAT7ffMcz3R7obsDtyqb84G6J+KxUGNZEtwCa94fXXOBjo3XCp/L37ng68IOlIHOGzWeu/l4dK/hY83n9oyDaQeeYwWjsrHT+xbF4/0dq6QcuyDPG7B0TqjVXjt79qyXj5uEPmlpaV7xhMJAOyiZBNMOaAMlk0A2EHKLTl5enpw7d04sy5K4uDhJS0sLaiHJ0sy1a9ekYcOGrl4zy7Lk+vXrEhsbG9S+HbSDe6e02AFt4N4JZRsIOfda+fLlpUGDBnZDrmrVqtHQHOL2NSuKquC0g8JT0u2ANlB4QtEGuJGAEEKIa3DRIYQQ4hohu+hERETItGnTAjZDIv+jNF6z0viaiprSds1K2+txg1C+ZiG3kYAQQkjpJWR/6RBCCCl9cNEhhBDiGlx0CCGEuAYXHUIIIa4RsotOSkqKxMfHS6VKlaRz586ya9eu4j6lkCE5OVk6duwoUVFRUrduXRk8eLAcO3ZM3efOnTuSmJgotWrVksjISBk6dKhkZGQU0xnfG7QB35QVGxChHfiixNqAFYIsXLjQCg8Pt+bMmWMdOnTIeuGFF6zq1atbGRkZxX1qIUHfvn2tuXPnWgcPHrT2799vDRgwwIqLi7Nu3Lhh32fMmDFWw4YNrQ0bNlh79uyxunTpYnXt2rUYz9oZtAH/lAUbsCzagT9Kqg2E5KLTqVMnKzEx0da5ublWbGyslZycXIxnFbpcuHDBEhErNTXVsizLunr1qhUWFmYtXrzYvs+RI0csEbG2b99eXKfpCNqAM0qjDVgW7cAJJcUGQs69lp2dLXv37lUdEcuXLy+9e/eW7du3F+OZhS6ZmZkiIlKzZk0R+b6DZk5OjrqGzZs3l7i4uBJxDWkDziltNiBCO3BKSbGBkFt0Ll26JLm5uRITE6P+HhMTI+np6cV0VqFLXl6eTJgwQbp16yatW7cWEZH09HQJDw/3arlcUq4hbcAZpdEGRGgHTihJNhByVaaJMxITE+XgwYOydevW4j4VUkzQBkhJsoGQ+6VTu3ZtqVChgtcOi4yMDKlXr14xnVVokpSUJCtXrpRNmzappkn16tWT7OxsuXr1qrp/SbmGtIGCU1ptQIR2UFBKmg2E3KITHh4u7du3lw0bNth/y8vLkw0bNkhCQkIxnlnoYFmWJCUlydKlS2Xjxo3SqFEjNd++fXsJCwtT1/DYsWNy5syZEnENaQOBKe02IEI7CESJtYFi28Lgh4ULF1oRERHWJ598Yh0+fNh68cUXrerVq1vp6enFfWohwdixY63o6Gjrq6++ss6fP2/fbt26Zd9nzJgxVlxcnLVx40Zrz549VkJCgpWQkFCMZ+0M2oB/yoINWBbtwB8l1QZCctGxLMv6wx/+YMXFxVnh4eFWp06drB07dhT3KYUMIpLvbe7cufZ9bt++bY0bN86qUaOGVaVKFWvIkCHW+fPni++k7wHagG/Kig1YFu3AFyXVBtjagBBCiGuEXEyHEEJI6YWLDiGEENfgokMIIcQ1uOgQQghxDS46hBBCXIOLDiGEENfgokMIIcQ1uOgQQghxDS46hBBCXIOLDiGEENfgokMIIcQ1uOgQQghxjf8H+mbuA84Ipl8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAg8UlEQVR4nO2dfXBU5fXHT0ASEkiCAZMQSAQKyOuADSQE0KJNebMqiNa+DFCrUiQ4A/xRSwdta52mttOBKWKxdoBpB4RSBApFwAkQKq8lhWJ4LRQhAolBSgIhbyb394ez9/ec7ya7XHb3Zjf5fmYyc788u3efvXvYZ+85zzknyrIsSwghhBAXaNfSEyCEENJ24KJDCCHENbjoEEIIcQ0uOoQQQlyDiw4hhBDX4KJDCCHENbjoEEIIcQ0uOoQQQlyDiw4hhBDX4KJDCCHENUK26Cxbtkx69eolHTt2lOzsbDl8+HCoXoqEKbQBIkI7IJqoUNReW7duncyYMUOWL18u2dnZsmTJElm/fr2cOXNGkpOTfT63sbFRrly5IvHx8RIVFRXsqZEgY1mW3Lx5U9LS0qRdu///DROIDYjQDiKNUNgBbSCyaM4Gmnpg0MnKyrLy8vJs3dDQYKWlpVn5+fl+n1tSUmKJCP8i7K+kpCRoNkA7iNy/YNoBbSAy/9AGkHskyNTV1UlRUZEsXLjQ/rd27dpJbm6uHDhwwOvxtbW1Ultba2uLRa8jkvj4ePvYqQ2ING8Hffr0kfbt24uIyJgxY3zOoayszD7+73//q8YmTZqk9MGDB5V+7LHHlF6+fLnS06ZNU/qLL76wj69du6bGYmJilN60aZPSI0aMUHrs2LFKFxcXK/3AAw/Yx2fPnlVjly5dUrpjx45KnzlzRulhw4YpXV1drXT37t3t43Pnzvk8d0ZGhn1cX18vGzduDMgOmrOBuLg4+06nsbFRPcfJHRA+1t93TSDfRf5eC7W/92GO+5uX0/fp67VxDO9gGhoa1OtUV1crG2iKoC86165dk4aGBklJSVH/npKSIqdPn/Z6fH5+vvz85z8P9jSIy5jG6dQGRJq3g/bt29uLTnR0tM85dOjQQT3PBBeCe+7Rpo9fqPifC59vnt983abmif9x/b02ns98bRzDc6HG94HPr6+vb3YcryGeu6nPIxA7aM4GoqKi7PPitQxk0QklTl/LyaLj5mv7u95NPdff67f47rWFCxdKRUWF/VdSUtLSUyItAO2A0AbaBkG/0+nWrZu0b99euTpEvnR9pKamej0+JibG61ckiWyc2oBI83ZQW1tr/1q/fv26GquqqlL68uXL9jG6kd58802ln3jiCaXRlTR+/HilP/zwQ6UTExPt4xs3bnjN2wTdDffee6/S6Grq3Lmz0qdOnbKPO3XqpMbQdYLnHjVqlNL4mcTGxiptugrxbuS+++5T2nR1me5GD8H6LmhsbLR/PQfiKnLqmnPipsIxfC284/R3146PN+9Inbr9ArnD8/e+7oag3+lER0dLZmamFBQU2P/W2NgoBQUFkpOTE+yXI2EIbYCI0A5I0wT9TkdEZMGCBTJz5kwZMWKEZGVlyZIlS6Sqqkqee+65ULwcCUNoA0SEdkC8Ccmi8+yzz0p5ebm89tprUlpaKsOHD5ft27d7BRRJ64U2QERoB8SbkCSHBkJlZaXyl0cy/fv3V9p0M4iIfPzxx0pPnjw55HMKFRUVFZKQkBC083ns4MEHH7R3UZWXl6vHPPzww0r78nv37t1b6b59+yp9/vx5pXHLNe4wM3dyFRUVqTFz2zE+VkS8XEuffPKJ0lu2bFE6Pz/fPl6yZIkawxgOfgYffPCB0r/61a+Ufv/995U24zYYd9iwYYPS06dPt4/r6upk9erVQbUDjw3ExsY2u3stmDjdamzGN/ztUET7w5jh1atXlT569KjSpaWl9rG5rbypeTp9H8HCsiy5ffu2Xxto8d1rhBBC2g5cdAghhLgGFx1CCCGuEZKNBORL3n33XaXT0tKUzsvLc3M6EUl2dradu4HxCcwxMZMJe/Xqpcb+9a9/KY2ladDv3adPH6Ux32XVqlX2MebpDBkyROlHH31U6UOHDimN8aJnnnlG6c2bNzc7TyxjM3/+fKUrKyuV/uMf/6h0t27dlD558mSzYw899JDSZpwBKxuEikDydAJ5bFOvbT4fz9WvXz+l33rrLaWTkpKUfvvtt5XGyhHma/ubdzBjOMG83h54p0MIIcQ1uOgQQghxDbrXgsh3vvMdpbGa8BtvvKH03/72t5DPKdKpq6tr8lhEvGpzmVWPccszbv+dM2eO0rt371Yat7NfuXJFaXNrMW7dxrI2OI7nwveF203NrfZDhw5VY+jawy3RpgtMxNuV95WvfEVpc5s/lsFBl49Z+sasNhyuBLuqtOlawhJBCxYsUBrLMv3lL39RGl3Hn332mdLmtQ52MVF/FbDv9Ll3+jze6RBCCHENLjqEEEJcg4sOIYQQ12BMJwDMGIKId4mSI0eOKL148eJQT6nVsWvXLrvMu78y/Z9//rl9jHGSmpoapXfs2KE0bnHFLa0Y4zG3E2P8CONFWP7o5s2bSmMrgxMnTiht+vOxBEqPHj2Uzs7OVvof//iH0hgTwviT2XLg1q1bagxbNJjXyK0t04EQaAkdjFmYMa6ZM2eqMWyd8Z///Edp3EKNsTeMkfnqHBroFmq3K6HxTocQQohrcNEhhBDiGlx0CCGEuAZjOgGwdOlSpbFsCJa28NfWmHgzceJEuwwOlvE3WyuL6BgDlsipqKhQ+vjx40pjfC49PV1pjOmY5x8zZowaw5a+GHfBuAzmZAwePFhpM3aApWg+/fRTpfGaYB7OpUuXfM7VbAGOuSfYksEsmeNWnk4gcZlgl/w3yx1hUzq8ritWrFAaYzwYE8PWCL7et9NSNU5iQqGI9/BOhxBCiGtw0SGEEOIaXHQIIYS4BmM6Dpk0aZJ9jC1nscUs5mcQ51RVVdn+bsyHwZyT69ev28foi0YfO7arPnXqlNL79+/3+VoPPPCAfYxxFfzc77//fp9zyczMVBrtKCsryz4uLCxUY5g7g/XoMP/o8uXLSr/wwgtKm62ysX36b37zG6UHDBhgH5u5RKEkkFL7TuMT+HisW/e9733PPsbPeM+ePUpjC3JfeTiRBFsbEEIICWu46BBCCHENLjqEEEJcgzEdh7z88sv2Mdb3euWVV5TGnAninHvuucfOWcB8l2PHjilt5tpgXg3WJMP21cnJyUpjPszWrVuVNuMsGJM5ePCg0p7acR6wLw3GkzC35uLFi/ZxXFycGsN8In/5HxibWrduXbNz2759uxrDa2i2yo7EmIS/GA/mymB87Mknn7SPMfdqzZo1Sl+9elVptAkn9dMCbbPtbzzUnyXvdAghhLgGFx1CCCGuwUWHEEKIazCm44dFixYpPXHiRPv43XffVWPMywk+ZWVldpwBfc3oRzfripn5VCLesRDMhTFrjol82cfHBHslmbEQrPP2ta99zes9mGCs79///rfSV65cUdqs7Ya9eLA+2tmzZ5X+5z//qfSUKVOUxutixslGjx6txnbu3Km0mW8UytprUVFR9mfvJNcm0LphGHeZPn260mlpafbxmTNn1NihQ4d8ngvnhuO+wOcGmn/kdDxQeKdDCCHENRwvOnv37pXHH39c0tLSJCoqSjZt2qTGLcuS1157Tbp37y6xsbGSm5vrtaOGtG5oA62fyspKOXv2rBw9elQOHz7sVUGdNkCaw/GiU1VVJcOGDZNly5Y1Of7rX/9afve738ny5cvl0KFD0qlTJ5kwYYJXu2DSeqENtH4aGhokLi7Oq/yLB9oAaQ7HMZ1JkyZ5+cs9WJYlS5YskUWLFtl72P/0pz9JSkqKbNq0Sb797W8HNlsXQN/qww8/rLSZm4O1qEjwbaBXr152P53y8nI1hv11zNpYBw4cUGNY7wzzcBAzB0XEO+/HjB+ZfWVEvPvjbNu2TWmzbpuId95OaWmp0ma8BGM4+NoYX+revbvSmJ/0xBNPKG3GIjA+ZNa2ExHJzc0VEZFz585J9+7d5fz58yISfBswYwyhjDegjSQmJir96KOPKm1+LpibhTXwnObCOMmVcXpNnOQEhYKgxnQuXLggpaWltjGKfPnBZWdne30JeKitrZXKykr1RyKXu7EBEdpBa4I2QHwR1EXH8wstJSVF/XtKSorXrzcP+fn5kpiYaP9hhjWJLO7GBkRoB60J2gDxRYtvmV64cKEsWLDA1pWVlS1qbOZcRES+/vWvK/3jH//YPj537pwrc2oLNGcHmzZtsl2eCQkJ6jldunRR2iwfg7EGdMXhL+6BAwcqjS4vdDnMmzfPPj5x4oQa27Bhg9L9+/dXety4cUoXFxeLL8wAPM4DXXlPPfWU0u+8847SeF08LjEPZtkcvN7oXjK3bwfDJdOcDfg6dzDbV7dv317pQYMGKY3Xw7wT27Fjhxq7ffu20mhPiL+yOL62VOOY0zYToXanIUG900lNTRUR77yEsrIyewyJiYmRhIQE9Ucil7uxARHaQWuCNkB8EdRFp3fv3pKamqqSJCsrK+XQoUOSk5MTzJciYQptgNAGiC8cu9du3bql3EoXLlyQY8eOSVJSkmRkZMi8efPkjTfekH79+knv3r3l1VdflbS0NK9MaNK6OH78uGRkZNAG2gj19fVqN9utW7dE5MtdW4MHD6YNkGZxvOgcOXJEHnnkEVt7fLAzZ86UVatWyY9+9COpqqqSWbNmyY0bN2Ts2LGyfft2r1av4crTTz+tNJYkWb9+vZvTiRgeeuihkNjAzJkz7ed98sknagy38JrnR782lpbHOAuWLfnmN7+pNLbKNsuemG2bRby3PH/3u99VGtskjBw5stlzi+hyK+iewpgObivHL3nc+o3tq83Xwm2/Zvzn9u3bqk23p5TPL3/5S1m9enXIvgcw1hHM9tQY08F0ia5duypttqTAGCG2RfBX9gbfBz7fjF9ifMiz4DensUQRbg33RSjaHDhedMaNG+c3sPf666/L66+/HtDESGRRUVFh++BpA62fuLg4VWPuiy++kH379snvf/97EaENkOZh7TVCCCGuwUWHEEKIa7R4nk5L06dPH6UffPBBpbGdL8YVSGjZv3+/7d/GVgZYlt+M42A8Av3x//vf/5Q2W12LePvBhw8frrTZjgDzcvBcWBQXYwWY44Exos6dO9vHWDQzPj5e6S1btiiNZXOwTA7GiMzCnZ06dVJjffv2Vbpbt272cU1Njezbt08iGczlwlJJaH9meSOMGWJ8yF9sBGM8mINm5kiZ113EuxQSxu3Q1s1SXv7mhmO+2ircaQyNdzqEEEJcg4sOIYQQ1+CiQwghxDXafEwHfam4P95NsrKylPZsPxXRfn0R79jSM888o3RrqdCbm5tr53ZgrTuMfZhxlszMTDVWWFioNNbGGjx4sNLYehxzG0y/OX4WPXr0UNrMaxPxLoPfs2dPpTHOaMau8NzY+vq5555TuqioSGnMX9q4caPSZuwqOztbje3evVtp08YwThAJYLwC41+9evVSGvNfNm/ebB/7a13gVGOszaxHifHFsWPHKo3tK1avXq00xp981WrzF6cxvz8Z0yGEEBJ2cNEhhBDiGlx0CCGEuEabj+n4A1v2BpP33ntPaWwdbMYd0OeLOROYnzFhwgSlI7U3/dGjR+1aUxiHQW3GNzD+Y/baERFJTk5WGv3aZl0tEZEZM2YobfalQd8/5tIcOXJEaYwfYb4RxhnNWm7+Wlsj+D7x3GZejoh+L3gNLl68qLRpk2YfnnDFV08aEe824tiEDmMlZu05f/1ynM7t888/V9qMp2FtPswtxL5HGHPEvDCM/2KOmi+Yp0MIISSs4aJDCCHENbjoEEIIcQ3GdPyA+TGBgL5/3F8/efJkpc3ckujoaDX25z//WWnM08nLy1P6t7/9raO5hgsnT56061jh9THzmER0nCsxMVGNYb8TjIlhXsSbb76p9OjRo5U283jQH489bFasWKF0v379lEYfOsbfzB40mC+E/Wkw1wtjW9gfCq9TRUWFfYw9hDB2YMbBQpmnExUVZcePnPbIMfHXRwZ7LOHngvktZk0zf/1z/M0FY2LY6tvsm3TixAk1hjGe7t27Kz1+/Hiljx49qjTmH5mfq7/8IxPGdAghhIQdXHQIIYS4BhcdQgghrtHmYzrYYx792BgrWbp0qX2M/eX9gTGcd955R2msD2aCPvNnn31W6W9961tKP/3000pHakynR48etr8cYyOYV/Hkk0/axzt37lRjvXv3VhrrbGEcBa/fiy++qLTZWwX98xh/mzhxotKY74L5IOjfN89v5oaIiCQlJSm9detWpQcNGqT0sWPHlMZ4gFnXa9SoUWrM047cg5l/FMo8HSdxHDPm4DT+g58b5t5gXxqz/87NmzfVmL/X9tWXxt/jsVfPpUuXlH7//feVxpgOfo742ZnnR9vGmI4Z92JMhxBCSNjBRYcQQohrtHn3GpaAwDLgr776qtK/+MUv7OOf/OQnasxfSZL169ffzRTvCKe365FCTU2N7V7DW310/5hbP7EMELqR0JWJ5eKnTZum9De+8Q2ljx8/bh/jNmRsXYBbvfGzQXcJlq4xz4+uOCyhU1VVpTSWbvn+97+v9J49e5Q2XUzYChvL4piv5as8fqCY18tfSwBfY/62m+N3QXl5udKY8mC21sDPHLdbB1omx7wG/srU+GuTgNvq8XvL/CyxTBK6+VkGhxBCSFjDRYcQQohrcNEhhBDiGm0+poOYMRsR75Ilpk8c2/kuWrRI6Q8++EDpQNoLoN//+eef9/n4NWvW3PVrhRN9+/a14wwYv8CW0qavGv3U2Nb5hRde8Pm6GAvB0iPmFmrcaos2hM/F7dpYqgZjJ2b7avSpY2vr8+fPKz1z5kylsXwSzsVsh52WlqbGTp8+rbQZEwllTMcXTsq04P8hjOlgCwDciozfBWYZpo8++kiNbdu2TemTJ08qjSV1sBQNxp86depkH2NcD7dE/+AHP1Aa0wUwjhcTE6O0GavD6+uvlNCdwDsdQgghruFo0cnPz5eRI0dKfHy8JCcny5QpU7x2BdXU1EheXp507dpVOnfuLNOmTfMqXkdaH9i4jHbQujl9+rQcPHhQCgoKZPfu3Wo3nwfaAGkKR4tOYWGh5OXlycGDB+XDDz+U+vp6GT9+vLodmz9/vmzZskXWr18vhYWFcuXKFXnqqaeCPnESXkydOpV20IYoLy+X9PR0yc7OlhEjRthuGNoA8UeUFUBCR3l5uSQnJ0thYaE8/PDDUlFRIffdd5+sWbPGLiNy+vRpGThwoBw4cMArr6IpKisrvcqthxPz58+3j1955RU1hv5x9OVjDgX6dc2WtCIiQ4cOtY+xrPxXv/pVpYuLi5XOyclRGls7h4JQ2EFubq6dp4M5Axi3yczMtI+vX7+uxsyyNSLeuTBmSRMR71gJljwycx/wud26dVMaYwVoJ/jrf/v27Uqb/nwsW4/letCmMD6ELR5wbmaJFIx5mPEePHd9fb1cvnxZtm3bJpMmTQqqDXTs2LHZWI2TvB1sQYGxDMzDefzxx5UeNmyY0gMHDrSPMf6FX6tmywgRb/vE8lsXLlxQOjY21j7GNhtoq5jHs3LlSqWXLVumNLbGNsviYAwHryHm6dy+fVsqKiq8Su2oczQ7cgd4LqSn/lNRUZHU19dLbm6u/ZgBAwZIRkaGl7F7qK2tlcrKSvVHIhPaQdvF8+XkWYBpA6Q57nrRaWxslHnz5smYMWNkyJAhIvLlL8/o6Gjp0qWLemxKSkqz2fr5+fmSmJho/6Wnp9/tlEgLMmrUKNpBG8WyLLsYpqfAKG2ANMddLzp5eXlSXFwsa9euDWgCCxculIqKCvuvpKQkoPORlgErQDuFdhC5XL9+PShVpmkDbYO7ytOZO3eubN26Vfbu3Ss9e/a0/z01NVXq6urkxo0b6hdOWVmZV/0fDzExMV6+1XBm8eLF9jH6SmfNmqU01u/CmkfofzZL8yPo58c8E5yL25j+/mDaQVJSkl23ClsCY2sDs2UA1kNDfz2O4xecGUdpCnPX5iOPPKLG8vPzlcZ6Z1jTC+Mbc+bMUdpsY4ExHIwF4F0Exmww1octMjZs2GAf4/XFuETHjh2ltLRUqqurJT09Xb1WMG3AbFcdCBifwJwnvFaY04R5d2Z8bdy4cWoMc2MwJov2aMZvRbzjMtiCxQTbT69bt07pzZs3K42fo5McK195OiGpvWZZlsydO1c2btwou3bt8rqwmZmZ0qFDB5W0d+bMGbl06ZKXsZPWC+2g9WNZlpSWlsqtW7ckIyPDq6AlbYA0h6M7nby8PFmzZo1s3rxZ4uPj7V9ViYmJEhsbK4mJifL888/LggULJCkpSRISEuTll1+WnJycO9qtQiKXsrIy6dChA+2gjXD06FGprKyUnj17Srt27exfy9XV1ZKQkEAbIM3iaNHxlH3AW8mVK1faLoTFixdLu3btZNq0aVJbWysTJkyQt99+OyiTJeFL//79aQdtCI9br6mulS+99JKI0AZI0wSUpxMKwj1PhzSNv735TvHYwYwZM+zaZpgrg7+YzS9A/DLE/BYcxzbQGOvAx5sZ+P3791djmCvTuXNnpdE/j/EKzCEytw5jPAjzr+6//36lMT/JXz6XmZuDeTq+WhfX19fL3//+96DaQVN5Ok7ychB/ddpQYwwRtRl3wediPT5/58LvPDyfmdeD+X64icNpHbxgxMtEXMrTIYQQQpzARYcQQohrcNEhhBDiGuynQ8KampoaO5aA8QhP2R0PZv7B8OHD1Rj6vfFc6GPHfjpYc+qHP/yhfbx//341NnjwYKV37Nih9NSpU5XGmnKYo2H2ccGeMPg+MKaD50J/P9YX+8Mf/tDk64p415Qza6+Fsp9OsPJ0EH/hbLQZ1OaccH6YA4TXB7eYY/0z/NzMx+O5MNbmK/bWlPYFPhavGf6/uBN4p0MIIcQ1uOgQQghxDS46hBBCXIN5OiQohCpPZ+jQoXYcA/NdMG6zd+9e+xhzXeLi4pSuqalResyYMUp//PHHSmNferNT6oABA9QY5ulUV1crjbkz6BfHx5t5GVhny5OI6QFjPtjRFWMJOBczNwfjXGZJGxGRSZMm2cf19fXy17/+NSR5OrGxsXfcT8cXwf6qM8/nL/bhDydxF3/ndjoXf/lLd/pazNMhhBASdnDRIYQQ4hrcMk3CmtLSUtv9hGVv1qxZo7RZFh/bB589e1Zp3Nb83nvvKY2tic+fP6+06fLCrbTXrl1TGkvXjBw5UmlP8zsPWIrerHWI5XjwGmRnZyuNc8NWx4cOHVLa3OqL1xBdlua5g9FPpzl8bZkOxDXk71x3Mq87nYfT8budx52cq6UjKrzTIYQQ4hpcdAghhLgGFx1CCCGuwZgOCWv69+9vb93F0iLTp09X2tyqjKVAHnvsMaVxO3Dfvn2VxtI12Gp837599vHNmzfVmL8t1GZbBBHvVtmYMmCW5MFYE27lxrbHZlttEZGioiKlMf5ktr/Ga4jbznH7tRv421ocyFbjUMZVnJaLCSQ2FYqSQcGEdzqEEEJcg4sOIYQQ1+CiQwghxDUY0yFhzYgRI+z8m507d6oxLP9utgjAPBzMMXnrrbeUHjRokNLog8e4i9k6Oy8vT4397Gc/U3r27NlKY7thMz4k4t2uwIwnYctuLA108eJFpTE/Ca/D2LFjlTZjQPhYjHuZrSTwswgmvmItvmIp/uIs/rS/1zI1xr/Qfpzm7SBO3lcwWxvg+/DVRuFOY2K80yGEEOIaXHQIIYS4Rti511q6RAO5O0JVwdesguyvC6Y5jtursao0ugl8nUvEu8yL+X6xKjSeGys5o/bXCdJ8bX/z8texEh+PczHfF57Ll/acN5h24DlXsM4ZqHstkHP7e7zT8wfy2oG8ri99p59X2LU2+PTTTyU9Pb2lp0EcUlJSIj179gza+WgHkUkw7YA2EJn4s4GwW3QaGxvlypUrYlmWZGRkSElJSVD7tLRmKisrJT093dVrZlmW3Lx5U9LS0u6qX3pz0A7untZiB7SBuyecbSDs3Gvt2rWTnj17SmVlpYiIJCQk0NAc4vY1C0XTPdpB4ES6HdAGAiccbYAbCQghhLgGFx1CCCGuEbaLTkxMjPz0pz9VjbmIb1rjNWuN7ynUtLZr1trejxuE8zULu40EhBBCWi9he6dDCCGk9cFFhxBCiGtw0SGEEOIaXHQIIYS4RtguOsuWLZNevXpJx44dJTs7Ww4fPtzSUwob8vPzZeTIkRIfHy/JyckyZcoUr7bENTU1kpeXJ127dpXOnTvLtGnTpKysrIVmfHfQBpqnrdiACO2gOSLWBqwwZO3atVZ0dLS1YsUK68SJE9aLL75odenSxSorK2vpqYUFEyZMsFauXGkVFxdbx44dsyZPnmxlZGRYt27dsh8ze/ZsKz093SooKLCOHDlijRo1yho9enQLztoZtAHftAUbsCzagS8i1QbCctHJysqy8vLybN3Q0GClpaVZ+fn5LTir8OWzzz6zRMQqLCy0LMuybty4YXXo0MFav369/ZhTp05ZImIdOHCgpabpCNqAM1qjDVgW7cAJkWIDYedeq6urk6KiIsnNzbX/rV27dpKbmysHDhxowZmFL54OjklJSSIiUlRUJPX19eoaDhgwQDIyMiLiGtIGnNPabECEduCUSLGBsFt0rl27Jg0NDZKSkqL+PSUlRUpLS1toVuFLY2OjzJs3T8aMGSNDhgwREZHS0lKJjo6WLl26qMdGyjWkDTijNdqACO3ACZFkA2FXZZo4Iy8vT4qLi+Wjjz5q6amQFoI2QCLJBsLuTqdbt27Svn17rx0WZWVlkpqa2kKzCk/mzp0rW7duld27d6umSampqVJXVyc3btxQj4+Ua0gbuHNaqw2I0A7ulEizgbBbdKKjoyUzM1MKCgrsf2tsbJSCggLJyclpwZmFD5Zlydy5c2Xjxo2ya9cu6d27txrPzMyUDh06qGt45swZuXTpUkRcQ9qAf1q7DYjQDvwRsTbQYlsYfLB27VorJibGWrVqlXXy5Elr1qxZVpcuXazS0tKWnlpY8NJLL1mJiYnWnj17rKtXr9p/t2/fth8ze/ZsKyMjw9q1a5d15MgRKycnx8rJyWnBWTuDNuCbtmADlkU78EWk2kBYLjqWZVlLly61MjIyrOjoaCsrK8s6ePBgS08pbBCRJv9WrlxpP6a6utqaM2eOde+991pxcXHW1KlTratXr7bcpO8C2kDztBUbsCzaQXNEqg2wtQEhhBDXCLuYDiGEkNYLFx1CCCGuwUWHEEKIa3DRIYQQ4hpcdAghhLgGFx1CCCGuwUWHEEKIa3DRIYQQ4hpcdAghhLgGFx1CCCGuwUWHEEKIa3DRIYQQ4hr/B+dCcJbHqGO+AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "04b85210", + "metadata": { + "lines_to_next_cell": 1 + }, + "outputs": [], "source": [ "# Displays: ground truth, noisy, and denoised images\n", "def visualize_denoising(model, dataset, index):\n", @@ -2369,22 +1829,40 @@ " noisy_image = add_noise(orig_image)\n", " denoised_image = apply_denoising(noisy_image, model)\n", " plt.subplot(1,4,1)\n", + " plt.axis('off')\n", " plt.imshow(orig_image, cmap=plt.get_cmap('gray'))\n", " plt.subplot(1,4,2)\n", + " plt.axis('off')\n", " plt.imshow(noisy_image, cmap=plt.get_cmap('gray'))\n", " plt.subplot(1,4,3)\n", + " plt.axis('off')\n", " plt.imshow(denoised_image, cmap=plt.get_cmap('gray'))\n", " \n", - " plt.show()\n", - "\n", - "# We pick 8 images to show:\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "999110e1", + "metadata": {}, + "source": [ + "We pick 8 images to show:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "48932965", + "metadata": {}, + "outputs": [], + "source": [ "for i in range(8):\n", - " visualize_denoising(unet_model, test_dataset, 123*i)\n", - " " + " visualize_denoising(unet_model, test_dataset, 123*i)" ] }, { "cell_type": "markdown", + "id": "a88faa07", "metadata": {}, "source": [ "

\n", @@ -2394,18 +1872,22 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "c559a605", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**5.1 Answer:**\n", "\n", - "Your answer here!" + "The denoising MNIST did relatively well considering it extracted images which allows a human to identify a digit when it wasn't necessarily obvious from the noisy image. It has however been trained to look for digits. Applying it to Fashion-MNIST will possibly sucessfully \"remove noise\", but recovering objects that it hasn't seen before may not work as well." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "3419188a", "metadata": { "tags": [ "solution" @@ -2419,16 +1901,17 @@ }, { "cell_type": "markdown", + "id": "933c7ac9", "metadata": {}, "source": [ - "### Apply trained model on 'wrong' data \n", + "### Apply trained model on 'wrong' data\n", "\n", "Apply the denoising model trained above to some example _noisy_ images derived from the Fashion-MNIST dataset.\n" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "5b4369e0", "metadata": {}, "source": [ "### Load the Fashion MNIST dataset\n", @@ -2438,7 +1921,8 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": null, + "id": "5e57d385", "metadata": {}, "outputs": [], "source": [ @@ -2458,101 +1942,19 @@ ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "b36c6e41", "metadata": {}, "source": [ - "Next we apply the denoising model we trained on the MNIST data to FashionMNIST, and visualize the results.\n" + "Next we apply the denoising model we trained on the MNIST data to FashionMNIST, and visualize the results." ] }, { "cell_type": "code", - "execution_count": 39, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlN0lEQVR4nO2de3BU9RXHTwIJzxBeJpBCeIq8HwKBiCDaIAWkgLRYtCNVKgMGp5RxnGFqccROU+l0SnFQZ1qEQkUUFRRasDThIfKQBCkGAoKABEISKE0CSBJIbv9w9vZ3vpvcy5LNzW7y/cxk5p787t69e/fc/e2e7++cE2FZliWEEEKIB0TW9QkQQghpOHDSIYQQ4hmcdAghhHgGJx1CCCGewUmHEEKIZ3DSIYQQ4hmcdAghhHgGJx1CCCGewUmHEEKIZ3DSIYQQ4hm1NumsWLFCunbtKk2bNpURI0bI559/XltPRUIU+gARoR8QTURt1F5799135cknn5Q333xTRowYIcuWLZMNGzbIiRMnJC4uzvGxlZWVkpeXJzExMRIRERHsUyNBxrIsuXr1qiQkJEhk5P+/w9TEB0ToB+FGbfgBfSC8qM4Hqtox6CQlJVmpqam2XVFRYSUkJFhpaWmuj83NzbVEhH9h9pebmxs0H6AfhO9fMP2APhCef+gDSGMJMuXl5ZKVlSWLFi2y/xcZGSkpKSmyb98+v/3LysqkrKzMti0WvQ5LYmJi7O1AfUCkej8YM2aMNG78nZt26tRJPaagoEDZ3377rb3dpk0bNeb2TTkqKkrZbdu2VfaWLVuUPWbMGHv70qVLaqxVq1bK7tOnj7JzcnKU3b59e2VnZmYqe+zYsfb2yZMn1dj3vvc9ZeP4oEGDlP31118re/Dgwcr++OOPq33shQsXlN2lSxd7u7y8XNauXVsjP6jOB6Kjo+33Dz8fAvm8cPMBt2PhuHm8YH9uOR0v0F99bvvjuNNzO/2CsSxLysvLlQ9URdAnncuXL0tFRYXEx8er/8fHx8vx48f99k9LS5OXX3452KdBPMZ03EB9QKR6P2jcuLE96URHR6sxnCh8+1U1Fuikg8+FN5s5bj5vVcdq2rRpQM/VqFEjZTdp0uS2H4vnYj72ds7NfG63Y+O4SM38oDofiIiICEp4LdghuroK+dX2pFPTfd32qfPVa4sWLZLi4mL7Lzc3t65PidQB9ANCH2gYBP2XTvv27aVRo0Z+oY+CggLp0KGD3/5NmjTx+zZGwptAfUCkej+IjIy0f2WcPXtWjXXv3l3Z5jcsM9QmInLjxg1lY0gMv/G3a9dO2ZMnT67yvEX8w1Dl5eXKxpAXkpeXp+zRo0dX+/jS0lI19tlnnyl74MCBjs/1zTffKLtbt27KTkpKsrf79++vxrp27arsy5cv29tVfbsN1mdBRUVFteE1fF6nb9mBhs8Qp2MHO3QXTGpy7EBe1+0+T9B/6URHR8vQoUMlPT3d/l9lZaWkp6dLcnJysJ+OhCD0ASJCPyBVE/RfOiIiCxculFmzZsmwYcMkKSlJli1bJtevX5ennnqqNp6OhCD0ASJCPyD+1Mqk89hjj8mlS5dk8eLFkp+fL4MHD5Zt27b5CYqk/kIfICL0A+JPrSSH1oSSkhKJjY2t69MgAVJcXOy3VLgm+PxgxowZ9oqr/Px8tQ8mF5q6zK1bt9TYyJEjlf3+++8re+bMmcreunWrsnH12pkzZ+ztRx55RI2hXoTLr1GXQf2pZcuWyj516pS93bdvXzVWXFysbFydhkvHL168qOzCwsJqzxXPA8+7RYsW9nZZWZm89tprQfUDnw9ERUXVyUoxN/0okMcGk0CvRW1qOpWVlep5KioqXH2gzlevEUIIaThw0iGEEOIZnHQIIYR4Rq0sJGioBFJOQkT8ykXcf//9ykZdwem5MIsdNY1AqGnOQTCpqKiw9ZQHHnhAje3Zs0fZpj6BeTVffPGFsjGb/pNPPlH2uXPnlN2xY0dlDxgwoNrHYn6LGfcWEfnqq6+U/d///lfZrVu3VraZx4P5Laiz4GOvXr2qbHx8UVGRsk2BH5Mzv/zyS2U///zz9jbqUuFIMHNpaqpBOX2W1KQUULAxtU6fpuP6mNo8IUIIIcSEkw4hhBDPYHgtiOCyWvyp2bNnT2X//Oc/VzaWarl+/bq9jWEUbITlFk7Dn+t4rua427HMUJ5lWX7ho2BiWZYdPsDwTo8ePZRtVmM2s+BF/MvcTJo0Sdk7duxQNpbBwbCVuZw4ISFBjV25ckXZWBZn+PDhysZCmljN2czex0KZWEInKyur2vOsyj5x4oSyzTAkluO57777lL1582Z7++bNm1IX1GRZczBxK8eD9xu+582bN3ccd/oswPuvpuE2p1Aevi5cMn078JcOIYQQz+CkQwghxDM46RBCCPEMajpBBJcto6bz0EMPKTslJUXZ58+fV7ZZ5h1jvuPGjVP2X/7yF2VjOXmMtzotbcS4P8aMvVweazZxu+uuu9RYRkaGsocMGWJv9+rVS41hGZydO3cqGzWJkpISx3FTx8GSH2b3S99rMMEl0ma8XsT/emdnZ9vbqDWZ5XhEREaMGKFsjP/j49E2rzF2PEUf2r59u71dm5pOIBqFua+bzhJMPcjtufCzATu+or9iiwdzCT++527+g68T9aVAri8e23zfqekQQggJOTjpEEII8QxOOoQQQjyDmk4QwXwMBPMzsP0vxn3N2CuWWjH1CxGRpUuXKjszM1PZmOOSk5OjbLNNMZ7n3r17lb1v3z5727IsP/0jmDRv3twuWYOtljE/pkuXLvY2vt7Vq1crG2Po2BIANTMzJwX3x9YF2IIBj406i3neIv76iJm/hdcatSp8XUeOHBEn0OfM8kCoFWD5nv/85z/2dk3KLgWTQNpVB6rxOO3vti9qOFOnTlX2mDFjlI0+YLYlx2NjewrM93PTdLAklPleYpmkQK9hVfCXDiGEEM/gpEMIIcQzOOkQQgjxDGo6NcAtnom6wLBhw5SNZefN9r8iOj6PsfqDBw8q22xpLOKfa2PW7xIRefTRR5VtxpDx2FgjzsxDuXXrlnz66adSW0RERNjXGfNhMP/FzE3Cfe+9915lu7WCOH36tLLnzZunbDPPxy2nx2wXICLSrFkzZWO7gdmzZyv7t7/9rb2NeRLYGhu1vGvXrikbXwfub7ZwwLwxzD8yz9ur2ms1yaVxy08JtKWHk36B7/GPf/xjZT/99NPKxhw0bK1h5tWhZoP1+PBzBbVjvBdMbU5E5PDhw/Y2fhbgfWLeg5ZlueraIvylQwghxEM46RBCCPEMTjqEEEI8g5qOCzWJIb/yyivKxpbHCNZXM+OnGCvF1taoF2Hs/9ChQ8pGDch8rtTUVDXWvXt3Zf/oRz/yO/fa4tChQ7b+MnDgQDWG8WVTtzp27Jgawzg36iyoASF///vflW3WLMM6dvhcU6ZMUTZqJWYOhojIsmXLqj0e6kdYBw9rr6Fmc/LkSWVjn6GzZ8/a223atHF8rHletZmnY+p6gT7OJNC+T27P6TTerVs3ZT/yyCOO43j98LPC1NOwhiPqvbGxscpOTExUdkxMjLIx/83Uk1AbRl3vTt53/tIhhBDiGZx0CCGEeAYnHUIIIZ5BTceFmvQbx74pGKfF9fbYQ8NcA4+xVazfhXkBGL9263dv5jDExcWpsW3btkld0a9fP7s2FL5G1HjM/i5mfTgRkSeffFLZGzduVDbms2Be09ixY5V94MABexvzq1BPevnll5X9/e9/X9lYe82pX9E999yjbNRwjh49qmzsifPvf/9b2VijzvQL7Mk0YMAAZZv6j1d5OojT/VnTWmtu4+Y9g3lf+D5h3yK8fxHU2kxdBvVIrL+HYH4S6jL4OWXeV7m5uWoMP1fMHB/20yGEEBJyBDzp7N69WyZPniwJCQkSEREhmzZtUuOWZcnixYulY8eO0qxZM0lJSfFb9ULqN/SB+s+5c+dk165dsmnTJnnnnXfkwoULapw+QKoj4Enn+vXrMmjQIFmxYkWV40uXLpXly5fLm2++KQcOHJAWLVrI+PHjXX9OkvoDfaD+c/PmTWnTpo0MHTq0ynH6AKmOgDWdCRMmyIQJE6ocsyxLli1bJi+++KKdm7BmzRqJj4+XTZs2yU9+8pOanW2YgXk3GFtFG2P5xcXF9jbWR8J6SoHEn6s6NzPXBOO2nTt3ltsl2D5w5coVux9N//791Zip4Yho3Qtzib7++mtljx8/XtkrV65UNtaTQ/3N7OWDMfEZM2YoG/MkZs2apezXX39d2Rizv3Llir3dvn17NWb6iIh/bxTMAcJ8EezLdPHixWrHzFyxjh07qjwds/dOsH3AqW8NUpN+OoFi3ietW7dWY3jPoEaD54I6C96DOG6CehLmjWEuDebp4H1lvhbUOvFLg+l/daLpnDlzRvLz8yUlJcX+X2xsrIwYMcJP2PVRVlYmJSUl6o+EL3fiAyL0g/oEfYA4EdRJx9cxEb+pxcfH+3VT9JGWliaxsbH2XyDfqknocSc+IEI/qE/QB4gTdb5ketGiRbJw4ULbLikpCSlncwpT4c9YXNaM7ZTxJzLauGTaDGdg6A1/zmP4DcNnGHbBUi1m6QxscYyvyyy5g2VW7pTq/KBnz572ddm9e7d6jFmCXUSH1HDpMC7pxdf06quvKhvDUthCwPwWfvnyZTWGfoHLZV988UVlY7kZM5wmon3ugw8+UGO4DH/y5MnKxiWvZvhMRCQrK0vZzzzzjL2NpX8wfOJbXr1161bp1auXa2tsN2r7s6Cm4TSn42HpGWxPjSEwt+XZ6EPm/oG2aMAWIPh4bKduXnP8TMJwm3msOgmv+fpr4Pr+goICv54hPpo0aSKtWrVSfyR8uRMfEKEf1CfoA8SJoE463bp1kw4dOkh6err9v5KSEjlw4IBfsh2pn9AHCH2AOBFweO3atWuqQvGZM2fk8OHD0rZtW0lMTJQFCxbIb37zG7n77rulW7du8utf/1oSEhJk6tSpwTxvUodUVFT4hQaPHDkiiYmJ9IEGQnl5uQorFhUVich34bx+/frRB0i1BDzpZGZmyoMPPmjbvhjsrFmzZPXq1fLCCy/I9evXZc6cOVJUVCT333+/bNu2zW/JYLiAcUozNotx18cee0zZGEpAXcCtdI1ZXgVj29jqAGOvqGFgXBef29QdMAdr8ODByi4tLZWcnBz1v9GjR9eKD9y8edOOGz/11FNqzPwmLaLbE5hLeEVEOnXq5Hdckz179igbW0HgsmhT18L2vxhTRzsvL0/ZqK/hElZT88Gl8qjt7d27V9mYR4MaDi4F379/v72NuqB5TQoLC2XHjh22/a9//UtEvmut/fbbbwfVB5yWTLtpI077Bgren+bxcCl727ZtlY2lknAZM9ron6Z2ghoMvmZ8TxH8LMDPMfPeQX3R9+WiJgQ86YwdO9b1jV2yZIksWbKkRidGQpfY2Fi73tOtW7ckMzNTiouL7Q99+kD9Jy4uTuU23bhxQ+bPny9vvPGGiNAHSPWw9hohhBDP4KRDCCHEM+o8TyfUwfgnaikm2dnZykaxHWOxbuUrzBYDWH4C83Lw2Bg7x5gyahRmC+XHH39cjf3+979Xthn3r21atGhh61UHDx5UY6h9vPvuu/Y2xt+xnQAu58VERmwnjLFsM0eob9++asxseyDir/ngsbFlQL9+/ZRt5hA9++yzagzbJmB+CPog5gT16NFD2WYrBJ9O4wPzzkw/cLovapOatB5x03jcjm3mvt19991qDDUe1Fnw3sf3yem58bGoEWLJJ7wXevfurWzMMTLPBfNyEFN7YmsDQgghIQcnHUIIIZ7BSYcQQohnhKWmg7FYM8aJdYVwX1z/jvFOBNfPO/GPf/xD2ZgrgnFdrIeGMVEzrwfjuKjZuLULdnvd5vGxDTSWz/eS4uJi+zp98cUXagxzIUwbS6i4xb3d9DbUxMyaZ1jfDOu6YY4VtozGmPratWuVPXHiRHv7r3/9qxrDVsVYjw4LbGJ7a9Qs3377bXsbc4JQdzhz5oy9Hch9EiiRkZH2feymG5j3O977Tnk2t2Nj3lL37t3tbWz/ju0s8DrjtcTPLdzftPFzBWv/YW6NWzkh1ItN/RJ9Ez+z6rz2GiGEEOIEJx1CCCGewUmHEEKIZ4SFphNoO9ZgMmbMGGVPnz7d3h41apQaw543mEuD8VC3Gkjm8fAaYK01t3a4eG6IeW64Nv/RRx9V9ubNmx2PFUxKS0vtWDzmr6BOZeao4PXA+mY//elPlY3ax8mTJ5WNuTRmTB6PNXPmTGWbuS8iWgsQEfnDH/6g7CeeeELZx44ds7dRW8Iaepi7hPX/cH/smWP6wejRo9WYmQclIjJ8+HB7u6ysTHbu3Cle49TvKpB6gyL+uTXY1hnzWx544AF727wWIv76D96Pbj1tcNzUcVCbwvcYc7HQZ7BeH2pE5nVAfXfLli1SU/hLhxBCiGdw0iGEEOIZnHQIIYR4RlhoOqh1OIG5G1gvCmsk4TjqF7169VK2GcvHuCvqJhgzxlwRXB+Pmo9Zew1rW2HMGPuoYK4IalMYFzZzcVArwVwQL2nevLl9XTBvBLU8s56cee1E/K+9W7+dLl26KPuee+5R9qZNm+xtrAk3bdo0ZZv9p0REPvnkE2Wjn7zzzjvKNmPsqB1gvP7o0aPKRh3s7Nmzyr7rrruUbepPWEMO/f2zzz6zt2tTVzX1ENRp8J4xc1JQS8MaeNhrCD8LML8FNR9TZ0W9yK0/Do6jZos5febj0V/wufGxbs+FGo/5XPieB/JZXB38pUMIIcQzOOkQQgjxDE46hBBCPCMsNB3UFF555RVlm3FpjE9iDBLjmdgnBeOfmN9haiuYI4CxVNRZZsyYoezMzExlY16AqR+hnoFgHgkeC+uDof5kxoVRD0J9w0uKi4vtHIYjR46oMTNPQkTnLuH7jrk02NMGa7F9/PHHykYNzcwJwvpU6IOrVq1S9ksvvaTsDRs2iBOm/oTH/uijj5Q9YcIEZaMOgXW6UCMxdUbMS8EafGa+UXl5uZ+/B4tGjRrZ9xrev6hvmHrapEmT1Bi+53iPuNVmw2tlak2o2WCuGx4L83KwFhti+p9TjUYR/2uENn7G4es2x/EzDWHtNUIIISENJx1CCCGeEbLhNbOc+fLly9WYWVZeRIdSnErJVAUuucTHO/28xLAKhqF+97vfOR5r3rx5ynZaUp2enq7GTp8+rWxcCo5hB1xy7VR2A0MF+PPdSxo3bmyfKy6BXb9+vbKfe+45e9tcziviX+5l3LhxysZS9LicFq+fWTbngw8+UGO4bB+XLWM7cFzKO3XqVGWbLR22bt2qxjAUmpOTo2x879AvsCS/2XYBfe4HP/iBss0wjFt4qCZERETYnwUY4sKl8WbrBiw3hEuLMRzkZju9RqcwvIj/En0su4Tnhvez+fiSkhI1hiWfsAwO3s9uJbPM41+4cEGNYSjOfCzDa4QQQkIOTjqEEEI8g5MOIYQQzwhZTWfmzJm23oJaCS5vNePaGOPG+DqC2gbqNLjU2NRdcBltQUGBsrG1MMbqsUUALos2XwtqDFhaBctVYEwZWyGglmWCuhZeI7P9cmVlpV/cN5iUl5fbsWJ8TUOGDFG2qXdg2Zof/vCHysbls3/729+U/cILLyh79+7dyjZj8HPnzlVjX331lbKHDRum7MLCQmXj61q5cqWyzaW9uDQe22dgCZ5XX31V2ehjeH+Ymgj6SFZWlrLNcXwNwcRcMo2aFJbeN3Um1B/c7gksS4X3FOKkJbulXuDnSnx8vOO4eQ+6lbFxW46NrxMxrwuWAnJbVn478JcOIYQQzwho0klLS5Phw4dLTEyMxMXFydSpU+XEiRNqn9LSUklNTZV27dpJy5YtZfr06X6/AEh4U1JSIvn5+XL+/Hm5ePGiiPg3PaMf1G+OHDkiGzdulFWrVsmaNWv8VrqJ0AdI1QQ06ezatUtSU1Nl//79sn37drl586Y8/PDDajnfL3/5S9m8ebNs2LBBdu3aJXl5eX6Vm0l4U1ZWJjExMRIfH29nvE+bNo1+0IDIz8+Xvn37ypQpU2TSpEl2CJQ+QNwISNPZtm2bslevXi1xcXGSlZUlY8aMkeLiYlm5cqWsW7dOHnroIRH5rgRInz59ZP/+/QGVyL906ZIdm8T4plO5GNwXNR6nUugiIleuXFH2N998U+3xMO8GY6UY1924caOyv/zyS2U7xdsxHo3le9xKp2MsFuO+5jjGafGamW26b926JYWFhZKbm1srftC/f387r8B3LB8ZGRnKNrUUzOU6fPiwsvH6YM6UWxzcvEaYO4Lx+3379ikby8nMmTNH2Zj3Y77XmL9x6tQpZaPeiS0bsFUHlvsxr9PPfvYzNWb62OzZs9VzDxkyRM6fPy+HDx+Wjh07BtUH4uPjbX0F84rwepjg/Yn3EOowTjkoVWE+Hn0A83LQfzAvDDVIPJ5p4/2Ivhpo+wEnnaZnz55qDFtjm3mQlZWVfr5fFTXSdHw3j+/DMSsrS27evCkpKSn2Pr1795bExES/G89HWVmZlJSUqD8SntAPGi6+CcmXmEgfINVxx5NOZWWlLFiwQEaNGiX9+/cXke9+ckdHR/utpoiPj/fLwPWRlpYmsbGx9p+5MoqEPr5vgyNHjqQfNFAsy7J/IfXt21dE6AOkeu540klNTZXs7Gy/UiSBsmjRIikuLrb/MDxGQhvfAoK33nqrRsehH4QvmZmZQflVQh9oGNxRns78+fNly5Ytsnv3bhUz7tChg5SXl0tRUZH6hlNQUOAXC/TRpEkTv/XyIiIXL16016NjbPX8+fPKNlv2Yil31D6wtDvWpsJYKp6bqYVgDSPUmnCdPz431hLDOLB505mtmKs6Lzy2m8aD42beCb5XqEEMHjxYRL6rzeWL4Zql/oPpB7m5uXYM+9NPP1VjWIfMrA2GWgfm9OD7jPujX2CumPleoTbn+8Xn49ChQ8r+xS9+oWz0b9zfrNW2Zs0aNYbtMsw22iL//+XhA2uV4bip+aA/Tp48WdmLFy+WY8eOSWFhoQwdOlTVuwumD9y6dcu+l3AiMv1ORGTQoEH2NmofaLu12Mb3BfNjTO0DdRTUijGnD/OjnGoh4nPjZxqeJ2pZeN54jVHTMTUi1KKwRtydENAvHcuyZP78+bJx40bJyMjwS7AbOnSoREVFqeWTJ06ckHPnzklycnKNT5aEBpZlSXp6upw6dcov4VWEftAQsCxLjh07JgUFBTJ8+HC/DyP6AKmOgH7ppKamyrp16+Sjjz6SmJgYOzYbGxsrzZo1k9jYWJk9e7YsXLhQ2rZtK61atZLnnntOkpOTA1qtQkKb9PR0OX78uEyZMsX+hlZQUCBRUVH0gwbC0qVLJS8vT+69915p3Lix/e34xo0b0qpVK/oAqZaAJp033nhDRETGjh2r/r9q1Sp7eeUf//hHiYyMlOnTp0tZWZmMHz9eXn/99aCcLAkNfOXv33vvPft/vXr1oh80IHzLuj///HP1/w8//NBefk4fIFURYd1uEwSPKCkp8at/tmjRImU//fTTyjbroaGgiTFJzNtBG8MEGAc246O47t+pna2If28f1FVwf6c8AIxHY5zWLa8HNSBTF8P4M4ZRly5dqp7nvffek+LiYr84dk3w+UHnzp3t+Pbzzz+v9sF6aE888YS9feDAATWGNbuwXhxeP8zzMVuii4isXbvW3kZdxC33C/OgZs2apeyDBw8q24y5o37k09d8YK7X+++/r2x8L9FPzFwn9AO8BqbuUFZWJkuXLg2qH/h8oFmzZvY1w3PAmnqm/oXaEeokeA+hrhJIXTG8P53y4ET8c2tQd8FzNW1shY3HxnPB12He6yL+PmBq5n/605/U2Pbt25Vt5uVYliWlpaWuPsDaa4QQQjyDkw4hhBDP4KRDCCHEM0K2n45JWlqasrGOlhnrx5g2aheobWAuAsZWUdMx46VO6/ZF/DUajPOijc9ljrvFl3Ecq/m69Rky48IYCz9y5IiysfdMbTJu3Dj7uuzcuVONjRkzRtmmjuNW2wprkO3du1fZWJMMa7OZ+WlYDwxr7GFWfvfu3ZW9ZMkSx3M16/9hXyXsp9OvXz9lYw+chIQEx8ebr+XcuXNqzNRORXROHGoUwcTMO/FVNfeB+pepWY0bN06NYY6SU32zqnDqmYOPxVwZ/Nw5e/assvHaIqa+hnoj+hfmD6I+hOeKGtGuXbvsbbzncF/z2Le7PIC/dAghhHgGJx1CCCGewUmHEEKIZ4Rsnk5ERIStU+A6dCcefPBBZaMehHFdzAlyqnkkouOhbn0rCgsLlY2XGnNF8HWa8VM8DwSPjTlAmCOEr9Ncf5+Tk6PGUO+oitrK0+nTp4/92nv06KH2QT3OHMccE6xYjLXYPvzwQ2Wj7oIamamJoba0f/9+ZWOtQKzjhj2bUEMzfRZ7CmHeDmp16N+Yk5GUlKTsP//5z/Y25i5hrpN5XqWlpfKrX/2qVvJ0zM8CBHVQU2dC/evhhx9W9sCBA5WN9wTm+GG+lXlP4r179OhRZeM9hO+5W61EU99FX8b3HG3UNzHX6cyZM8pevXq1vY1alBOWZUl5eTnzdAghhIQOnHQIIYR4RsiG17yid+/eynZrjWAulcVlj/gTGVsH12dqK7z2+OOP2yEUbB2B19sMgQ0YMECN/fOf/1Q2lsTHcAaG0zC0ZIYsMJyBYVUMr2GIC5dv+2rb+cBwnAmmCODtjGEcvLewVYAZesGludiK2CwZVVZWJsuXL6+V8FpUVJQdXsOQNobEzDAcpiS4tad2K4PjtMQa31N8H9zax7ulRJjHw32dSuZUBYbq8dzNc8XX4XS9GV4jhBAScnDSIYQQ4hmcdAghhHhGWJTBqU2OHz8e0P7Z2dm1dCakKk6fPm3HzidOnKjGsASKqb9h3BuX0psl/EX8ywRhK3EsvWSWiMFYP8bMUQvBpd/Ykwbba5jaFZYhwWW/WLoGtSjUn7AFuKl1ZWRkqDGzFbSI1kDcWj/XBHPJtFvqgAmek5tu4qbLIIHI4fjcgbRNcDtWoPoQlixyerybPuSk/1QHf+kQQgjxDE46hBBCPIOTDiGEEM9o8JoOCW0GDhxo5+mg/oAxeDOPB7U3LPWBeTqYk4J5OlguZt26dfZ2SkqKGsM22j179lT26dOnlY3trlFfMnVH1DTwuZARI0YoG9t4oyZkakDYsgFzfMxySZgzFUxMrcBNvzD3ddMY3PQKt3HMUbndfW9nfySQ1+X23GhjKSGnnCCnPCnLsm6rZBl/6RBCCPEMTjqEEEI8I+TCayFWlYfcJsF+33zHM0NobpV4nUI8GBbAfTFUh7bTMlOsRux2bDxvt+e+k2Wpt3tuaJuvE1+z07F828H0A9+xAgkt3em+NaUm4bLa2D+QY7nZt7tvVe9XVYRc7bXz58/7le4moU9ubq6qS1dT6AfhSTD9gD4Qnrj5QMhNOpWVlZKXlyeWZUliYqLk5uYGtZBkfaakpEQ6d+7s6TWzLEuuXr0qCQkJrsJrINAP7pz64gf0gTsnlH0g5MJrkZGR0qlTJykpKRERkVatWtHRAsTra1YbVcHpBzUn3P2APlBzQtEHuJCAEEKIZ3DSIYQQ4hkhO+k0adJEXnrpJb8+7aR66uM1q4+vqbapb9esvr0eLwjlaxZyCwkIIYTUX0L2lw4hhJD6BycdQgghnsFJhxBCiGdw0iGEEOIZITvprFixQrp27SpNmzaVESNG+LX0bcikpaXJ8OHDJSYmRuLi4mTq1Kly4sQJtU9paamkpqZKu3btpGXLljJ9+nS/cv2hDn2gehqKD4jQD6ojbH3ACkHWr19vRUdHW2+99ZZ19OhR65lnnrFat25tFRQU1PWphQTjx4+3Vq1aZWVnZ1uHDx+2Jk6caCUmJlrXrl2z95k7d67VuXNnKz093crMzLRGjhxp3XfffXV41oFBH3CmIfiAZdEPnAhXHwjJSScpKclKTU217YqKCishIcFKS0urw7MKXQoLCy0RsXbt2mVZlmUVFRVZUVFR1oYNG+x9cnJyLBGx9u3bV1enGRD0gcCojz5gWfSDQAgXHwi58Fp5eblkZWWpboyRkZGSkpIi+/btq8MzC12Ki4tFRKRt27YiIpKVlSU3b95U17B3796SmJgYFteQPhA49c0HROgHgRIuPhByk87ly5eloqJC4uPj1f/j4+MlPz+/js4qdKmsrJQFCxbIqFGjpH///iIikp+fL9HR0dK6dWu1b7hcQ/pAYNRHHxChHwRCOPlAyFWZJoGRmpoq2dnZsmfPnro+FVJH0AdIOPlAyP3Sad++vTRq1MhvhUVBQYF06NChjs4qNJk/f75s2bJFduzYoZomdejQQcrLy6WoqEjtHy7XkD5w+9RXHxChH9wu4eYDITfpREdHy9ChQyU9Pd3+X2VlpaSnp0tycnIdnlnoYFmWzJ8/XzZu3CgZGRnSrVs3NT506FCJiopS1/DEiRNy7ty5sLiG9AF36rsPiNAP3AhbH6izJQwOrF+/3mrSpIm1evVq69ixY9acOXOs1q1bW/n5+XV9aiHBvHnzrNjYWGvnzp3WxYsX7b9vv/3W3mfu3LlWYmKilZGRYWVmZlrJyclWcnJyHZ51YNAHnGkIPmBZ9AMnwtUHQnLSsSzLeu2116zExEQrOjraSkpKsvbv31/XpxQyiEiVf6tWrbL3uXHjhvXss89abdq0sZo3b25NmzbNunjxYt2d9B1AH6iehuIDlkU/qI5w9QG2NiCEEOIZIafpEEIIqb9w0iGEEOIZnHQIIYR4BicdQgghnsFJhxBCiGdw0iGEEOIZnHQIIYR4BicdQgghnsFJhxBCiGdw0iGEEOIZnHQIIYR4BicdQgghnvE/gbfFz+JhdW4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlgElEQVR4nO2de3AW5fXHDwHCnXBPiBCIXAqCciuBcBMs5VZBECtWKtTpgGAoBdpxhmnForWhTksZGJTWVqhVBKmiiIAVkFBsuIVbuVouSjAkgJiEawLJ/v7K/p7zffPussmbzZuX72cmM3vy7Lvvs8+e3efdc55zTjXLsiwhhBBCfCCqsjtACCHk7oGTDiGEEN/gpEMIIcQ3OOkQQgjxDU46hBBCfIOTDiGEEN/gpEMIIcQ3OOkQQgjxDU46hBBCfIOTDiGEEN+osEln6dKl0rZtW6ldu7b06dNHdu/eXVFfRcIU6gARoR4QTbWKyL22evVqmTRpkixbtkz69OkjixYtkjVr1siJEyekRYsWjp8tLi6WrKwsadCggVSrVi3UXSMhxrIsuXLlisTHx0tU1P//himPDohQD6oaFaEH1IGqRTAdKG3HkJOUlGSlpKTYclFRkRUfH2+lpqa6fjYzM9MSEf5Vsb/MzMyQ6QD1oOr+hVIPqANV8w91AKkhIaawsFAyMjJk7ty59v+ioqJk6NChkp6eHrB/QUGBFBQU2LIVZkmvGzVqpORmzZrZ2xMnTlRt2dnZSj569KjjsVu2bKnkwYMHK3nbtm329rvvvuvS08qlQYMG9rZXHRAJrgeLFy+WOnXqiIgeDxGRrl27Knn//v32tnmdSo5vEh8fr+Q9e/Yo+caNG0ru2LGjki9fvmxv9+rVS7Xdvn1byUVFRUpGPcFjt2vXTsmvv/66vY1vB/n5+eJEXl6ekvHz1atXV3Lz5s3tbfMcS/su87xv3rwpL730Urn0IJgO1KxZ037TwedDcXFxwHFKwLcjt8/i/l7ertw+izqA312jhn4UO/UdzwNlt764PWPNdsc3llL6VVxcrHSgNEI+6Vy6dEmKiookNjZW/T82NlaOHz8esH9qaqrMnz8/1N0IGXjBzJu0du3aqq1WrVpKRkVCoqOjlVzycC2t3avi+I3ZP686IBJcD+rUqSN169YVkcDxwvE32/Fa4HjhZ2vWrKnkW7duBT027o/Hcpt0sG943evVqxf0u5z6URrYjp/HScfsm9t34XmLlE8PgulAtWrVgk4AThOD26Th9nAO5aRT3r54oSKPFYrPVPrqtblz50peXp79l5mZWdldIpUA9YBQB+4OQv6m06xZM6levbrk5OSo/+fk5EhcXFzA/rVq1Qr45VeRNG7cWMk9e/ZUMpq8cNb+9ttv7e2DBw+qtkcffdRRvnLlipJjYmKUnJGRoeSvv/466LHwV+ZXX32lZNPUJCJy7do18QuvOiASXA8+/PBD+xc2vn2gyezAgQP29lNPPaXacMUUmtfat2+vZDQl4a/1I0eO2Ns4ttevX1cyXuehQ4cquVWrVkrevn27kjt06GBv41tQly5dlPy///1PyXgNTJ0SEcnKylLyY489Zm+jaaVTp05KNt9WCgsLBQnVs6CoqCioec2LBcDts6HEzXSH54ljjZ83++71rcnNHOcE7utmbrsTQv6mEx0dLb169ZItW7bY/ysuLpYtW7ZIcnJyqL+OhCHUASJCPSClE/I3HRGROXPmyOTJk+W73/2uJCUlyaJFi+TatWvy9NNPV8TXkTCEOkBEqAckkAqZdCZMmCAXL16UefPmSXZ2tnTv3l02bdoUYKIgkQt1gIhQD0ggFRIcWh7y8/MDbODlAZfOjhs3Tsluy0LRXm/aYnE56oULF5SMq9dwNRB+F9pxTbs3fhZlPE8cw7Vr1yr56tWrEkry8vKkYcOGITteiR7MnTvX9l+h/6FkVVsJFy9eDHo8XIY8aNAgJW/evFnJZ8+eVXJSUpKSTdt2WlqaY79Onjyp5D59+igZ7fvoE9q3b5+9jcvq0V8ycuRIJa9evVrJJ06cUDIuOzd1uE2bNqrt9OnTSjbHpKCgQBYuXBhSPSjRgerVqwf1Yzj5acrrwymPv8gNr76R8jymy+MH8+I/sixLbt++7aoDlb56jRBCyN0DJx1CCCG+wUmHEEKIb0S8Twd9OIibn8ApdQZGc+O+N2/eVDJGquPn3aLinb4L4yTq168f9LMiIjt27HBs90pF+XQSEhJs+/ekSZPUPji+ps/BjG0pOZ4J+sQwQh7jXzA+xkyTg/Z5TGvzxRdfKPnUqVNKxtgaXE6MaXNM8DwxfU9ubq6SUS9wXEx/EsaVPf7440o2U9kUFhbK22+/XSE+naioKNt3UJ7MHF4/i/cn4pSaxi1OJ5R4PS+3vpTVx2NZlhQVFdGnQwghJHzgpEMIIcQ3KiROpzJB8xguJUZzGpobMLWKkwkMEzm6pZtA8xqaPnCJtdk3tzQZ+Fk0zWF2YTQvlZbGJBxo3bq1fW54Tmi2MmM/8Hwx/Uvv3r2VfPjwYSWjCewHP/iBknft2mVv33///aoNMyijGRB18p577lEyxrCYKY3wvDZt2qTkJ554Qsl4XXHp97/+9S8lm8u3UffXr1+v5MTERHsb75vKwmnJNOJ12XJ5EoC6PRvKk17Ga5ZpxClTt9t3OZkYg8E3HUIIIb7BSYcQQohvcNIhhBDiGxHn00GbN5YywPQvmObGrSiW6cdBHw2mL8EUJa1bt1Yy+hXQvm4eH31Pbj4ZrHiK++O4YF/DhRo1atg+nf/+97+qDc/ZTF2D1QuxlAEWTkP/BfpZ3nvvPSV3797d3t64caNqQ9s2+mjQ74i+qp07dyp5xIgR9jbqK15HTAWEKXhwf0zBY+rZuXPnVBueh3lsp+X9oaQ8S6TxGqOMfhW8Z/B+N88ZdRH9JPhcwfsZ93c6nlPZg9LAccDzdKty6uXYd3J9+KZDCCHENzjpEEII8Q1OOoQQQnwj4nw6GAOBKeoTEhKUjClG0MaN8Qem3wbLIqCtHv0GY8eOVfJzzz2n5M8//1zJs2fPtrcxpgd9Nhinc9999yn50KFDSm7evLmSw9Wn07FjR9u2jn4WjH8xK1RiWv49e/YoGVP8z5w503F/9BWa5cG7deum2jBOB8sRYDnqgQMHKhn16ptvvrG3Ub/N8ukiIv/+97+VjKWxMU3OAw88oGTTb4ZjaI6viPY1FRQUBPgkQ4XpJ0B/hJMPwc1ng/f697//fSW3bdtWyV9++aWSTR3Ce71Hjx5KHjJkiJKbNm2qZHzOmHFgIrq8BaZNwmcD+v3Qv4njgumOzGcc+nfKk4aoBL7pEEII8Q1OOoQQQnyDkw4hhBDfiHifDpaURj9AkyZNlIz2UMS0d6KP5oUXXlAy+pNwbf68efOUPGbMmKDHmzFjhmpD2zz6qtBOi+eN/qdwpaioyLYrf/LJJ6oNx9O89hjTg2WZ8dqgHwZ9YhkZGUo2Sx1g2YNt27Yp+cknn1Ryz549lYzXCstZm2AsGNrYn332WSXjdccxw3Ey2zFWpG/fvko2/aEVmbvPLG1QHvAYGLtl+qhERDp16qTkvXv3Ktn01Q0fPly13XvvvUrGUvY4XuiXwXgq02+IsVfo1zPL3IsE+ghRl01/kYjWGbe8bGW5LnzTIYQQ4hucdAghhPgGJx1CCCG+EXE+HVyTjuvf0X6OPh9cy4+214cfftjefvnll1Xbhg0bgu4rIvLII48oefTo0UqeOnWqknfv3m1vY942tBHjeaGMtnzMQReujBkzxvaZTJkyRbVhDIpZ5hxLnmNOslatWikZfSUY14R6YtrwsUbN008/rWS8dmZZbZHA+A/Um+XLl9vbGEuCenDkyBElX7p0Sclog8cYowMHDtjbmGsNdcj8LsxLFg641ZXB2BocK5QxbseMccK4m3feecdRPnPmjJIxzg5126zZNGDAANWGuo11pjCX39GjR5WMum36cbzUBWI9HUIIIWEHJx1CCCG+wUmHEEKIb0ScTwfBuJv+/fsrGX02p06dUjLmKTLt9atXr1ZtuH4+LS1NyRgLgjbQ6dOnK/n8+fP2NuaJQvBYuM4f4wDcjhcurF69OmjuNbw25rXDfbE2CsYqfO9731My1pIZNmyYkk27OdbaqV27tpIxrx3GzowaNUrJmA/w5z//uQQDxwB9Ov369VMy5pzbv3+/kk0f6NatW1VbSkpK0M/6VU8HcfI5oJ8J9/3666+VfOzYMSW3bNlSyej/Mo+3ePFi1fb6668rOTMzU8l43TCuB7970KBB9jbq16effqrk999/X8noM8RnHo5TWfKpeYFvOoQQQnzD86Szfft2GT16tMTHx0u1atXkgw8+UO2WZcm8efOkZcuWUqdOHRk6dGhAVlQS2VAHIp8TJ05Ienq6bNy4UdauXRvwdkYdIMHwPOlcu3ZNunXrJkuXLi21/ZVXXpHFixfLsmXLZNeuXVKvXj0ZPnx4gEmBRC7UgcinoKBAYmJiAkxOJVAHSDA8+3RGjhwpI0eOLLXNsixZtGiR/PrXv7ZjUt58802JjY2VDz74QJ544ony9fYOQPsk+nTy8/OVjHmKDh8+rGTMz9SxY0d7G3OtYTzGwYMHlfyb3/xGyZhLDGNHzJgh9Mm45TxCnw3akLFme6gItQ50797dtmFjLA1eO7MdYxUwjxbmS8PYhfbt2yv5b3/7m5Lnz59vb2P+MtQ5rMWDOoV59NCeb8btoGUBYzDQr4jxHhibYtbqEdF1lrAO0EsvvaTkxo0b2/ebGdPi53PAi/8Bnw0Yy4Z1jjDWC+sLtWvXzt7G+xOvKeobPiueeeYZJeMYmXFAK1euVG3Lli1TMuZaw2cF1shxy6/mdKxKz7125swZyc7OVooeExMjffr0CXCil1BQUCD5+fnqj1RdyqIDItSDSII6QJwI6aRTYtfFSObY2NgAm28JqampEhMTY//hLwBStSiLDohQDyIJ6gBxotKXTM+dO1fmzJljy/n5+eVSNreStPjq6VaO1Wkp6IIFC5SMaTKc0saX9t24lNFcZonpy/E8cRklmtPQtIBLqiubYHrw1ltv2efSuXNn9Rk0rZgpYdD0dvz4cSWjCSwxMVHJ+Csby1iYKY9++ctfqjY0f5hmmNKOjdcK05rMmjXL3jaX0YsElh3H5dVYYhr1AEtimKCpuUOHDkouMTdlZGRIYmJiwNJcr4T6WYCgvqB/CZe2b9y4Ucl4Hc3l6KgDuC/e21jOunv37krGJf7msmg066O+oD55MZ95pdLNayU3Ol68nJycgIdACbVq1ZKGDRuqP1J1KYsOiFAPIgnqAHEipJNOYmKixMXFqV9X+fn5smvXLklOTg7lV5EwhTpAqAPECc/mtatXr6oVMmfOnJEDBw5IkyZNJCEhQWbNmiW//e1vpUOHDpKYmCjPP/+8xMfHB5gnSGRx6NAhSUhIoA7cJdy+fVutWCvJWp6ZmSldunShDpCgeJ509u7dK0OGDLHlEhvs5MmTZcWKFfLcc8/JtWvXZOrUqZKbmysDBgyQTZs2BfgcKgq0Z+L3Ykp/TCmO+2N6c3NZLvps/vznPysZ7dG4/8SJE5WMKcbNtCO41BX9QY0aNVIyLtHEMt6hZuDAgRWiA82bN7evEdq9d+zYoWSzrMXMmTNVG6aqwZQnOL5Ychp9YGY6pc2bN6s2XBLtViIar824ceOUbC6TxjQ2qGOpqalKRl8VLpXH+8U8z/Hjx6s2s5THjRs3lPlsz549IiLyu9/9Tt5+++2Q6oDpi0FfJvppylPWGv0uX331lZKxXLX5bMCy93hvI+izwfNC/TTDLbBfiJufGnFKJeRW2uBO20w8TzqDBw92PHi1atXkxRdflBdffNHroUkVJi8vz7bBUwcinzp16sgf//hHW75586b86le/ktdee01EqAMkOMy9RgghxDc46RBCCPGNSo/TCTVYnhqXXaJpENNVoG0f1/L//ve/t7cxVcWDDz7o2BcsZ422/VWrVinZtJljPAYG2WE7ngfakDFupW7duvY2ppupTAYOHGj7Afbt26fa0O5tlnL++OOPVRumPMFVVOvXr1cylg5HPTGTV2KsC8YAYWzNd77zHSVj2pslS5Yo2Uyx0qVLF9WG+okp8s2y2iKBfgks4WDGg61Zs0a1YRlu81h+lTYoT9p9r/4f9PeiP9j0r5npse4E9KXh8nLMbWl+F/p/3OJwvI6ZOS5uY8Zy1YQQQsIaTjqEEEJ8g5MOIYQQ34gIn45pe0X7JtplMV15VlaW47ExPmPdunX2NtqxS9K4l9CnTx8l7969W8lvvvmmktEvY6Yzd8spd/r0aSXfd999SsbPo7/JPF44+XQ+/vhj+xpiuQH0jYwYMcLexrHFa2XG9IgElj5AfxHGl5h6dvbsWdWGfhb0K2KpA/SdYOyNGQOCvir0B2GaGSxdfP/99zv21SzL/fnnn6s20+8nov1klVWuGnEL5zBBvwq2Y+wNjrVZ7hrLhLs9VzCODmOE8P40895hrBber6EsN+01xudO4JsOIYQQ3+CkQwghxDc46RBCCPGNiPDpONWGwTo0uJ4ea1Eg6Dsxbftr165VbVg6GGtqIGgjxvxppp0cfTKYX8n0/4gE+izcbMwVVb66vPTr18++BuhT+Mc//qHkTZs22dsY9zBw4EDH70F/Gl5bLNX81ltv2duYEw5t7Fg/B/uGMUNYNtmskYMlzh977DElo73/1KlTSs7IyFAy6pxZt2X27NmqDeONTN8T+iRCSbVq1e7Yd2D6M9Bng/cQ6jzeQxh3N3r0aCWb9a7w3sdxRx8N+otQPydPnqxkM54K8+udOXNGyXgtvPpdnHKvhQK+6RBCCPENTjqEEEJ8g5MOIYQQ34gInw76XUzQvo414rH2CcZcoF3YjLnAGCD0H2GeK6yr4lZbxLQ5Y7/Rbov5v9Cng74rt3oe4UKNGjXscb5w4YJqe/zxx5VsnjPmpjNzpYkE6gzGr8yfP1/JZkyGiEjXrl3tbaxvkpSUpORdu3YpGa8d6k3Pnj2V/Oqrr9rbTz75pGpDHUOGDh2qZLOap0hgzJCpZ1jfCf1epn6iz8IvnHKDoT8C7z+MzcJcipi37vLly0p+99137e0vvvhCtWGuPwTvN4zbwfvZ9P9i/B/qJj4rMHYxlDWImHuNEEJIWMNJhxBCiG9w0iGEEOIbEeHTcbIrov0c7Z1o28d2jIcxj4/r/LHWPeJ0LJFA26ppi/WaAwlzamE9GLRvhys5OTm2/+no0aOqDX0nZiwD2uvbtGmjZMwrhj4gjKUxfTgi2k+DfkHMwzV48GAlo70fzwtrIZl1bN555x3Vhvb8QYMGKRnrJmH9HIwXMXN8/eEPf1BtQ4YMUXLnzp3tbbxvKgq8Z9A3Yvpg77nnHtU2YcIEJeNYYV7Gbdu2KRljtw4cOGBv4/2G/lqM2cN8fKh/eJ169Ohhb6OfDutyYawW3vs4hk7PoVD6f0rgmw4hhBDf4KRDCCHENyLCvGa+UmOKdbdlfJiiBM0EuCzayYyAbW6p1LGvKOP+Jmja++abb4LuW5a+hQt5eXn2uU6ZMkW1YaqR/fv329u4rBTNqA899JCSv/zySyVjahEslWCaddCUgqYSvDY/+tGPHI89c+bMoO1YzgHTp2DJczRBopkRl9Kby6JNk45IYBocc8zQdBxKzDQ4TuWSETSn4XJzTA21cOFCJaN5DcuQm6CZD+VLly4pGc1xWJoE201T+wMPPKDafvGLXyj5r3/9q5KxzDuad72UQgiFuY1vOoQQQnyDkw4hhBDf4KRDCCHENyLCp2P6XdC2jDLaWnNzc5WMvg1MIeEFr34SL0sX0Y9w9epVJWPKegTPK1xLG2RnZ9vXd/PmzaqtS5cuSjb9Fej7wGXJBw8eVDL69tC/1q1bNyWb/gwsDY7Lq3H56/PPP69k/Hx6erqSe/fubW9jCn30VWFK/JMnTyoZS3ugXpn+KEz1/5///CfodxUUFAQs3Q0VRUVFQX06eD+bfcZUMjh2f//735WMvg+3cg3mcwfTSmEZDkx1hEvd8X7G62L6YcaMGaPacEk+pjZCn+FHH32kZEx3ZOLFh3an8E2HEEKIb3iadFJTU6V3797SoEEDadGihYwdOzYgEOnmzZuSkpIiTZs2lfr168v48eMDAu1I5IEJNakHkc3Vq1dlxYoVsnDhQlm8eLGsW7cuYB/qACkNT5NOWlqapKSkyM6dO+XTTz+VW7duybBhw9RSwtmzZ8tHH30ka9askbS0NMnKypJHH3005B0n4cW4ceOoB3cRhYWF0rNnT3nqqadkwoQJtrmWOkDcqGaVw0h38eJFadGihaSlpcmgQYMkLy9PmjdvLitXrrTL6B4/flw6d+4s6enp0rdvX9dj5ufnB6SjcKNt27b2dmJiomrDFBAYv2HGdogE2nExJYlTKVccSrTzoh/FLXbGCTwvtO3jWn4sU4z7myUdMP7lTqkIPYiLi7Pt9vfee6/aB9PPmClcMM0NpnDB+Ct8Y8dS4ocPH1ayqUe7d+9WbVi+GuM7MFYGvxt9KXv27LG3f/zjH6s29OVhX9AXhWUYMB7J1PfY2FjVhvEdZoqdGzduyL59+2TDhg0ycuTICnsW4D2C19EsXY/6gn46t5LSbql9TL8Nln3A+wvvV7eYPPy8eV6jRo1SbSijPwmv+csvv6xkLL3hNCW4+Z2LiookLy8vIM2PSbl8OiUOqJL8TRkZGXLr1i2VG6hTp06SkJAQ4BwtoaCgQPLz89UfqZpQD+5eShbslDwcqQMkGGWedIqLi2XWrFnSv39/e7VOdna2REdHB6ycio2NDYjSLiE1NVViYmLsv9atW5e1S6QS6du3L/XgLsWyLPvXdMlKPOoACUaZJ52UlBQ5fPhwQNoNr8ydO1fy8vLsv8zMzHIdj1QOb7zxRrk+Tz2oupw+fTqgQm9ZoA7cHZQpTmfGjBmyfv162b59u7Rq1cr+f1xcnBQWFkpubq76hZOTkyNxcXGlHqtWrVqO5aa9gjZH9Mngenn81YW/rrzE6bilDPf6eRO0ZeN54bp/PA+Mw8HzKm/KcjONfCj1YMKECfb/0eaOfhvTTo7lpzFGA2N8cDwwvgVLQZj7DxgwQLWhjRxjhrAdyyJjXx988EF7+9ChQ6oNfRqoQzjeWHZh/PjxSjbzdqFO9erVS8l5eXmSlZUl+fn50qZNG+UjCfWz4E710/Q7YdwQjhX6XN3uX9zf1CEso4Bjh/GC6HfBEhNoWjTvdyyNjbn9TB+3SKA/84c//KGSMS+cmQfO7flX4eWqLcuSGTNmyNq1a2Xr1q0BTvtevXpJzZo1VR32EydOyNmzZyU5OdnLV5EqDPUg8rEsy55wEhMTAx7I1AESDE9vOikpKbJy5Ur58MMPpUGDBvZbQkxMjNSpU0diYmLkpz/9qcyZM0eaNGkiDRs2lJ/97GeSnJx8R6tVSNUlJydHatasST24S9i6davk5uZKmzZtJCoqyl7pdePGDWnYsCF1gATF06Tz2muviUhg2oXly5fLT37yExER+dOf/iRRUVEyfvx4KSgokOHDh8urr74aks6S8KVjx47Ug7uIEjMfLrl+//33Zfr06SJCHSClU644nYqgLHE6ZmlizDvklhMJbeRY5hjrWpi4xemgHwXbca0+5pFyAnM1HTt2TMkYK4L5lfC7L1y4YG+jzfhOcFub75USPZg4caJ9DevVq6f2QTu66YfBnHpot37mmWeUjMt4zdgYEZERI0Yo2TzXrVu3qjaMw0F/EI4vxpOg/pt1bLBUMeZDw1gaHDPsG9aUMWOK0N+JY2j++CwoKJAFCxaEVA9KdMCpng7GtzjdQ/hZHAt8NiAYF2bGauFYob8Rrwv22+27TX8U+r3w2BgzNHbsWCVjrr9XXnlFyTt27LC3MW7RyRfsS5wOIYQQ4gVOOoQQQnyDkw4hhBDfiIh6OqaNE/MlYTwL2j/RZ4N+FzyeaYtF+6ZbjRq0N+N34edNOy7GqGDMAQbnOfmiSiNc6+mcPHnSPlfMh4axD6aPAevnNGjQQMno0EZfycyZM5W8adMmJQ8aNMjextxX6FzH646+KMwBhqEIpl39n//8p2pDnyX6LTAeCX0H6AM1fRMY72HWEMJ93WrPhAq3eB2nuBH0o2DeOjzfzp07KxmzK5j74zXG+xPvRxwv9AnheZrPBjwv/G48Fuo+xgBhX8zjYT/KG88nwjcdQgghPsJJhxBCiG9w0iGEEOIbEeHTMW37aOd3y1GGcQxot0VbrGlDd6u3gbEw6DdBGzPub34Xftatprrbd6MdNxS22oogKSnJ9tlhfALGv5g5ozAWBv0RZu0dkcBr+dlnnykZ7eBmPAvqHPoKMGbBrEMjIgER+ui/M68d6iPm2EM9wPo6eN3RT2b6wnB88V4y4zlwDEKJGaeDeMmNiH3EWC6smXTu3Dkl4z1nxvlgzSR8zmCcnFu/sd3JV+XmK0YdQH+nUwyfl3ySFZJ7jRBCCCkPnHQIIYT4RkSY10zwNRxNMriUEVN7oCnEaRmzV9CchiYd/C7ztRnNZZgKHfuFMppG0FzkZiqsLGJjY22zRlpammrD5cCmSQNTgXTs2FHJWKsF0+CgORKX05p6ZqapEQk02WJfHnroISXjMn4085g6jOWn8TqbZcdLA8sorFu3TskPP/ywvb1gwQLVhktxp02bZm8XFhYGmA1DRVRUlD3ebiYcL1m90IxppoIqTcZnibnUHe9Pt3s7lOeBoBkRTbKo21hK20uJFael3MHgmw4hhBDf4KRDCCHENzjpEEII8Y2I8OmY9lO38gDNmjVT8oEDB5T83nvvBT22iLaho33T7bu9pNhB0E6L+2LJ2q5duyrZzdcVZhUubLKysuy+4njhMtUePXrY27hkGscLU4OgnRuXPeOy5k8++cTeRr8K+o/w2qCe/OUvf1HypEmTlGxeK/QzYFltvO6Y3gd9PhgicPnyZXt72LBhqg3LaG/YsMHe9rJ02Svmkmk3PXVa+u+2/NftHHC5OaaeKmu/yovbeaHuf/vtt0pGf5TTGKPuYmmDO/EN802HEEKIb3DSIYQQ4hucdAghhPhGRPh0TDs0pm7HdBRoq3c6VlXm4sWLju2YAgRTYYQL169ft+3ETrEyIiIbN260tzEuKTY2VskY52Sm0BEJjG3A8sP79++3t7FfWAIaY8EeeeQRJbdq1UrJWEK9Xbt29jb69jBVDZbZxmNjDBCWRjDHoX379qqtZ8+eSjbTxBQUFMiSJUukIigqKrKvtVO5ZMTNj+Lmw8HPo0/H9H24fZfXEgHY7uRnQZ3A88KYPNzfqW/owwmF745vOoQQQnyDkw4hhBDfCDvzWlmW7pqvfPjqiEv4KjIbbjjhdRzK+9oc6iXXJcczTRq49BP7bJ4jLgPFlCc4Hrg/ymhaMccPj+U21tgXt2tlfjfu65Z+xa1iJV43sx0/i7J5HiWfC6UelBzLKcNyKI4fiv0rOuTAy3d7lUPdD9dl7VaYBWicO3cuIF07CX8yMzMD/AflgXpQNQmlHlAHqiZuOhB2k05xcbFkZWWJZVmSkJAgmZmZAUk4Senk5+dL69atfR0zy7LkypUrEh8f7xoc6wXqQdmJFD2gDpSdcNaBsDOvRUVFSatWrewVFw0bNqSiecTvMYuJiQn5MakH5aeq6wF1oPyEow5wIQEhhBDf4KRDCCHEN8J20qlVq5a88MILAYkpSXAiccwi8Zwqmkgbs0g7Hz8I5zELu4UEhBBCIpewfdMhhBASeXDSIYQQ4hucdAghhPgGJx1CCCG+EbaTztKlS6Vt27ZSu3Zt6dOnj+zevbuyuxQ2pKamSu/evaVBgwbSokULGTt2rJw4cULtc/PmTUlJSZGmTZtK/fr1Zfz48ZKTk1NJPS4b1IHg3C06IEI9CEaV1QErDFm1apUVHR1tvfHGG9aRI0esKVOmWI0aNbJycnIqu2thwfDhw63ly5dbhw8ftg4cOGCNGjXKSkhIsK5evWrvM23aNKt169bWli1brL1791p9+/a1+vXrV4m99gZ1wJm7QQcsi3rgRFXVgbCcdJKSkqyUlBRbLioqsuLj463U1NRK7FX4cuHCBUtErLS0NMuyLCs3N9eqWbOmtWbNGnufY8eOWSJipaenV1Y3PUEd8EYk6oBlUQ+8UFV0IOzMa4WFhZKRkSFDhw61/xcVFSVDhw6V9PT0SuxZ+FJS9bOkGmZGRobcunVLjWGnTp0kISGhSowhdcA7kaYDItQDr1QVHQi7SefSpUtSVFQUUF44NjZWsrOzK6lX4UtxcbHMmjVL+vfvL127dhURkezsbImOjpZGjRqpfavKGFIHvBGJOiBCPfBCVdKBsMsyTbyRkpIihw8flh07dlR2V0glQR0gVUkHwu5Np1mzZlK9evWAFRY5OTkSFxdXSb0KT2bMmCHr16+Xzz77TBVNiouLk8LCQsnNzVX7V5UxpA7cOZGqAyLUgzulqulA2E060dHR0qtXL9myZYv9v+LiYtmyZYskJydXYs/CB8uyZMaMGbJ27VrZunWrJCYmqvZevXpJzZo11RieOHFCzp49WyXGkDrgTqTrgAj1wI0qqwOVtoTBgVWrVlm1atWyVqxYYR09etSaOnWq1ahRIys7O7uyuxYWTJ8+3YqJibG2bdtmnT9/3v67fv26vc+0adOshIQEa+vWrdbevXut5ORkKzk5uRJ77Q3qgDN3gw5YFvXAiaqqA2E56ViWZS1ZssRKSEiwoqOjraSkJGvnzp2V3aWwQURK/Vu+fLm9z40bN6xnn33Waty4sVW3bl1r3Lhx1vnz5yuv02WAOhCcu0UHLIt6EIyqqgMsbUAIIcQ3ws6nQwghJHLhpEMIIcQ3OOkQQgjxDU46hBBCfIOTDiGEEN/gpEMIIcQ3OOkQQgjxDU46hBBCfIOTDiGEEN/gpEMIIcQ3OOkQQgjxDU46hBBCfOP/AOt0f59GWOhRAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAm4UlEQVR4nO2de3QV5dXGd8AkXBMISCBChHKRmwJGE+4id2ihIF1FawVZAgWDlfKHLV1AW7SmxV4QSqFQhVpAKFRAKFIwSADLRW5yv2iDBCFBSkkgkIvJfH90nfne/ZxkhkNOJifh+a2VtWZn5szMmbNn3nP28+69wyzLsoQQQgjxgGoVfQKEEELuHTjoEEII8QwOOoQQQjyDgw4hhBDP4KBDCCHEMzjoEEII8QwOOoQQQjyDgw4hhBDP4KBDCCHEMzjoEEII8YxyG3QWLFggzZs3lxo1akhSUpLs37+/vA5FQhT6ABGhHxBNWHnUXlu9erWMGTNGFi1aJElJSTJ37lxZs2aNnDlzRho1auT42uLiYrl06ZLUrVtXwsLCgn1qJMhYliU3btyQuLg4qVbt/7/DlMUHROgHlY3y8AP6QOWiNB8oacOgk5iYaCUnJ9t2UVGRFRcXZ6WkpLi+NiMjwxIR/lWyv4yMjKD5AP2g8v4F0w/oA5XzD30AuU+CTEFBgRw8eFCmT59u/69atWrSv39/2bNnj9/2+fn5kp+fb9sWi15XSurWrWsvB+oDIqX7QceOHaV69eoiItKvXz/1mqysLGU3b97cXk5LS1PrfvWrXyn7H//4h7J3796t7IcffljZo0aNUva+ffvs5StXrqh1sbGxyt65c6ey4+LilP3AAw8ou6ioSNlff/21vbx161a1LiYmxnHf+D6OHDmi7LNnzyq7U6dOJS6LiOzdu1fZ9933/4+PgoICWbVqVZn8oDQfCA8Pt3/puD0fnH4R4Wtx22Du2w23Y7udayD7Ki4uVrbjr5AAMY9lWZYUFRUpHyiJoA86V69elaKiIr8bLzY2Vk6fPu23fUpKivziF78I9mkQjzEdP1AfECndD6pXr24POpGRkWpdRESEsmvUqGEvmw9EEZE6deqUum1J2+OxateuXerrcVvcd3h4+B2ft4j/oFNYWGgv+65FaeeN+65Zs6bjeqfXB/pakbL5QWk+EBYWdsfhtUDCcIGG7IIZ4gvmsd32hevLO1Tptv8Kn702ffp0yc7Otv8yMjIq+pRIBUA/IPSBe4Og/9Jp2LChVK9e3S/0kZWVJY0bN/bbPjIy0u+bIqncBOoDIqX7Qb9+/ez/47f8Fi1aKPtf//qXvYwhq1WrVin76tWryh4xYoSyDxw4oOw1a9Yo2wyv4Wv//Oc/K7tbt27KxtASvo9WrVop+y9/+Yu93LJlS7WuVq1ayq5fv76ye/TooezPP/9c2W3btlW2+Ytu8+bNah3+0jHP2wyL+QjWs8AM4WCoqCy/ANz25Ra2KssvBreQVyChP7fzwn2X5X0EGpIsiaD/0omIiJCEhARJTU21/1dcXCypqal+Nx+pmtAHiAj9gJRM0H/piIhMmzZNxo4dK4899pgkJibK3LlzJTc3V8aNG1cehyMhCH2AiNAPiD/lMuiMHj1avvrqK5k1a5ZkZmZK586dZcuWLX6CIqm60AeICP2A+FMuyaFlIScnR6Kjoyv6NKo8AwYMUPa2bdvKtL/s7GyJiooq0z5MfH4wevRoW0to2rSp42suXLhgL6NOgjPCzp07p+xevXop+/z5847HOnz4sL2MU4u//PJLZeMsL0yKzMnJUfajjz6q7P/+97/2sjmTTUT87hXUYTp06KBsnEl38eJFZT/yyCP28ocffqjW9enTR9nm9OvCwkLZvHlzUP3A5wPmlGnE6fFVnpoMvt7tMeo2TdlLnQX1JKdzCWRmnGVZUlBQ4OoDFT57jRBCyL0DBx1CCCGewUGHEEKIZ5TLRIKqRCCxVYylumWP474xXm/GgTEWn5eXp2y3OO3ixYuVHR8fr+xDhw7Zy//5z3/UOjxvsyxLedO5c2c7Y/+DDz5Q61CvMEvAXL58Wa377LPPlI1Tdk+cOKHs9u3bK9vMARIR+fe//20vDx8+XK1DjQY/O7RNzUZE5K233lL2k08+aS/j556QkKDsZ599VtmrV69W9uDBg5X9+OOPK3vHjh328ujRo9U6LINz//3328sFBQUSangpVwdaFQCfDW73rxN4f7rdr252IM8887zv9Hrzlw4hhBDP4KBDCCHEMxhec8FpKqPbz1Ccpou2G+b2GHpDcIqiWTpFxL+EyQ9+8ANlY0jNxMtwGnLp0iW7NAqG07A2V2Jior2M1wNDDmZ4TMQ/TJWZmansJk2aKLtr1672sls4EkvEDB06VNlYsgdDYOa5YHht5syZyn7++eeV/fOf/1zZGzZsULYZThPRnzWW2Bk2bJiy58+fX+LrKhKnacyBTqF2u7+dpha7hdOwEjOG1/BzNsOXbueNoWEs3IqVxjEcbJ5LINeA4TVCCCEhBwcdQgghnsFBhxBCiGdQ03EB4/OmzuLW7Q87XWKXR9RZsOT92LFj7WXsTonl881KviL+U6KffvppZX/xxRfKNt9nqMTnRf43vdg3xRjL8KPuYuo0qP+4xdT379+v7Mcee8zx9eaxUKtr1qyZsrFJ2/r165X9jW98Q9kYc69Xr569jPrRt771LWWnp6crG8uv3L59W9l9+/ZV9ptvvmkvDxo0SK07efKksr/5zW/ay3l5eX7Tyr2gLCkNgU5zRpymC7s16sPtUbN1aruAzyT0N+wWi58b+iv6iNP0bacWDL7OoW7wlw4hhBDP4KBDCCHEMzjoEEII8QxqOi5gfNOMxWKcH+OZbdq0UfZDDz2kbGzNa5aVF9G6wvHjx9W67du3KxvbGJtlbUT8S60ggbwvLzl69Kgdw0YNZ+DAgco2y8dgu4FNmzYp+8EHH1Q2bo9lXTBG36VLF3vZbF0t4t+CwSwXI+LvF1999ZWysTSNqedh7gzuG0vsrFixQtnoY0ePHlX266+/bi+jxnjz5k1lm/lFJbWr9oKylLopa6sD8z5BrQPbcaOmc+PGDWWj1uakFzdo0ECtw7yuOnXqKPu9995TNvo2vm9TM3K7RiyDQwghJKThoEMIIcQzOOgQQgjxDGo6LjjFNN3KkS9cuDBo5zFx4kRljxkzRtlz5sxRdkpKSkD7r0jdxom4uDhbT8HcGdRSxo8fby9/9NFHah3m5eTm5iob2zbj9lirzdROUGcxWxGI+OsmmCOFOViov5l6AG5r5vCI+L+Pnj17KhvzeDCnw2zDjVrTrVu3Sj12eWo6gbRPDgS3emmBtIFGzQ81nezsbGXjtXR7lpj6Ubt27dQ6zLXatWuXslFvwpwg1HDNWm1uzwXUdNxqRIrwlw4hhBAP4aBDCCHEMzjoEEII8QxqOgHi1K+jPMH2ysiSJUvKtH9To5g8ebJa98tf/lLZZs2tr7/+ulxrbnXo0MHWNLAFNdYoM+unYU4UamLnz59XNrazxvpWqPGYNdAwxo4torH2FdbBw34neGxTp8EcnyeeeELZaWlpym7evLmysZ8O9vIxW36//PLLat0nn3yi7GPHjtnL5dmuOiws7I61nGBqPm45KuY9Ex0drdZhryfMy3G7Xngs00fwWdCiRQtlb9y4UdnoT5jLhfqTeX9jbx70ZdPfioqKlE+UBn/pEEII8QwOOoQQQjyDgw4hhBDPoKbjglvPHJNA+lIEuj32XLl06ZKyr1696nisIUOGKPvFF19UdseOHe1lzP3AulBmfLm8e+9s3brVjklj3bBWrVop28w3wB4jmNODfWmwTzzmw0RFRSk7ISHBXkZtqXXr1srGuPjOnTuVjX1rTp06pey8vDx7GfNBduzYoezatWuX+loR/7wds4aciK7xZ+bsiPhrauY1xuOUF17WWsPaiKjrmTX28D64cOGCsjF/xa2nDZ6rqRnhZ3b9+nVHG2u14etNDUdE+wjqP3ieZg7anT4L+EuHEEKIZwQ86OzcuVOGDRsmcXFxEhYW5tcF0bIsmTVrljRp0kRq1qwp/fv3l3PnzgXrfEkIcO3aNTl06JDs2LHDr2OpCH3gXuDChQuyfPlyeeONN2TWrFly5swZtZ4+QEoj4EEnNzdXOnXqJAsWLChx/Zw5c2TevHmyaNEi2bdvn9SuXVsGDRrk2c9vUv4UFRVJ3bp1/aYK+6APVH0KCwulcePGfqEZH/QBUhoBazpDhgzx0wd8WJYlc+fOlRkzZsi3v/1tERF55513JDY2VtavX++XnxAKBFpvKZh1oLDmEWo6Zsy8UaNGah3mlaDe8be//U3ZmLeCvVHMPAKMRyM1a9b0yy3xEWwfuHLlin2dMJ7cvXt3ZZt6B9Yvw+uF9c+wvw5qH/hZmdoJ1nHDa4vgZ4G/EurXr69sM9cGrwF+DtjLB3UI1BI+//xzZZv160ydT8S/v44vb2fVqlWq/lywfSCQe64smg9eG/wcnnnmGWWbPrJu3Tq1DjVXN33XTW8yfSYmJkatw5wf1BCxVxT2a0JtFH3MBPUh87wrpJ9Oenq6ZGZmSv/+/e3/RUdHS1JSkp/D+sjPz5ecnBz1Ryovd+MDIvSDqgR9gDgR1EHH19kxNjZW/T82Ntav66OPlJQUiY6Otv9w1hGpXNyND4jQD6oS9AHiRIVPmZ4+fbpMmzbNtnNycsrV2QIJn93J603cfkLja92mGJqhE5y6iOVNPv74Y8d9YWl+PBfzJzqWqceWyOVBaX6QmJhoh82wBAeGMMxppViWH8vH4PXbunWrsnEK+vDhw5VtTi3GUjQzZ85UNpbcmTBhgrKx7D2GN8wp69g24Te/+Y3jvjH0MmzYMGVjqOXatWv28rhx49Q6DKub1wjLvNwNpflAsELabq/FECqWh+ndu7eyzZBshw4d1Lr333/f8Vhu4TQsq2N+7k2aNFHrMCyIYUCcRo+tOPA5ZLZdwC8Je/fuVfbp06ftZbfnn4+g/tLxfUhZWVnq/1lZWX4foI/IyEiJiopSf6Tycjc+IEI/qErQB4gTQR10WrRoIY0bN1bTaHNycmTfvn2uBStJ1YA+QOgDxImAw2s3b95UM4HS09PlyJEjEhMTI/Hx8TJ16lR57bXXpHXr1tKiRQuZOXOmxMXFyYgRI4J53qQCKSoq8qtScPToUYmPj6cP3CPk5eWp0IsvRJiRkSEdOnSgD5BSCXjQOXDggIov+mKwY8eOlWXLlskrr7wiubm5MnHiRLl+/br07NlTtmzZolru3im+OKebzmLGwDEejvHOQKYmiuiYJb7ebbo1ngvGjN3Km5vlVLD8CcZPcZozvm/UafA6mNN+cVucJllQUCCffvqp+l+vXr3KxQciIiLsciRm2X0R/1I25vX/8ssv1ToM6+D5t23bVtk45frDDz9UtlnWBKekov6D1xpnZWHpeZwSa+pRWOJk1qxZysbW2HiNUJc5e/assk2fRJ3C1LHOnz8vy5cvt21fe/DXX39dVqxYEfTnQGnPArd70Am3FtMjR45UNk6rN+8x/BKGnymC9y/aWErJbEmNU7nxWPiccWs5jVP+zS8TWLLJ6T64U00n4EGnT58+joNAWFiYzJ49W2bPnh3orkkloX79+tKvXz8R+Z8ImZaWJtnZ2XYMnj5Q9WnevLlMnTrVtvPz82XhwoWycOFCEaEPkNJh7TVCCCGewUGHEEKIZ1R4nk5pOLWoxf+bsUS3uCKWfDDzAkT857QfOHBA2du2bbOXUe9BMAzppuH06NFD2StWrLCXUWPA6aRYih9jzG6x8Dp16pS4LOIfMzbj8liyPdikp6fbOUqJiYlqHX425jXBxERsDYFlhbCM/1NPPaVsbMltakZ//etf1TrUnnDqMF4zLOeDhTHNENWrr76q1qFmg+8LS/L8/e9/VzbqA6bfjBkzRq3DVtemT7lpGMHCLc/OCSwZhLrJ888/r+w+ffooG58NZk4T5oW5gXovfm4DBgxQtum/gV4D1HQwb+zQoUPKNltY4Lb4nDH13wopg0MIIYQ4wUGHEEKIZ3DQIYQQ4hkhq+mYYPzTqc0zxju/853vKHvUqFHKRp0F6xphHSNTE9q4caNah3PY3fQl7EVi5j2I6HppOJcec2dQw0EdAbfHc3NqC4CvNXWE8m5XPXDgQDsWv2TJErUOdZuWLVvay3/4wx/UOny/M2bMUDa26PaV7feBuTemhpGenq7W7dq1S9kPPPCAsrGe1fbt25WN2tVzzz1nL7/00ktqHfov1kBDrQF1MMw96dq1q72Mdd3wGpnx/vLU9py0AietEvNVUGt75ZVXlI3tLFCnQtu8Z7CFBOa6of/htURdb+DAgco2ay/ieeA9iBoO5qwdO3ZM2dhu3bz/Me8L/avCWxsQQgghTnDQIYQQ4hkcdAghhHhGyGo6lmWVGiN0qiX05ptvKhtb7mKMG+tL4Vx81IjM3ikYx0btY/Xq1crGXijYcwPjp6itmGAvGYzzYi2xjIwMZTvl4vhqnYUCGzdutM+tS5cuah3Gyc0aZaj/mDkVIiJpaWnKdvqcRfxzPEzdBn0Mc2OwZ83+/fuV/b3vfU/ZGHM3czSwDbnZ+0TE/31OmjRJ2dinBXPNzPbVvXr1cty3ua1bfa/ywqm+IWo4L7/8srLNzqYi/n1m8vLyHI9tHqthw4ZqHdaYw3yohx9+WNmYI4Q1IM1zQ79HvRc1HMytQb0XtS/z3PF5iLap8VDTIYQQEnJw0CGEEOIZHHQIIYR4RshqOiaoT2D/ejOGjjWMULvA2Cr20MAYN8Yw77//fnv5+9//vlqXlJSkbIwRz5s3T9lffPGFsjG2as7lx94fCMb2zRwfEX/9CePCpqaBcXIzR0BEX/877aFxtzRo0MA+Pl4fp55CqMmY+oOIf74B9sTZt2+fsrFOV/Pmze1lzNcyfUREZM2aNcqeP3++sleuXKnsmTNnKtvsv4P+ib15sBbb7t27lY35R5i3tmfPHnsZ86CaNm2qbFMPzc/Plw8++EC8ximHD/Od0Ccwt8Zt34iZi4OaoK/1h4+EhARlY04Q5nLh/W7qS6g1YZ4N+q5ZS03EX3/C62LmfuHzD/0N9cs7gb90CCGEeAYHHUIIIZ7BQYcQQohnhKym06lTJzuGj/1KMEZ56tQpexnzKVDTwTwdzG/BOK+TZoFx3M6dOysb63999tlnysZ+9xhDN/N0cN4/ahL4vnHOPMZx8bqY54L1vHBfZly3vDWd9u3b2+/9xIkTah3mJzRr1sxe3rx5s1qXkpKibNQF3333XWXjZ7l+/Xpljxgxwl7u3bu3Wod18DC+/8Ybbygb9Tjs3WPG8LHOFvovXhME3xdqQGatQrzPMH5vagle1V5z6yVjarZDhgxR60wdTsQ93wWvNR7LvCdRE0StGHP4zp49q2zMu8NngXnPmc87Ef9af/hcwZwfzE/CnCHTJ/BY+Dmb+VnM0yGEEBJycNAhhBDiGSEbXjPBUBJOizZL2mN4DH8i4zRILN+B03KxbIgZxnI7Fpa1QXD6Nr5Pc/8YssGpjFi6BsMQeG64P3N6NoZR8BoF0h68rHTp0sV+r06l5UVEsrOz7WV8vz/5yU+UjeFKtDHc8eijjyrbLDWCYRts8Zuamup4LOS3v/2tss0wEZ4Xhsew9Au25kBOnjypbHNav9nmQESkXbt2yjZTGfLz8/1aewSL6tWr2/6M0/fR/8xQEoaV0CcwnIYhV6d7X0TfgzidHKcxv/POO8rGewyfJXhupu9j+AzvTyxfNH78eGXjdcFwulkmB8tnYSjYfJ4yvEYIISTk4KBDCCHEMzjoEEII8YyQ1XRq1qxpxzEx3omlQEwwvo5TF1EPwrIOqJWgxmNuj3HXixcvKhvLoeC+Ma7r1FIAY9eoC2B7XIzzRkVFKRvL1JsaD5bvQX3IPNadxnHvlm3bttnXxSzxL+L/HswYPLYp37Jli7JRo0HdBfUL9DmzFP2f/vQntQ5j7qifYStinErvVFIf210MHTpU2Vj+CKfyYqkabF+9YMECe3n69OlqHaYbmJqkWxuAsmBqOuiLOPXfLCeDaQJ4D7mdM94H+Cww7zEsPYP6Fk4/x6nrTrqpiL7PsJUGtr1HLQ6vA/ojajrm+8Q2CXjNzG2p6RBCCAk5Ahp0UlJS5PHHH5e6detKo0aNZMSIEXLmzBm1TV5eniQnJ0uDBg2kTp06MmrUKL+mQaRyk5+fL7m5uXLjxg371965c+fUNvSDqs3+/ftl0aJF8tprr8mvf/1rWbt2rd829AFSEgENOmlpaZKcnCx79+6Vbdu2SWFhoQwcOFCFmX70ox/Jxo0bZc2aNZKWliaXLl2Sp556KugnTiqOoqIiiYiIkFq1atlhvpEjR9IP7iEuXrwoSUlJMnHiRBk7dqwdHqIPEDcC0nQwLr5s2TJp1KiRHDx4UHr37i3Z2dny1ltvycqVK6Vv374iIrJ06VJp166d7N271y/W6ER4eLit6aDWgfqEqdtga1aMV2KejpnbIeI/Nx91F6cWAziPH/Uit1wb/BZoniteA5wvjzkIuG8E49NmHgDuC+PL5jWyLEtu374tGRkZ5eIHX3zxhZ2bgXpG+/btlW3qEzt27FDrMI8CY+74MMScKfQL815wy/X66U9/qmz0QdQGUZcxWwhMmTJFrUMtYe/evcrGlg6Yi4J5L7/73e/s5bFjx6p1Zk5QUlKS0hUfeeQRmTRpkhw5ckSaNGkSVB8oLi62tRy8dnhfOD0LEPTzmJgYx+2xBEx6erq9fPz4cbUOtWVsR41aGz5nUBc0dZn4+Hi1DnUt3Bf6Muq/mOtl5oKhno65cuZzyBNNx/fA9n1YBw8elMLCQlXbp23bthIfH6/6dJjk5+dLTk6O+iOVE/rBvYvv4eObXEAfIKVx14NOcXGxTJ06VXr06GHPpsjMzJSIiAiV3S7yv+J1mZmZJe4nJSVFoqOj7T+zaCMJfXzfbrp27Uo/uEcpLi62i/L6fn3SB0hp3PWgk5ycLMePH5dVq1aV6QSmT58u2dnZ9h+WXSChje8b7ttvv12m/dAPKi+LFy8OyudFH7g3uKs8nSlTpsimTZtk586dKlbeuHFjKSgokOvXr6tvOFlZWX75Mj4iIyNLzE+JjIy0481udcPMmCbGKzFmjftq0aKFsnE+PWLGOPHnP8b9UXfBHAP8xuekw6BugPoR6gI4nx6vC8ZfzWuKuhVqFL5rcO3aNfu8zPyIYPrBgAED7PeKMXfMi/rud79rL+O1xxj64cOHlY0xeLze2CrB1AqxnTrG2PFcnnzySWWjVoUl+c225tj2AO0HH3xQ2VirDf2gSZMmyjZzy7CdQ0n5HLt27ZLz58/L0KFDVVvuYPrAfffdZ987qOc+9thjym7Tpo29jH6Mr8XnCN6f6AN4v5vam6m7ifjrjajD4LGwDiN+Lk6ts1Gnw/fl1JpexLmGIeZmoS+bOle5aDqWZcmUKVNk3bp1sn37dr8HdkJCgoSHh6tEuzNnzsiFCxekW7dugRyKhDCWZcm1a9fk1q1bfgmwIvSDewHLsmTXrl2Snp4uw4YN8xOc6QOkNAL6pZOcnCwrV66UDRs2SN26de1v6tHR0VKzZk2Jjo6WF154QaZNmyYxMTESFRUlL730knTr1i2g2SoktLl27Zrk5uZKo0aN7G9gWVlZEh4eTj+4R/j444/l888/l8GDB0tERIT9Dfj27dsSFRVFHyClEtCgs3DhQhER6dOnj/r/0qVL7SmBv//976VatWoyatQoyc/Pl0GDBskf//jHoJwsCQ18UzLNKd5t2rShH9xD+DpKvv/+++r/7733nkyePFlE6AOkZMKs8i6eFSA5OTkSHR0t/fv3t/UY7C9ixrhFdC8YnEuPcVyMS7vVY8JYrBl/xxwfrA2GMWCMp2P9NIzFmvPncX48xu4R7OmCegjWlTKPhfFjbJ1rxtEty7KFX7zWZcHnBz/+8Y/tOH+XLl3UNph7Yz7QsD5Vq1atlI0tejHfBfN8sCW1maeDta/wc0UNAz9nM99DxF+fM/0K+99gbSzUAvALIn7u+Nm++uqr9jKGz9PS0pRt+lRBQYGsWLEiqH7g84H69evbOgSGc1GrM68V6j34maP2hs8C1IMxj87Mh8H7y9Q4Rfz1DjwW6qaou5jb4zMKn2moi6GO7abZbtq0yV5esmSJWoc9wlDTuXXrlqsPsPYaIYQQz+CgQwghxDM46BBCCPGMkO2nU6NGDTumijFujFGaNs4jx9gpxnEx/o51i9A2t8fYKJ4nxnExdornhrFYs989ngfWS8IcIcz5wRgxnluDBg3sZcxPwFpg5vssb0kwPT3dvs6YS3Po0CFlm/XTMH8lISFB2fPmzVP2M888o2z0sW3btin7iSeesJfR51BPw+uHehxqD++++66yzc8GNRms0YXvE/vloA+ipvPss8/ay5988ola98Mf/lDZy5cvFy8oLCy0/RfrqaEPmHXG8H5CDRDvGXwW4OfqVAMS+3ShHuSUZ3Mn6837DJ87eCw8b8y1QW0Zj23mDzo9k0T051FcXOx37JLgLx1CCCGewUGHEEKIZ3DQIYQQ4hkhq+mkpqbacVzsIYJxRTOHBfNZEIzVY14PxkdROzH3j/F11EIwVoo5FFg6BAscmrF8zJlA3QCPje8D47gY2zc1IHwtxrrxmpUnubm5dh4C5kVhjN7MncGaY/i5Dx48WNnLli1TtlvfFnM95mhg7gjmNqDGg/lHZv0wEZEjR47Yy9OnT1fr+vXrp+wZM2YoG/0X67phfTWT0aNHKxvz0CZMmGAv5+bmyooVK0rdV1kwNR30c8ydMTUG7GaL22I5Hty3k+4pojVGfO7ga1HvRT0XbdRwzWcNVu7GfEDU8fDef+ihh5SNuV8bNmywl1GjQT3JfJ+e9NMhhBBCAoGDDiGEEM8I2fCaWSoEQwhYSn7EiBH2sjmVVcQ/VIFTpt1CYlhywgxLYdgJf3peuHBB2bNnz1Y2To116pSIIRwMfYwfP17ZGI7D94GtEcxQBIaiMJTnJTExMfZ1xeuL04XNcNvw4cPVOmxNgCEFvL5Ymh7DI+b2Bw8eVOvwWptlRUT8WxfPnz/f8fUtW7a0l59++mm1rmfPnqWel4jIc889p+yBAwcqGxulmSEoDPFgnTWzBA+GcIKJGbbBMBTevyY4vdpsvSDi/34wRIZhLAyvmSFpnJaMpY7c2svjvY/v0/R9fC2G6RGze6uIf6h47dq1yvbV1RPxD6U7yRMMrxFCCAk5OOgQQgjxDA46hBBCPCNkWxuEhYXZ0yQxvlkWcNoyliDH6dhYTsaMt2OLBZwKi5qDl6DehGVw3KaOB0p5tTZ44YUX7Hg2fnY4Zd3UVq5du6bWodaB5eCxBQBOucaYu7k/t+noeJ5utxzqSYsXL7aX+/btq9bh54p6EGpbc+bMUTaWb/n000/tZdRS8T48ffq0vVxYWChr164tl9YGkZGR9vsM5HGF2zq1CxDx13Px9U6lagJtXeCmJTuVrcJ947Ex5QH1W/RXPJaTTuN0TSzLkoKCArY2IIQQEjpw0CGEEOIZHHQIIYR4Rsjm6ViWVS5l8y9fvuxoVxUwtl9ZadOmjR2T/uc//+m4bevWrUtcFvHPNULdBMv4Y2vjY8eOKdvUjMxy+iIi3bt3V/auXbuUjT6HeROY42HG2LFUEmpzx48fV/bhw4eVPW7cOGVv3bpV2fXr17eX8f7DPBbzvFEXCCbFxcWllsFx00JM3MrcuJWmQcxjubUOwc/JbXvEqdyMm8aD7xuPjetN/cmtHQvL4BBCCAlpOOgQQgjxjJALr4XYDG5yhwT7c/PtzwwTuk3rNqeC4rRQnCKN4Ue39Xhs08Z1bq/FcAaGXvDczfV4nk5ddEs6NpZjwf2Z2zuVgMLX+l4XTD/w7csphFOWKdSBhLQCJdjHCiSMVdZjB3K9S9rW7Xghl6dz8eJFv3pQJPTJyMjwazVQFugHlZNg+gF9oHLi5gMhN+gUFxfLpUuXxLIsiY+Pl4yMjKAmHVZlcnJypFmzZp5eM8uy5MaNGxIXF+fa5z0Q6Ad3T1XxA/rA3RPKPhBy4bVq1apJ06ZN7QzwqKgoOlqAeH3NoqOjg75P+kHZqex+QB8oO6HoA5xIQAghxDM46BBCCPGMkB10IiMj5Wc/+5lf4hwpnap4zarieypvqto1q2rvxwtC+ZqF3EQCQgghVZeQ/aVDCCGk6sFBhxBCiGdw0CGEEOIZHHQIIYR4RsgOOgsWLJDmzZtLjRo1JCkpSfbv31/RpxQypKSkyOOPPy5169aVRo0ayYgRI+TMmTNqm7y8PElOTpYGDRpInTp1ZNSoUZKVlVVBZ3x30AdK517xARH6QWlUWh+wQpBVq1ZZERER1ttvv22dOHHCmjBhglWvXj0rKyurok8tJBg0aJC1dOlS6/jx49aRI0esoUOHWvHx8dbNmzftbSZNmmQ1a9bMSk1NtQ4cOGB17drV6t69ewWedWDQB5y5F3zAsugHTlRWHwjJQScxMdFKTk627aKiIisuLs5KSUmpwLMKXa5cuWKJiJWWlmZZlmVdv37dCg8Pt9asWWNvc+rUKUtErD179lTUaQYEfSAwqqIPWBb9IBAqiw+EXHitoKBADh48KP3797f/V61aNenfv7/s2bOnAs8sdMnOzhYRkZiYGBEROXjwoBQWFqpr2LZtW4mPj68U15A+EDhVzQdE6AeBUll8IOQGnatXr0pRUZHExsaq/8fGxkpmZmYFnVXoUlxcLFOnTpUePXpIx44dRUQkMzNTIiIipF69emrbynIN6QOBURV9QIR+EAiVyQdCrso0CYzk5GQ5fvy47N69u6JPhVQQ9AFSmXwg5H7pNGzYUKpXr+43wyIrK0saN25cQWcVmkyZMkU2bdokH330kWqa1LhxYykoKJDr16+r7SvLNaQP3DlV1QdE6Ad3SmXzgZAbdCIiIiQhIUFSU1Pt/xUXF0tqaqp069atAs8sdLAsS6ZMmSLr1q2T7du3S4sWLdT6hIQECQ8PV9fwzJkzcuHChUpxDekD7lR1HxChH7hRaX2gwqYwOLBq1SorMjLSWrZsmXXy5Elr4sSJVr169azMzMyKPrWQYPLkyVZ0dLS1Y8cO6/Lly/bfrVu37G0mTZpkxcfHW9u3b7cOHDhgdevWzerWrVsFnnVg0AecuRd8wLLoB05UVh8IyUHHsixr/vz5Vnx8vBUREWElJiZae/furehTChlEpMS/pUuX2tvcvn3bevHFF6369etbtWrVskaOHGldvny54k76LqAPlM694gOWRT8ojcrqA2xtQAghxDNCTtMhhBBSdeGgQwghxDM46BBCCPEMDjqEEEI8g4MOIYQQz+CgQwghxDM46BBCCPEMDjqEEEI8g4MOIYQQz+CgQwghxDM46BBCCPEMDjqEEEI84/8AGH7w4ql3BEEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiQElEQVR4nO2de3BU9RXHT4AkvEKQV0KESCykvIrUSALyEDSVYos8rUhbqWPrIKFKoVObOoKlnYnTDiOtgyLTArXIo7Q8BB2QBgjC8KaIvLFEeYQEgpLwTEJy+wezt7/z3ewul9292Q3fz0xm7snv5t67d8/uL/d8f+ecGMuyLCGEEEJcoEFdXwAhhJC7B046hBBCXIOTDiGEENfgpEMIIcQ1OOkQQghxDU46hBBCXIOTDiGEENfgpEMIIcQ1OOkQQghxDU46hBBCXCNsk86cOXOkU6dO0rhxY8nKypJdu3aF61QkQqEPEBH6AdHEhKP22rJly+TZZ5+VuXPnSlZWlsyePVuWL18ux44dk3bt2vn925qaGikqKpKEhASJiYkJ9aWREGNZlly+fFlSUlKkQYP//w8TjA+I0A+ijXD4AX0guvDlA7XtGHIyMzOtnJwc266urrZSUlKsvLy8gH97+vRpS0T4E2U/p0+fDpkP0A+i9yeUfkAfiM4f9AGkkYSYyspK2bt3r+Tm5tq/a9CggWRnZ8v27du99q+oqJCKigrbtlj0OipJSEiwt536gIhvPxgxYoTExsaKiMiNGzfU32RmZip7w4YN9vZjjz2mxtCvDh48qOxz584p+5vf/Kay8T+3o0eP2tvDhg1TY6dPn1Z2hw4dlG3eKxGRtWvXKvvpp5/2ebzr16+rsbKyMmWb91BEpFOnTsq+efOmsr/44gtlt2nTxt6+fPmyGouPj1d2kyZN1HnnzJkTlB/48oG4uDj7SQffR7T9PREF2tfJsQIR6G8DvY5wnsvJ8QLdIxyrqqry8m8k5JNOaWmpVFdXS1JSkvp9UlKS+qB6yMvLk9/+9rehvgziMqZzOvUBEd9+EBsba0861dXVaqxx48bKbtSokc8x/LB4jlnb34rc+qIzwUnH37nwb3Hc/LKu7VqaNm3q8+9ramr8ngtfJ54bJx38e3NiwQkMJx20RYLzA18+EBMTc9sTgJOJItC+4Zx0Qkmoz+Vv0nH697VR56vXcnNzpayszP7B/xLJ3QH9gNAH7g5C/qTTpk0badiwoZSUlKjfl5SUSHJystf+8fHxtf7HRKIXpz4g4tsPEhMT7f/G8W979uyp7L1799rbn376qRpr2bKlsh9++GFlnz17VtmtWrVS9okTJ5RtPvm0aNFCjW3atEnZGC6rrKxUNgrqpaWlyj5//ry9jU8qGKa65557lI33dP/+/coeMmSIss1wG76u7t27KxtDkkiovgtqamrC8uTgNOzkb3+noTonYava9vdHsBJFMK/zdgj5k05cXJxkZGRIfn6+/buamhrJz8+Xfv36hfp0JAKhDxAR+gGpnZA/6YiITJ06VSZMmCAPPfSQZGZmyuzZs+Xq1avy3HPPheN0JAKhDxAR+gHxJiyTztNPPy0XLlyQ6dOnS3FxsfTu3VvWrVvnJSiS+gt9gIjQD4g3YUkODYby8nJJTEys68sgDikrK/PSAILB4wczZ860V2ChsHzlyhVld+3a1d4+efKkGsPVZ4cOHVL2pEmTlH3kyBFlb926VdnNmze3ty9evKjGpk2bpmwcR93i8OHDysbVa8uWLbO3v/vd76oxXHW3bt06Zbdu3VrZffr08Xvu733ve/Y2LuXG5ddmfL+iokLefffdkPqBxwfi4+N9ahq4mi8YgllCjWMNGzb0O47XjSsznRDOr3CnWlJlZWVAH6jz1WuEEELuHjjpEEIIcQ1OOoQQQlwjLAsJCAkVDRs2tOPjuMzWLHsjovNfsPQMlnTp3bu3shcvXqzsrKwsZT///PPKNnNxBg4cqMYw237fvn3KxhyVtm3bKhu1qxkzZtjbn3zyiRpDbWrkyJHKxnj/V199pWzMoTlz5oy9jflEWDrILEPkt8BjkIQrbyTYigTmaw50HZhfhfcrFPkvt4uTsjmhLA3kgU86hBBCXIOTDiGEENdgeI1ENP/85z/t8NozzzyjxrCYpblM8/jx42rsvvvuUzaGsAYMGKDs9evXK/vzzz9Xdrdu3eztzp07qzEMQ2HFagy/4dLvZs2aKfvjjz+2t7EB2tChQ5WN5X7M0kAiIt/+9rf9nsssuYMhoL59+yrbDBti+Mgt/IV/AoWogg0dBRPKC7TUO5jl2oGo6ywZPukQQghxDU46hBBCXIOTDiGEENegpkMimm7dutmtDbCUvrm8V0SX5e/Vq5caQ52lqqrK73mxRQAWqDTL4ly7dk2NXbhwQdm4RBrPjY3UUHcpKiqyt9PT09UYlrFBHebee+9VNt5DbPFgjpv6joi3DmY2eXNL0wmlHuFUC/HXnsCpZuO05I45HqhNAhLKexaKJdR80iGEEOIanHQIIYS4BicdQgghrkFNh0Q0paWlEhsbKyI6N0bEO7+lrKzM3kbtAvUJ1GywbE5GRoaylyxZomxTd8E4N+pJZp6NiHeLAGxXbWo4IrpUDV4nltj5zW9+o+xt27YpG1s0YEy+SZMm9jaWDsKWDGZZooqKCq9jhwp/eoa/fRGnWogTwp374k8/CoQTvcgN+KRDCCHENTjpEEIIcQ1OOoQQQlyDmg6JaOLi4mxNZ//+/WoMc1LMFgPYbtrUKkS8a7FdunRJ2dj2GWuamXpSjx491FhxcbGyR40apWysxYbtCQ4cOKBs89pRWxoxYoSyUYfp3r27slu1aqVs1GF69uxpb6OG0759e2Wb9+TGjRviBuHM0wl0bCdaCvomHjsYnSXQ36Id6FqcwNYGhBBCogpOOoQQQlyDkw4hhBDXoKZDIpr09HRbW0B9Yu7cuco2tZUvv/xSjX3jG99QdlpamrKxX84jjzyi7I0bNyo7KSnJ3sa6bqiTvPTSS8o2a8TVdq3Yt8YcRy2qsLBQ2ZgThC2+H3zwQWVXV1cr24z/Y/0wrBnXunVre/v69eviBk60D6d5OcHk8eC9CrZGmaeHVG3HC3Qup3qRv/1DmcvkgU86hBBCXIOTDiGEENfgpEMIIcQ1qOlEEE8++aSyzbyUU6dO+f3bQHFbXKsfqN+HCWoMO3bsuO2/DZaTJ0/aeTpXr15VY2PGjFH2woUL7W3MnWnRooWyd+3apWzMX8G6bqgBfec737G3V6xYocYC9aHBHjiVlZXKxhpze/bssbcxX+j48ePKnj59urILCgqU/fXXXysb/cDs7YO9ePBvzfwis7dOOHGqXzgBPyNIMHqS03NjjyVTe0MdLtA9wP2RcNakqw0+6RBCCHENx5POli1bZPjw4ZKSkiIxMTGyatUqNW5ZlkyfPl3at28vTZo0kezsbDlx4kSorpdEAfSB+k9JSYmsWrVK5s2bJ2+++aacPHlSjdMHiC8cTzpXr16VBx54QObMmVPr+B/+8Af585//LHPnzpWdO3dKs2bNZOjQoa6VySB1D32g/nPz5k1p27atPProo7WO0weIL2KsIArxxMTEyMqVK2XkyJEicuu/m5SUFJk2bZr88pe/FJFbPU6SkpJk4cKFMm7cuIDHLC8vl8TExDu9pIjmhz/8obLNniwi3jkVKSkp9vbLL7+sxj744ANH58aYMdpmj/vXX39djf3oRz9SdufOnb2OX1ZWJi1atAiJD4j83w9efvllO0/nP//5j9oH9Ygf/OAH9jb208E8nZ07dyobNSDMk/jqq6+UbWpAqP/k5+cr+9q1a8oeNGiQ33MlJycr+8KFC/Y2fmmXlpaKPzB/JiEhQdl47V27drW3P/vsMzU2YcIEZf/tb38TEZFFixZJ//79Zdu2bVJWViYJCQkh9YFGjRrZOoPTXBt/Y/gZwPchkDZifnXiGB4LbdQY8TOFPZZMPQ21NfQBfE/R/wLpuea1Yv09vGemlmdZlly9etX+LvBFSDWdwsJCKS4uluzsbPt3iYmJkpWVJdu3b6/1byoqKqS8vFz9kOjlTnxAhH5Qn6APEH+EdNLxVNc1s7U9Nlbe9ZCXlyeJiYn2T8eOHUN5ScRl7sQHROgH9Qn6APFHnS+Zzs3NlalTp9p2eXl51DrbgAEDlI0tj6dNm6bs//73v8rGpbNnzpyxt9944w01ZobeRLxLwiD4SO3vEbt///7Kbt68ubKHDx9ub69Zs8bveW8XX37QrFkzady4sYh4hyCwRcAnn3xib5sl+kVEdu/erWwsPYM+hy0CzBCXiG4hjSX/Bw8erGwM0+B/8PheNmvWTNlmeGTo0KFqDEOO2P4BW2NjGAiXipuhG1wyffToUWV7rmXRokXSq1cvr9bYTvHlAzExMT7DZsEsYw6kLAQaN98XsySQiPdnv0+fPspOT09XNvo2hsjM9w3Phe85lmzC7xn0bfQ387OAbd2xXJRZ0qmmpsYrraE2Qvqk44lFmx9Ij41xag/x8fHSokUL9UOilzvxARH6QX2CPkD8EdJJJy0tTZKTk5WQWl5eLjt37vQSyUn9hD5A6APEH47Da1euXFGPWIWFhbJ//35p1aqVpKamypQpU+T3v/+9dOnSRdLS0uS1116TlJQUe4UbiX5u3rzp9Rh94MABSU1NpQ/cJVRUVKgQpWcF1enTp6VHjx70AeITx0umN2/eLEOGDPH6/YQJE2ThwoViWZbMmDFD5s2bJ5cuXZIBAwbI22+/7RXD9EWwS6YDlZNA3cRJORgRvfR20qRJaqx3797KbtOmjbIxno4xZn+lRDAsgfcIy6PMnz9f2dgCGWPI5rXjsXC551tvvSXvvPOO1zWGygdE/u8HEydOtJdtpqamqn1w2bhZPgZLyWDce/To0crG5cFYygbvibm/qXGJeC+/xnbU6JObNm1SNmpopraCbbfxyQGX02JCJrYn+Pe//63sRYsW2dso+m/YsMHePn78uMyePVuQ8ePHy/vvvx9SH4iLi/Op6fj7/AZKE0C/DgR+VZpa3uTJk9UYLgvHpcf4PYRlrvDem6HG+++/X415ykR5wOX9Z8+eVTa2Zsfl2b169bK3cTn2zJkzlW22da+pqZGLFy8GXDLt+Eln8ODBAcW6mTNnel0cqT907txZZs2aJSK38kZeffVV5Wj0gfpPenq6+qKtrKyUefPm2f+M0AeIL1h7jRBCiGtw0iGEEOIadZ6nE2owxhuo1lPTpk2VjTkTv/vd75TdqNH/bxnqIqjJ4Fp71AXwWjGWb+ZQlJWVqTFca4+lLsySMCLeJXf8xbOxXD6eyywxE+6S9maOBraFxtdk5i9s3rxZjaEehC2jt2zZomzUZTy5Qh7M1gbYAvovf/mLsjG+jdqfWXpGRKRt27bKPnLkiL1t+p+It1aFJXYwBwP1ANQ5zFwyzDdCjdLUEpxqo3dKIAnaSRmcQMdGrQRzbXJycuztYcOGqTH83vGXFCvi/RnD7yVTy0NNBt8XzDlDG3U9fO/Mc6M+hIVdzZyz210ewCcdQgghrsFJhxBCiGtw0iGEEOIa9U7TQR555BFlY0z7ueeeUzbGVjGnwmwBgGvYcS0+5tLg2nzzWCLeORYXL160t7HeUqDWukVFRcpGXQGTO83YLeo0qG+Y5fKxdH6oKSwstGPr+N5gLo4Zb8Y2Elu3blU21l4zNRoRb40M9QCzBTXm4YwYMULZGIPv3r27z2OJeL9XzzzzjL2NrwP1N7Nen4h3KwP0Z6zTNWXKFHv773//uxrD12HW9ArUEjlUBNJlzM8FfkYCtWXG+47fHZiXZ7Zxx88y1tdDTRD1W3xfUP81NR3UWdBX8VpQ10OtCvUn833GquCoLZvaMDUdQgghEQcnHUIIIa7BSYcQQohrRKymEx8fb8dcH3/8cTWGzaHMng8YK8V+EBgrxbbGiL9cGtQzMLaKNq6nx9hrYWGhz2vFmC9qMqgfYf8XjG+npaUp24zzYtwW49PmvvgaQk23bt1srQxbTmM9ObOuF75+vD8Y58Z7/9Of/lTZWIvtW9/6lr39j3/8Q43he4X3/r333lM2xvvxvV29erW9PX78eDWGGg/6K35WFi9erOyXXnpJ2WY7AsxlmjFjhs9z37hxwytnKBw40XQwFw1znLAP0lNPPaVs1HCwRpmpY2EeDup0qPeiRos19fB7zPyc4Xca6nZIIG0LtSxTO73vvvvU2JgxY5T94Ycf2tvV1dVe/Z1qvZ6AexBCCCEhgpMOIYQQ1+CkQwghxDUiVtMZMWKErR38+Mc/VmMYqzXzZXDNOa5pRw0HY6eYo9KhQwef14hxWNSLMIaMugKOY/zd1E4wJoyxezwWxp/xvqBOYx4fa4HhudauXWtvh7v2Wvfu3e1aUJgXhddl1rrDnCjM6Xn33XeVbeaniHj3lcdzL1iwwN4286lERDIyMpSN+S2vv/66sl977TVlmzX3RLQffPTRR2oM9aPHHntM2dhL5Ve/+pWy16xZo2yzRh3msKFuYeoM4dT2zPp7TsDPBOoopi4nIvL9739f2fgZws+M+b5ifhR+R+GxUE/Cemioq5p5d/iZw+8df3qQSGCNx9Sq0L8wv830idutv8cnHUIIIa7BSYcQQohrcNIhhBDiGhGr6eTn59uxRzN3QESkS5cuyjb7j2CsFOObPXv2VDb2xMFe5YiZa4OxUuyBgevfMXcEz4UxY1OPwj4WqBNgvB11BowZ4z01NRB8XaiPmDkrt1tv6U75+uuvbT0KrwO1E/M14XuBOSePPvqosvft26ds7KuEtcXMfJdly5apMczRePLJJ5W9YsUKZT/xxBPKRh3GfO8xxp6VlaXsV155xe91Y84b3hfz82DmB4l4+6uZN4XvTbgI5G/+dAXUQlDv3bNnj7LxXt97773KTk5Otrexnhl+3lBHwZwmvLe7d+9WttlLCms04rHxdaJmg3k+qDeZ35l4HUePHlW2+b6z9hohhJCIg5MOIYQQ14ixwh0fcUh5ebkkJiZKQkKCz2WS+PiIj7ImgUqI41JkPDY+uppLITF0ge2psQxOOAlUth0f/7EMDN4XE3/3qKamRs6fPy9lZWVe4cRg8PjBmDFj7GvH9gP46G+2gV6+fLka69Wrl7KxJUCnTp2UjeE1f6FSXIqLy/IxJIEl8zG0guE5cwk1hoMxRIQldnD5NZYxwffWLKmC4WD8bJgh3crKSlmyZElI/cDjA7GxsbY/o1/7+/rCZcv4WtHG0LzZukDEe4m1+ZnB9xDLJuE4hrcxPI6lkMyQt78lziLOWzrgfTJDlBhq99fCwrIsqaysDOgDfNIhhBDiGpx0CCGEuAYnHUIIIa4RsUumsTWxCeoTZjkaLH2B+2JMEtsTYJwX9SKznAyWpMc4Ji5NRDCW6i/WinFajLXisfB14uvA+2KCsXuMm5tLu8MtCV6+fNm+VlzWjDqUuYwcl8Z37NhR2R9//LGyUSs5cuSIsvF45lJj9FWM/eP7GmhpLpZAMcsS4VL4zz//XNnY+gD9AJdIY7uIY8eO2dv42cDrNHWvcJdD8uDE3/C1Yyko/Eygloa6zLp165RtfibxPcb7gSkOeG34unDptzkeSKMJVI4G9/en2wTS0Mxzcck0IYSQiMPRpJOXlyd9+vSRhIQEadeunYwcOVL9ZyRy67+JnJwcad26tTRv3lzGjBnjtVKDRDdVVVVy48YNuXbtmv3f8IkTJ9Q+9IP6zb59+2TBggUya9Ys+dOf/uSVSCpCHyC142jSKSgokJycHNmxY4ds2LBBqqqq5PHHH1fL+37xi1/ImjVrZPny5VJQUCBFRUUyevTokF84qTuqq6ulUaNG0rhxYzscOWrUKPrBXURRUZFkZGTIs88+K+PGjbPDLPQBEoig8nQuXLgg7dq1k4KCAhk0aJCUlZVJ27ZtZfHixTJ27FgRuZWj0K1bN9m+fbvXuvfa8KzNJ9FHOPwgNzfX1s6wLa/ZKldEl8XBvAiM56ONcW3M28H/0M3SIfhFivlDqI0EyhFCjcjU37D0D7YHNkuziIgcOnRI2djeeuDAgco29SjU0PBpNjMz094uLy+XZcuWyUcffSTDhg0LqQ+YeTr4dXUnLQ88+MvBq23c37lRS0a9CDWc220DUBtO70EwumsgTce8R5ZlSUVFRXjzdDyCpycBbe/evVJVVSXZ2dn2Pl27dpXU1FTZvn17rceoqKiQ8vJy9UOiE/rB3YunBpdn8Qx9gPjijiedmpoamTJlivTv399e2VNcXCxxcXFeTYWSkpK8Mm495OXlSWJiov2Dq4xIdNC3b1/6wV2KZVn201337t1FhD5AfHPHk05OTo4cPHhQli5dGtQF5ObmSllZmf2DyxZJdDB//vyg/p5+EL1s27bNq/LxnUAfuDu4ozydyZMny9q1a2XLli2qnXNycrJUVlbKpUuX1H84JSUlXrFmD/Hx8V65MST6MMu+h9IPNmzYYMfLseW0qSmI6Lg5nge/wMw6bSIi6enpyt60aZOysTW5WcsN8zcQvO4HHnhA2QUFBcr2l1v25ptvqrGHHnpI2djSAWPyw4cPVzZqW2ZNPo8W46G2larr16+XM2fOyLhx4+Svf/2rPRZKHwhVLlgg7QN1F391xkS0BoT3EanLEpeB8nqCwXxdYcnTsSxLJk+eLCtXrpSNGzdKWlqaGs/IyJDY2FjJz8+3f3fs2DE5deqU9OvXz8mpSBRDP6j/WJYl69evl+PHj8v48eO9Fv/QB4gvHD3p5OTkyOLFi2X16tWSkJBgx2YTExOlSZMmkpiYKM8//7xMnTpVWrVqJS1atJCf//zn0q9fv9tarUKil5KSEomNjaUf3CV8+OGHcujQIRk7dqzExcXZS6WvX78uLVq0oA8QnziadN555x0RERk8eLD6/YIFC+QnP/mJiNx6/G/QoIGMGTNGKioqZOjQofL222+H5GJJ5JKenk4/uIvwLBx4//331e9XrFghL774oojQB0jtRGw/HRJdhKufztixY22NA3vHYK+YPn362NsffPCBGsM2zZjzgzXNsHYW1mIzNaHS0lK/+z744IPiD+xthP15TJ0DP65Yew3zeP74xz8qG/vp4D00ewFhbcHU1FRlm3k7N27ckDfeeCMs/XQaNWrkU4cIRq8IlO8S6FjmuNOv0UDnDmduTTD3yN+4ZVlSVVXFfjqEEEIiB046hBBCXIOTDiGEENeI2H46hIjc6v/iydPBGmVmroyI7nmD/XKw3tn999+v7Pfee0/ZqMNgno5Zi+3atWtq7NVXX1X2qlWrlI09bDZs2KDspKQkZZv6k9nDRkTk4MGDyv7ss8+U7VnY4WHWrFnKnjJlirJN3aaoqEiN7dixQ9mm7uUpgxNuAuku/vrOONEnnJ4rEE5rrQWj6YRSLwqH5M8nHUIIIa7BSYcQQohrcNIhhBDiGtR0SETz1FNP2fki//rXv9SYv9pY7du3VzbmDXz55ZfKHj9+vN9jY+7Yr3/9a3u7c+fOaqywsFDZPXr0UDb2Wmnbtq2yP/30U2VfuHDB3sYSMphLg2AhztzcXGWfPXtW2WZ9tQEDBqgx1HjMc4eynpcTUHPwVwvM6TWGU7Nxei5/427208HXiT2Hbgc+6RBCCHENTjqEEEJcg+E1EtGUl5fby3Gx5h/28MnKyrK3MaSA7QIGDRqkbFz2jG2du3TpomxziTWGqPbv36/sL774QvyBrY7NltEioloDYCgOW1ujvXjxYmUPGTJE2dhQzVySvXr1ajWG99AMrYRzyXSDBg18tqtGzHCQ07CT06XFkRJSREL5OkLZHtwDn3QIIYS4BicdQgghrsFJhxBCiGtQ0yERTWlpqcTFxYmI93LNF154QdmmroD7Yiz6ypUrykb9YuDAgcrGtgoHDhywt7E9wOjRo5V9+PBhZWPrgl27din75s2byjbL+5itB0S8tScse1Nbi2mTcePGKdu8L0uWLFFjuDzbLEsUTk0nJibGp5bgZgsAf3oGLh32t5T7Tq4tmH2D0WHCoVvxSYcQQohrcNIhhBDiGpx0CCGEuAY1HRLRbNiwwY6Xv/LKK2rs5MmTyjbL0WDZGtRksM0zlqrBMjhYTsZsC43tBLD1tUeT8hCoTA6W8Fm2bJm9jbqK2TZbxFs/Qq0B2yasXbtW2enp6T6va/fu3co27wG29w4lNTU1trbgpN1AIF0lUEmXYErTBCLQ68BrC2WLgVC2s74T+KRDCCHENTjpEEIIcY2IC6+Fo1MdCT+hft88xzPDDNevX1f7YEjHHMelwWgHCgfh/rgk2DwXjuGx8d7gOJ4LX6dZlbphw4Z+rwvPhcuv8dz49+a14L7+juXZDqUfeI4Vqk6XgcJtTq89nN9VwV5bMOcK9jgBy+5YEfYtf+bMGenYsWNdXwZxyOnTp6VDhw4hOx79IDoJpR/QB6KTQD4QcZNOTU2NFBUViWVZkpqaKqdPn/bqhUJqp7y8XDp27OjqPbMsSy5fviwpKSl31FvDF/SDO6e++AF94M6JZB+IuPBagwYNpEOHDlJeXi4it5pv0dGc4fY9w5VioYB+EDzR7gf0geCJRB/gQgJCCCGuwUmHEEKIa0TspBMfHy8zZsyQ+Pj4ur6UqKE+3rP6+JrCTX27Z/Xt9bhBJN+ziFtIQAghpP4SsU86hBBC6h+cdAghhLgGJx1CCCGuwUmHEEKIa0TspDNnzhzp1KmTNG7cWLKysrxa+t7N5OXlSZ8+fSQhIUHatWsnI0eOrLUtcU5OjrRu3VqaN28uY8aMkZKSkjq64juDPuCbu8UHROgHvohaH7AikKVLl1pxcXHW/PnzrUOHDlk/+9nPrJYtW1olJSV1fWkRwdChQ60FCxZYBw8etPbv32898cQTVmpqqnXlyhV7n4kTJ1odO3a08vPzrT179lh9+/a1Hn744Tq8amfQB/xzN/iAZdEP/BGtPhCRk05mZqaVk5Nj29XV1VZKSoqVl5dXh1cVuZw/f94SEaugoMCyLMu6dOmSFRsbay1fvtze58iRI5aIWNu3b6+ry3QEfcAZ9dEHLIt+4IRo8YGIC69VVlbK3r17JTs72/5dgwYNJDs7W7Zv316HVxa5lJWViYhIq1atRERk7969UlVVpe5h165dJTU1NSruIX3AOfXNB0ToB06JFh+IuEmntLRUqqurvdrqJiUlSXFxcR1dVeRSU1MjU6ZMkf79+0vPnj1FRKS4uFji4uKkZcuWat9ouYf0AWfURx8QoR84IZp8IOKqTBNn5OTkyMGDB2Xr1q11fSmkjqAPkGjygYh70mnTpo00bNjQa4VFSUmJJCcn19FVRSaTJ0+WtWvXyqZNm1TTpOTkZKmsrJRLly6p/aPlHtIHbp/66gMi9IPbJdp8IOImnbi4OMnIyJD8/Hz7dzU1NZKfny/9+vWrwyuLHCzLksmTJ8vKlStl48aNkpaWpsYzMjIkNjZW3cNjx47JqVOnouIe0gcCU999QIR+EIio9YE6W8Lgh6VLl1rx8fHWwoULrcOHD1svvPCC1bJlS6u4uLiuLy0iePHFF63ExERr8+bN1rlz5+yfa9eu2ftMnDjRSk1NtTZu3Gjt2bPH6tevn9WvX786vGpn0Af8czf4gGXRD/wRrT4QkZOOZVnWW2+9ZaWmplpxcXFWZmamtWPHjrq+pIhBRGr9WbBggb3P9evXrUmTJln33HOP1bRpU2vUqFHWuXPn6u6i7wD6gG/uFh+wLPqBL6LVB9jagBBCiGtEnKZDCCGk/sJJhxBCiGtw0iGEEOIanHQIIYS4BicdQgghrsFJhxBCiGtw0iGEEOIanHQIIYS4BicdQgghrsFJhxBCiGtw0iGEEOIanHQIIYS4xv8A7vEcF7Rc9lsAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAlvElEQVR4nO2de3RU5dXGd4JJABPCPRAhggiCKIpAQoAKKAUBoVzES61gvSAYbJHVG10IlVpjvVRWKwVdLVAsiKVcFEQoJBKK3EoEMVxiCwjhkgBVEm4haXK+P1xzvnc/kzmTyUxOJuH5rZW1zs57ZuacM/vMO7Ofd+8dYVmWJYQQQogLRNb0ARBCCLl24KRDCCHENTjpEEIIcQ1OOoQQQlyDkw4hhBDX4KRDCCHENTjpEEIIcQ1OOoQQQlyDkw4hhBDX4KRDCCHENapt0pk7d660a9dO6tevLykpKbJr167qeikSptAHiAj9gGgiqqP22vvvvy/jx4+X+fPnS0pKisyZM0eWL18uubm50rJlS8fHlpeXy6lTpyQuLk4iIiJCfWgkxFiWJRcuXJDExESJjPz/7zDB+IAI/aC2UR1+QB+oXfjygYp2DDnJyclWWlqabZeVlVmJiYlWenq638fm5eVZIsK/WvaXl5cXMh+gH9Tev1D6AX2gdv6hDyDXSYgpKSmR7OxsmT59uv2/yMhIGTRokGzfvt1r/6tXr8rVq1dt22LR61pJXFycvR2oD4j49oMBAwbIddd966Y9e/ZUj9m5c6eyU1NT7e3Dhw+rsUaNGim7YcOGysZvZv/973+VHRsbq+yysjJ7u7S01OtcTI4eParsoUOHKrukpETZ7733nrLHjRtnbx88eFCNtW7dWtnl5eXKfvvtt5X90ksvKfvAgQPKbty4sb39v//9T42tWLFC2ddff7163RMnTgTlB758oF69ej5/6QTyeYHPgY9FO5hfV8G+Vig/B/09F76203njfWLeB5ZliWVZygcqIuSTzrlz56SsrEwSEhLU/xMSEuTQoUNe+6enp8uLL74Y6sMgLmM6aqA+IOLbD6677jqJiooSEZGYmBivMZP69evb29HR0WoMbXwuvJn87W9+IPv7wHA6zopeu169ej7391wLX8eFkw6Cr+10nnhc/myR4PzAlw9ERESEJLwW6HOEctKpztcKlkAmHX/7Wpbl91xqfPXa9OnTpbCw0P7Ly8ur6UMiNQD9gNAHrg1C/kunefPmUq9ePSkoKFD/LygokFatWnntHxMT4/VtjdRuAvUBEd9+EBMTY3+7x9AShsjMkBj+2sjJyVF2mzZtlI3HhSEx/IVx8eJFe7uoqEiN3XDDDcru06ePss2wlIjIhQsXlN27d2+fr4W/LjCUgc9lhrZERLKzs5WNYUjzWJcuXarGfvjDHyrbDIWVlJTIO++8o8ZD9VlgvpfBhMACDVmFMnQX6v2dHhtsmNDpWEIRggz5L53o6Gjp0aOHZGRk2P8rLy+XjIwMFXMndRf6ABGhH5CKCfkvHRGRadOmyYQJE6Rnz56SnJwsc+bMkUuXLnl9UyJ1F/oAEaEfEG+qZdJ56KGH5OzZszJz5kzJz8+XO++8U9avX+8lKJK6C32AiNAPiDfVkhwaDEVFRRIfH1/Th0ECpLCw0GtZcjB4/GDevHnSoEEDERFZv3692mfHjh3KHj16tL2NK8B2796tbFxRduuttyo7KytL2TfddJOyU1JSfD7X6tWrlT1gwABlo65y5swZZd9///3KXrt2rb3dvn17NVZcXKxsXIp81113Kbt58+bKRm3lyy+/tLc7dOigxnr16qXsr776Sh3Hb37zm5D6gccHoqKibO3An35R2TER/7pKKFeUBbuE2lyViGPo6zhuLmuuzGtVdgyfy7IsKSsr8+sDNb56jRBCyLUDJx1CCCGuwUmHEEKIa1TLQgJSMdVZ6iJQ2rVrp+zu3bvb26tWrXJ8rJkr4il9UV1s3brVzprfu3evGkPt79KlS/Y25tnceOONyv7mm2+UjXHxtm3bKvv2229X9p/+9Cd7u3///moMc2fmzp2r7LS0NGW/9dZbysYyOOZ7c8stt6gx1IdQP+rYsaOyURfD2Lt5HbCcz4kTJ5S9YcMGextL5oQSpzwdp30D0SOqm0D1JdQJzXHMA0PfxRJO+N7g++pP83ECy+BUBv7SIYQQ4hqcdAghhLgGw2vVCJYs8VeM8bHHHlP29773PXv7nnvuUWNNmjRRdqDLPTFUYoamWrRoocaWLFnic9/q5vDhw3aoAUNmXbp0UbZZAgYrN2MozrMM2wOWX8Gw1JEjR5RtLrH+/PPP1ZgZDhMR6devn7IxJNasWTNlY7a+uSz6Bz/4gRqbOXOmskeMGKFsXEI9cOBAZWPIctKkSfb2yZMn1di//vUvZZsVqbHSdiipahgs1OVgQrW0uKL9/ZU3MpNpJ06c6LivucRexHv5/759+5R97tw5ZZvhOCyrhO+zGdrzLJn2B3/pEEIIcQ1OOoQQQlyDkw4hhBDXoKZTjeBSRtR0sIPkgw8+qOymTZva21geHsvp4zJIjCGjxoHNvMyls7ikF0vWu0lKSoqtt2A7ArMMi4heToxdRe+8805loyb24YcfKjs5OVnZuIT6448/trdxeWthYaGy8b3A5droB9j64Oabb7a3N23apMZQf8P31dQFRbxL7mCM3mwBgcvq8TzMjqZXrlxRS6hDidnELZgWAMGCr11REztf+yJ4nLh0ffz48cqeOnWqvY3dYvHe79u3r7JxuT/qeKhJmu0uvvjiCzWGvm1+rlDTIYQQEnZw0iGEEOIanHQIIYS4BjWdEIIxXn+5C7jeHrUBM1aLuTGe0jAerly5omzMSzl79qyynfJUcJ1/TXLy5Em7VfTXX3+txiZMmKDsd999197G9wKvH+avJCUlKRu1ElPDEdF6HZaewTJCI0eOVDb6BbZdMOP3IiKvvPKKvX333XerMdS18Lwxxo5awowZM5T9xhtv2NuY/4FtEMz3A1ssuIWTdhKovlOdrQzwfcG8MGxRjr5ttqS4fPmyGsvLy1M2vufYzgJz/sw2HSIi69ats7fNVuki3vlqpg+wDA4hhJCwg5MOIYQQ1+CkQwghxDWo6YQQf7XWzHbKIjr/QsQ7NuvRMkS8Y8Co/zRs2FDZmCOEa/tRVzDzfsyaWjVN8+bN7XPH64N1ocz2yphPgHHrxMREZeP1xHLwnTp1UvahQ4fs7f3796sxfF/N3BcRkeHDhysbNR3Mm3j11Vft7ddff12NYS02zAHCnB/M43n//feV/etf/9rexvp8eP337Nljb2MeWG0gWA0nmNYIWNsPa+Zhq3BTM0NdBTUcfM/NzxER7+PGz5YePXrY29gS3mxnLqI/R6jpEEIICTs46RBCCHENTjqEEEJcg5pOEGBM2F/L3jFjxigb+5U41XZCzQH1IzwWzGnBPB58vGljXx/MG6nO3ilIYmKirUNg3bCDBw8q22xJjbrIp59+qmzMY8L9UaPAFsBmDgvqR2bNPM85mJitrkVEpk2bpuxt27Yp+y9/+Yu9jfF81O5QT+rVq5eyn376aWX/9re/VfZrr71mb6M/o0ZpXpPqbFcdKgLtrxNMPx7cF3UTfJ+w5xL6n+n758+fV2PoX6jpoI/g/Ys5bGvWrLG3UdNBX6+KLsZfOoQQQlyDkw4hhBDX4KRDCCHENajpBAGuf8c4LNZTwrX5GJ9v2bKlss36aJhf4S8nCOO0GOdt3769ss38jlOnTqmxZ555RtlvvfWWuMXJkyftOnNm/oCIcw4B9s/BuDb2pcGeJPheYZ7Pv//9b5/7oiaD78Xjjz+u7I0bNyr7+9//vrLNHvc/+clP1NixY8eUjdrfE088oexHHnlE2YsXLxZfdO7cWdn79u1TtpkbVp2aTnl5ua0dBKIhBKPJVGZ/cxz3RRt1PtRwsJYi1rIz9TPUIzFP59y5c8rG9wY/CzD3xsy/wtprTroz++kQQggJOwKedLZs2SIjRoyQxMREiYiIkNWrV6txy7Jk5syZ0rp1a2nQoIEMGjRIfSskdR/6QN3n66+/lr1798qWLVtk06ZNXlXM6QPEFwFPOpcuXZI77rhD5s6dW+H4q6++Kr///e9l/vz5snPnTrn++utlyJAhNVb6nLgPfaDuU1ZWJrGxsV4hOA/0AeKLgDWdoUOHevV092BZlsyZM0dmzJhh92ZfvHixJCQkyOrVq+Xhhx8O7mjDADNW66/e1LPPPqtsrIsVGxurbNSIzJg57pufn69srEOGPdfx8QUFBco2zwv1oUA0nVD7QOPGje0cB+yBg+do1ga76aabfI6JiDRp0kTZd911l7IPHDigbNRlbrjhBnsb39eBAwcqe+XKlcresGGDsrEu3t/+9jdlm3oe1nnD8/jnP/+pbLxXExISlI1agukH+MXS1MmaNWumarOZPhNqH4iIiAhpr5uq4nQMqHVgLcQuXbooG/On8LME8+pMrQ5zfjB3Bn0V733UdFDzMbVk1I4R87xrpPba0aNHJT8/XwYNGmT/Lz4+XlJSUrw+MDxcvXpVioqK1B+pvVTFB0ToB3UJ+gBxIqSTjufbN36bSkhI8Ppm7iE9PV3i4+Ptv7Zt24bykIjLVMUHROgHdQn6AHGixpdMT58+XZUBKSoqCmtnM3/mYjmJ/v37K/v2229XNi5vxRYCGCoxx/EnNH4LxCXVGDbBcBouITZ/cuPPZGzdbMbxzRL/weDLD7Zt22Zfc2wvgKV+zLI4+N5guO348ePKRq0BzxnDHd26dbO3169fr8YwNIetrh999FFlY3gNl0ybJXrwvPA477vvPmVjSCgjI0PZ48aNU7bZGvuBBx5QYxgi8oTyNm/eLG3btvUqSxQovnzAKbzmtCw6mNYDFYFhZ1+vK+K9RPqpp55StlPrAhFvfzND7/7KUGFIDD8bEGxdb4bq8bG4JLoqJbFC+kvH00MdP+AKCgq8+qt7iImJkUaNGqk/Unupig+I0A/qEvQB4kRIJ5327dtLq1at1LepoqIi2blzp6SmpobypUiYQh8g9AHiRMDhtYsXL8p//vMf2z569Kjs3btXmjZtKklJSTJ16lR56aWXpGPHjtK+fXt54YUXJDExUUaNGhXK4yY1SHl5uddqm3379klSUhJ94BqhuLhY5eZ4wr15eXnStWtX+gDxScCTzu7du9WSUE8MdsKECbJo0SL52c9+JpcuXZKJEyfK+fPnpV+/frJ+/Xq/ccVwBeOjTjHMyZMnKxs1B3wu1F3Mcvn4WpcvX1ZjuOwRl2hijBg1HFx2acakMW6Lxx0bGyufffaZ+t93vvOdavGBDh062NcJS7g3b95c2eZEiMuWMzMzlY264apVq5SN1xu1khUrVtjbbdq0UWO4ZBU1ngEDBij773//u7Jxqb2pDZrtpEXE65cDLrtHn+rZs6eyN2/erOyuXbva20lJSWrMLB106tQp+eijj2zbU5Lo5ZdfliVLllTb54C/cjOVHasM/sromPcUlh+6++67lX3HHXcoG98Xf69tfhZgmw0sVYMlnfC48T1AXzcXgGAbBdzX/KyorIYW8KQzYMAAxyePiIiQ2bNny+zZswN9alJLaNKkidx7770i8u0a/6ysLCksLLRj8PSBuk9iYqIkJyfbdllZmWRnZ8u8efNEhD5AfMPaa4QQQlyDkw4hhBDXqPE8nXAHY7WmbmCGF0S8S8EfPXpU2ZiHgyXK8bXM2CxqNhinxRwCXHuPsX4MkZqPR00Hy2SYx1LdrasfeOABW7+aNWuWGhsyZIiyb7nlFnv7jTfeUGOecKAH1DIwDj5ixAhl4/X67ne/a29jiwXUk8xyMSLeLSweeughZWNhTLPVxLBhw9QYxvOxrQKW0Md8JcSM96M2hYtHzPYYpaWlkp2d7fjcVcVfOL+y+waKvxIw5v2K7S1QA0QNB7URfyW1zHsSzxnvV7wGqB3jZ8ltt92mbFP3O3z4sBpz0rUsy6pUiwv+0iGEEOIanHQIIYS4BicdQgghrkFNB8CYpVOsddKkSco+ffq0sjGOi7FU1F0QM1aLeTUYt8VYKsajcX/M4zHPE/WNZs2aKdtsE1CZ9rTBMGfOHFuP6t69uxpDLWXw4MH29pgxY9QYtptGXQXf9127dikby7eYLYGx9TfaeO2xrhbmDP35z39W9vPPP29vY809PC7U7rD1OOaOYfsCs3011pRDfzV9zJ/+EQyhrqHmC395PXgPmnlM2AYc/Q1zY/B+RU0WP3dMXQb95eabb1Y2anGoFeN5YA1IU/fDz4lgW4CL8JcOIYQQF+GkQwghxDU46RBCCHENajqAv/jx6NGj7e0+ffqoMayxhbFTjOtiPTS0nfJhUHfBGDDuj9oL7m8eK8Z4sd+L2W/DqcdIKLAsy34N7EuDsWqzjTY2ENuzZ4+y9+7dq+yRI0cqG/NbsA7Z7t277e0zZ86oMdT2+vbtq2xsKY15EljDzyywa7bJFhFZunSpsrGuG2o4pj4kIrJgwQJl33rrrfb2unXr1BjW+zOvSXFxsVcNuVBR1XbVwebwoE6FPXAefPDBCrdFvO8ZvF+x7YNTe2oRneOHnyv4uYH5gP50GKyvZuaV4ecEPleNt6smhBBCnOCkQwghxDU46RBCCHGNsNZ0PLHHUK7T99ePAzUK7Nny4osv2ttmEysR77wczGvAPB3MqXDqP44aDcaA8TxuvPFGZWNs1ikvwKlnBu5b3ZrOpUuX7Ph279691ZipLYlobcXUJkS8c3rMHjUiIgcPHlQ2Xj/UbcxjMfUdEW9/PXLkiLJPnjyp7EOHDikba7GZeReo0WC+x3vvvadszBn65S9/qWyM/y9cuNDe/t3vfqfGUP954YUX7O3qzKUJ5LnN+wB9058uhK+D9z7WvRs3bpzPffF+RZ3v888/d3xts46giD521Jrw/kSNB+vzob/hvWFqp/7yr8xrTE2HEEJI2MFJhxBCiGtw0iGEEOIaYa3peGKEGIvFOKMZw/QX78RYq7845F//+ldlm3oGagqYx9C0aVNl4/p6f7kzZrweY/lYDw37eTz88MPKnjJlirKxZzvqDCZu1b6qiF69etnXDXNrME/qww8/tLcxTwd72uD5o8aDtddQTzLzKPA4MO8B81d+/vOfKzszM1PZXbt2VbaZ/2XWvRMRuf/++8WJVatWKRt7PqHPmTok5jbhvWX2HCotLZW1a9c6HktVMfN0/PmiOe6v/iBqH+gzZs8kkW97O5mYNdBQW0O9F/0J9aZ27dopG2sDmvovfh5ivxyst/fJJ58oG+8j1DPNHjqoHeM1NK+xmVPnBH/pEEIIcQ1OOoQQQlwjbMNrkZGR9s9IDEP5swOhW7duyv7FL37h+Nzm8tcWLVqoMSwfg2VvEH/tgM2ftrGxsWoMw2m4NParr75S9iuvvKJs/Blc3Uufq8q2bdvsMAiGS/AczXLyubm5asxswSvifb2w7Ai+l7i8fdGiRfY2lkDBsCuGP7B0DZbJWblypc9jw7L2OTk5ykafwzDisWPHlI1lc8zzevzxx9WY2TpCRPtUdba4CKRdtQm+pxj+xpYA2P58+PDhyu7UqZOyzVA9lrn58ssvlY0hLyypg+E0bClg+hDeB9jefMmSJcrGMClKDNguw/wc8tcKm2VwCCGEhDWcdAghhLgGJx1CCCGuEbaajpPGgPHPXr162dsYq8dYq9mKVUSkTZs2ykZdBWOxZnkULF/eqFEjZftrEY3HhuPmkmvUdAIt9Y4l8fG8zOWjGMfF1zL3rUrJ+UDo2rWrHc/21+7b1DdQRzF9RMR7yTkunx00aJCyzWWkIrqsf2Jioho7evSosnE5trnUWETkzTffVDaWLfnpT39qb6NP/ehHP1I2aj7YNgE1HDzWJ554wt5G7Qk1HlNXLC0t9dIOQoW5ZBr1DKcyLVgKadSoUcpGLQ1LH+HnDL6WWS4K76cvvvjC53GJiMTHx/t8LhHv+93U6rAkE7Y3/+CDDxyfG1uco0+Z9w5+HoYC/tIhhBDiGgFNOunp6dKrVy+Ji4uTli1byqhRo7xWCRUXF0taWpo0a9ZMYmNjZezYsV4Ni0jt5vz583Lq1Ck5duyYnXSJK2joB3Wb1atXy4YNG2T58uWycuVK2bZtm9c+9AFSEQFNOllZWZKWliY7duyQjRs3SmlpqQwePFgt/X3++edlzZo1snz5csnKypJTp07JmDFjQn7gpOYoLi6WuLg4ad26tR2CGD16NP3gGuLgwYPSsWNHGTx4sAwcONAOh9MHiD8irCBqnJw9e1ZatmwpWVlZcvfdd0thYaG0aNFCli5dapeMOHTokHTp0kW2b9/uVUqkIoqKirzinRi3Rl3G1H8w3om5MP7itFiOAtsUm7k5qBvgc6HegSUlCgsLlY3nba6nR10gUPBtNlsgi+hriNoS5ieYx1JeXm7nLlWHH8ydO9fWbvAcMHZt6jIzZsxQY6hPPProo8rGcu/oR1lZWcq+77777O1PP/1UjaHWhyWMMFcG31vM/zL9BsutYI7FuXPnlI05P0899ZSynXwUjwOP23w/Ll68KGvXrpV169bJ0KFDQ+oD0dHR9nFiHhLqfObzog/g++Lv/sTndmoP8tlnn6kxbGeBGiJqrKgt47U3dZmPPvpIjb399tvKRp0O72fUi9A2z8tfLqGpS1uWJWVlZVJYWOilb5sEpel4PjQ9gnd2draUlpYqEbZz586SlJQk27dvr/A5rl69KkVFReqP1E7oB9cuni9Inv489AHiiypPOuXl5TJ16lTp27evvUImPz9foqOjvbK5ExISJD8/v8LnSU9Pl/j4ePsPV9+Q8Mbzbbd37970g2sUy7LspmSeFWP0AeKLKk86aWlpkpOTI8uWLQvqAKZPny6FhYX2H1bRJeGNJ5yDXSUDhX5Qe8nOzg7JrxL6wLVBlfJ0pkyZImvXrpUtW7aoWGSrVq2kpKREzp8/r77hFBQUeK0N9xATE+NV8l9EZNq0afb/J02apMawFLcZm8V6SlhnCGtoYYtprNeE8U5Tt8E8G4wB43NhfBQ1Icz3cIqLYjzaaa19RWAelFNJeHwtz3nl5+fbcXAzRh1KP1i6dKn9erNmzVJjqDWZOVq4mgr9ALURjLljjgdqJeb1Q3H83XffVfZzzz2n7OzsbGVjewLU9szabvha6J9mGwQR7zwdzNlAu0uXLvY2trJGPfTIkSOSlZUl+fn5MnLkSPUFNJQ+0KBBA9sHUQtJTk5W9siRI+1tzNlDn/fX8h1zt5zGsb00fg6hZoP3GGpVqPeabTtQX8S8Osxfw888vP54H5mtt7ElCLZFML9sWJbl5U8VEdAvHcuyZMqUKbJq1SrJzMz0elN79OghUVFRkpGRYf8vNzdXjh8/LqmpqYG8FAljLMuS/Px8uXjxoteHgAj94FrAsizJysqSI0eOyKhRo7y+INEHiC8C+qWTlpYmS5culQ8++EDi4uLs2Gx8fLw0aNBA4uPj5cknn5Rp06ZJ06ZNpVGjRvLcc89JampqpVarkNpBQUGBFBUVSZs2bexvbAUFBRIVFUU/uEZYsWKF5ObmyvDhwyUqKsr+hnvlyhVp1KgRfYD4JKBJZ968eSLiXUpj4cKFdomMN998UyIjI2Xs2LFy9epVGTJkiPzxj38MycGS8MDTGfP48eP2/zp16kQ/uIbwhC+xM+nKlStl8uTJIkIfIBUTVJ5OdeBZm5+UlGR/i54zZ47aB1vuYp8MEzw9jOVjXBfjvhjXdXpu1FEwvonjeB7+6qOZ+NN0UB/auXOnsrG+lwnqH1iTyuzRUl5eLsePH/e7Nj9QPH6QnJxsazrdu3dX+4wdO1bZZlve2bNnqzHP6ioPWBsL9bdNmzYpGytvmHW7+vXrp8Yw7o15OrhkePny5cpGDcjMy3j55ZfVGOaHoOaD8f/+/fsr26k+IE4o+FhT57p69aq89tprIfUDjw/ExMT41HRMDUdEZOjQofZ2jx491BjeM6ixIqj34uNN218/IdR7cX/UDDGvzNTLsKoDfmZh223UcO69915l33PPPco2z+sf//iHGlu3bp2yzb5B5eXlcu7cuerN0yGEEEICgZMOIYQQ1+CkQwghxDXCtp+OKVJjHwzMFzBjzcOGDVNjuKwb67Zh1jOucXeqdYU6AGo2mEOBsX7MDcHYvxO4zh9jxFgzDvMALly44PO5UcfC+Kx53k59j0LBiRMn7HPF/BY8LvP6mn1hRLxrWT322GPK3rp1q7I99cI8/OpXv1J2t27d7G3MwfDXvwTfm9dff13ZqOWZesDatWvVGOZzbNy4Udl4bPjcZ8+eVXafPn3sbezzg/F80w/wPgklZj4c1n9D7SMzM9PeRg0KtTf8LMB8Fn/3o3m/42PRB/D6oBa3ePFiZaPmaOqsqMPh5xC+x/iZhjo2Jvaa1wX1HswDM2vMVfazgL90CCGEuAYnHUIIIa7BSYcQQohrhK2m4wT2OjHzHDDnwR+YK4Mx8A4dOijbrLGEFXRNHUrEO76OfVeCAXMGEDw21Hyccg5QJ8CuoGaV4OpO8xo/frxdjwt1F4y5m72QMNcIe5CgboWVjw8fPqxsrLNn1qRas2aNGkPNEfUzjKmjD6IOaeZVYEwd67ahj+H707NnT2WjnmTqZKg5om1eU7zeocbjn6gbeBKVPZj5Lnit3nnnHWVjHg76BNqo25i6Kh4X3m/4nmOOkD9NzHwf8d7FHjeo96Iv432EGpBZdxA1vx07dijbvAcr+1nAXzqEEEJcg5MOIYQQ1wjbMjikdlFdZXCeeeYZO7yGpWgQs+2zUztuEe+w6cmTJ5XdsWNHZWMI4uOPP7a3x40bp8bM0iAi3ku7sQQRhkIxjGOGOPC5MLSCYS48TwzzmG23RUQ2bNhgb+OyX2x1YLZBuHLlikybNq1ayuBERkb6DCc7hZlxKTF+1KFP+EtDwHCbOY6PRfC1nFqLVPR85nnivmj7akXiAf0L20mYx4ZhZadraFmWlJSUsAwOIYSQ8IGTDiGEENfgpEMIIcQ1auWSaXLtUFpaaseov/nmGzWGOszgwYPt7c2bN6sxs+S9iHdL6SeffNLxuVHTMXtK+YuxY3t11HSwXBKWnjdL0+zZs0eN7d+/X9moJ+3bt0/Z2EBtwYIFyjbbR+CSdFxKb17D6iyD46TpOBHIMuSKbH/PF0hrA6cUBRH/mlAgz4340/1Q5zOPxd81CWRf+zGV2osQQggJAZx0CCGEuAYnHUIIIa5BTYeENREREXbMGlsCoMZglrKZMGGCGkONBsuQYDkVs22ziHd+zCOPPGJvY8sKfC1sIY3tqlGrwhwOs2108+bN1Ri2YJg/f76yf/zjHysb2w/n5OQo28xvwnbgeF5mfodTW/dgcdIKUAtxKq8fSCmoisBzdDouf8/tT08K5rkRf/lHgbwWgnk6lYG/dAghhLgGJx1CCCGuEXbhtTCrykMqSajfN8/zmcs9caknhgnMkh24DBTLeWAYBsf9LTM1S8RgKA73xefGpbd4Hvja5v743Pja/qob4+OdqiPjceNjzePybIfSDzzP5fScgYSl/B1boOOmHeh5BxNeC5Zgr4OvfSvzfomEYe21EydOeLWQJuFPXl6eV1uIYKAf1E5C6Qf0gdqJPx8Iu0mnvLxcTp06JZZlSVJSkuTl5YW0kGRdpqioSNq2bevqNbMsSy5cuCCJiYlBJbgh9IOqU1f8gD5QdcLZB8IuvBYZGSlt2rSRoqIiEfl21RAdLTDcvmbVURWcfhA8td0P6APBE44+wIUEhBBCXIOTDiGEENcI20knJiZGZs2a5dVgiPimLl6zunhO1U1du2Z17XzcIJyvWdgtJCCEEFJ3CdtfOoQQQuoenHQIIYS4BicdQgghrsFJhxBCiGuE7aQzd+5cadeundSvX19SUlJk165dNX1IYUN6err06tVL4uLipGXLljJq1CjJzc1V+xQXF0taWpo0a9ZMYmNjZezYsVJQUFBDR1w16AO+uVZ8QIR+4Ita6wNWGLJs2TIrOjraWrBggbV//37r6aeftho3bmwVFBTU9KGFBUOGDLEWLlxo5eTkWHv37rWGDRtmJSUlWRcvXrT3mTRpktW2bVsrIyPD2r17t9W7d2+rT58+NXjUgUEfcOZa8AHLoh84UVt9ICwnneTkZCstLc22y8rKrMTERCs9Pb0Gjyp8OXPmjCUiVlZWlmVZlnX+/HkrKirKWr58ub3PwYMHLRGxtm/fXlOHGRD0gcCoiz5gWfSDQKgtPhB24bWSkhLJzs6WQYMG2f+LjIyUQYMGeXVcJN/i6aDZtGlTERHJzs6W0tJSdQ07d+4sSUlJteIa0gcCp675gAj9IFBqiw+E3aRz7tw5KSsrk4SEBPX/hIQE1Y6YfEt5eblMnTpV+vbtK7fddpuIfNu2OTo6Who3bqz2rS3XkD4QGHXRB0ToB4FQm3wg7KpMk8BIS0uTnJwc2bp1a00fCqkh6AOkNvlA2P3Sad68udSrV89rhUVBQYG0atWqho4qPJkyZYqsXbtWPvnkE9U0qVWrVlJSUiLnz59X+9eWa0gfqDx11QdE6AeVpbb5QNhNOtHR0dKjRw/JyMiw/1deXi4ZGRmSmppag0cWPliWJVOmTJFVq1ZJZmamtG/fXo336NFDoqKi1DXMzc2V48eP14prSB/wT133ARH6gT9qrQ/U2BIGB5YtW2bFxMRYixYtsg4cOGBNnDjRaty4sZWfn1/ThxYWTJ482YqPj7c2b95snT592v67fPmyvc+kSZOspKQkKzMz09q9e7eVmppqpaam1uBRBwZ9wJlrwQcsi37gRG31gbCcdCzLsv7whz9YSUlJVnR0tJWcnGzt2LGjpg8pbBCRCv8WLlxo73PlyhXr2WeftZo0aWI1bNjQGj16tHX69OmaO+gqQB/wzbXiA5ZFP/BFbfUBtjYghBDiGmGn6RBCCKm7cNIhhBDiGpx0CCGEuAYnHUIIIa7BSYcQQohrcNIhhBDiGpx0CCGEuAYnHUIIIa7BSYcQQohrcNIhhBDiGpx0CCGEuAYnHUIIIa7xfwKgCvB/mRkbAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAliUlEQVR4nO2de3BV5fX3V4KEOwnXhAARUO4iaCAhXBQxkqJVoFC0HS0yrQwYUITaEbXan2Uax3+kWhAdFeyMFJoqOKAFbIAANgETjcr9WhJuQZQkXJNA9vuHk/0+63ty9uYkJzsnh+9nJjN75dln72c/Z+39nL3Ws9aKsCzLEkIIIcQDIhu6A4QQQm4cOOkQQgjxDE46hBBCPIOTDiGEEM/gpEMIIcQzOOkQQgjxDE46hBBCPIOTDiGEEM/gpEMIIcQzOOkQQgjxjHqbdBYvXiw9evSQ5s2bS3JysuzcubO+TkVCFOoAEaEeEE1EfeReW7VqlfzmN7+RpUuXSnJysixatEgyMzNl//790rlzZ8fPVlVVycmTJ6VNmzYSERER7K6RIGNZlpw/f17i4+MlMvL//4apiw6IUA8aG/WhB9SBxoU/Hahpx6CTlJRkpaen2/K1a9es+Ph4KyMjw/WzRUVFlojwr5H9FRUVBU0HqAeN9y+YekAdaJx/qAPITRJkKioqJD8/XxYsWGD/LzIyUlJTUyUnJ8dn//LycikvL7dly+Ok1/gLqi7nnzp1qpJTU1OV/MUXXyg5MTFRyVu3blXyv/71r1r3JZjXdT20adPG3g5UB0T860FCQoL9qykuLk59pqqqSsmDBw+2t69cuaLabrvtNiWXlpYqubi4WMnHjx9X8tmzZ5U8ZcoUe7uwsFC19ejRQ8ldunRR8smTJ5WM33Pv3r2VfPr0aXu7adOmqu3SpUtKHjJkiJLRlIU6+u233yr51ltvtbdPnTql2jZs2KDkAQMG2NuVlZWyYcOGOumBPx246aabbH1202unNyK3e8DtWE7y1atXHY+N3xuey+3zTm8O9XlvO76xwLkty5KrV68qHaiJoE86Z8+elWvXrklsbKz6f2xsrOzbt89n/4yMDPm///u/YHfjugnmwxkVq0WLFkqOiopybMfP1wU3c0SwFdU8X6A6IOJfDyIjI23Fv+kmra446Zjji2041ubDDT8r4vtdNGnSRMnNmze3t5s1a+Z4rpYtW/r9rIjvdWFfzHbsF34W+4LtbjrpdF34AKpJX+uiB/50ICIiwu+k43T+uhLIpFPXfnl5XYFQm/O6fabBV68tWLBASktL7b+ioqKG7hJpAKgHhDpwYxD0N52OHTtKkyZNfMwVxcXFPuYRkZ9+TeEvqroQ6JsL/iJ2Y/z48fb27NmzVdvIkSOVjL8qH3nkESXjr1Bsf+yxx+ztRYsWqbaNGzc69jPQ6womgeqAiH896Ny5sz1O0dHRqg3H13wbOXPmjGpDcxma377//nsld+jQQcnY7//85z/29h133KHavvvuOyUnJCQo+ZtvvlEymuMmTJigZPNa1qxZo9rQGb9nzx4lt2rVSsmfffaZkrt27apk0xyHbza33HKLkpOTk+3tK1euyLp161R7sJ4F5j2Meh1Ms1NdrAP41uf2xonmNDy2k1xRUaHa3MYE39Jxf6frwjY8dm0sJkF/04mKipLExETJysqy/1dVVSVZWVmSkpIS7NOREIQ6QESoB6Rmgv6mIyIyb948mTZtmgwdOlSSkpJk0aJFcvHiRZk+fXp9nI6EINQBIkI9IL7Uy6Tz8MMPy/fffy8vvfSSnD59WoYMGSLr16/3cSiS8IU6QESoB8SXegkOrQtlZWU+tvtAQJujm29j6NChSn755ZeVjEtt4+Pj7W1cAXXx4kUl4zJb7AteJ65qMu3xuMoIfRQHDhxQ8gsvvKDkr776SuqT0tJSadu2bdCOV60HP//5z217+fnz59U+ffv2VXJBQYG9jcuUUS/OnTun5IEDByrZXKYs4vtdmccbO3asasN+Hj16VMnoG0H/0Zw5c5Q8c+ZMext1BJd+HzlyRMnoOzhx4oSSR40apWTTN4HHysvLU/K4cePs7fLyclmyZElQ9aBaB5yWTAcT9H3gudAv0759e3sbdRH3LSkpcTw36mNZWZmSzfvffAaJiLRu3VrJP/74o5KPHTvmeGy8zmvXrjn21QSXTFdWVrrqQIOvXiOEEHLjwEmHEEKIZ3DSIYQQ4hn1spCgIXGz+T7++ONKfvfdd5V8+fJlJWOaETPmAN1huFb/5ptvVjKmP0EbMvqIcD2+Cdpx0Ta/Y8cOJeN1f/jhh0o2xy2U3HxXrlyxbcxmihaRn7IXm/zqV7+yt91iGTBOBG3y6ENDO7fZjrExaDPHfi9dulTJGEtjxoKJaF8h6hj6Ch599FEloy8qOztbyRjP9L///c/eRj8X+iw3b95sbwfiBwgmdckogrE0GLOEOoHxVN27d7e3Ud/wXkd++OEHJaMfEOOvJk6caG/fc889jvtiBgw811//+lclY8yfGbMWjLgchG86hBBCPIOTDiGEEM8IO/Oa22v+rFmzlIxLj9HkhaDZxaSystJRxr6hjK/7Tq+yuBQWzSx47KeeekrJaF4LJZOayblz5+zlp2haMs1pIvqaMW8XLmG97777lIzjieZLNOOYKXhwuXpMTIyS7733XiXjMmeU0eSVlJRkb2/btk21oQn3008/VTJmnUazj2kiEhE5dOiQ336hjl24cMHers+0S6ZuBmJOw33x3kbzobk0XURn0RbxvT9NUyRm68ZQC8zAsH37diWjuRc/b+pru3btxAk002MapgceeEDJ5nWI6FAPt+8Vl0xfD3zTIYQQ4hmcdAghhHgGJx1CCCGeEXY+HQTt/ljVDlPV4LJIXArp5DNC+yf6CdAWG0j1QLcUHZgeBVNf4HVPmjRJyatXr/Z77oZkwIABth9t0KBBqg2XhZvpP3C5K5ZB6Natm5JxfNF+j3pi+k5wySougX766aeVjPZ73D8tLU3J8+fPt7dN/46Ib0qd5557Tsmvvvqqks3ULSK+6X5MfxRWNO3Vq5eSzXQsV69e9UmbEywC8ds4+X/we3rmmWeUfPfddysZU7mYPiwRkcOHD9vb+FzAz+KyZfSz9OzZU8m4zN5c+o5LonG5NT5H0J+J90a/fv2UnJ+fb2+jfwipTagF33QIIYR4BicdQgghnsFJhxBCiGeEvU9nxIgRSnYr5YqxIOjTMT+PPhy3FDwYt4P7O9mn0WaM14E+CLwu3B/T8YeqT6dv3762v2rZsmWq7fbbb1ey6fPZt2+f477oR8HxxZLSZmlmEe0TwmOhjR19Oq+//rqSMSYDSyHMmzfP3s7NzVVtGNOD58KYIdQx9PWZ8SboL8KU+ma6H9TtYBIZGWn3O5B4MuxTnz59lIy+DRwr9IU4xehheYpOnTopGcfOrZw1+m1MHxH6WbD0Oj6X8JnWsWNHJaOvy9wfxzDQZ15N8E2HEEKIZ3DSIYQQ4hmcdAghhHhG2Pt0evfurWT00aDvw81mbNow3fJAoZ/Abf18IPZRtK3iufC63OzbocquXbtsWzr6Tvbv369kMy8Z2tBzcnKUjL6Q3bt3K3nJkiVKfvbZZ5Vs+ogwTxva87ds2aJk7BvGt0yYMEHJpr8Nc62NGTNGyeiXMNPUi/iWNsCYIFMHscSCWcpARPuDnMpwBBO3e8S8L9CXgfcA+kLQV4J+FyxZ0b9//xq3RXy/Y7xfMa7Ord0cXyy3gvc6+p7wOYPXifGDZl/wmeb0zGOcDiGEkJCDkw4hhBDP4KRDCCHEM8Lep4M5jdAui3ZfN7+MW70dE6caLDUdG3HKI+V2LrwuzBvVpUsXx+OFChcuXLCvBX06aHM384qhvR5t7mbeLBHfeC4shY1xPqZPCOM9MM8W1i9BG/sHH3yg5Oeff17J48aNs7fRz4I+mq+//lrJmFcLc3qhvpvxIVibB2NRzHM1VLlqxMnninnn0MeDvg6sH4T51Mx8aBgHh9TFfyuifTp4LvQH4bnwPsH7CL9Xc3/0H9UmLgfhmw4hhBDP4KRDCCHEMzjpEEII8Yyw9+m41Z5AeyeucUfZtJ+ifRNtrdiOtle3NfBO9lO3HHJ4bNzfrc56qHD16lV7HKZMmaLaDh48qGSz1jteH/r20Edz7tw5JWP8C/oCzXoomEsNYzQwTmfIkCFKxtxX6H8y/TLYT/QzzJgxQ8k4RidOnFAy5uEy7ftmfSIRkb179/rtZ2VlpU97fRBIvkK89/E7d8o5JuJ7z2CcnXluvLfxs273Iz5n8FxO8UdutaDc4gPR12X2JZBcd9cL33QIIYR4RsCTztatW+XBBx+U+Ph4iYiIkDVr1qh2y7LkpZdeki5dukiLFi0kNTXV59cWCW+oA+HPhQsXZPv27bJ27VrJzMyUkydPqnbqAPFHwJPOxYsXZfDgwT5LSqt57bXX5I033pClS5fKjh07pFWrVpKWluazhJWEL9SB8KeqqkpiYmLkzjvvrLGdOkD8EbBPZ/z48T6xAtVYliWLFi2SF1980c4f9fe//11iY2NlzZo18sgjj9Stt7XAXEsv4lvrHuNX0DaL9lJsdyJQn43b+nunzyKXL19WMtpxcVyCRbB1IC4uzrYxoz9u+/btSv7lL39pb2O8yqlTp5SMMVNfffWVkjG+BeMVTP/Fgw8+qNrQb4JvAYWFhUrGeJGf/exnSv7uu+/sbdQJjCXB6+jRo4eS3XTQHGP0HZh+snbt2qnYEdPXFGwdiIiI8KvvTvcYxqOYNZBEfGsJud2vTj5bN38u5qZDPwt+HvXTvH/d/Ll4r6POuPmxzeO7PWcaPPfa0aNH5fTp05Kammr/Lzo6WpKTk30SLlZTXl4uZWVl6o80XmqjAyLUg3CCOkCcCOqkc/r0aRERiY2NVf+PjY2125CMjAyJjo62/7p37x7MLhGPqY0OiFAPwgnqAHGiwZdML1iwQJXjLSsrq5Oy4auj2ys0Lpt0K0fgRCBlEWrT7rQv9hOXwmJqFhwXpxK1XuBPD/bt22ebC9BcgmatzMxMe3vo0KGqDXUKx+uxxx5T8hdffKFkLKNglpi+7777VBua0wYPHux4LExJ9O9//1vJ06dPt7cxVQumqsFSBrhUHMtuYwoUs1Q2mm1wIcDUqVNF5Kex6tmzZ50XCvjTAaf7ymnJNC4nR/MampXQnOi0bBllfO64mekRN3OcCZrPUMb7182Uhz8ETB2rS1iHP4L6phMXFyciIsXFxer/xcXFdhvSrFkzadu2rfojjZfa6IAI9SCcoA4QJ4I66fTs2VPi4uIkKyvL/l9ZWZns2LFDUlJSgnkqEqJQBwh1gDgRsHntwoULcujQIVs+evSoFBQUSPv27SUhIUHmzp0rCxculN69e0vPnj3lj3/8o8THx8vEiROD2W8SYnz77beSkJBAHbhBqKqqUqa8aqd/UVGRDBw4kDpA/BLwpJOXlyf33HOPLVfbYKdNmybLly+XP/zhD3Lx4kWZMWOGlJSUyKhRo2T9+vU+5VfrC1zqirj5PtxS1Zj2UNwX7ZtuSxcDwc0m7JbaAk0diFnWe8+ePQH2TmT06NH1ogPNmze3rw39UmijN80xaKdGe735w6kmGb/LhQsXKvnFF1+0t7H0NS53xeXp+/btUzKm7Pnd737nt2/Hjh1Tbbhkev78+Ur+85//rOS7775byVjiwTR/YToeM43MiRMnZNWqVbacm5srIiJ/+ctf5MMPPwyqDjj5dJyWD2Op+l69evndtyYZfSN4LqdyDm6lRlDG/dF3Zz478F7HfuB44TMPY6UwTZO5atCtZENt0uQEPOmMGTPG1bH3yiuvyCuvvBJwZ0jjpbS01H7oUwfCn65du8qf/vQnW75y5Yq8+uqr8tZbb4kIdYD4h7nXCCGEeAYnHUIIIZ7R4HE6wQZ9NAimhseo55iYGCU7lYIN1EcTaByPaU9FOy7afNEejSljMP0PYgby1canU1907NjRtn+jnwaDD83vY9q0aaoNfR8Yr4LxLmjPN8smiOg4ndLSUtWGcTkYC4YlGjB1DaYw2rhxo72N8SCDBg1S8kcffaRk1Ge073/++edKNleX4b1x5MgRJZv3Un3GdjmlwUHM8Rk7dqxqw2cD+pfwfsZrwnvQqQSAUxmEmmS3eECnNDjYT/TxoM7g/Z2Xl6dkcxzc/NZme4OkwSGEEEKc4KRDCCHEMzjpEEII8Yyw8+lgHisE7dQXL15UcuvWrZWM9nr0IziBNk43H5BbeVwTTLWPcTlYsgGvE3FKT9KQtGzZ0rad7969W7VhPrVbb73V3l63bp1qu+uuu5RsRsuL+Nr7i4qKlJydna1k0/eBcTcY94Bja/qDRERmzpyp5M2bNys5LS3N3sacXHidd9xxh5IxBx3mhevTp4+SzXHBcs8YT1SbtPbBBs9r5hTEOB2Mn0Lccpo5+WEwVgt9rjh2KKPfBf005rlRB9AH6Ba3g7n/nMq7uPnSzGcWfTqEEEJCDk46hBBCPIOTDiGEEM8IO5+Om8/FzXfhlnvtettqoi71dNz8Q2jHRZuw23WHqk/n0qVL9rWgv2L48OFK3rZtm71dXSa5ml27dil51KhRSt60aZOSR48ereSBAwcq+Z133rG30ReHMUFYnvmNN95QMvqAMDeW6W/C+Cu8jkcffdTx2OibQr/NmDFj7G3Uic8++0zJZmxYfcbpREZG2vcGxqOh3ps+XXwWBHoPYb0d9LGaZcQxJx7WfhowYICS8V7HeCq33GxOOOWLFPHNBYh+8OPHj/s9FtLg9XQIIYQQJzjpEEII8QxOOoQQQjwj7H06aAM3YzlEfO26uL4e7bqmjdOtvoZbviW3HEqm/Rr3xRgC9AOY8QoivnEBOC6dOnWSUGTo0KF2jizMGYXXbOYCw7ikvn37Khlt5g8//LCSn3jiCSX//ve/V7IZ83HnnXeqNvQPrVixQsnDhg1TMsbSYC42U28wJgPjbqpLC1Szc+dOJY8fP17JqCdmjRyzSJuIb9yLOf716dMxQR+Dk58G40/c/BPYjmN94sQJJR84cMDexnsfxxXvN4wHdIsJMmNz8Fx4H+Cx8NmRmJioZNOPJ6LjzjBOEftVm1gtvukQQgjxDE46hBBCPIOTDiGEEM8IO58O+i6wBgvmKMOcR1hvBwmkfoRbnXS3WhVO9lK007rlYkObO44LjluocObMGfs7Qj/Nxx9/rGTTB4Z+EbTvo839xx9/VPKMGTOUjL4TsxYLfq/x8fFKNuM5RHxr+ezYsUPJmJutuLjY3v71r3+t2sxaOyK+19GvXz8lHz16VMmoN2YtIKwhhOzdu9feRj9DfeF2HvN7wu8sKSlJyW41b/D+RB+P+T1jnA3meUO5urS7v3Ph/W22o98ZP4uxTOjjQX8S+iTNdsxViTD3GiGEkJCGkw4hhBDPCDvzGr46mqYJEd/UHpgGBM0TTkuT8XUSX89xuTWmykATj9PybHyldju3W4kGXA7rVua7odi4caNtLujVq5dqw3Qe5nf7ww8/qDYs64wp/dEch+UKcHzM9DP4vY0bN07Jr732mpLffvttJZtmKhFfHTSX+WMqGtQDNJti+Qdc9ozX9f7779vbaOJBzLREFRUVPmbE+sDNhGOaUXGJPZa3wHsfzWd4T2HZ8Z49e/o9ltuzAM+Fpj58bpnmchwDNO/i94bPDmzv37+/km+++WZ7G02UtUl7g/BNhxBCiGdw0iGEEOIZnHQIIYR4Rtj5dDCdCy75c1t6jO24RNP08bjZN9FOi8sqEbe0Ov76URNuKXjQb4D+pVDh3Llz9riMGDFCteFS0YKCAnsbl4Dj9eKyZixfjf4i036P58KyCbhMGf1Dubm5SsY0Jt26dVPykCFD7G38HjHtU0JCgpK/+eYbJaNPCHXMXFa8detW1YbpexYtWuT3OMHEvCedwgpE9HJh1GkMG0D9wfAJvB9xKbIpu91v6MPB0AxcQo36ax7PqR8ivuWs8btBHxD6o3r06GFv5+XlqTYcs0BCSKrhmw4hhBDPCGjSycjIkGHDhkmbNm2kc+fOMnHiRNm/f7/a58qVK5Keni4dOnSQ1q1by+TJk31WYpDw4+DBg0qmHoQ369evl2PHjsnBgwfl8OHDcurUKZ99qAOkJgKadLKzsyU9PV1yc3Pl888/l8rKShk3bpyKFH/mmWdk7dq1kpmZKdnZ2XLy5En5xS9+EfSOk9Bi0qRJ1IMbiEOHDklMTIwkJCQocyB1gLgRkE9n/fr1Sl6+fLl07txZ8vPz5a677pLS0lJ57733ZMWKFTJ27FgREVm2bJn0799fcnNzfcoL1wdot0WfjlvsAca3YJoQJ/sygvZPXKuP7WiLdSptgHZa7DeCfXVbux8oRUVF9aIHo0aNsscNY4u6du2qZDPeAEsZYAwJ+mEwXgXjW3C8zPTwps9FxNePgjqJJaVN/5CIb6ljU+fM0gMiItu3b1fys88+q2RMcYLXgXFrZl9xXzMGaMqUKVJUVGTLZWVl8tFHH0lBQYF06dIlqDrgVE4EfZvm9WAsFvo+3GLd3FLTOPl08P7EsUQ/CuLkt3FLn4WfRV+Vm//J9Hei/8cpBY8nPp3qgMPqwKX8/HyprKyU1NRUe59+/fpJQkKC5OTk1HiM8vJyKSsrU3+kcUI9uHGpnqyqHeDUAeKPWk86VVVVMnfuXBk5cqSdoPD06dMSFRXls0orNjbWJ1K6moyMDImOjrb/8BcmaRwMHz6cenCDYlmWvcppwIABIkIdIP6p9aSTnp4uu3btkpUrV9apAwsWLJDS0lL7z3xlJ40HM31KbaAeNF5ycnJ80izVBurAjUGt4nRmz54t69atk61btyonYlxcnFRUVEhJSYn6hVNcXOxjO66mWbNmPjbHuoB+E0wpjvZOtFFizq4OHToo2czt5OYHwXOhbd8th5K5P9qIcV0/+jvQZox9dYtJCBTTvxJMPWjVqpX9nWI8C/qxvvzyS3t79OjRqg1jTjDfGcZFYJ4t1AP0GZngd2WWCxDxLWc9YcIEJb/55ptKNvUCY4DM/GcivvqLpQ/S0tKUbI6ZiMi9995rb+N1YIzPsGHDZNu2bXL8+HF54IEH5J///KfdVl/PAtRTvGduv/12ext9OqgvGEeHvhIEz2WOD7a5fRb9t+ibcvLb4LHwOeN2HW77m/FNbnFRtcnFFtCTxrIsmT17tqxevVo2bdrkEzCXmJgoTZs2VYF2+/fvl8LCQklJSQm4c6RxQj0IfyzLkm3btsnRo0floYce8gnEpA4QfwT0ppOeni4rVqyQTz75RNq0aWPbZqOjo6VFixYSHR0tv/3tb2XevHnSvn17adu2rcyZM0dSUlI8WblGGo7i4mJp2rQp9eAGobCwUEpLS2X8+PESFRVlr/K8fPmytG3bljpA/BLQpPPWW2+JiMiYMWPU/5ctWyaPP/64iIi8/vrrEhkZKZMnT5by8nJJS0uTJUuWBKWzJHTp06cP9eAGotqc+8knn6j/f/zxxzJr1iwRoQ6QmomwrndxtUeUlZX55L0KBMyhhXZp02Yt4ltz429/+5uSMzIylHz+/Hl7G+3L6LPBeIuzZ88qGW2zTn4W/JrQPv3cc88pGeM1zBoZIr7xHaa/5P7775dAKS0t9fEz1YVqPXj66aftccFYGyw/bNbbQb8J1uJBcxAu4x0/frySjx8/rmSzNguWdcYaJJhnC787PDb6rsycZ2jSxkwQGPGPviisKYM6ay4IOXPmjGpDfTXz2V29elX++9//BlUPqnWgSZMmfn0H+Kx46qmn7G0MRMU8dW5xdGZJchFfP4wJ+knwuYPncnvs4rmd/DSoL+irwucUHhvLwM+fP9/exh8VeF3mdViWJZWVla46wNxrhBBCPIOTDiGEEM/gpEMIIcQzwq6eDtozMV4F7e1oEx45cqSSMX7DjPtBWymeG22nuBYfP+8UU4T2ZLwu7Dfap9Gf5FaTI1QoKCiwxw3tyWvXrlXy1KlT7e3k5GTVduDAASVXR85Xg3Zts1aMiMiWLVuU/N5779nbmGkddQq/Z4y1wbgV9COacT6oB+jDwb5g7jV05KN+m8fHWCWsZ5Sdne23X/UF+nbwvCUlJfY2jrtbjI/b/Yz7m7Fx5nlFfO8nPBa2Y3yVk88HYwsLCwuVjD7E6vRU1Zg5Cms6l+kndPNF1XucDiGEEFIXOOkQQgjxDE46hBBCPCPsfDpoh8b06GijRHtndWBbNe+8846SzTgJtN1jnA1myUWbMPYF4zXMWj5oM8bcYRjDgnZdtP2j/bousVH1ybhx42zfGMYWmXnwRERyc3Pt7eeff161oT/o7bffVjLGr0yaNMmnHyZmHXn0r6H9Hn04WMsH43YwTYzpj8MccujT6N27t5J37tzp2N6lSxe/x8NqoBs2bFCyqZN4zcEkMjLS9h3gPYPyjh077O1Ro0apNvSF4D2F/gmM4cM8debnUb8wRs8tNgaTm16+fFnJpq5jbBWeG33DGNtVHcDt73hm/BXilIvNk3o6hBBCSCBw0iGEEOIZYWdeQ3MCmk3wNRfNAvjaiyYdlEMVt1duNCvikuBQ4eDBg37LVQ8dOlTJptnqySefVG34vU+fPl3JmZmZSr7llluUjOZHM60OmjbRzIDLmNF8gaY8LCFgprIxSwmL6LLZIiLvvvuukh966CEl4/eOenH48GF7G01XWB7cNLWgiSaYRERE2OdCszCaF81S4agDeK0YwoAmabwmlM1lz9iGpnR8zqCZCq/LrTyBE27hEMeOHVPyiRMnlGzeZ3Xphz/4pkMIIcQzOOkQQgjxDE46hBBCPCPsfDr/+Mc/lDxjxoyA9kec0sMEmgLCLeU4yqZvwK1sLPpwcHnr5MmTlYxp3tH+HSr06NHD9segPwKXvJqlmzE1CJZBMJdXi/iWvFi1apWSBw4cqGRzOTGmHPr666+VjGUV0N7/6aefKhmXuFYXSxTxXfaLS21RXzHtEy4lHzRokJLNlDxYZvvQoUNKNkMEapMO5Xoxl0yj3qPPwbzHSktLVRuGT7gt8cV7yqndbSl3oOljAhlP3Bf7jde9bds2Jefl5Sm5Ppe/i/BNhxBCiIdw0iGEEOIZnHQIIYR4Rtj5dDDeZM6cOUpGO/UHH3zgeDw3u25dcLMD14XFixcrGVOnY4oPM019KPHll1/aPhAsz4Bp+c3xQ3v+kSNHlNypUycl43jExMQoGVPumPEsGAuGNnT0n2EpA7SxY4yQmU7J9O+I+Pq1MI4Hx2zhwoVKNss7i4i88MIL9vbw4cNVG+qnGX9Un/fJtWvX/KbBQX+G2R6on8nt2OhzNXErDeLUT5HAfD74WRx7lFFHUN/w3Kbs5GfGvjANDiGEkJCDkw4hhBDPCDnz2vW+ol0vmCYDs7fW9/LAhgKvC68bl97WlWB/b9XHM9OL4DVh6hHzVR/3RT3A68d2t3OZJgw8VqDnDmR/t9QsTmMiInLlyhUlo16Y+2M/ncagejuYelB9rEAyGdfl/PV5bLdjucm13bc256rtuWv6vmoiwgr206KOHD9+3KckAAl9ioqKpFu3bkE7HvWgcRJMPaAONE7cdCDkJp2qqio5efKkWJYlCQkJUlRUJG3btm3objUKysrKpHv37p6OmWVZcv78eYmPj3d0tAYK9aD2hIseUAdqTyjrQMiZ1yIjI6Vbt272CqC2bdtS0QLE6zGrjwJw1IO609j1gDpQd0JRB7iQgBBCiGdw0iGEEOIZITvpNGvWTF5++WWVVJA4E45jFo7XVN+E25iF2/V4QSiPWcgtJCCEEBK+hOybDiGEkPCDkw4hhBDP4KRDCCHEMzjpEEII8YyQnXQWL15slypOTk6WnTt3NnSXQoaMjAwZNmyYtGnTRjp37iwTJ05UaeZFfsqxlZ6eLh06dJDWrVvL5MmTpbi4uIF6XDuoA/65UXRAhHrgj0arA1YIsnLlSisqKsp6//33rd27d1tPPPGEFRMTYxUXFzd010KCtLQ0a9myZdauXbusgoIC6/7777cSEhKsCxcu2PvMnDnT6t69u5WVlWXl5eVZw4cPt0aMGNGAvQ4M6oAzN4IOWBb1wInGqgMhOekkJSVZ6enptnzt2jUrPj7eysjIaMBehS5nzpyxRMTKzs62LMuySkpKrKZNm1qZmZn2Pnv37rVExMrJyWmobgYEdSAwwlEHLIt6EAiNRQdCzrxWUVEh+fn5kpqaav8vMjJSUlNTJScnpwF7FrpUV8ls3769iIjk5+dLZWWlGsN+/fpJQkJCoxhD6kDghJsOiFAPAqWx6EDITTpnz56Va9eu+ZT4jY2N9SnVS37KxDt37lwZOXKk3HbbbSLyU0njqKgon5LLjWUMqQOBEY46IEI9CITGpAMhl2WaBEZ6errs2rVLtm/f3tBdIQ0EdYA0Jh0IuTedjh07SpMmTXxWWBQXF0tcXFwD9So0mT17tqxbt042b96siibFxcVJRUWFlJSUqP0byxhSB66fcNUBEerB9dLYdCDkJp2oqChJTEyUrKws+39VVVWSlZUlKSkpDdiz0MGyLJk9e7asXr1aNm3aJD179lTtiYmJ0rRpUzWG+/fvl8LCwkYxhtQBd8JdB0SoB240Wh1osCUMDqxcudJq1qyZtXz5cmvPnj3WjBkzrJiYGOv06dMN3bWQYNasWVZ0dLS1ZcsW69SpU/bfpUuX7H1mzpxpJSQkWJs2bbLy8vKslJQUKyUlpQF7HRjUAWduBB2wLOqBE41VB0Jy0rEsy3rzzTethIQEKyoqykpKSrJyc3Mbukshg4jU+Lds2TJ7n8uXL1tPPvmk1a5dO6tly5bWpEmTrFOnTjVcp2sBdcA/N4oOWBb1wB+NVQdY2oAQQohnhJxPhxBCSPjCSYcQQohncNIhhBDiGZx0CCGEeAYnHUIIIZ7BSYcQQohncNIhhBDiGZx0CCGEeAYnHUIIIZ7BSYcQQohncNIhhBDiGZx0CCGEeMb/AwsB7MZhCq1mAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiY0lEQVR4nO2deXBV9RXHTwIJO2GTQIQAtWwF2QIBDCBQBLFioVhExoFqC6IBCkylZVqwbk3HVqBaFDsjoDNQKMhSUaE07MgiCLJvLUIUCAEJYQkhJLd/OO/2d76Pdy83ebl5Cd/PTGZ+3/zue+++m/PeL/ec3zknyrIsSwghhBAfiC7tEyCEEHL3wEWHEEKIb3DRIYQQ4htcdAghhPgGFx1CCCG+wUWHEEKIb3DRIYQQ4htcdAghhPgGFx1CCCG+wUWHEEKIb5TYojN79mxp2rSpVK5cWbp27So7d+4sqZciEQptgIjQDogmqiRqry1evFhGjhwpc+bMka5du8qsWbNkyZIlcvToUalfv77jYwsLC+XMmTNSo0YNiYqKCvepkTBjWZZcuXJFEhISJDr6///DFMcGRGgHZY2SsAPaQNkilA3c7sCwk5ycbKWmptq6oKDASkhIsNLS0lwfm5GRYYkIf8rYT0ZGRthsgHZQdn/CaQe0gbL5gzaAVJQwc/PmTdm9e7dMnTrV/l10dLT069dPtm3bFnR8Xl6e5OXl2dpi0esySY0aNeyxVxsQCW0HEyZMkEqVKomISE5OjnrM/v37lf7+979vj/E/4yNHjoQ8XxGRVq1aKX3r1i2lT5w4ofSgQYPs8bJlyxyf+8qVK47P1b17d6UTEhKUvnjxoj1OSUlRc7GxsUpnZGQoHbh2AfDzVbVqVaUvXLhgj5s2barmdu3apXSdOnXscV5ensyYMaNYdhDKBqKioop0p4OPQY3Xwut3j3m82/m5vbbb8U6PRR3Ou0Iv1ywwRvtHwr7oXLhwQQoKCiQ+Pl79Pj4+PuiDLyKSlpYmL730UrhPg/iMaZxebUAktB1UqlTJ/uLEL9CKFbX5ml/A+GHBY1Hjc1eoUMHx+CpVqoSci4mJcXwsuh7weDwX832Zr3u7YytXruw4j18a+Hzm43FBcnstkeLZQSgbKKlFJ5x4XXSK+3wl9djiPpdlWa6PKfXda1OnTpXLly/bP/ifGrk7oB0Q2sDdQdjvdOrVqycVKlSQzMxM9fvMzExp0KBB0PHmf7KkfODVBkRC24H5Xy7eEXTq1Enp/Px8e2y6aUREOnbsqPSiRYuUbtasmdKHDx9Wuk+fPkqbz/+b3/xGzb3xxhtK16xZU+knn3xS6WPHjimN1y03N9ceHzx40PG59+zZo3T16tWVxrsuvJtp1KiRPT516pSaa9OmjdJfffWVPcbrLRK+7wLz7qywsFDN4R1pqMfdybybm6o4dxB43l5fy4srL5zgeeJdutv7uh1hv9OJjY2VpKQkSU9PVyeWnp4e5Lsm5RPaABGhHZDbE/Y7HRGRyZMny6hRo6Rz586SnJwss2bNkmvXrsnTTz9dEi9HIhDaABGhHZBgSmTReeKJJyQrK0umT58u586dkw4dOsjq1auDAoqk/EIbICK0AxJMiSSHFoecnByJi4sr7dMgHrl8+XJQfKE4BOxg0qRJtp8ft/BifOPRRx+1x2+++aaaM2MVIiLr169XGuMs9erVUxp3apnbns+cOaPmmjRpovTRo0eVHjZsmNK1a9dWesWKFUp/8skn9hgTKh988EGl586dqzTeUeC5NmzYUOnr16/bY4yXYBxs2rRp9jg3N1emTJkSVjsI2EB0dPQdxzGKE/sozjbm4sZ/vHwNR9JXtvk+LcuSgoICVxso9d1rhBBC7h646BBCCPENLjqEEEJ8o0Q2EhASLk6dOmXn55w7d07NVatWTemRI0faY9ySiyV0Hn74YaU3bdqkNMZOMC7TvHlze4xla06fPq00xig/++wzx3P75ptvlG7fvr097tatm5pbvXq10iNGjFC6S5cuSu/bt0/pBQsWKG3mM/Xs2VPNJSUlKV1QUGCPMV+jpMBYidPrlmTejdvji/vcTnEbzJVxe59eY0DmNfWSP3Snr8M7HUIIIb7BRYcQQohv0L1GIpq6devaBS+xdMrNmzeV7tChgz3+4Q9/qObQFWdWUxYJroyLFZVbt26ttHkuZrVlEZF7771XnMDt2vi+zGrZIt9tRw/1Ws8884zja/3lL39xfK2uXbsqnZycbI+xGjZew7Nnz9rj25XBCRdmKSQv25qLW1XatXCl4eYqrkvLsf+MOL8vxHR73gnFqVJN9xohhJCIhosOIYQQ3+CiQwghxDcY0yERTWJiol2CpmXLlmoOS92YcRzs1rl7926lcUs1tjJ4/PHHlUZ/9RdffGGPN2/erOYwXtSiRQule/furXTdunWVxnM3t7AeOnRIzWErgEuXLimNJXkOHDigdN++fZXeuHGjPR46dKiamz17ttLmvFk+J1LwGrPBuAqWAXLaru22ZdztuVE7tRDAmA2+tltMpjgxnHC0VeCdDiGEEN/gokMIIcQ3uOgQQgjxDcZ0SERz4MABO08H2wtgKRuz/IyZs3M7MA8nOztb6cTERKXnz5+vtJmjgrkuP/jBD5TesmWL0lj2HeexLbTZ7hlbEwSuTQDMw9mwYYPSr776qtIY4zHP7csvv1Rzv/jFL5R+7bXX7LHX3JDSwC2G46adWjdjK3XUbjEbt+tnzuN5uMV0SrIVQlHKH/FOhxBCiG9w0SGEEOIbXHQIIYT4BmM6JKIZOHCgVK1aVUSC2wtgbTAzvoHHYlvnvXv3Kj1o0CClX3jhBaWxzL+ZL4OtCALnG+Chhx4K+VgRkRs3biiNdeDMVghmLEkkuNUBPjfm4Xz44YdKd+rUSWmzbtySJUvUHMZ0zPMuydYGRa29hmAcxUvZfrd5jOFg/BFr5t26dUvpq1evOr6WGdPB+A/WIMQ6eMWpOecWPzKvqWVZdxQ/4p0OIYQQ3+CiQwghxDe46BBCCPENxnRIRLNixQrbX96uXTs1h31nLl68aI+xttrHH3+sNLa+btSokdL4+M6dOytt+ugxx+fbb79Veu7cuUqPGjVK6fz8fKXT09OVNuuaPfbYY2rOzOERCfb3Y6vs/fv3K41138zePX369FFzmBM0Y8YMdY7Dhw+X0saMObj1qEG81kerWPH/X594bbAmHsY6MOaDj8fYiflaeJ5ob9j+HGOGbnEaJ5ziYJZl3VG+Fu90CCGE+AYXHUIIIb7BRYcQQohvMKZDIprevXtLlSpVRERk2bJlag7jG2Z+zPLly9Vcr169lMb+L5iTgnkUGLfJzc21x2Zui4jImjVrlMYcITPvRkT760WC40tmHlC9evXUHObtPPLII47PjfkgWCfu+PHj9vjUqVNqbtOmTUqb/nuMG4STwsLCIuXpuOWnuOXloMZcnOrVq9tjrKeHcTrUaF94LhgTMuNJbnETjPmgDWAMB7X5vt365xSlvw7vdAghhPiG50Vn06ZNMmjQIElISJCoqChZsWKFmrcsS6ZPny4NGzaUKlWqSL9+/dR/T6T8Qxso/1y4cEHmzp0rr7zyirzwwgtBlRBoAyQUnheda9euSfv27YNa1wZ4/fXX5c0335Q5c+bIjh07pFq1ajJgwIASvf0mkQVtoPxTUFAgCQkJMnjw4NvO0wZIKDzHdAYOHCgDBw687ZxlWTJr1iz53e9+Jz/+8Y9FROSDDz6Q+Ph4WbFiRUTs4w8nbrWb0FeKe/G/973vKX3kyJEwnp03zHN3ex9OhNsGsrKy7JwGMw9HJLi+2rVr1+wx+sTx2lerVk1pjJXg4/ft26e0mSOEPWwwhoO5MNinBvM/2rdvr7RZY27MmDFqrkePHkpjHS4z9iQSXEMO40smTz/9tNLvvvuuPa5Tp46MHz9eRL77+zZu3NieC7cNmDEGt7iM05xbzMZrzMecR/tCTNu8nUbQZszjzVwqkeDPJ8Z83PrthOsa3mnfnrDGdE6ePCnnzp2Tfv362b+Li4uTrl27yrZt2277mLy8PMnJyVE/pOxSFBsQoR2UJ2gDxImwLjqBLO/4+Hj1+/j4+KAM8ABpaWkSFxdn/5j/MZGyR1FsQIR2UJ6gDRAnSn3L9NSpU2Xy5Mm2zsnJiShjc7q99FoyHF0f6IYJp3vNa2tec0tnSba3DUUoO6hbt669ZbpLly7qMbiFNSkpyR5v3bpVzWVlZSmNW1jRBXH+/Hml27Ztq7RZ2gbdGbiFGrfT4jy2xt6zZ4/SZvtqdDGmpKQojW4ZdEHidXjmmWeUXrBggT1et26dmsP4zcmTJ0M+b1EIZQNmawOkOK4ixM3u0Q1q2tCFCxfUHG6JvnLlitLo9sQFGt2/pnsNv0fMrdsiwZ9tdMfh4xGnbed4Dc33WSrutYBvG+tBZWZmBvm9A1SqVElq1qypfkjZpSg2IEI7KE/QBogTYV10mjVrJg0aNFAFC3NycmTHjh1BBRRJ+YQ2QGgDxAnP7rWrV6+q3TQnT56UvXv3Sp06dSQxMVEmTpwor776qjRv3lyaNWsm06ZNc9xaScoH+/btk8TERNrAXcKNGzdUNYRApeOMjAxp06YNbYCExPOis2vXLlXyPOCDHTVqlMyfP1+mTJki165dkzFjxkh2drb06NFDVq9eHVTKu6Rw2+Ln9Xinx2ML2mbNmimN23ATEhKURvcBbiXdsGGDPcYALPqXMa6A543zTqU0GjZsqDSWWrkdPXv2LBEbuH79uh1vwVgHPp9ZFgdLtixdulTpwFbeAJg/8tFHHyn9y1/+Uunk5GR7jO0CMF6EJXfuu+8+pTt27Kj0/fffr7T5T17r1q3VHJaxOXz4sNK4NRePx3w781zwWDOe9N///ldmzpxp65UrV4qIyB/+8AdZsGBBWG3AKaaDeCnh4vZZd/tMmXFAtB+MEeLnFbeuP/vss0rjZ/DAgQP2ePPmzWoO40PYxh1bH3iNRYfrsQE8Lzq9e/d2fKGoqCh5+eWX5eWXX/Z8MqTscvnyZXsRpQ2Uf1q0aKHydnJzc2XixInyzjvviAhtgISGtdcIIYT4BhcdQgghvlHqeTrhxquP0e14LDNvlj8J5I8EwAxqM49BJLj8CZbbR1+/GRNatGiRmsO8AATLuGDrYYw/YZ6Aye9//3ulzTwAy7JKNK/nm2++sd9L8+bN1Rz60deuXWuPv/76azWHuV+Y47NlyxalMa6CsQgznodla9577z2lhwwZojTu4ML4E5ZHMvN0MJdr586dSmPOBrarbtKkidKYx/Pvf//bHmNpl9OnTytt5p5gHCucmK0NkKKU1g+FW26bU6kb/AxgOwGM202bNk1pjOEcO3ZMaTO3pkWLFo6vhTaQkZGhNMabivO3c8rpCQXvdAghhPgGFx1CCCG+wUWHEEKIb0RZpVFoy4GcnBzbD32nLWpN0A/rVpYfa2phmQ7MjzF9rW41jNxAH/Jvf/tbpU1fK7YZRrBNMdZ+OnPmjNJmC2QRkRkzZthjzCtBbufHNbdMh4OAHSxevNhuQ/3nP/9ZHYM1pczcGYz/YG0ws7W1SHAuEsZVsD6amQuBPnSMNeH1xDghxt/mz5+v9MiRI+3x559/ruYw2RLfN9pU//79HV/7008/tcf/+Mc/1BzWvnviiSfscW5urkyZMiWsdhCwgQoVKoSM3bilb5i41R90i43g3818PNZK69Spk9KjRo1SGq/722+/rTQ2xTNfC+Ovr732mtKYX4Q5QVhX0CkfyS0vx7xmlmXJrVu3XG2AdzqEEEJ8g4sOIYQQ3+CiQwghxDciNk8nOjr6jv24psYYDvple/furbRZ00gkuK5RXl6e4zmaFLc97rJly5SeMGGCPcY6bh9++KHSjz76qONzewFzWHAfv59hwBMnTtg5MlhjCmM8c+bMscdr1qxRc2Z+lYhIy5YtlcbabFizDP3otWrVsseYnzVgwADH1/rrX/+qNNqNGSsR0XEcvAbbt29XGvM7zPMU+X+NtACYM2TmH02fPl3NYa6SGbty+pwUF7P2mttnyPxMuuXwYAwHj8fPQe3atZU2a9Nh3ARjrJjT9/zzzyuN3ztYq8281l999ZWawzjfPffco3R2drbSGO91+h5zqjcnUrQcH97pEEII8Q0uOoQQQnyDiw4hhBDfiNiYjlt+TShwv/yIESOU/tvf/ubp+dC36mUPO+I2j3vzZ82aZY9/9atfqTn0r2MOAdZb8kJJ1tHySt++fe24HNYow+tlxl0wltehQwelzRpjIiIpKSlKX7p0SWnMc3rggQfs8d///nc1Z5b8FwnOsapRo4bS9evXD/ncIrq+GsYd2rVrpzR+bj777DOlzVwmkeD8JczfMsH8IzMWUNyctXDh1E/HLeaK8/hd0rdvX6XN2B32MXrrrbeUxpp527ZtUxpjb2i/Zm4N/h1Q4/tC+8K6hE4xHbQnzOnB+M+dfG/zTocQQohvcNEhhBDiG1x0CCGE+EbExnTq1Klj+xrRt4r7zs0aXMOGDVNzZs+PooA+zHCC9ZcwlmL24MC99ehDx14nf/zjH5XG/I2mTZsqbdYWM3M1RERat26ttJljcOvWLdmwYYOUFJs2bbJzHBISEtQc9jcx66UlJSWpOcyBatWqldLYV97sYSMSHNvLzMy0xxj/wdfGnI2FCxcqjfki2OPGfF+YP/TFF18ojbGrHj16KI2fnf379ys9adIke4xxBqynNXfuXHuM7yGcOMVRneI2bnk6+DfFz2O3bt2Ufuqpp5Q2v1sw/wn/ThhXQftyy/kz6/dh3UDsFWXmD4kExwgxJwi/W8x4Mf5dTbsX0d+97KdDCCEk4uCiQwghxDci1r1Wt25d+/YXt4XidmHzNhlvFdEFM27cuJCPFQm+rXXaAohzeHuJ7gi37Ye4tda8dcVSFwcPHlR67NixSmMZenyf6HY0t+ViKX5sIYDbjUuSgoIC+2+K233/+c9/Kn3vvffaY2wVji4IdDOhCwyvAboYndw4WFoJt3Y//vjjSqOLC7dUm2VP8LzNtgciIv/5z3+UxvI06Lr76U9/qvS+ffvsMbpsscW56Q4uyW32ZhkcxMml49ZCGjWWOsL28ejS/vjjj+3xrl271Bz+DdHdhm3E8e+E5Y7MUktY5ga/N9D+sLU9fu/gd+a3335rj3E7dlFTWUx4p0MIIcQ3uOgQQgjxDS46hBBCfCOi21WTskNJtaueOXOmvWUa/d7Hjx9XukWLFvYYY2BuW4fx+M6dOyuN7Qj69Oljj7EEyiuvvKI0bilHHzueC8YsTZ97w4YNHY/FUkG4FfcnP/mJ0hhrMMGtubg13CwDc+3aNXn44YdLpF11TEyMHdNxaq0souNrGMfEVgV47bD9AG49xm3PZhwH251j3AVjy3jdMXaCmDaAbU6wbce5c+eUxlYIGK/EmI4Zt3FbHrBddX5+PttVE0IIiRw8LTppaWnSpUsXqVGjhtSvX18GDx4ctBvmxo0bkpqaKnXr1pXq1avL0KFDgxKKSPkD7zpoB+WbrVu3yujRo6V///4yaNAgeemll4KOoQ2Q2+Fp0dm4caOkpqbK9u3bZe3atZKfny/9+/dXt4qTJk2Sjz76SJYsWSIbN26UM2fOBN3Sk/LHkCFDaAd3EadOnZIhQ4bIu+++KzNnzrRdNLQB4kaxYjpZWVlSv3592bhxo/Tq1UsuX74s99xzjyxcuNDORThy5Ii0bt1atm3bFlRW4nYwplN2KQk7iIuLs/30r7/+ujoG4xVm62b0a6N+8sknlcaclB07diiNrSXM+U8//VTNTZw4UWmcN8vaiAS3H8BSTuZHFPOPtm7dqvSUKVOUXrdundLYogFjRGYJJIx5NGjQQGkz/yg7O1vef/99+eSTT2TgwIFhtQEzT8ctj84ppoN5ORizwq9CbBfSpEkTpc2/xcWLF9UcxnDwvDEPB/OcMP5kajxPjMmgxvgR5hs5LQFu5Xkw/mNZVsnGdAJJgwFD3b17t+Tn50u/fv3sY1q1aiWJiYlB/SMC5OXlSU5OjvohZRPawd1L4Iusdu3aIkIbIKEp8qJTWFgoEydOlJSUFGnbtq2IfPffZGxsbFChwPj4+KD/NAOkpaXZ/9HGxcUFZY6TskG3bt1oB3cplmXZd1yBHV+0ARKKIi86qampcuDAAVm0aFGxTmDq1Kly+fJl+6c4HS9J6WFWHC4KtIOyy/r161XplKJCG7g7KFLttXHjxsmqVatk06ZNyu/ZoEEDuXnzpmRnZ6v/cDIzM4P8wQEqVaoUVFKclD3MumfhtIPhw4fbv1+7dq2a69Wrl9Kmz71Tp05qDnMwFixYoDT60PF4bHNuti949tln1RzGWdq3b6801r27//77Hc/FrK2F16h3795KL126VJz40Y9+pDS2UTa/6M0WySLB9eeOHDkihw4dkqysLOnUqZOKTZXUdwHGH5xiDm7xCIyjOLUTEAmOw5ixZ7caZXguGC/D18Z5Mz8JXwtjNE55N7d7LbcWECZO19+yrDtqBePpTseyLBk3bpwsX75c1q1bF1QAMCkpSWJiYiQ9Pd3+3dGjR+X06dPSvXt3Ly9FyjC0g/KPZVly6NAhOX/+vHTu3DlokaYNkFB4utNJTU2VhQsXysqVK6VGjRq2bzYuLk6qVKkicXFx8vOf/1wmT54sderUkZo1a8r48eOle/fud7RbhZRdMjMzJSYmhnZwl7B+/Xo5e/asdOzYUSpWrGhXi8jNzZWaNWvSBkhIPC0677zzjogE39LPmzdPfvazn4mIyMyZMyU6OlqGDh0qeXl5MmDAAHn77bfDcrIkcmnRogXt4C4i0I4BywctW7ZMnnvuORGhDZDbw9prJCyUVO21xYsX2/kUmM+C/mPzP2jsN4TuH8zDwdwZzGfBuIuZ14NbezFugvkgZs8akeC+QKNHj1ba7I/y5Zdfqjns25KSkqI01qvDum9YUcSsKYfXF2M85jW8deuW7Nq1q0Rqr1WsWNGOO7j1sDJjDJing3EVN42758yW7iK6phnG6TA2hTaAcResa4c5RebfEWNL+FwIXiO3njheehSZ8SDLsqSwsJC11wghhEQOXHQIIYT4BhcdQgghvlGkPB1C/OLSpUt2XgL2BalWrZrSM2bMsMctW7ZUc5grgzk+J06cUBr99+3atVPa7KGDMcjU1FSlx48frzT2vMH+O3/605+UNvu64PvCmA3GArDu1n333af07t27lTbjBWvWrFFzDz30kNLDhw+3xzdu3FD9ZfzCrRab07EIxl0GDRqkNPaxMf9OmNOD8SScd8vjccrFcYvJuMW9EC8xHKf5O90ewDsdQgghvsFFhxBCiG9w0SGEEOIbjOmQiGbp0qV2LbL4+Hg1hz56M+aAeTdY7fiNN95QGuNDq1atUvrFF19U2sxR6dGjh5rr2bOn0hiLwnpnH3zwgdLY897stol9gGbNmqX0nj17lMaSMytWrFC6f//+SpvXFONg2MvHjDNgbCmcFBYWhuyn45Q34gbmITVt2lTpCRMmKP3+++8rnZWVFfJ1MUaD1wePxxiQl9wanHOL6RTnmoUD3ukQQgjxDS46hBBCfIPuNRLR9O/f3y5hs3LlSjXXuXNnpTdv3myPsTQNarMVg0jwVmR8LWxVHKgxJxLccgF7y5gtoEVEJk2apDSWTMHSNKZ7DUsBocsRt0S7uRnR9WfO43lhS29Tu5ViKQ7R0dEhy+AgpqvIze2ELi3cMo1txrFckdl+wK21AV4fdHHhVncn9xq67rxWMvPiTvPqeruTc+GdDiGEEN/gokMIIcQ3uOgQQgjxDcZ0SETzr3/9y94yje0G2rRpo/SiRYvsMcY20KeOrYqTk5OVXrhwodKBhoUBzHgAlshB/z6Wed+wYYPS6KPH1gbbt2+3xxiTwe3aixcvVtpsPy0SHLfA5xs1apQ9xhYMWAbGLJmTl5cXFG8qCdxiDGZMwWvs49ixY0r/+te/Vhr/rqbG1/KK123OJsXdRu7UvtrtudxibLeDdzqEEEJ8g4sOIYQQ3+CiQwghxDfYrpqEhZJqVz1ixAiJjY0VEZGLFy+qY8z2AiK6XTWWklm2bJnSjz32mNIYszl+/LjS6M8fNmyYPW7RooWaM2MwIsH5LU899ZTSmOeDZXIefPBBe9y8eXM1t3HjRqUxNoVxGYxtYX7S559/bo8xXoStsd977z17nJ+fL6tXry6RdtVRUVEh4xJu8QynObd21l7w2hLaa2zEPDd8LJbzcXsut/dtPp9TvAexLEsKCgrYrpoQQkjkwEWHEEKIb0TclukI8/aROyTcf7fA85lbm3GbM7oRzKrH6A5DFwRW/TUfKxLshkJtPj92hXR7buzmicfj+/TyWm7z+D7Mbc94rjiHbhnzPAPPG047CDyXl+f04l7zsi3Z6+t6fa6S7O7pdny4rsOd/r0iLqbz9ddfS+PGjUv7NIhHMjIypFGjRmF7PtpB2SScdkAbKJu42UDELTqFhYVy5swZsSxLEhMTJSMjI6wB6vJMTk6ONG7c2NdrZlmWXLlyRRISEoqdIGdCOyg65cUOaANFJ5JtIOLca9HR0dKoUSO7KnDNmjVpaB7x+5qVxG5D2kHxKet2QBsoPpFoA9xIQAghxDe46BBCCPGNiF10KlWqJC+++GJQIykSmvJ4zcrjeyppyts1K2/vxw8i+ZpF3EYCQggh5ZeIvdMhhBBS/uCiQwghxDe46BBCCPENLjqEEEJ8I2IXndmzZ0vTpk2lcuXK0rVrV9m5c2dpn1LEkJaWJl26dJEaNWpI/fr1ZfDgwXL06FF1zI0bNyQ1NVXq1q0r1atXl6FDh0pmZmYpnXHRoA2E5m6xARHaQSjKrA1YEciiRYus2NhYa+7cudbBgwet0aNHW7Vq1bIyMzNL+9QiggEDBljz5s2zDhw4YO3du9d65JFHrMTEROvq1av2MWPHjrUaN25spaenW7t27bK6detmPfDAA6V41t6gDThzN9iAZdEOnCirNhCRi05ycrKVmppq64KCAishIcFKS0srxbOKXM6fP2+JiLVx40bLsiwrOzvbiomJsZYsWWIfc/jwYUtErG3btpXWaXqCNuCN8mgDlkU78EJZsYGIc6/dvHlTdu/eLf369bN/Fx0dLf369ZNt27aV4plFLpcvXxYRkTp16oiIyO7duyU/P19dw1atWkliYmKZuIa0Ae+UNxsQoR14pazYQMQtOhcuXJCCggKJj49Xv4+Pjw9qKUy+q8Q7ceJESUlJkbZt24rId62XY2NjpVatWurYsnINaQPeKI82IEI78EJZsoGIqzJNvJGamioHDhyQLVu2lPapkFKCNkDKkg1E3J1OvXr1pEKFCkE7LDIzM6VBgwaldFaRybhx42TVqlWyfv161TSpQYMGcvPmTcnOzlbHl5VrSBu4c8qrDYjQDu6UsmYDEbfoxMbGSlJSkqSnp9u/KywslPT0dOnevXspnlnkYFmWjBs3TpYvXy7r1q2TZs2aqfmkpCSJiYlR1/Do0aNy+vTpMnENaQPulHcbEKEduFFmbaDUtjA4sGjRIqtSpUrW/PnzrUOHDlljxoyxatWqZZ07d660Ty0ieO6556y4uDhrw4YN1tmzZ+2f69ev28eMHTvWSkxMtNatW2ft2rXL6t69u9W9e/dSPGtv0AacuRtswLJoB06UVRuIyEXHsizrrbfeshITE63Y2FgrOTnZ2r59e2mfUsQgIrf9mTdvnn1Mbm6u9fzzz1u1a9e2qlatag0ZMsQ6e/Zs6Z10EaANhOZusQHLoh2EoqzaAFsbEEII8Y2Ii+kQQggpv3DRIYQQ4htcdAghhPgGFx1CCCG+wUWHEEKIb3DRIYQQ4htcdAghhPgGFx1CCCG+wUWHEEKIb3DRIYQQ4htcdAghhPgGFx1CCCG+8T8uv34nr4+9tAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAACbCAYAAAC58UYLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnXElEQVR4nO2de3AV9RXHT0JJQIHwUBKipICK+KgggYTwULQoSEVBrC9msCpQIDhFxnYGR7FlpBm1pYAN4FSE2oIoVHwXsUGCWh6SggpoVMQSCAlSSQJIEki2f3SyPed7yV1ucrO59/L9zGTYw+9m93d3z+4ve76/c35xjuM4QgghhPhAfHN3gBBCyNkDBx1CCCG+wUGHEEKIb3DQIYQQ4hscdAghhPgGBx1CCCG+wUGHEEKIb3DQIYQQ4hscdAghhPgGBx1CCCG+0WSDTm5urnTr1k1atWolmZmZsnXr1qY6FIlQ6ANEhH5ALHFNUXvtpZdekvHjx8vixYslMzNT5s2bJ6tWrZLCwkLp3Llz0N+tra2V4uJiadu2rcTFxYW7ayTMOI4jR48eldTUVImP///fMI3xARH6QbTRFH5AH4gu6vOB030w7GRkZDjZ2dmuXVNT46Smpjo5OTmev1tUVOSICH+i7KeoqChsPkA/iN6fcPoBfSA6f9AHkB9ImKmurpaCggKZOXOm+3/x8fEybNgw2bRpU8Dnq6qqpKqqyrWdCCt6femllxp78ODB7vaSJUua9NizZs1yt5977jnTVlxcHNK+8C/FcJ/ntm3butuh+oBI/X4wb948ad26tYiIbN682fzOf/7zH2NfcMEF7nZtba1p++KLL4w9YsQIYxcVFRl73759xr788suNvWHDBnf7iiuuMG0tWrQw9vHjx4192WWXGfvw4cPGPnjwoLG1D/7rX/8ybRdddJGxKysrjd2+fXtjP/nkk8aeOnWqsfV1xO+BYTHtQ6dOnZL8/PxG+UF9PpCYmOj6L/otXmfdjj7v9bYU6j0RbH+4L6++4PcIRqj7RkI5D16f1f12HEdOnTplfOB0hH3QOXz4sNTU1EhycrL5/+TkZPn8888DPp+TkyO/+c1vwt0Nl8Y+bPHGS0hICNu+vWjVqpW7HfR19Qxo6r7q/YfqAyL1+0Hr1q3dQUefexGRli1bGjsxMdHdxpv4Bz+wrq7PLf7u6faNn9f7w36hz5w8eTKkY+P+9OeDfWeRwO+N7egH2K5tPGd47NM9KBvjB/X5QFxcXL0Pv2APxVAfxqESyv68+tKYvoV70Gnsvrx+p9lnr82cOVPKy8vdH/yLk5wd0A8IfeDsIOxvOuedd560aNFCSktLzf+XlpZKSkpKwOcTExMD/tpqDKH+RT969Ghj33///cY+cOCAsU+dOuVuf/DBB6btn//8p7H37Nlj7BMnThi7TZs2xp40aZKxKyoq3O1vv/3WtLVr187YGK5Yt26dsUN5fW8sofqASP1+sH37dvf/MUQ2fvx4Y3/99dfudmFhoWkbOnSosZ9//nljT5482dhJSUnGxmPffffd7vbatWtN25gxY4ytfUbkf+J6sL5NmTLF2O+//767ffXVV5s2DDHu3r3b2EePHjX2XXfdZWz0bx36q6mpMW3V1dXGHjdunLt94sQJycvLM+3hehbU1ta69zX6cWPeEBobpmpMP/DY+HaLb5n6e+N1CPXe9nomBmsPxxta2N90EhISJD093ThgbW2t5OXlSVZWVrgPRyIQ+gARoR+Q0xP2Nx0RkRkzZsi9994r/fr1k4yMDJk3b54cP35c7rvvvqY4HIlA6ANEhH5AAmmSQefOO++Ub7/9VmbNmiUlJSXSp08fWbt2bYCgSGIX+gARoR+QQJokObQxVFRUBMTTvdAzu7zim7NnzzY2ToUtLy839vfff29srctgHBb7jX3BqYTnnXeesXF660cffeRue+lDuK9jx44Ze9myZcZGjSiUc3g6ysvLA3SmxlDnB5MmTXLPs55OKxI4PTg9Pd3d/uqrr0xbWlqasbdt22ZsPRVeJPB8vv7668bW2spVV11l2lDjycjIMDbO3Dr//PONjdrgn/70J3c7NzfXtGkfEQmcGYdTwx977DFjoy7WoUMHdxu1KOxXt27d3O2qqipZuHBhWP2gzgcSEhJc7cBrqnEwjQFnFeJnzznnHGOfe+65xkaNK5jOgr7q1U+0Ue/Vz5rvvvsu6LG8tCovGjrt3HEcqaqq8vSBZp+9Rggh5OyBgw4hhBDf4KBDCCHEN5pkIoHf6DntGFsdO3assTHPAcudYMwSdRodF8ZjYSzfa19YPgVjyjqmjnFbPDbqBB07djT2hAkTjJ2Tk2PsYHHc5pT9evXq5VYkqPu3jmnTphlbx8HLyspMG2o6t99+u7Exrwf9ROsXIlZ/y8/PN206v0okMJ6Pmf1Y9kbrKiK2HBLGyidOnGjsX//618aeP3++sR988MGgx/7ss8/cbdRAhg8fbuxvvvlG/MbLF7XvYq4L5gb169fP2N27dzc2XodDhw4ZW3//HTt2mDbMn0Lw3GJ+Et6/+lkQ6v3opfGEsr9gnz3T/fBNhxBCiG9w0CGEEOIbMRFew6mMmkGDBhkbC2diuALDMiUlJcbW0yh1VWORwHImOOWyU6dOxsYSJbqMi4gtUYLTg3FKJb76YzgOQw1IKJVl/SQpKckNO2JpH129WMROg8ZwWN++fev97OlsLA+DoVA9tR7DZXhsrAyNPoV+g+E4HVqZN2+eacOp9BdffLGx0efQJ7FytM6fwerXeE50IVMsatpUhBIKwu/60EMPGRvPFaYZYEpEz549ja2/M4a3ceq61/2Lz6kbbrjB2Lq80WuvvWba8N7HY4UznBaOZwPfdAghhPgGBx1CCCG+wUGHEEKIb8S8poPxdYw9Y+kZ1D5warIuQYGxVLRxDXiMtW7ZssXYXbt2NbbWmzA2j2VsEPxeON0Yv6fWDSJpyvTy5cvdvmLcG2PsetqpnvorEugjuCIs1gJDP9m5c6exdZkc1ALwfGE/EdQZcRmFkSNHutv33HOPaUMf+8tf/mLs2267zdg4Lb9Hjx7G1uWDevfubdo+/vhjY+tp5ahrhZNgeiNOPdbX+Yc//KFpGzBggLHxfsMVXvE64jRonQKB9xP2E6dA9+/f39i4tAauCNunTx93G7Vf1Azx2YDljJBQVkBFuyGLS/JNhxBCiG9w0CGEEOIbHHQIIYT4RlRqOqFoDl75Kqh9YCwf46FaN8BlD3DfGOfGPAcseY8ly/Uyv6gXYfwZ80jw2F6axq5du9xtjJP7udQ1cuzYMfe84vICWGpfl7bBPAnUeIqKioyNMXeM/+P50qth4jITeG0w3wV1lCNHjhgbr5WO0eOS0JmZmca+4447jI15PAUFBca+5pprjK1LwSxdutS03XLLLcbevHmzu+2lGzQVeK70swH9Fu9XzONBn0Eb9QudZ4faL/rTwIEDjY3ludC/sASP9jHcN34P/J7oj/iMC6bpeD1rtc0yOIQQQiIODjqEEEJ8g4MOIYQQ34g5TQeXD0DNBsvOY30lXKYYY8baxrwb3DcufY06C/YVY7E6NwfLyGNZdsxJwFL92FesG6c1nUhi6NChro62f/9+04Yx+08++cTdxuuKMXLUbLCs/cKFC42Nped17Sy8bqNHjzb2u+++a2ysuYf1/4YMGWLsL7/80t3GXCX0sdTUVGO///77xsZ8rQ8//NDYOj8E/RnvBb1cBGoaTUUoOWOopeE90atXL2PjcvKo+6GGqHOacOkMvE54TVGDRR9AjUwfC3352muvNTbW9kMfQP8LBdZeI4QQElVw0CGEEOIbHHQIIYT4RlRqOjhfXsf2UdvAWDzGhDGOi3Fr1AZ0vgzG8lFjOP/8842NmgQeW+fliNhaT5gDhHWjvHIKsG9Ys0vTnLXWkIqKCvcaYg0zjLHv3bvX3UYNC3NjPv30U2OvXr3a2OhHqKnpXAn0Gax/9uMf/1iCgX7y9ttvG1vXQPvggw9M28MPP2zsf//730Htn//858Z+8cUXjV1cXOxu43ozqNtovRTz4ZoKr7wRfS0w/+nll182tvYXkcD8F7y/9Zo2IjafDddrwqW9L7nkEmPjejp4fwa7jl7reKEWhTXjsI4gfs9Q7v+GaDx80yGEEOIbHHQIIYT4BgcdQgghvhGVmk6wWmC47gzGHNHGukUYz8T58lpbwZpb2C/UETCGjHk7qB/pdvxe2E+c949rbKDGg5qQJtj6RH5TW1vr9gfrhqHmsG7dOncb85gwzo1rjmBuA65nguvt7Nu3z92+7rrrTBv6DNZLw77pPByRwJwNrSehDnjw4EFjY42vsrIyY+MaTpjjoXOK9Ho5IoGao9YCsJ6XXwS7v/H+3Lp1q7FR28Bzi/XQunTpYmx9rocNG2baLrzwQmPjvY7PCqzL+M477xh727Zt7rZXncCsrCxj33TTTcbG/CvUj7Qeiv3E5w41HUIIIRFNyIPOxo0bZdSoUZKamipxcXHy6quvmnbHcWTWrFnSpUsXad26tQwbNizgLzkS29AHYp/Dhw/Lhg0b5JVXXpHly5cH/KVOHyD1EfKgc/z4cendu7fk5uaetv2pp56SBQsWyOLFi2XLli1y7rnnyvDhwwOmsJLYhT4Q+9TU1Ej79u0Dll2ugz5A6iNkTeemm24KiBHW4TiOzJs3Tx599FG59dZbRUTkhRdekOTkZHn11Vflrrvualxvz4Bu3boFbffSeFD7wPwDHZv1mueP9bwwzwGPjXFfnQeAMXOsoYU14zAW67Vmu6YxeTrh9oGKigpX68JcB9ROtAaRkpJi2vB84ToyGNfGnI7bbrvN2Dr+71Vj7/rrrzc21tzDund4/rWOeOzYsaD9RJ1rw4YNxr733nuN/dJLLxlb64p4L+l7o0uXLq7OuHHjRpNr5OdzINj9i214/+E9grlwqPfiekKXXXaZu40aDh4b71+sC/fWW28ZGyNI+k0Sc3zS09ONjflsup8igTlE6CP6XkDfRt/U57BZ1tPZu3evlJSUGFEtKSlJMjMzZdOmTaf9naqqKqmoqDA/JHppiA+I0A9iCfoACUZYB526GUA40yc5OTlgdlAdOTk5kpSU5P4Em1VFIp+G+IAI/SCWoA+QYDT7lOmZM2fKjBkzXLuiosLT2YJNmcawEb7yYbkY5JxzzjE2Lt2s94dlbXCKNPYTbzicmozLMOj4N/Ybp8IiGE7CkA9Oy9WEshx4uKjPD3r37u1+dwxB4BLUc+fOdbdxOQEsa5Ofn29sPPcYtlqxYoWxJ0yY4G4/88wzpg2vFU6n1dNfRQLLq2AoRodx77zzTtOGAj5OocYSOxhKwTCjDkviWwlOBNBTkrHUSkNoyLMACTaFF/0YzzOWhpo4caKxUb/SJbYwDI/HwiWj8VzilH5cfkD3FZc2QBu/F4alceo3hn/Xr1/vbmOZJCwtpJ9RzRJeq3NYnM9fWloaEGOvIzExUdq1a2d+SPTSEB8QoR/EEvQBEoywDjrdu3eXlJQUkwxXUVEhW7ZsCUhYIrEJfYDQB0gwQg6vHTt2zKxit3fvXtmxY4d07NhR0tLSZPr06fLEE0/IJZdcIt27d5fHHntMUlNTA1ZTJLHFJ598ImlpafSBs4RTp06ZkFpd+KioqEiuuOIK+gCpl5AHnW3btpmyH3Ux2HvvvVeWLVsmv/rVr+T48eMyadIkKSsrk8GDB8vatWs9tZRwgboKxjexH1h6Bsuj4LRJfaNhzsHll19ubNQJcClhLCmOyzBoG9uwn2ijtoUlQXBquP78d999Z9rOROMZMmRIk/jAmjVr3KmsGLseMWKEsfUS01jCHzUe1LhwCisuT4DfWf/hhecHy9zg+dyzZ4+xn3jiCWO/8cYbxtbxfX1cEZHBgwcbG6c5/+hHPzI2llPSyyaI/G9qcx033HCDadPa0qFDh0w/68ou/fa3v5Xly5eH1Qf0uQ+l7EowPVYkcIo0notgU8ZFrI6D0/dRz8VnBYYOf/rTnxob+641XFxGAUtg4bMCdTHsK94LGtQA0ZcbQsiDztChQ4MKRnFxcTJ79myZPXt2ozpGoovy8nL3RqIPxD6dO3eWtLQ0166trZX9+/fLokWLRIQ+QOqHtdcIIYT4BgcdQgghvtHseTrhBsvBoG6CugDqLI8++qixf/e73xn7k08+cbcxFwbn+WOsFOPZGJ/G/ekSFFjK4u9//7uxMzMzje21PDPm+ei+Y9wWY9l+Ln0wfPhw97xhqRo83zoGj1ocxsixbD1+Hst/oF1YWOhuow9hP+tKwdSBugrmbGCuzZVXXuluY8Il5n7h99K/i/0WCVz+WvuZ1shEAsv3DBkyxN0+efJkQG5TU+CVC6KvM15zvN/wnho1apSx8ftiLo7WbfCeQBv1I8wbw2fD+PHjja11GHzGoYaD3xP1JOwbVn7Q+ibmX3FpA0IIIVEFBx1CCCG+wUGHEEKIb8SEpqPrpWG8HGPxuAzx6tWrjf3nP//Z2M8++6yxdQ0ljMNiyXGMpWJcF+fy49x9rTNgLSaM3f/iF78wNs6vP3TokLExVqszxT///HPT5kfttfrYsmWLq42hDoVaiF62Vy8nLRK4FDHqZxjf//DDD42NMXZ9LZ9++mnTNmbMGGMvX77c2JjPhbojakA6Z+j+++83bX/961+NvWDBAmOjv19wwQXGxnL/2i9wmQTM9dLtlZWVvmg6CPqmtlGLRC0Elyro06ePsfF+xeuk9Qy8l/HYmC+I7fg9cKkEvX/UcFADRN/HY+OxiouLja31Yq+8HK2bOY5zRsuW802HEEKIb3DQIYQQ4hscdAghhPhGTGg6uv5UsFppIoG6CS4V/JOf/CTosXT8E+u24ToVW7ZsMTbGcb1izno+PdYGwzUy3nvvPWPjOiuoaaDGgzW6NMHWL2pq9u7d68aNcV0azDnR5wC1D1wnCTUx9AM8X5hzNW/ePHcb9TYs6Y/HQs0MtT+spaX96pFHHjFtGI9Hf8f7AUHtSvs/Lo2NOUF635jD0lSEkieC9zpqZTfddJOx0UewRhnaev+oZWAuDD4r8N73ynfRuTTffPONacP7ADUd9BFcuwf9VWunXjXl9PVolvV0CCGEkGBw0CGEEOIbHHQIIYT4RkxoOjrvwWvNDIx3YpwXa5hhHFvHrlGDwbg/xsQRrA2FOUUajAGjxoN5Ohi3xd/HvvXq1StoX5uLq666yj2v69atM23du3c3tq6dhbkMqJt88cUXxtY19URE7rrrLmNjrSy91szSpUtNG+Z/YB4P5umsXbvW2PPnzze2ztnANV50/TORwDWccnNzjY1aA9YiDAZqlBkZGe42nt9wEkqemNZl7rjjDtOGNq4zg9oc6nroUzpPD8+r13MInxV4bKyHptdg2r17d739EAlcS6turaM6UAPSuYciwfUl1HS0TU2HEEJIxMFBhxBCiG9w0CGEEOIbMaHp6LwGrzU0sB1j4FiLCmsP6fpTKSkpQfeN9b0QPBbmCWhQk0GtqWfPnsbGvAmsC4fz73X8GrUq1I/8ZM+ePe55nTNnjmnDdeVHjhzpbqNughoOri90/vnnGxuv3XPPPWdsnZdx9dVXmzbUh/SyziIiO3fuNPbNN99sbFyfR9fR27p1q2nD+DxqlKgv4bFxTSK9Xg+utdO7d+9693UmNbfCAd5jqDHo+mlYLw81HNRC8J7A+xE1C/y8BvNy8LPffvutsfE5hXl0OgcN/QtzsfBZgOA5xHWDNF7XVT+XqOkQQgiJODjoEEII8Y2YCK/p6b74GotTE/FVFKcq4tRP/H29f5xuiq/M+BqL+8bQXbDwGr6u45RKBMND+JqMpS90OA7LhzRneK1///7ud8fp7lgWR085x1AKnlssU4/7xs9PnjzZ2Lfddpu73bdvX9OGPoNl6vHYOL0dpybrsiTXX3+9afv444+NjSExDJXi9Fhc0kGH63Cpa/Q5vSx3U4bX4uLi3PCTV3jtxhtvdLexVJRX6B39HsNvGA7XIVrcN/4ulifCMlUYmsJ7Tn8eQ+cYisPl0r2myWM4V19L/M64r4aUP+KbDiGEEN/goEMIIcQ3OOgQQgjxjZjQdPSUVIxnYmwVy1FgLBWnJqMOo/eH000xlo/gcr8Y20fdRu8P+40x5P379xsbdQacIozxa62HYJz/66+/luaiU6dObvkRPL+4NPmECRPc7ddff920YQkU1AKwlA2W/M/Pzze21jfwXL755pvG9tLyUKfp37+/sbXGg1oTapSo5eEyCljOP9i11WWFRAJ9SJeFacqlDfQ9ipot6hMDBw50t1GzwXsddSivJaXx++vlufH+RD0JdRfU4lCDRFtP6UcdOlj5LJHA0kmoheKxgmlV27ZtMzY1HUIIIRFNSINOTk6O9O/fX9q2bSudO3eW0aNHBySnVVZWSnZ2tnTq1EnatGkjY8eODZgpRWKPL7/80tj0g9jm9ddflyVLlshTTz0lc+fOlTVr1gR8hj5ATkdIg05+fr5kZ2fL5s2b5d1335WTJ0/KjTfeaKZhPvTQQ/LGG2/IqlWrJD8/X4qLi830UhKbjBkzhn5wFvH5559Lv3795L777pNx48a54Ur6APEiJE0HS7AvW7ZMOnfuLAUFBXLNNddIeXm5LFmyRFasWOHGqZcuXSqXXXaZbN68WQYMGBC+nit0vBP/4sa4LMZeMe4brHS3iI1xYgkdryVocY47lkrHvul4PeoCGNvHHCHUZXT8WSSwhI9e6gA1hbfeeku8KCoqahI/2L59u6vl4LLPuKzz9u3b3W0se4NlgzDnBLU/LB/z8MMP13vsjRs3mrZp06YZG/Ul9Cm8r0aMGGFs/b2++uor04YlTzDH5/HHHzf26tWrja2XaBCxSxsvXrzYtOlSSSNGjDCllUaNGiXz58+XHTt2SJcuXZrsWYCaTo8ePYytnwV4f+E1R00VfQCX/8AlArQ2h7oIlpbRuVYigToganFYtkrrTfgcwfJEWJZp0KBBxg5274uIfPbZZ+42aoKY56Wvhy9lcOoErLr1GwoKCuTkyZNGqOrVq5ekpaXJpk2bTruPqqoqqaioMD8kOqEfnL3U/VFUJ+zTB0h9NHjQqa2tlenTp8ugQYPczOWSkhJJSEgIeANITk4O+EuzjpycHElKSnJ/8C8GEh0MGDCAfnCWUltbK//4xz9E5P+FVukDpD4aPOhkZ2fLzp07ZeXKlY3qwMyZM6W8vNz9wZIgJDp4/vnnG/X79IPo5a233gpLqST6wNlBg/J0pk2bJm+++aZs3LjR1JVKSUmR6upqKSsrM3/hlJaWBsQR60hMTAyIvXp2GrQPPQceY76Yy4FxR9RdMM6Lx9Kx1mAlwUVEjhw5Ymysg4XHwr7oZWe/+eYb04bfA+fuY3wa9x2s9PoFF1wgoaJ/J5x+0KFDB7evmN+CuRCvvPKKu3377bebttdee83YmJOBfrJgwQJjjxkzxtha28M/vDBvol+/fsZG3QVzbfAc6dqCeB0HDx5sbKzzhp9HP9m1a5ex9TIKuEQ3ltQ/cOCAHDhwQCoqKqRbt27me/v1LEBfDbZstpd+i9cNzxUuUaF1U6xfhm94eJ7x8126dDE2Pnf0oI5Ly6N/4TnBZwXqNBju1PcKvpWinqSfI47jnNGy5SG96TiOI9OmTZM1a9bI+vXrA9aoT09Pl5YtW0peXp77f4WFhbJv3z7JysoK5VAkiqEfxD6O48iBAwekvLxcevToEfBHDH2A1EdIbzrZ2dmyYsUKee2116Rt27buKJiUlCStW7eWpKQkeeCBB2TGjBnSsWNHadeunTz44IOSlZXVZDPXSGRQWloqLVu2pB+cJezevVuOHDki3bp1k/j4ePfN8cSJE9KuXTv6AKmXkAadRYsWiYjI0KFDzf8vXbpUfvazn4mIyB/+8AeJj4+XsWPHSlVVlQwfPlwWLlwYls6SyKVnz570g7OIuqUgsIzOK6+8IlOmTBER+gA5PSENOmcyD7tVq1aSm5srubm5De6UF7jOh46vY5wWc2dQRwm2Xs7pPq/zAHTegkhgzBg1CKy/hBoP9l1rRtgP/F6YB4D5ShkZGcbWc/FFbBwY47iod+DaICL/i4fr3INw+cGRI0fca4Rxb6yzpzUIrBmFS1tjHg/GybHfWGNK13LLzMw0bagX4bEwt+SBBx4w9u9//3tja7/BmDnmAF100UXGfuedd4yNdbj27t1r7KlTp7rby5cvN20XX3yxu/3ggw+a2oOVlZUyZ84cGTdunPt/TfEsQL/HfBaty+DkBry3gy03LRKoy+CS5lqLw/Aiah+4L7RRi9u9e7extUaLa9zo3CqRwPsT7xPUFPEPB3xOabyer2cCa68RQgjxDQ46hBBCfIODDiGEEN+IyvV0MAauNQfUVTDmiDFJL50K5+7reCquj4M1jPB3cR0LjK+jzqI1H4zjYgwZayJh3zBmjGu061pu+NnrrrvO2Fi/qym5+uqr3dyNnTt3mja9fo6IjeGj1oHx+F/+8pfGxjyeJ5980tgYY9fVklE/Qi0Pz/XWrVuNjToMnm9dmw01HcwVe+ONN4x99913Gxvj/2jrXCedJyYSWB9M3ztnWncr3KB+cfDgQXc7OTnZtHmtPYTPCqxviLqevifx/tuzZ4+x8d5G3QR1U0yM1b6P/UBtGesw4rMAj435hFqT9Mpr1M9TX2qvEUIIIaHAQYcQQohvcNAhhBDiG1Gp6cyZM8fYukYS1qJCnQXjuJhTgfFSLK+u60ahZoNFLzGmPHLkSGNjfP6FF14wts69wTwSzC+66qqrjI212jA+j/HtDz/80N3esWOHacOYr58cOXLE1XQw7o15JDoOjrXSsGTTH//4R2NjDB5rZaEfad0La1397W9/M3bfvn2NjbHv9evXGxtryuljoc6AWtStt95q7Pnz5xv76aefNjZqOjrvBbUprAf23nvvudteOS+NIS4uztUSUFPAnBOt691zzz2m7dprrzU21oDDex19AvUj3Rf0F1xJFX8X/QnzelAnDPZZ1JO8asxhO167hug0ocA3HUIIIb7BQYcQQohvRGV4Dcu0PPLII+62fuUXCVwW1gssqzFw4EBj63IUWF4CX5mxbAuG4/AVGqc+6uVxdQkSEZH9+/cbG9eex6V18RUbQ2bPPvusRCJ1hURFAqecf/TRR8bWpfcxdKKnOIsETkvGskEYfuzTp4+xdWn6t99+27ThdcTp7unp6cbGUCmGN7UPYll6nDKNoTpML8CpuBiu033HUHTdQm116Cn/1dXVsnnzZmkK4uPj3ZAQ+jGWf9I+gCV+VqxYYWxclh3L5qCN96tux2Nh6Nxr6XqvcjK6HX8XQ2Bo4769Pt/U8E2HEEKIb3DQIYQQ4hscdAghhPhGVGo6wbjllluMjSX9MQaM+hCWLMEle0eMGOFuP/roo6YNp0Vi6RVsxynAqAVoXQGnRGO83WuZX5xerKdII7gvnFaOcfWm5IorrnB1NLw2OIVXayPbt283bTjlXOuAIoHnF+PcqMusWrWq3rabb77Z2HoJaJHAMiX333+/sVFv01oKrmWl/VEkUNMpKCgwNpZPQvQ5/PTTT00b6j/6nFVWVsrLL78cdN8NRWs6qI3gddJ6B55H1FxRO0N/wmMhwaaJh6qbeJWbQR0nFEIt/RWsH0hD9CC+6RBCCPENDjqEEEJ8g4MOIYQQ34g5TUeXxBERycvLa9T+MBdH57NgCRLMv1i3bp2xURvB+PqLL75obD2/Picnx7Rhqf1QCRYbb04NBzl69KirmWCuDeYi6bwLvBYY38dY9Ny5c409Y8YMY2NMXecI3XnnnaYNy6mgjoj5HitXrjQ25pZdeuml7jbmgyxatMjYmH+E5X8wTweXztZLQmDOGuaK6ZJRWD4qnNTW1rr+GkoOCvo45s546SR4nYIdK9QlVFA/CkWz8Spzg33x0mWQYN8rHDk9fNMhhBDiGxx0CCGE+EbEhdeaawXChoCvtRiWCnWa5Pfff29sPRW3MVMmz+TYZ9oWzt85k/3psA1OTcZzotsxlII2TnfF/mO4KNjv48qMGJbBfmO717H09/T6Hl77wr4E259XBXb9u3Vt4fSDun0FW6E0lKnJofYtlGOF2q9wlqIJd1mbhn6v012v0xHnRNhTfv/+/dK1a9fm7gYJkaKiooBlrhsD/SA6Cacf0AeiEy8fiLhBp7a2VoqLi8VxHElLS5OioqKQi3aerVRUVEjXrl19PWeO48jRo0clNTXVs2hhKNAPGk6s+AF9oOFEsg9EXHgtPj5eLrzwQncGULt27ehoIeL3OcNKx+GAftB4ot0P6AONJxJ9gBMJCCGE+AYHHUIIIb4RsYNOYmKiPP74456FLMn/icVzFovfqamJtXMWa9/HDyL5nEXcRAJCCCGxS8S+6RBCCIk9OOgQQgjxDQ46hBBCfIODDiGEEN+I2EEnNzdXunXrJq1atZLMzEzZunVrc3cpYsjJyZH+/ftL27ZtpXPnzjJ69GgpLCw0n6msrJTs7Gzp1KmTtGnTRsaOHRuwNECkQx+on7PFB0ToB/URtT7gRCArV650EhISnOeff97ZtWuXM3HiRKd9+/ZOaWlpc3ctIhg+fLizdOlSZ+fOnc6OHTuckSNHOmlpac6xY8fcz0yePNnp2rWrk5eX52zbts0ZMGCAM3DgwGbsdWjQB4JzNviA49APghGtPhCRg05GRoaTnZ3t2jU1NU5qaqqTk5PTjL2KXA4dOuSIiJOfn+84juOUlZU5LVu2dFatWuV+5rPPPnNExNm0aVNzdTMk6AOhEYs+4Dj0g1CIFh+IuPBadXW1FBQUyLBhw9z/i4+Pl2HDhsmmTZuasWeRS3l5uYiIdOzYUURECgoK5OTJk+Yc9urVS9LS0qLiHNIHQifWfECEfhAq0eIDETfoHD58WGpqaiQ5Odn8f3JyspSUlDRTryKX2tpamT59ugwaNEiuvPJKEREpKSmRhIQEad++vflstJxD+kBoxKIPiNAPQiGafCDiqkyT0MjOzpadO3fKBx980NxdIc0EfYBEkw9E3JvOeeedJy1atAiYYVFaWiopKSnN1KvIZNq0afLmm2/Ke++9ZxZNSklJkerqaikrKzOfj5ZzSB84c2LVB0ToB2dKtPlAxA06CQkJkp6eLnl5ee7/1dbWSl5enmRlZTVjzyIHx3Fk2rRpsmbNGlm/fr10797dtKenp0vLli3NOSwsLJR9+/ZFxTmkD3gT6z4gQj/wImp9oNmmMARh5cqVTmJiorNs2TJn9+7dzqRJk5z27ds7JSUlzd21iGDKlClOUlKSs2HDBufgwYPuz/fff+9+ZvLkyU5aWpqzfv16Z9u2bU5WVpaTlZXVjL0ODfpAcM4GH3Ac+kEwotUHInLQcRzHeeaZZ5y0tDQnISHBycjIcDZv3tzcXYoYROS0P0uXLnU/c+LECWfq1KlOhw4dnHPOOccZM2aMc/DgwebrdAOgD9TP2eIDjkM/qI9o9QEubUAIIcQ3Ik7TIYQQErtw0CGEEOIbHHQIIYT4BgcdQgghvsFBhxBCiG9w0CGEEOIbHHQIIYT4BgcdQgghvsFBhxBCiG9w0CGEEOIbHHQIIYT4BgcdQgghvvFfW8NQIgZwqX8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "id": "6744e360", + "metadata": {}, + "outputs": [], "source": [ "for i in range(8):\n", " visualize_denoising(unet_model, fm_train_dataset, 123*i)" @@ -2560,6 +1962,7 @@ }, { "cell_type": "markdown", + "id": "971da0c3", "metadata": {}, "source": [ "

\n", @@ -2569,18 +1972,22 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "bbc529ed", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ "**5.2 Answer:**\n", "\n", - "Your answer here!" + "The \"noise\" is apparently gone, however, the objects are hardly recognizable. Some look like they have been reshaped like digits in the process." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "13941a06", "metadata": { "tags": [ "solution" @@ -2589,11 +1996,12 @@ "source": [ "**5.2 Answer from 2023 Students:**\n", "\n", - "BAD! Some of them kind of look like numbers. " + "BAD! Some of them kind of look like numbers." ] }, { "cell_type": "markdown", + "id": "1df30b46", "metadata": {}, "source": [ "

\n", @@ -2603,97 +2011,272 @@ ] }, { - "attachments": {}, "cell_type": "markdown", - "metadata": {}, + "id": "43fc08eb", + "metadata": { + "tags": [ + "solution" + ] + }, "source": [ - "**5.2 Answer:**\n", + "**5.3 Answer:**\n", "\n", - "Your answer here!" + "If a denoising model is trained on data which does not appear in the data it is ultimatly used on, that new content will end up likely changed. A real worl example could be that of training a model on lots of non-dividing cells images, and use the model on new data which happens to contain some dividing cells. This could lead to the information being \"denoised\" away." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "43e047c9", "metadata": { "tags": [ "solution" ] }, "source": [ - "**5.2 Answer from 2023**\n", + "**5.3 Answer from 2023**\n", "\n", "- Run on any out of distribution data\n", "- Especially tricky if the data appears to be in distribution but has rare events. E.g. if the denoiser was trained on lots of cells that were never dividing and then was run on similar image with dividing cells, it might remove the dividing cell and replace with a single cell." ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "835030fd", "metadata": {}, "source": [ - "

\n", - " Checkpoint 5

\n", - "
    \n", - " Congrats on reaching the final checkpoint! Let us know on Element, and we'll discuss the questions once reaching critical mass.\n", - "
\n", + "### Train the denoiser on both MNIST and FashionMNIST\n", + "\n", + "In this section, we will perform the denoiser training once again, but this time on both MNIST and FashionMNIST datasets, and then try to apply the newly trained denoiser to a set of noisy test images." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c7cc9bb3", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.optim as optim\n", + "import torch\n", + "\n", + "# Some hyper-parameters:\n", + "n_epochs = 5\n", + "batch_size_train = 64\n", + "batch_size_test = 1000\n", + "\n", + "# Dictionary to store loss history:\n", + "history = {\"loss\": []}\n", + "\n", + "# Model:\n", + "unet_model = UNet(depth=3, in_channels=1, upsample_mode='bilinear')\n", + "unet_model = unet_model.to(device)\n", + "\n", + "# Loss function:\n", + "criterion = F.mse_loss #mse_loss\n", + "\n", + "# Optimiser:\n", + "optimizer = optim.Adam(unet_model.parameters(), lr=0.0005)\n", + "\n", + "# Train loader:\n", + "train_loader = torch.utils.data.DataLoader(torch.utils.data.ConcatDataset([train_dataset, fm_train_dataset]),\n", + " batch_size=batch_size_train, shuffle=False)\n", + "\n", + "# Training loop:\n", + "for epoch in range(n_epochs):\n", + " train_denoising_model(train_loader, unet_model, criterion, optimizer, history)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "46edff16", + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(8):\n", + " visualize_denoising(unet_model, test_dataset, 123*i)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2dac72fa", + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(8):\n", + " visualize_denoising(unet_model, fm_train_dataset, 123*i)" + ] + }, + { + "cell_type": "markdown", + "id": "288c6764", + "metadata": {}, + "source": [ + "

\n", + " Task 5.4:

\n", + "How does the new denoiser perform compared to the one from the previous section? Why?\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "433162e3", + "metadata": { + "lines_to_next_cell": 0, + "tags": [ + "solution" + ] + }, + "source": [ + "**5.4 Answer:**\n", + "\n", + "The new denoiser has been trained on both MNIST and FashionMNIST, and as a result, it no longer insist on reshaping objects from the FashionMNIST dataset into digits. However, it seems to be performing slightly worse on the original MNIST (some of the digits are hardly recognisable).\n", + "If you look more closely at the code, you'll notice that we haven't shuffled the data in our `DataLoader`. This means that every epoch the model will first train on all of the MNIST data, then on all of the FashinMNIST.\n", + "The effect that we're seeing here, where it's performing worse of the MNIST data, points to an important lesson: Models Forget!\n", + "If the model is trained for too long without any MNISt examples, as it is here, it begins to overwrite what it has learned about that data." + ] + }, + { + "cell_type": "markdown", + "id": "a9694e46", "metadata": {}, "source": [ - "

\n", - " Bonus Questions

\n", - "
    \n", - "
  1. Try training a FashionMNIST denoising network and applying it to MNIST. Or, try training a denoising network on both datasets and see how it works on each.
  2. \n", - "
  3. Go back to Part 4 and try another attribution method, such as Saliency, and see how the results differ.
  4. \n", - "
\n", + "### Train the denoiser on both MNIST and FashionMNIST, shuffling the training data\n", + "\n", + "We previously performed the training sequentially on the MNIST data first then followed by the FashionMNIST data. Now, we ask for the training data to be shuffled and observe the impact on performance. (noe the `shuffle=True` in the lines below)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ae52c3d0", + "metadata": {}, + "outputs": [], + "source": [ + "import torch.optim as optim\n", + "import torch\n", + "\n", + "# Some hyper-parameters:\n", + "n_epochs = 5\n", + "batch_size_train = 64\n", + "batch_size_test = 1000\n", + "\n", + "# Dictionary to store loss history:\n", + "history = {\"loss\": []}\n", + "\n", + "# Model:\n", + "unet_model = UNet(depth=3, in_channels=1, upsample_mode='bilinear')\n", + "unet_model = unet_model.to(device)\n", + "\n", + "# Loss function:\n", + "criterion = F.mse_loss #mse_loss\n", + "\n", + "# Optimiser:\n", + "optimizer = optim.Adam(unet_model.parameters(), lr=0.0005)\n", + "\n", + "# Train loader:\n", + "train_loader = torch.utils.data.DataLoader(torch.utils.data.ConcatDataset([train_dataset, fm_train_dataset]),\n", + " batch_size=batch_size_train, shuffle=True) # here we set shuffle = True\n", + "\n", + "# Training loop:\n", + "for epoch in range(n_epochs):\n", + " train_denoising_model(train_loader, unet_model, criterion, optimizer, history)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f71a710b", + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(8):\n", + " visualize_denoising(unet_model, test_dataset, 123*i)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "52a67bf2", + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(8):\n", + " visualize_denoising(unet_model, fm_train_dataset, 123*i)" + ] + }, + { + "cell_type": "markdown", + "id": "b8fe50cf", + "metadata": {}, + "source": [ + "

\n", + " Task 5.5:

\n", + "How does the denoiser trained on shuffled data perform compared to the one trained sequentially on one dataset and then on the other?\n", "
" ] }, { - "attachments": {}, "cell_type": "markdown", + "id": "23c0b50d", "metadata": { "tags": [ - "Solution", "solution" ] }, "source": [ - "**Bonus question: Would it work to train first on MNIST and then on Fashion-MNIST?**\n", - "To train a network that can do both, training on both datasets would be a good approach. Need to shuffle training examples.\n", - "Training on one first and on the other afterwards will likely only work for the second dataset." + "**5.5 Answer:**\n", + "\n", + "The denoiser trained on shuffled data performs well accross both MNIST and FashionMNIST, without having any particular issue with either of the two datasets.\n" ] }, { "cell_type": "markdown", + "id": "ec448985", + "metadata": {}, + "source": [ + "\n", + "

\n", + " Checkpoint 5

\n", + "
    \n", + " Congrats on reaching the final checkpoint! Let us know on the course chat, and we'll discuss the questions once reaching critical mass.\n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "33838105", + "metadata": {}, + "source": [ + "\n", + "

\n", + " Bonus Questions

\n", + "
    \n", + "
  1. Go back to Part 4 and try another attribution method, such as Saliency, and see how the results differ.
  2. \n", + "
\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "eee21f1e", "metadata": {}, "source": [] } ], "metadata": { + "jupytext": { + "cell_metadata_filter": "all", + "custom_cell_magics": "kql" + }, "kernelspec": { - "display_name": "07_failure_modes", + "display_name": "Python [conda env:07-failure-modes]", "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.4" + "name": "conda-env-07-failure-modes-py" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 5 } diff --git a/solution.py b/solution.py new file mode 100644 index 0000000..49a3567 --- /dev/null +++ b/solution.py @@ -0,0 +1,1266 @@ +# --- +# jupyter: +# jupytext: +# custom_cell_magics: kql +# text_representation: +# extension: .py +# format_name: percent +# format_version: '1.3' +# jupytext_version: 1.16.4 +# kernelspec: +# display_name: Python [conda env:07-failure-modes] +# language: python +# name: conda-env-07-failure-modes-py +# --- + +# %% [markdown] +# # Exercise 7: Failure Modes And Limits of Deep Learning + +# %% [markdown] +# In the following exercise, we explore the failure modes and limits of neural networks. +# Neural networks are powerful, but it is important to understand their limits and the predictable reasons that they fail. +# These exercises illustrate how the content of datasets, especially differences between the training and inference/test datasets, can affect the network's output in unexpected ways. +#

+# While neural networks are generally less interpretable than other types of machine learning, it is still important to investigate the "internal reasoning" of the network as much as possible to discover failure modes, or situations in which the network does not perform well. +# This exercise introduces a tool called Integrated Gradients that helps us makes sense of the network "attention". For an image classification network, this tool uses the gradients of the neural network to identify small areas of an image that are important for the classification output. + +# %% [markdown] +# +# ## Overview: +# In this exercise you will... +# 1. Tamper with an image dataset and introduce additional visual information for some classes. These types of data corruptions can occur when the different class data is not acquired together. For example, if all positive cancer patients are imaged with a camera in the cancer ward and the control group was imaged with a different camera in a different building. +# +# 2. Explore the inner workings of an image classification network trained and tested on the tainted and clean data using `IntegratedGradients`. +# +# 3. Explore how denoising networks deal with or struggle with domain changes. +# +# *NOTE*: There is very little coding in this exercise, as the goal is for you to think deeply about how neural networks can be influenced by differences in data. We encourage you to think deeply about the questions and discuss them in small groups, as well as with the full class during the frequent checkpoints. +# +#
+# Set your python kernel to 07-failure-modes +#
+ +# %% [markdown] +# ### Acknowledgements +# This notebook was created by Steffen Wolf, Jordao Bragantini, Jan Funke, and Loic Royer. Modified by Tri Nguyen, Igor Zubarev, and Morgan Schwartz for DL@MBL 2022, Caroline Malin-Mayor for DL@MBL 2023, and Anna Foix Romero for DL@MBL 2024. + +# %% [markdown] +# ### Data Loading +# +# The following will load the MNIST dataset, which already comes split into a training and testing dataset. +# The MNIST dataset contains images of handwritten digits 0-9. +# This data was already downloaded in the setup script. +# Documentation for this pytorch dataset is available at https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html + +# %% +import torchvision + +train_dataset = torchvision.datasets.MNIST('./mnist', train=True, download=False, + transform=torchvision.transforms.Compose([ + torchvision.transforms.ToTensor(), + torchvision.transforms.Normalize( + (0.1307,), (0.3081,)) + ])) + +test_dataset = torchvision.datasets.MNIST('./mnist', train=False, download=False, + transform=torchvision.transforms.Compose([ + torchvision.transforms.ToTensor(), + torchvision.transforms.Normalize( + (0.1307,), (0.3081,)) + ])) + +# %% [markdown] +# ### Part 1: Preparation of a Tainted Dataset +# +# In this section we will make small changes to specific classes of data in the MNIST dataset. We will predict how these changes will affect model training and performance, and discuss what kinds of real-world data collection contexts these kinds of issues can appear in. + +# %% +# Imports: +import torch +import numpy +from scipy.ndimage import convolve +import copy + +# %% +# Create copies so we do not modify the original datasets: +tainted_train_dataset = copy.deepcopy(train_dataset) +tainted_test_dataset = copy.deepcopy(test_dataset) + +# %% [markdown] +# ## Part 1.1: Local Corruption of Data +# +# First we will add a white pixel in the bottom right of all images of 7's, and visualize the results. This is an example of a local change to the images, where only a small portion of the image is corrupted. + +# %% +# Add a white pixel in the bottom right of all images of 7's +tainted_train_dataset.data[train_dataset.targets==7, 25, 25] = 255 +tainted_test_dataset.data[test_dataset.targets==7, 25, 25] = 255 + +# %% +import matplotlib.pyplot as plt + +plt.subplot(1,4,1) +plt.axis('off') +plt.imshow(tainted_train_dataset[3][0][0], cmap=plt.get_cmap('gray')) +plt.subplot(1,4,2) +plt.axis('off') +plt.imshow(tainted_train_dataset[23][0][0], cmap=plt.get_cmap('gray')) +plt.subplot(1,4,3) +plt.axis('off') +plt.imshow(tainted_train_dataset[15][0][0], cmap=plt.get_cmap('gray')) +plt.subplot(1,4,4) +plt.axis('off') +plt.imshow(tainted_train_dataset[29][0][0], cmap=plt.get_cmap('gray')) +plt.show() + +# %% [markdown] +#

+# Task 1.1:

+# We have locally changed images of 7s artificially for this exercise. What are some examples of ways that images can be corrupted or tainted during real-life data collection, for example in a hospital imaging environment or microscopy lab? +#
+ +# %% [markdown] tags=["solution"] +# **1.1 Answer:** +# +# In a microscopy lab, sample preparation error such as improper staining or sample contamination or other technical issues such as optical aberrations and focus drift can cause image corruption. Environmental factors such as vibrations or lighting variations may also contribute to image corruption. Digital artifacts like compression artifacts or noise, and other issues like operator error (improper manipulation, incorrect magnification...) will also lead to corrupted images. +# +# In a hospital imaging environment, motion artifacts (patient movement), technical issue (equipment malfunction, machine calibration errors), environmental factors (electromagnetic interference, temperature fluctuations), operator errors (improper positioning, incorrect settings), biological factors (metal implant, body motion from bodily functions) are all sources of corrupted data. + +# %% [markdown] tags=["solution"] +# **1.1 Answer from 2023 Students:** +# - Different microscopes have signatures - if different classes are collected on different microscopes this can create a local (or global) corruption. +# - Dirty objective!!!!! (clean your stuff) +# - Camera signature noise - some cameras generate local corruptions over time if you image for too long without recalibrating +# - Medical context protocols for imaging changing in different places + +# %% [markdown] +#

+# Task 1.2:

+# In your above examples, if you knew you had a local corruption or difference between images in different classes of your data, could you remove it? How? +#
+ +# %% [markdown] tags=["solution"] +# **1.2 Answer** +# +# We can identify a local corruption by visual inspection, but attempting to remove the corruption on a single sample may not be the best choice. Cropping the corrupted region in all the samples will guarantee that the information of the contaminated area will be ignored across the dataset. + +# %% [markdown] tags=["solution"] +# **1.2 Answer from 2023 Students** +# - Segment and crop/mask out the corruption. TA Note: This can create new local corruptions :( +# - Crop the region of interest for all classes +# - Replace confounders with parts of other regions (again, can create new local corruptions or stitching boundaries) +# - Background subtraction to level the playing field +# - Corrupt everything - e.g. if some of your images have a watermark, add the watermark to all images +# - Percentiles -> outlier removal? +# - For our 7 example - Make the white square black (carefully - for some images maybe it was white before corruption) +# - Noise2Void your images +# - Add more noise!? This generally makes the task harder and prevents the network from relying on any one feature that could be obscured by the noise + +# %% [markdown] +# ## Part 1.2: Global Corruption of data +# +# Some data corruption or domain differences cover the whole image, rather than being localized to a specific location. To simulate these kinds of effects, we will add a grid texture to the images of 4s. + +# %% [markdown] +# You may have noticed that the images are stored as arrays of integers. First we cast them to float to be able to add textures easily without integer wrapping issues. + +# %% +# Cast to float +tainted_train_dataset.data = tainted_train_dataset.data.type(torch.FloatTensor) +tainted_test_dataset.data = tainted_test_dataset.data.type(torch.FloatTensor) + +# %% [markdown] +# Then we create the grid texture and visualize it. + +# %% +# Create grid texture +texture = numpy.zeros(tainted_test_dataset.data.shape[1:]) +texture[::2,::2] = 80 +texture = convolve(texture, weights=[[0.5,1,0.5],[1,0.1,0.5],[1,0.5,0]]) +texture = torch.from_numpy(texture) + +plt.axis('off') +plt.imshow(texture, cmap=plt.get_cmap('gray')) + +# %% [markdown] +# Next we add the texture to all 4s in the train and test set. + +# %% +# Adding the texture to all images of 4's: +tainted_train_dataset.data[train_dataset.targets==4] += texture +tainted_test_dataset.data[test_dataset.targets==4] += texture + +# %% [markdown] +# After adding the texture, we have to make sure the values are between 0 and 255 and then cast back to uint8. +# Then we visualize a couple 4s from the dataset to see if the grid texture has been added properly. + +# %% +# Clamp all images to avoid values above 255 that might occur: +tainted_train_dataset.data = torch.clamp(tainted_train_dataset.data, 0, 255) +tainted_test_dataset.data = torch.clamp(tainted_test_dataset.data, 0, 255) + +# Cast back to byte: +tainted_train_dataset.data = tainted_train_dataset.data.type(torch.uint8) +tainted_test_dataset.data = tainted_test_dataset.data.type(torch.uint8) + +# %% +# visualize example 4s +plt.subplot(1,4,1) +plt.axis('off') +plt.imshow(tainted_train_dataset[9][0][0], cmap=plt.get_cmap('gray')) +plt.subplot(1,4,2) +plt.axis('off') +plt.imshow(tainted_train_dataset[26][0][0], cmap=plt.get_cmap('gray')) +plt.subplot(1,4,3) +plt.axis('off') +plt.imshow(tainted_train_dataset[20][0][0], cmap=plt.get_cmap('gray')) +plt.subplot(1,4,4) +plt.axis('off') +plt.imshow(tainted_train_dataset[53][0][0], cmap=plt.get_cmap('gray')) +plt.show() + +# %% [markdown] +#

+# Task 1.3:

+# Think of a realistic example of such a corruption that would affect only some classes of data. If you notice the differences between classes, could you remove it? How? +#
+ +# %% [markdown] tags=["solution"] +# **1.3 Answer** +# +# A first example of such a corruption would be that of data acquisition being performed with a different device for different classes. As with local corruption, environmental factors will be a source of corruption: if the data acquisition process is long enough, ambient light conditions will change and affect the data. Similarly, vibrations in the surrounding room may have an impact. +# +# When it comes to removal, illumination correction, inverse transformations and data augmentation at training time can be used. +# +# But prevention remains the most effective way to produce high quality datasets. + +# %% [markdown] tags=["solution"] +# **1.3 Answer from 2023 Students** +# +# Global Corruptions +# - Different sample categories on different days: +# - vibrations in the microscope room +# - changes in ambient light +# - other people changing parameters between the days +# - Different people on the same microscope +# - Normalization changes across sample categories +# +# How to remove +# - Illumination correction +# - Inverse transformation on images +# - Add augmentation at training time to avoid reliance on brightness or other global features +# +# Prevention is easer than fixing after generation! +# - PCA on metadata <3 to help detect such issues +# - Randomization of data generation (blind yourself to your samples, dont always put certain classes in certain wells, etc) +# + +# %% [markdown] +# +#

+# Task 1.4:

+# Given the changes we made to generate the tainted dataset, do you think a digit classification network trained on the tainted data will converge? Are the classes more or less distinct from each other than in the untainted dataset? +#
+ +# %% [markdown] tags=["solution"] +# **1.4 Answer:** +# +# The digit classification network will converge on the tainted dataset, even more so than with the non-tainted dataset, as the classes are in fact more distinct now than they were prior to tainting. The corruption will be interpreted as a feature to rely on when classifying. + +# %% [markdown] tags=["solution"] +# **1.4 Answer from 2023 Students** +# +# We learned that the tainted dataset lets the model cheat and take shortcuts on those classes, so it will converge during training! +# + +# %% [markdown] +# +#

+# Checkpoint 1

+# +# Post to the course chat when you have reached Checkpoint 1. We will discuss all the questions and make more predictions! +#
+ +# %% [markdown] +# +#

+# Bonus Questions:

+# Note that we only added the white dot to the images of 7s and the grid to images of 4s, not all classes. +#
    +#
  1. Consider a dataset with white dots on images of all digits: let's call it the all-dots data. How different is this from the original dataset? Are the classes more or less distinct from each other?
  2. +#
  3. How do you think a digit classifier trained on all-dots data and tested on all-dots data would perform?
  4. +#
  5. Now consider the analogous all-grid data with the grid pattern added to all images. Are the classes more or less distinct from each other? Would a digit classifier trained on all-grid converge?
  6. +#
+# If you want to test your hypotheses, you can create these all-dots and all-grid train and test datasets and use them for training in bonus questions of the following section. +#
+ +# %% [markdown] +# ### Part 2: Create and Train an Image Classification Neural Network on Clean and Tainted Data +# +# From Part 1, we have a clean dataset and a dataset that has been tainted with effects that simulate local and global effects that could happen in real collection scenarios. Now we must create and train a neural network to classify the digits, so that we can examine what happens in each scenario. + +# %% +import torch +from classifier.model import DenseModel + +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +print(f'selected torch device: {device}') + +# %% [markdown] +# Now we will train the neural network. A training function is provided below - this should be familiar, but make sure you look it over and understand what is happening in the training loop. + +# %% +from tqdm import tqdm + +# Training function: +def train_mnist(model, train_loader, batch_size, criterion, optimizer, history): + model.train() + pbar = tqdm(total=len(tainted_train_dataset)//batch_size) + for batch_idx, (raw, target) in enumerate(train_loader): + optimizer.zero_grad() + raw = raw.to(device) + target = target.to(device) + output = model(raw) + loss = criterion(output, target) + loss.backward() + optimizer.step() + history.append(loss.item()) + pbar.update(1) + return history + + +# %% [markdown] +# We have to choose hyperparameters for our model. We have selected to train for two epochs, with a batch size of 64 for training and 1000 for testing. We are using the cross entropy loss, a standard multi-class classification loss. + +# %% +import torch.optim as optim +import torch +import torch.nn as nn + +# Let's set some hyperparameters: +n_epochs = 2 +batch_size_train = 64 +batch_size_test = 1000 + +# Loss function: +criterion = nn.CrossEntropyLoss() + +# %% [markdown] +# Next we initialize a clean model, and a tainted model. We want to have reproducible results, so we set the initial weights with a specific random seed. The seed number does not matter, just that it is the same! + +# %% +# Initialize the clean and tainted models +model_clean = DenseModel(input_shape=(28, 28), num_classes=10) +model_clean = model_clean.to(device) + +model_tainted = DenseModel(input_shape=(28, 28), num_classes=10) +model_tainted = model_tainted.to(device) + +# Weight initialisation: +def init_weights(m): + if isinstance(m, (nn.Linear, nn.Conv2d)): + torch.nn.init.xavier_uniform_(m.weight, ) + m.bias.data.fill_(0.01) + +# Fixing seed with magical number and setting weights: +torch.random.manual_seed(42) +model_clean.apply(init_weights) + +# Fixing seed with magical number and setting weights: +torch.random.manual_seed(42) +model_tainted.apply(init_weights) + +# %% [markdown] +# Next we initialize the clean and tainted dataloaders, again with a specific random seed for reproducibility. + +# %% +# Initialising dataloaders: +train_loader_tainted = torch.utils.data.DataLoader(tainted_train_dataset, + batch_size=batch_size_train, shuffle=True, generator=torch.Generator().manual_seed(42)) + +train_loader = torch.utils.data.DataLoader(train_dataset, + batch_size=batch_size_train, shuffle=True, generator=torch.Generator().manual_seed(42)) + +# %% [markdown] +# Now it is time to train the neural networks! We are storing the training loss history for each model so we can visualize it later. + +# %% +# We store history here: +history = {"loss_tainted": [], + "loss_clean": []} + +# Training loop for clean model: +for epoch in range(n_epochs): + train_mnist(model_clean, + train_loader, + batch_size_train, + criterion, + optim.Adam(model_clean.parameters(), lr=0.001), + history["loss_clean"]) + +print('model_clean trained') + +# Training loop for tainted model: +for epoch in range(n_epochs): + train_mnist(model_tainted, + train_loader_tainted, + batch_size_train, + criterion, + optim.Adam(model_tainted.parameters(), lr=0.001), + history["loss_tainted"]) + +print('model_tainted trained') + +# %% [markdown] +# Now we visualize the loss history for the clean and tainted models. + +# %% +# Visualise the loss history: +fig = plt.figure() +plt.plot(history["loss_clean"], color='blue') +plt.plot(history["loss_tainted"], color='red') +plt.legend(['Train Loss Clean', "Train Loss Tainted"], loc='upper right') +plt.xlabel('number of training examples seen') +plt.ylabel('negative log likelihood loss') + +# %% [markdown] +#

+# Task 2.1:

+# Why do you think the tainted network has lower training loss than the clean network? +#
+ +# %% [markdown] tags=["solution"] +# **2.1 Answer:** +# +# As previously mentioned, the classes in the tainted dataset are more distinct from each other than the ones from the non-tainted dataset. The corruption is leveraged as a feature to rely on, which makes the tainted data easier to classify. + +# %% [markdown] tags=["solution"] +# **2.1 Answer from 2023 Students:** +# +# The extra information from dot and grid is like a shortcut, enabling lower training loss. + +# %% [markdown] +#

+# Task 2.2:

+# Do you think the tainted network will be more accurate than the clean network when applied to the tainted test data? Why? +#
+ +# %% [markdown] tags=["solution"] +# **2.2 Answer:** +# +# Yes, the tainted network will be more accurate than the clean network when applied to the tainted test data as it will leverage the corruption present in that test data, since it trained to do so. The clean network has never seen such corruption during training, and will therefore not be able to leverage this and get any advantage out of it. + +# %% [markdown] tags=["solution"] +# **2.2 Answer from 2023 Students** +# +# Yes. It will use the extra info to be better at 4s and 7s! + +# %% [markdown] +#

+# Task 2.3:

+# Do you think the tainted network will be more accurate than the clean network when applied to the clean test data? Why? +#
+ +# %% [markdown] tags=["solution"] +# **2.3 Answer:** +# +# The tainted network is relying on grid patterns to detect 4s and on dots in the bottom right corner to detect 7s. Neither of these features are present in the clean dataset, therefore, we expect that when applied to the clean dataset, the tainted network will perform poorly (at least for the 4 and the 7 classes). + +# %% [markdown] tags=["solution"] +# **2.3 Answer from 2023 Students** +# +# No. Out of distribution is the issue. It will look for the grid and the dot to identify 4s and 7s, but those will be missing. + +# %% [markdown] +#

+# Checkpoint 2

+# +# Post to the course chat when you have reached Checkpoint 2. We will discuss our predictions! +#
+ +# %% [markdown] +#

+# Bonus Questions:

+#
    +#
  1. Train a model on the all-grid training dataset from the bonus questions in Part 1. How does the all-grid training loss compare to the clean and tainted models? Why?
  2. +#
  3. How do you think a digit classifier trained on all-grid data and tested on all-grid data would perform?
  4. +#
  5. What about a digit classifier trained on all-grid data and tested on untainted data?
  6. +#
+#
+ +# %% [markdown] +# ### Part 3: Examining the Results of the Clean and Tainted Networks +# +# Now that we have initialized our clean and tainted datasets and trained our models on them, it is time to examine how these models perform on the clean and tainted test sets! +# +# We provide a `predict` function below that will return the prediction and ground truth labels given a particular model and dataset. + +# %% +import numpy as np + +# predict the test dataset +def predict(model, dataset): + dataset_prediction = [] + dataset_groundtruth = [] + with torch.no_grad(): + for x, y_true in dataset: + inp = x[None].to(device) + y_pred = model(inp) + dataset_prediction.append(y_pred.argmax().cpu().numpy()) + dataset_groundtruth.append(y_true) + + return np.array(dataset_prediction), np.array(dataset_groundtruth) + + +# %% [markdown] +# Now we call the predict method with the clean and tainted models on the clean and tainted datasets. + +# %% +pred_clean_clean, true_labels = predict(model_clean, test_dataset) +pred_clean_tainted, _ = predict(model_clean, tainted_test_dataset) +pred_tainted_clean, _ = predict(model_tainted, test_dataset) +pred_tainted_tainted, _ = predict(model_tainted, tainted_test_dataset) + +# %% [markdown] +# We can investigate the results using the confusion matrix, which you should recall from the Introduction to Machine Learning exercise. The function in the cell below will create a nicely annotated confusion matrix. + +# %% +from sklearn.metrics import confusion_matrix +import seaborn as sns +import pandas as pd +# Plot confusion matrix +# originally from Runqi Yang; +# see https://gist.github.com/hitvoice/36cf44689065ca9b927431546381a3f7 +def cm_analysis(y_true, y_pred, title, figsize=(10,10)): + """ + Generate matrix plot of confusion matrix with pretty annotations. + The plot image is saved to disk. + args: + y_true: true label of the data, with shape (nsamples,) + y_pred: prediction of the data, with shape (nsamples,) + filename: filename of figure file to save + labels: string array, name the order of class labels in the confusion matrix. + use `clf.classes_` if using scikit-learn models. + with shape (nclass,). + ymap: dict: any -> string, length == nclass. + if not None, map the labels & ys to more understandable strings. + Caution: original y_true, y_pred and labels must align. + figsize: the size of the figure plotted. + """ + labels = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] + cm = confusion_matrix(y_true, y_pred) + cm_sum = np.sum(cm, axis=1, keepdims=True) + cm_perc = cm / cm_sum.astype(float) * 100 + annot = np.empty_like(cm).astype(str) + nrows, ncols = cm.shape + for i in range(nrows): + for j in range(ncols): + c = cm[i, j] + p = cm_perc[i, j] + if i == j: + s = cm_sum[i] + annot[i, j] = '%.1f%%\n%d/%d' % (p, c, s) + elif c == 0: + annot[i, j] = '' + else: + annot[i, j] = '%.1f%%\n%d' % (p, c) + cm = pd.DataFrame(cm_perc, index=labels, columns=labels) + cm.index.name = 'Actual' + cm.columns.name = 'Predicted' + fig, ax = plt.subplots(figsize=figsize) + ax = sns.heatmap(cm, annot=annot, fmt="", vmax=100) + ax.set_title(title) + +# %% [markdown] +# Now we will generate confusion matrices for each model/data combination. Take your time and try and interpret these, and then try and answer the questions below. + +# %% +cm_analysis(true_labels, pred_clean_clean, "Clean Model on Clean Data") +cm_analysis(true_labels, pred_clean_tainted, "Clean Model on Tainted Data") +cm_analysis(true_labels, pred_tainted_clean, "Tainted Model on Clean Data") +cm_analysis(true_labels, pred_tainted_tainted, "Tainted Model on Tainted Data") + +# %% [markdown] +#

+# Task 3.1:

+# For the clean model and the clean dataset, which digit was least accurately predicted? What did the model predict instead? Why do you think these digits were confused by the model? +#
+ +# %% [markdown] tags=["solution"] +# **3.1 Answer:** +# +# The clean model on the clean dataset predicted 5s least accurately, with some confusion with 6s and 3s. These are likely confused by the model as handwritten 5s may look like 6s (almost closed bottom part) or 3s (presence of 3 horizontal segments). + +# %% [markdown] tags=["solution"] +# **3.1 Answer from 2023 Students** +# +# 5 is the least accurately predicted digit. It is most confused with 6 or 3. +# Handwriting creates fives that look like sixes or threes. + +# %% [markdown] +#

+# Task 3.2:

+# Does the tainted model on the tainted dataset perform better or worse than the clean model on the clean dataset? Which digits is it better or worse on? Why do you think that is the case? +#
+ +# %% [markdown] tags=["solution"] +# **3.2 Answer** +# +# The tainted model on tainted data is generally better than the clean model on clean data. Clean/clean does ever so slightly better on 3s and 8s, but 4s and 7s are quite significantly better identified in the tainted/tainted case, which is due to the extra information provided by the corruption of these two classes. + +# %% [markdown] tags=["solution"] +# **3.2 Answer from 2023 Students** +# +# Tainted WINS because it is better at 4 and 7 ;) + +# %% [markdown] +#

+# Task 3.3:

+# For the clean model and the tainted dataset, was the local corruption on the 7s or the global corruption on the 4s harder for the model trained on clean data to deal with? Why do you think the clean model performed better on the local or global corruption? +#
+ +# %% [markdown] tags=["solution"] +# **3.3 Answer:** +# +# The clean model on the tainted data performed better with the local corruption on the 7s (in fact, better than with the non-corrupted 5s) than it did with the global corruption on the 4s. + +# %% [markdown] tags=["solution"] +# **3.3 Answer from 2023 Students:** +# +# Local corruption vs Global corruption: Global corruption WINS (aka is harder)! +# +# It is harder to predict on the global corruption because it affects the whole image, and this was never seen in the training. +# It adds (structured) noise over the entire four. + +# %% [markdown] +#

+# Task 3.4:

+# Did the tainted model perform worse on clean 7s or clean 4s? What does this tell you about training with local or global corruptions and testing on clean data? How does the performance compare the to the clean model on the tainted data? +#
+ +# %% [markdown] tags=["solution"] +# **3.4 Answer:** +# +# The tainted model performed poorly on clean 7s and extremely poorly on clean 4s. Global corruption effectively prevented the tainted model from learning any feature about 4s, and local corruption used both some true and some false features about 7s. Ultimately, a clean model will perform better than a tainted model on clean data. + +# %% [markdown] tags=["solution"] +# **3.4 Answer from 2023 Students:** +# +# Clean 7s vs clean 4s: 4 WINS! (aka is worse) +# +# Global corruptions are more detrimental when testing on the clean data. This is because the training images are *more* different from each other. +# +# Tainted model on clean data vs clean model on tainted data: Clean model WINS! (is better on tainted data than tainted model on clean data) +# +# The clean model still has useful signal to work with in the tainted data. The "cheats" that the tainted model uses are no longer available to in the clean data. + +# %% [markdown] +#

+# Checkpoint 3

+# +# Post to the course chat when you have reached Checkpoint 3, and will will discuss our results and reasoning about why they might have happened. +#
+ +# %% [markdown] +#

+# Bonus Questions:

+#
    +#
  1. Run predict with the model trained on the all-grid data using both the clean and all-grid testing data. Then generate the confusion matrices.
  2. +#
  3. How does the all-grid model perform on all-grid data compared to the clean model on clean data? What about the all-grid model on clean data?
  4. +#
  5. In a realistic situation, is it better to have corruption or noise on all your data, or just a subset of the classes? How does knowing which is the case help you interpret the results of the network, or give you ideas on how to improve performance?
  6. +#
+#
+ +# %% [markdown] +# ### Part 4: Interpretation with Integrated Gradients +# Perhaps you formed some hypotheses about why the clean and tainted models did better or worse on certain datasets in the previous section. Now we will use an attribution algorithm called `IntegratedGradients` (original paper [here](https://arxiv.org/pdf/1703.01365.pdf)) to learn more about the inner workings of each model. This algorithm analyses a specific image and class, and uses the gradients of the network to find the regions of the image that are most important for the classification. We will learn more about Integrated Gradients and its limitations in the Knowledge Extraction Lecture and Exercise. + +# %% [markdown] +# +# Below is a function to apply integrated gradients to a given image, class, and model using the Captum library (API documentation at https://captum.ai/api/integrated_gradients.html). +# + +# %% +from captum.attr import IntegratedGradients + +def apply_integrated_gradients(test_input, model): + # move the model to cpu + model.cpu() + + # initialize algorithm + algorithm = IntegratedGradients(model) + + # clear the gradients from the model + model.zero_grad() + + # Get input and target tensors from test_input + input_tensor = test_input[0].unsqueeze(0) + input_tensor.requires_grad = True + target = test_input[1] + + # Run attribution: + attributions = algorithm.attribute( + input_tensor, + target=target, + baselines=input_tensor * 0 + ) + + return attributions + + +# %% [markdown] +# Next we provide a function to visualize the output of integrated gradients, using the function above to actually run the algorithm. + +# %% +from captum.attr import visualization as viz + +def visualize_integrated_gradients(test_input, model, plot_title): + attr_ig = apply_integrated_gradients(test_input, model) + + # Transpose integrated gradients output + attr_ig = np.transpose(attr_ig[0].cpu().detach().numpy(), (1, 2, 0)) + + # Transpose and normalize original image: + original_image = np.transpose((test_input[0].detach().numpy() * 0.5) + 0.5, (1, 2, 0)) + + # This visualises the attribution of labels to pixels + figure, axis = plt.subplots(nrows=1, ncols=2, figsize=(4, 2.5), width_ratios=[1, 1]) + viz.visualize_image_attr(attr_ig, + original_image, + method="blended_heat_map", + sign="absolute_value", + show_colorbar=True, + title="Original and Attribution", + plt_fig_axis=(figure, axis[0]), + use_pyplot=False) + viz.visualize_image_attr(attr_ig, + original_image, + method="heat_map", + sign="absolute_value", + show_colorbar=True, + title="Attribution Only", + plt_fig_axis=(figure, axis[1]), + use_pyplot=False) + figure.suptitle(plot_title, y=0.95) + plt.tight_layout() + + +# %% [markdown] +# To start examining the results, we will call the `visualize_integrated_gradients` with the tainted and clean models on the tainted and clean sevens. +# +# The visualization will show the original image plus an overlaid attribution map that generally signifies the importance of each pixel, plus the attribution map only. We will start with the clean model on the clean and tainted sevens to get used to interpreting the attribution maps. +# + +# %% +visualize_integrated_gradients(test_dataset[0], model_clean, "Clean Model on Clean 7") +visualize_integrated_gradients(tainted_test_dataset[0], model_clean, "Clean Model on Tainted 7") + +# %% [markdown] +#

+# Task 4.1: Interpreting the Clean Model's Attention on 7s

+# Where did the clean model focus its attention for the clean and tainted 7s? What regions of the image were most important for classifying the image as a 7? +#
+ +# %% [markdown] tags=["solution"] +# **4.1 Answer:** +# +# The clean model focus its attention to the 7 itself. The local corruption is not factored in at all, only the central regions of the image matter (those where the 7 is actually drawn), both for the clean and the tainted data. + +# %% [markdown] tags=["solution"] +# **4.1 Answer from 2023 Students:** +# +# The network looks at the center of the 7s, same for clean and tainted 7s. +# It looks like a 7, it is a 7. :) + +# %% [markdown] +# Now let's look at the attention of the tainted model! + +# %% +visualize_integrated_gradients(tainted_test_dataset[0], model_tainted, "Tainted Model on Tainted 7") +visualize_integrated_gradients(test_dataset[0], model_tainted, "Tainted Model on Clean 7") + +# %% [markdown] +#

+# Task 4.2: Interpreting the Tainted Model's Attention on 7s

+# Where did the tainted model focus its attention for the clean and tainted 7s? How was this different than the clean model? Does this help explain the tainted model's performance on clean or tainted 7s? +#
+ +# %% [markdown] tags=["solution"] +# **4.2 Answer:** +# +# The tainted model only focuses on the dot in the tainted 7. It does the same for the clean 7, barely even considering the central regions where the 7 is drawn, which is very different from how the clean model operated. Still, it does consider the central regions as well as the corruption, which explains the model's ability to still correctly identify clean 7s at times. + +# %% [markdown] tags=["solution"] +# **4.2 Answer from 2023 Students:** +# +# DOT +# ...... +# DOT DOT +# +# (It looked at the dot. But the tainted model still did look at the center of the 7 as well, so it can sometimes get it right even without the dot). + +# %% [markdown] +# Now let's look at the regions of the image that Integrated Gradients highlights as important for classifying fours in the clean and tainted models. + +# %% +visualize_integrated_gradients(test_dataset[6], model_clean, "Clean Model on Clean 4") +visualize_integrated_gradients(tainted_test_dataset[6], model_clean, "Clean Model on Tainted 4") +visualize_integrated_gradients(tainted_test_dataset[6], model_tainted, "Tainted Model on Tainted 4") +visualize_integrated_gradients(test_dataset[6], model_tainted, "Tainted Model on Clean 4") + +# %% [markdown] +#

+# Task 4.3: Interpreting the focus on 4s

+# Where did the tainted model focus its attention for the tainted and clean 4s? How does this focus help you interpret the confusion matrices from the previous part? +#
+ +# %% [markdown] tags=["solution"] +# **4.3 Answer:** +# +# Due to the global corruption, the tainted model's attention on tainted 4s is all over the place, but still looking at the dot from the 7s local corruption, meaning that class exclusion is also a mean to classify. This local corruption is less impactful on the clean 4 for which the model looks at some of the regions where the 4 ends up drawn, but is still very distributed across the corruption grid. + +# %% [markdown] tags=["solution"] +# **4.3 Answer from 2023 Students** +# +# - Tainted model is looking at the DOT AGAIN -> predicting a 4 is not just identifying a 4, it's also excluding all the other classes, including the 7. Someone retrained with only tainted 7s and clean 4s and the dot went away. +# - Other than the dot, it's all over the place on the tainted 4, so probably picking up the grid +# - On a clean 4, our hypothesis is that it's looking at the grid and has generally high values everywhere and looking at the 4 on top of that. +# - Also, maybe it just did alright on this particular 4 + +# %% [markdown] +#

+# Task 4.4: Reflecting on Integrated Gradients

+# Did you find the integrated gradients more useful for the global or local corruptions of the data? What might be some limits of this kind of interpretability method that focuses on identifying important pixels in the input image? +#
+ +# %% [markdown] tags=["solution"] +# **4.4 Answer:** +# +# The integrated gradient was more useful identifying the contribution of local corruption. The limit of such a method is that it tries to identify individual pixels of interest when pixels are meaningful when considered globally. + +# %% [markdown] tags=["solution"] +# **4.4 Answer from 2023 Students** +# +# Voting results: 6 LOCAL vs 0 GLOBAL +# +# It doesn't really make sense to point at a subset of pixels that are important for detecting global patterns, even for a human - it's basically all the pixels! + +# %% [markdown] +#

+# Checkpoint 4

+#
    +# Congrats on finishing the integrated gradients task! Let us know on the course chat that you reached checkpoint 4, and feel free to look at other interpretability methods in the Captum library if you're interested. +#
+#
+ +# %% [markdown] +#

+# Bonus Questions

+#
    +#
  1. Run integrated gradients on the all-grid model and clean and all-grid examples. Did the model learn to ignore the grid pattern for the all-grid test set? What happens when the grid pattern is missing in the clean data?
  2. +#
  3. How do these results help you interpret the confusion matrices? Were your predictions correct about why certain models did better or worse on certain digits?
  4. +#
+#
+ +# %% [markdown] +# ## Part 5: Importance of using the right training data +# +# Now we will move on from image classification to denoising, and show why it is particularly important to ensure that your training and test data are from the same distribution for these kinds of networks. +# +# For this exercise, we will first train a simple CNN model to denoise MNIST images of digits, and then apply it to the Fashion MNIST to see what happens when the training and inference data are mismatched. +# + +# %% [markdown] +# First, we will write a function to add noise to the MNIST dataset, so that we can train a model to denoise it. + +# %% +import torch + +# A simple function to add noise to tensors: +def add_noise(tensor, power=1.5): + return tensor * torch.rand(tensor.size()).to(tensor.device) ** power + 0.75*torch.randn(tensor.size()).to(tensor.device) + + +# %% [markdown] +# Next we will visualize a couple MNIST examples with and without noise. + +# %% +import matplotlib.pyplot as plt + +# Let's visualise MNIST images with noise: +def show(index): + plt.subplot(1,4,1) + plt.axis('off') + plt.imshow(train_dataset[index][0][0], cmap=plt.get_cmap('gray')) + plt.subplot(1,4,2) + plt.axis('off') + plt.imshow(add_noise(train_dataset[index][0][0]), cmap=plt.get_cmap('gray')) + plt.subplot(1,4,3) + plt.axis('off') + plt.imshow(train_dataset[index+1][0][0], cmap=plt.get_cmap('gray')) + plt.subplot(1,4,4) + plt.axis('off') + plt.imshow(add_noise(train_dataset[index+1][0][0]), cmap=plt.get_cmap('gray')) + plt.show() + +# We pick 8 images to show: +for i in range(8): + show(123*i) + +# %% [markdown] +# ### UNet model +# +# Let's try denoising with a UNet, "CARE-style". As UNets and denoising implementations are not the focus of this exercise, we provide the model for you in the following cell. + +# %% [markdown] +# The training loop code is also provided here. It is similar to the code used to train the image classification model previously, but look it over to make sure there are no surprises. + +# %% +from tqdm import tqdm + +def train_denoising_model(train_loader, model, criterion, optimizer, history): + + # Puts model in 'training' mode: + model.train() + + # Initialises progress bar: + pbar = tqdm(total=len(train_loader.dataset)//batch_size_train) + for batch_idx, (image, target) in enumerate(train_loader): + + # add line here during Task 2.2 + + # Zeroing gradients: + optimizer.zero_grad() + + # Moves image to GPU memory: + image = image.to(device) + + # Adds noise to make the noisy image: + noisy = add_noise(image) + + # Runs model on noisy image: + output = model(noisy) + + # Computes loss: + loss = criterion(output, image) + + # Backpropagates gradients: + loss.backward() + + # Optimises model parameters given the current gradients: + optimizer.step() + + # appends loss history: + history["loss"].append(loss.item()) + + # updates progress bar: + pbar.update(1) + return history + + +# %% [markdown] +# Here we choose hyperparameters and initialize the model and data loaders. + +# %% +from dlmbl_unet import UNet +import torch.optim as optim +import torch +import torch.nn.functional as F + +# Some hyper-parameters: +n_epochs = 5 +batch_size_train = 64 +batch_size_test = 1000 + +# Dictionary to store loss history: +history = {"loss": []} + +# Model: +unet_model = UNet(depth=3, in_channels=1, upsample_mode='bilinear') +unet_model = unet_model.to(device) + +# Loss function: +criterion = F.mse_loss #mse_loss + +# Optimiser: +optimizer = optim.Adam(unet_model.parameters(), lr=0.0005) + +# Test loader: +test_loader = torch.utils.data.DataLoader(test_dataset, + batch_size=batch_size_test, shuffle=True) + +# Train loader: +train_loader = torch.utils.data.DataLoader(train_dataset, + batch_size=batch_size_train, shuffle=True) + +# %% [markdown] +# Finally, we run the training loop! + +# %% +# Training loop: +for epoch in range(n_epochs): + train_denoising_model(train_loader, unet_model, criterion, optimizer, history) + +# %% [markdown] +# As before, we will visualize the training loss. If all went correctly, it should decrease from around 1.0 to less than 0.2. + +# %% +# Loss Visualization +fig = plt.figure() +plt.plot(history["loss"], color='blue') +plt.legend(['Train Loss'], loc='upper right') +plt.xlabel('number of training examples seen') +plt.ylabel('mean squared error loss') + +# %% [markdown] +# ### Check denoising performance +# +# We see that the training loss decreased, but let's apply the model to the test set to see how well it was able to recover the digits from the noisy images. + +# %% +def apply_denoising(image, model): + # add batch and channel dimensions + image = torch.unsqueeze(torch.unsqueeze(image, 0), 0) + prediction = model(image.to(device)) + # remove batch and channel dimensions before returning + return prediction.detach().cpu()[0,0] + +# %% +# Displays: ground truth, noisy, and denoised images +def visualize_denoising(model, dataset, index): + orig_image = dataset[index][0][0] + noisy_image = add_noise(orig_image) + denoised_image = apply_denoising(noisy_image, model) + plt.subplot(1,4,1) + plt.axis('off') + plt.imshow(orig_image, cmap=plt.get_cmap('gray')) + plt.subplot(1,4,2) + plt.axis('off') + plt.imshow(noisy_image, cmap=plt.get_cmap('gray')) + plt.subplot(1,4,3) + plt.axis('off') + plt.imshow(denoised_image, cmap=plt.get_cmap('gray')) + + plt.show() + +# %% [markdown] +# We pick 8 images to show: + +# %% +for i in range(8): + visualize_denoising(unet_model, test_dataset, 123*i) + +# %% [markdown] +#

+# Task 5.1:

+# Did the denoising net trained on MNIST work well on unseen test data? What do you think will happen when we apply it to the Fashion-MNIST data? +#
+ +# %% [markdown] tags=["solution"] +# **5.1 Answer:** +# +# The denoising MNIST did relatively well considering it extracted images which allows a human to identify a digit when it wasn't necessarily obvious from the noisy image. It has however been trained to look for digits. Applying it to Fashion-MNIST will possibly sucessfully "remove noise", but recovering objects that it hasn't seen before may not work as well. + +# %% [markdown] tags=["solution"] +# **5.1 Answer from 2023 Students:** +# +# It does decently well, not perfect cause it's lots of noise + +# %% [markdown] +# ### Apply trained model on 'wrong' data +# +# Apply the denoising model trained above to some example _noisy_ images derived from the Fashion-MNIST dataset. +# + +# %% [markdown] +# ### Load the Fashion MNIST dataset +# +# Similar to the regular MNIST, we will use the pytorch FashionMNIST dataset. This was downloaded in the setup.sh script, so here we are just loading it into memory. + +# %% +fm_train_dataset = torchvision.datasets.FashionMNIST('./fashion_mnist', train=True, download=False, + transform=torchvision.transforms.Compose([ + torchvision.transforms.ToTensor(), + torchvision.transforms.Normalize( + (0.1307,), (0.3081,)) + ])) + +fm_test_dataset = torchvision.datasets.FashionMNIST('./fashion_mnist', train=False, download=False, + transform=torchvision.transforms.Compose([ + torchvision.transforms.ToTensor(), + torchvision.transforms.Normalize( + (0.1307,), (0.3081,)) + ])) + +# %% [markdown] +# Next we apply the denoising model we trained on the MNIST data to FashionMNIST, and visualize the results. + +# %% +for i in range(8): + visualize_denoising(unet_model, fm_train_dataset, 123*i) + +# %% [markdown] +#

+# Task 5.2:

+# What happened when the MNIST denoising model was applied to the FashionMNIST data? Why do you think the results look as they do? +#
+ +# %% [markdown] tags=["solution"] +# **5.2 Answer:** +# +# The "noise" is apparently gone, however, the objects are hardly recognizable. Some look like they have been reshaped like digits in the process. + +# %% [markdown] tags=["solution"] +# **5.2 Answer from 2023 Students:** +# +# BAD! Some of them kind of look like numbers. + +# %% [markdown] +#

+# Task 5.3:

+# Can you imagine any real-world scenarios where a denoising model would change the content of an image? +#
+ +# %% [markdown] tags=["solution"] +# **5.3 Answer:** +# +# If a denoising model is trained on data which does not appear in the data it is ultimatly used on, that new content will end up likely changed. A real worl example could be that of training a model on lots of non-dividing cells images, and use the model on new data which happens to contain some dividing cells. This could lead to the information being "denoised" away. + +# %% [markdown] tags=["solution"] +# **5.3 Answer from 2023** +# +# - Run on any out of distribution data +# - Especially tricky if the data appears to be in distribution but has rare events. E.g. if the denoiser was trained on lots of cells that were never dividing and then was run on similar image with dividing cells, it might remove the dividing cell and replace with a single cell. + +# %% [markdown] +# ### Train the denoiser on both MNIST and FashionMNIST +# +# In this section, we will perform the denoiser training once again, but this time on both MNIST and FashionMNIST datasets, and then try to apply the newly trained denoiser to a set of noisy test images. + +# %% +import torch.optim as optim +import torch + +# Some hyper-parameters: +n_epochs = 5 +batch_size_train = 64 +batch_size_test = 1000 + +# Dictionary to store loss history: +history = {"loss": []} + +# Model: +unet_model = UNet(depth=3, in_channels=1, upsample_mode='bilinear') +unet_model = unet_model.to(device) + +# Loss function: +criterion = F.mse_loss #mse_loss + +# Optimiser: +optimizer = optim.Adam(unet_model.parameters(), lr=0.0005) + +# Train loader: +train_loader = torch.utils.data.DataLoader(torch.utils.data.ConcatDataset([train_dataset, fm_train_dataset]), + batch_size=batch_size_train, shuffle=False) + +# Training loop: +for epoch in range(n_epochs): + train_denoising_model(train_loader, unet_model, criterion, optimizer, history) + +# %% +for i in range(8): + visualize_denoising(unet_model, test_dataset, 123*i) + +# %% +for i in range(8): + visualize_denoising(unet_model, fm_train_dataset, 123*i) + +# %% [markdown] +#

+# Task 5.4:

+# How does the new denoiser perform compared to the one from the previous section? Why? +#
+ +# %% [markdown] tags=["solution"] +# **5.4 Answer:** +# +# The new denoiser has been trained on both MNIST and FashionMNIST, and as a result, it no longer insist on reshaping objects from the FashionMNIST dataset into digits. However, it seems to be performing slightly worse on the original MNIST (some of the digits are hardly recognisable). +# If you look more closely at the code, you'll notice that we haven't shuffled the data in our `DataLoader`. This means that every epoch the model will first train on all of the MNIST data, then on all of the FashinMNIST. +# The effect that we're seeing here, where it's performing worse of the MNIST data, points to an important lesson: Models Forget! +# If the model is trained for too long without any MNISt examples, as it is here, it begins to overwrite what it has learned about that data. +# %% [markdown] +# ### Train the denoiser on both MNIST and FashionMNIST, shuffling the training data +# +# We previously performed the training sequentially on the MNIST data first then followed by the FashionMNIST data. Now, we ask for the training data to be shuffled and observe the impact on performance. (noe the `shuffle=True` in the lines below) + +# %% +import torch.optim as optim +import torch + +# Some hyper-parameters: +n_epochs = 5 +batch_size_train = 64 +batch_size_test = 1000 + +# Dictionary to store loss history: +history = {"loss": []} + +# Model: +unet_model = UNet(depth=3, in_channels=1, upsample_mode='bilinear') +unet_model = unet_model.to(device) + +# Loss function: +criterion = F.mse_loss #mse_loss + +# Optimiser: +optimizer = optim.Adam(unet_model.parameters(), lr=0.0005) + +# Train loader: +train_loader = torch.utils.data.DataLoader(torch.utils.data.ConcatDataset([train_dataset, fm_train_dataset]), + batch_size=batch_size_train, shuffle=True) # here we set shuffle = True + +# Training loop: +for epoch in range(n_epochs): + train_denoising_model(train_loader, unet_model, criterion, optimizer, history) + +# %% +for i in range(8): + visualize_denoising(unet_model, test_dataset, 123*i) + +# %% +for i in range(8): + visualize_denoising(unet_model, fm_train_dataset, 123*i) + +# %% [markdown] +#

+# Task 5.5:

+# How does the denoiser trained on shuffled data perform compared to the one trained sequentially on one dataset and then on the other? +#
+ +# %% [markdown] tags=["solution"] +# **5.5 Answer:** +# +# The denoiser trained on shuffled data performs well accross both MNIST and FashionMNIST, without having any particular issue with either of the two datasets. +# + +# %% [markdown] +# +#

+# Checkpoint 5

+#
    +# Congrats on reaching the final checkpoint! Let us know on the course chat, and we'll discuss the questions once reaching critical mass. +#
+#
+ +# %% [markdown] +# +#

+# Bonus Questions

+#
    +#
  1. Go back to Part 4 and try another attribution method, such as Saliency, and see how the results differ.
  2. +#
+#
+ +# %% [markdown] +#