forked from samtools/samtools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbam2bcf.c
542 lines (513 loc) · 18.2 KB
/
bam2bcf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#include <math.h>
#include <stdint.h>
#include <assert.h>
#include <float.h>
#include "bam.h"
#include "kstring.h"
#include "bam2bcf.h"
#include "errmod.h"
#include "bcftools/bcf.h"
extern void ks_introsort_uint32_t(size_t n, uint32_t a[]);
#define CALL_DEFTHETA 0.83
#define DEF_MAPQ 20
#define CAP_DIST 25
bcf_callaux_t *bcf_call_init(double theta, int min_baseQ)
{
bcf_callaux_t *bca;
if (theta <= 0.) theta = CALL_DEFTHETA;
bca = calloc(1, sizeof(bcf_callaux_t));
bca->capQ = 60;
bca->openQ = 40; bca->extQ = 20; bca->tandemQ = 100;
bca->min_baseQ = min_baseQ;
bca->e = errmod_init(1. - theta);
bca->min_frac = 0.002;
bca->min_support = 1;
bca->per_sample_flt = 0;
bca->npos = 100;
bca->ref_pos = calloc(bca->npos, sizeof(int));
bca->alt_pos = calloc(bca->npos, sizeof(int));
return bca;
}
static int get_position(const bam_pileup1_t *p, int *len)
{
int icig, n_tot_bases = 0, iread = 0, edist = p->qpos + 1;
for (icig=0; icig<p->b->core.n_cigar; icig++)
{
int cig = bam1_cigar(p->b)[icig] & BAM_CIGAR_MASK;
int ncig = bam1_cigar(p->b)[icig] >> BAM_CIGAR_SHIFT;
if ( cig==BAM_CMATCH )
{
n_tot_bases += ncig;
iread += ncig;
}
else if ( cig==BAM_CINS )
{
n_tot_bases += ncig;
iread += ncig;
}
else if ( cig==BAM_CSOFT_CLIP )
{
// position with respect to the aligned part of the read
iread += ncig;
if ( iread<=p->qpos ) edist -= ncig;
}
}
*len = n_tot_bases;
return edist;
}
void bcf_call_destroy(bcf_callaux_t *bca)
{
if (bca == 0) return;
errmod_destroy(bca->e);
if (bca->npos) { free(bca->ref_pos); free(bca->alt_pos); bca->npos = 0; }
free(bca->bases); free(bca->inscns); free(bca);
}
/*
Notes:
- Called from bam_plcmd.c by mpileup. Amongst other things, sets the bcf_callret1_t.qsum frequencies
which are carried over via bcf_call_combine and bcf_call2bcf to the output BCF as the QS annotation.
Later it's used for multiallelic calling by bcftools -m
- ref_base is the 4-bit representation of the reference base. It is negative if we are looking at an indel.
*/
/*
* This function is called once for each sample.
* _n is number of pilesups pl contributing reads to this sample
* pl is pointer to array of _n pileups (one pileup per read)
* ref_base is the 4-bit representation of the reference base. It is negative if we are looking at an indel.
* bca is the settings to perform calls across all samples
* r is the returned value of the call
*/
int bcf_call_glfgen(int _n, const bam_pileup1_t *pl, int ref_base, bcf_callaux_t *bca, bcf_callret1_t *r)
{
int i, n, ref4, is_indel, ori_depth = 0;
memset(r, 0, sizeof(bcf_callret1_t));
if (ref_base >= 0) {
ref4 = bam_nt16_nt4_table[ref_base];
is_indel = 0;
} else ref4 = 4, is_indel = 1;
if (_n == 0) return -1;
// enlarge the bases array if necessary
if (bca->max_bases < _n) {
bca->max_bases = _n;
kroundup32(bca->max_bases);
bca->bases = (uint16_t*)realloc(bca->bases, 2 * bca->max_bases);
}
// fill the bases array
for (i = n = r->n_supp = 0; i < _n; ++i) {
const bam_pileup1_t *p = pl + i;
int q, b, mapQ, baseQ, is_diff, min_dist, seqQ;
// set base
if (p->is_del || p->is_refskip || (p->b->core.flag&BAM_FUNMAP)) continue;
++ori_depth;
mapQ = p->b->core.qual < 255? p->b->core.qual : DEF_MAPQ; // special case for mapQ==255
if ( !mapQ ) r->mq0++;
baseQ = q = is_indel? p->aux&0xff : (int)bam1_qual(p->b)[p->qpos]; // base/indel quality
seqQ = is_indel? (p->aux>>8&0xff) : 99;
if (q < bca->min_baseQ) continue;
if (q > seqQ) q = seqQ;
mapQ = mapQ < bca->capQ? mapQ : bca->capQ;
if (q > mapQ) q = mapQ;
if (q > 63) q = 63;
if (q < 4) q = 4;
if (!is_indel) {
b = bam1_seqi(bam1_seq(p->b), p->qpos); // base
b = bam_nt16_nt4_table[b? b : ref_base]; // b is the 2-bit base
is_diff = (ref4 < 4 && b == ref4)? 0 : 1;
} else {
b = p->aux>>16&0x3f;
is_diff = (b != 0);
}
if (is_diff) ++r->n_supp;
bca->bases[n++] = q<<5 | (int)bam1_strand(p->b)<<4 | b;
// collect annotations
if (b < 4) r->qsum[b] += q;
++r->anno[0<<2|is_diff<<1|bam1_strand(p->b)];
min_dist = p->b->core.l_qseq - 1 - p->qpos;
if (min_dist > p->qpos) min_dist = p->qpos;
if (min_dist > CAP_DIST) min_dist = CAP_DIST;
r->anno[1<<2|is_diff<<1|0] += baseQ;
r->anno[1<<2|is_diff<<1|1] += baseQ * baseQ;
r->anno[2<<2|is_diff<<1|0] += mapQ;
r->anno[2<<2|is_diff<<1|1] += mapQ * mapQ;
r->anno[3<<2|is_diff<<1|0] += min_dist;
r->anno[3<<2|is_diff<<1|1] += min_dist * min_dist;
// collect read positions for ReadPosBias
int len, pos = get_position(p, &len);
int epos = (double)pos/(len+1) * bca->npos;
if ( bam1_seqi(bam1_seq(p->b),p->qpos) == ref_base )
bca->ref_pos[epos]++;
else
bca->alt_pos[epos]++;
}
r->depth = n; r->ori_depth = ori_depth;
// glfgen
errmod_cal(bca->e, n, 5, bca->bases, r->p);
return r->depth;
}
double mann_whitney_1947(int n, int m, int U)
{
if (U<0) return 0;
if (n==0||m==0) return U==0 ? 1 : 0;
return (double)n/(n+m)*mann_whitney_1947(n-1,m,U-m) + (double)m/(n+m)*mann_whitney_1947(n,m-1,U);
}
void calc_ReadPosBias(bcf_callaux_t *bca, bcf_call_t *call)
{
int i, nref = 0, nalt = 0;
unsigned long int U = 0;
for (i=0; i<bca->npos; i++)
{
nref += bca->ref_pos[i];
nalt += bca->alt_pos[i];
U += nref*bca->alt_pos[i];
bca->ref_pos[i] = 0;
bca->alt_pos[i] = 0;
}
if ( !nref || !nalt )
{
// Missing values are hard to interpret by downstream filtering, therefore output unbiased result
call->read_pos_bias = 0;
return;
}
if ( nref>=8 || nalt>=8 )
{
// normal approximation
double mean = ((double)nref*nalt+1.0)/2.0;
double var2 = (double)nref*nalt*(nref+nalt+1.0)/12.0;
double z = (U-mean)/sqrt(var2);
call->read_pos_bias = z;
//fprintf(stderr,"nref=%d nalt=%d U=%ld mean=%e var=%e zval=%e\n", nref,nalt,U,mean,sqrt(var2),call->read_pos_bias);
}
else
{
double p = mann_whitney_1947(nalt,nref,U);
// biased form claimed by GATK to behave better empirically
// double var2 = (1.0+1.0/(nref+nalt+1.0))*(double)nref*nalt*(nref+nalt+1.0)/12.0;
double var2 = (double)nref*nalt*(nref+nalt+1.0)/12.0;
double z;
if ( p >= 1./sqrt(var2*2*M_PI) ) z = 0; // equal to mean
else
{
if ( U >= nref*nalt/2. ) z = sqrt(-2*log(sqrt(var2*2*M_PI)*p));
else z = -sqrt(-2*log(sqrt(var2*2*M_PI)*p));
}
call->read_pos_bias = z;
//fprintf(stderr,"nref=%d nalt=%d U=%ld p=%e var2=%e zval=%e\n", nref,nalt,U, p,var2,call->read_pos_bias);
}
}
float mean_diff_to_prob(float mdiff, int dp, int readlen)
{
if ( dp==2 )
{
if ( mdiff==0 )
return (2.0*readlen + 4.0*(readlen-1.0))/((float)readlen*readlen);
else
return 8.0*(readlen - 4.0*mdiff)/((float)readlen*readlen);
}
// This is crude empirical approximation and is not very accurate for
// shorter read lengths (<100bp). There certainly is a room for
// improvement.
const float mv[24][2] = { {0,0}, {0,0}, {0,0},
{ 9.108, 4.934}, { 9.999, 3.991}, {10.273, 3.485}, {10.579, 3.160},
{10.828, 2.889}, {11.014, 2.703}, {11.028, 2.546}, {11.244, 2.391},
{11.231, 2.320}, {11.323, 2.138}, {11.403, 2.123}, {11.394, 1.994},
{11.451, 1.928}, {11.445, 1.862}, {11.516, 1.815}, {11.560, 1.761},
{11.544, 1.728}, {11.605, 1.674}, {11.592, 1.652}, {11.674, 1.613},
{11.641, 1.570} };
float m, v;
if ( dp>=24 )
{
m = readlen/8.;
if (dp>100) dp = 100;
v = 1.476/(0.182*pow(dp,0.514));
v = v*(readlen/100.);
}
else
{
m = mv[dp][0];
v = mv[dp][1];
m = m*readlen/100.;
v = v*readlen/100.;
v *= 1.2; // allow more variability
}
return 1.0/(v*sqrt(2*M_PI)) * exp(-0.5*((mdiff-m)/v)*((mdiff-m)/v));
}
void calc_vdb(bcf_callaux_t *bca, bcf_call_t *call)
{
int i, dp = 0;
float mean_pos = 0, mean_diff = 0;
for (i=0; i<bca->npos; i++)
{
if ( !bca->alt_pos[i] ) continue;
dp += bca->alt_pos[i];
int j = i<bca->npos/2 ? i : bca->npos - i;
mean_pos += bca->alt_pos[i]*j;
}
if ( dp<2 )
{
call->vdb = -1;
return;
}
mean_pos /= dp;
for (i=0; i<bca->npos; i++)
{
if ( !bca->alt_pos[i] ) continue;
int j = i<bca->npos/2 ? i : bca->npos - i;
mean_diff += bca->alt_pos[i] * fabs(j - mean_pos);
}
mean_diff /= dp;
call->vdb = mean_diff_to_prob(mean_diff, dp, bca->npos);
}
void calc_SegBias(const bcf_callret1_t *bcr, bcf_call_t *call)
{
call->seg_bias = HUGE_VAL;
if ( !bcr ) return;
int nr = call->anno[2] + call->anno[3]; // number of observed non-reference reads
if ( !nr ) return;
int avg_dp = (call->anno[0] + call->anno[1] + nr) / call->n; // average depth
double M = (double)nr / avg_dp; // an approximate number of variant alleles in the population
if ( M>call->n ) M = call->n;
double f = M / 2. / call->n; // allele frequency
double p = nr / call->n; // number of variant reads per sample expected if variant not real (poisson)
double q = nr / M; // number of variant reads per sample expected if variant is real (poisson)
double sum = 0;
int i;
for (i=0; i<call->n; i++)
{
int oi = bcr[i].anno[2] + bcr[i].anno[3];
if ( !oi )
sum += log(2*f*(1-f)*pow(q,oi)*exp(-q) + f*f*pow(2*q,oi)*exp(-2*q)) - log(pow(p,oi)) - p;
else
sum += log(2*f*(1-f)*exp(-q) + f*f*exp(-2*q) + (1-f)*(1-f)) - p;
}
// fprintf(stderr,"%.0f %.0f %.0f %.0f .. %e (f=%e p=%e q=%e nr=%d)\n", call->anno[0],call->anno[1],call->anno[2],call->anno[3], sum,f,p,q, nr);
call->seg_bias = sum;
}
/**
* bcf_call_combine() - sets the PL array and VDB, RPB annotations, finds the top two alleles
* @n: number of samples
* @calls: each sample's calls
* @bca: auxiliary data structure for holding temporary values
* @ref_base: the reference base
* @call: filled with the annotations
*
* Combines calls across the various samples being studied
* 1. For each allele at each base across all samples the quality is summed so
* you end up with a set of quality sums for each allele present 2. The quality
* sums are sorted.
* 3. Using the sorted quality sums we now create the allele ordering array
* A\subN. This is done by doing the following:
* a) If the reference allele is known it always comes first, otherwise N
* comes first.
* b) Then the rest of the alleles are output in descending order of quality
* sum (which we already know the qsum array was sorted). Any allelles with
* qsum 0 will be excluded.
* 4. Using the allele ordering array we create the genotype ordering array.
* In the worst case with an unknown reference this will be: A0/A0 A1/A0 A1/A1
* A2/A0 A2/A1 A2/A2 A3/A0 A3/A1 A3/A2 A3/A3 A4/A0 A4/A1 A4/A2 A4/A3 A4/A4
* 5. The genotype ordering array is then used to extract data from the error
* model 5*5 matrix and is used to produce a Phread likelihood array for each
* sample.
*/
int bcf_call_combine(int n, const bcf_callret1_t *calls, bcf_callaux_t *bca, int ref_base /*4-bit*/, bcf_call_t *call)
{
int ref4, i, j, qsum[4];
int64_t tmp;
if (ref_base >= 0) {
call->ori_ref = ref4 = bam_nt16_nt4_table[ref_base];
if (ref4 > 4) ref4 = 4;
} else call->ori_ref = -1, ref4 = 0;
// calculate qsum
// this is done by calculating combined qsum across all samples
memset(qsum, 0, 4 * sizeof(int));
for (i = 0; i < n; ++i)
for (j = 0; j < 4; ++j)
qsum[j] += calls[i].qsum[j];
// then encoding the base in the first two bits
int qsum_tot=0;
for (j=0; j<4; j++) { qsum_tot += qsum[j]; call->qsum[j] = 0; }
for (j = 0; j < 4; ++j) qsum[j] = qsum[j] << 2 | j;
// find the top 2 alleles
for (i = 1; i < 4; ++i) // insertion sort
for (j = i; j > 0 && qsum[j] < qsum[j-1]; --j)
tmp = qsum[j], qsum[j] = qsum[j-1], qsum[j-1] = tmp;
// Set the reference allele and alternative allele(s)
// Clear the allele list
for (i = 0; i < 5; ++i) call->a[i] = -1;
call->unseen = -1;
call->a[0] = ref4;
for (i = 3, j = 1; i >= 0; --i) {
if ((qsum[i]&3) != ref4) {
if (qsum[i]>>2 != 0)
{
if ( j<4 ) call->qsum[j] = (float)(qsum[i]>>2)/qsum_tot; // ref N can make j>=4
call->a[j++] = qsum[i]&3;
}
else break;
}
else
call->qsum[0] = qsum_tot ? (float)(qsum[i]>>2)/qsum_tot : 0;
}
if (ref_base >= 0) { // for SNPs, find the "unseen" base
if (((ref4 < 4 && j < 4) || (ref4 == 4 && j < 5)) && i >= 0)
call->unseen = j, call->a[j++] = qsum[i]&3;
call->n_alleles = j;
} else {
call->n_alleles = j;
if (call->n_alleles == 1) return -1; // no reliable supporting read. stop doing anything
}
/*
* Set the phread likelihood array (call->PL) This array is 15 entries long
* for each sample because that is size of an upper or lower triangle of a
* worst case 5x5 matrix of possible genotypes. This worst case matrix will
* occur when all 4 possible alleles are present and the reference allele
* is unknown. The sides of the matrix will correspond to the reference
* allele (if known) followed by the alleles present in descending order of
* quality sum
*/
if (call->n < n) {
call->n = n;
call->PL = realloc(call->PL, 15 * n);
}
{
int x, g[15], z;
double sum_min = 0.;
x = call->n_alleles * (call->n_alleles + 1) / 2;
// get the possible genotypes
// this is done by creating an ordered list of locations g for call (allele a, allele b) in the genotype likelihood matrix
for (i = z = 0; i < call->n_alleles; ++i) {
for (j = 0; j <= i; ++j) {
g[z++] = call->a[j] * 5 + call->a[i];
}
}
// for each sample calculate the PL
for (i = 0; i < n; ++i) {
uint8_t *PL = call->PL + x * i;
const bcf_callret1_t *r = calls + i;
float min = FLT_MAX;
for (j = 0; j < x; ++j) {
if (min > r->p[g[j]]) min = r->p[g[j]];
}
sum_min += min;
for (j = 0; j < x; ++j) {
int y;
y = (int)(r->p[g[j]] - min + .499);
if (y > 255) y = 255;
PL[j] = y;
}
}
// if (ref_base < 0) fprintf(stderr, "%d,%d,%f,%d\n", call->n_alleles, x, sum_min, call->unseen);
call->shift = (int)(sum_min + .499);
}
// combine annotations
memset(call->anno, 0, 16 * sizeof(double));
call->ori_depth = 0;
call->depth = 0;
call->mq0 = 0;
for (i = 0; i < n; ++i) {
call->depth += calls[i].depth;
call->ori_depth += calls[i].ori_depth;
call->mq0 += calls[i].mq0;
for (j = 0; j < 16; ++j) call->anno[j] += calls[i].anno[j];
}
calc_vdb(bca, call);
calc_ReadPosBias(bca, call);
calc_SegBias(calls, call);
return 0;
}
int bcf_call2bcf(int tid, int pos, bcf_call_t *bc, bcf1_t *b, bcf_callret1_t *bcr, int fmt_flag,
const bcf_callaux_t *bca, const char *ref)
{
extern double kt_fisher_exact(int n11, int n12, int n21, int n22, double *_left, double *_right, double *two);
kstring_t s;
int i, j;
b->n_smpl = bc->n;
b->tid = tid; b->pos = pos; b->qual = 0;
s.s = b->str; s.m = b->m_str; s.l = 0;
kputc('\0', &s);
if (bc->ori_ref < 0) { // an indel
// write REF
kputc(ref[pos], &s);
for (j = 0; j < bca->indelreg; ++j) kputc(ref[pos+1+j], &s);
kputc('\0', &s);
// write ALT
kputc(ref[pos], &s);
for (i = 1; i < 4; ++i) {
if (bc->a[i] < 0) break;
if (i > 1) {
kputc(',', &s); kputc(ref[pos], &s);
}
if (bca->indel_types[bc->a[i]] < 0) { // deletion
for (j = -bca->indel_types[bc->a[i]]; j < bca->indelreg; ++j)
kputc(ref[pos+1+j], &s);
} else { // insertion; cannot be a reference unless a bug
char *inscns = &bca->inscns[bc->a[i] * bca->maxins];
for (j = 0; j < bca->indel_types[bc->a[i]]; ++j)
kputc("ACGTN"[(int)inscns[j]], &s);
for (j = 0; j < bca->indelreg; ++j) kputc(ref[pos+1+j], &s);
}
}
kputc('\0', &s);
} else { // a SNP
kputc("ACGTN"[bc->ori_ref], &s); kputc('\0', &s);
for (i = 1; i < 5; ++i) {
if (bc->a[i] < 0) break;
if (i > 1) kputc(',', &s);
kputc(bc->unseen == i? 'X' : "ACGT"[bc->a[i]], &s);
}
kputc('\0', &s);
}
kputc('\0', &s);
// INFO
if (bc->ori_ref < 0) ksprintf(&s,"INDEL;IDV=%d;IMF=%f;", bca->max_support, bca->max_frac);
kputs("DP=", &s); kputw(bc->ori_depth, &s); kputs(";I16=", &s);
for (i = 0; i < 16; ++i) {
if (i) kputc(',', &s);
ksprintf(&s,"%.0f",bc->anno[i]);
//kputw(bc->anno[i], &s);
}
ksprintf(&s,";QS=%f,%f,%f,%f", bc->qsum[0],bc->qsum[1],bc->qsum[2],bc->qsum[3]);
if (bc->vdb != -1)
ksprintf(&s, ";VDB=%e", bc->vdb);
if (bc->read_pos_bias != -1 )
ksprintf(&s, ";RPB=%e", bc->read_pos_bias);
if (bc->seg_bias != HUGE_VAL )
ksprintf(&s, ";SGB=%e", bc->seg_bias);
kputs(";MQ0=", &s); kputw(bc->mq0, &s);
kputc('\0', &s);
// FMT
kputs("PL", &s);
if (bcr && fmt_flag) {
if (fmt_flag & B2B_FMT_DP) kputs(":DP", &s);
if (fmt_flag & B2B_FMT_DV) kputs(":DV", &s);
if (fmt_flag & B2B_FMT_SP) kputs(":SP", &s);
}
kputc('\0', &s);
b->m_str = s.m; b->str = s.s; b->l_str = s.l;
bcf_sync(b);
memcpy(b->gi[0].data, bc->PL, b->gi[0].len * bc->n);
if (bcr && fmt_flag) {
uint16_t *dp = (fmt_flag & B2B_FMT_DP)? b->gi[1].data : 0;
uint16_t *dv = (fmt_flag & B2B_FMT_DV)? b->gi[1 + ((fmt_flag & B2B_FMT_DP) != 0)].data : 0;
int32_t *sp = (fmt_flag & B2B_FMT_SP)? b->gi[1 + ((fmt_flag & B2B_FMT_DP) != 0) + ((fmt_flag & B2B_FMT_DV) != 0)].data : 0;
for (i = 0; i < bc->n; ++i) {
bcf_callret1_t *p = bcr + i;
if (dp) dp[i] = p->depth < 0xffff? p->depth : 0xffff;
if (dv) dv[i] = p->n_supp < 0xffff? p->n_supp : 0xffff;
if (sp) {
if (p->anno[0] + p->anno[1] < 2 || p->anno[2] + p->anno[3] < 2
|| p->anno[0] + p->anno[2] < 2 || p->anno[1] + p->anno[3] < 2)
{
sp[i] = 0;
} else {
double left, right, two;
int x;
kt_fisher_exact(p->anno[0], p->anno[1], p->anno[2], p->anno[3], &left, &right, &two);
x = (int)(-4.343 * log(two) + .499);
if (x > 255) x = 255;
sp[i] = x;
}
}
}
}
return 0;
}