-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathapp.py
110 lines (83 loc) · 3.93 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
from dotenv import load_dotenv
import streamlit as st
from langchain_core.messages import AIMessage, HumanMessage
from chat_utils import get_vectorstore_and_BM25, get_response, get_text_chunks, get_pdf_text
from summarize import build_final_context, Prompts, summarize_chunk
from openai import OpenAI
import queue
import threading
def main():
load_dotenv()
openai_api_key = os.getenv('OPENAI_API_KEY')
st.set_page_config(page_title="Chat with Multiple PDFs", page_icon=":books:")
st.header("Chat with Multiple PDFs :books:")
if "chat_history" not in st.session_state:
st.session_state.chat_history = [
AIMessage(content="Hello, I'm a bot. How can I help you today?"),
]
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click in 'Process'",
accept_multiple_files=True)
process_button = st.button("Process")
uploaded = pdf_docs
if process_button:
if not uploaded:
st.warning("Please upload PDFs first.")
else:
with st.spinner("Processing..."):
st.session_state.vector_store, st.session_state.bm25_retriever = get_vectorstore_and_BM25(pdf_docs)
if st.button("Summarize"):
if "vector_store" in st.session_state:
with st.spinner("Summarizing"):
if "chunks" not in st.session_state:
st.session_state.chunks = get_text_chunks(get_pdf_text(pdf_docs))
llm = OpenAI(api_key=openai_api_key)
results_queue = queue.Queue()
threads = []
for chunk in st.session_state.chunks:
thread = threading.Thread(target=summarize_chunk, args=(chunk, results_queue, llm))
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
summarize_chunks = []
while not results_queue.empty():
summarize_chunks.append(results_queue.get())
context = build_final_context(summarize_chunks)
message = [{"role": "user", "content": Prompts.final_ans_prompt(context)}]
final_response = llm.chat.completions.create(model='gpt-3.5-turbo',
messages= message,
temperature=0.1,
max_tokens=4096)
st.write(final_response.choices[0].message.content)
else:
if not uploaded:
st.warning("Please upload PDFs first.")
else:
st.warning("Please process the PDFs.")
user_query = st.chat_input("Type your mesage here ...")
if user_query is not None and user_query != "":
# Check if PDF files have been uploaded
if not uploaded:
st.warning("Please upload PDFs first.")
# Check if PDF files have been processed
elif "vector_store" not in st.session_state:
st.warning("Please process the PDFs.")
else:
# Get response from the model based on user's message
response = get_response(user_query, st.session_state.bm25_retriever)
# Append user's message and response to the chat history
st.session_state.chat_history.append(HumanMessage(content=user_query))
st.session_state.chat_history.append(AIMessage(content=response))
for message in st.session_state.chat_history:
if isinstance(message, AIMessage):
with st.chat_message("AI"):
st.write(message.content)
elif isinstance(message, HumanMessage):
with st.chat_message("Human"):
st.write(message.content)
if __name__ == '__main__':
main()