-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathDISTS_pt.py
140 lines (123 loc) · 5.31 KB
/
DISTS_pt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# This is a pytoch implementation of DISTS metric.
# Requirements: python >= 3.6, pytorch >= 1.0
import numpy as np
import os,sys
import torch
from torchvision import models,transforms
import torch.nn as nn
import torch.nn.functional as F
class L2pooling(nn.Module):
def __init__(self, filter_size=5, stride=2, channels=None, pad_off=0):
super(L2pooling, self).__init__()
self.padding = (filter_size - 2 )//2
self.stride = stride
self.channels = channels
a = np.hanning(filter_size)[1:-1]
g = torch.Tensor(a[:,None]*a[None,:])
g = g/torch.sum(g)
self.register_buffer('filter', g[None,None,:,:].repeat((self.channels,1,1,1)))
def forward(self, input):
input = input**2
out = F.conv2d(input, self.filter, stride=self.stride, padding=self.padding, groups=input.shape[1])
return (out+1e-12).sqrt()
class DISTS(torch.nn.Module):
def __init__(self, load_weights=True):
super(DISTS, self).__init__()
vgg_pretrained_features = models.vgg16(pretrained=True).features
self.stage1 = torch.nn.Sequential()
self.stage2 = torch.nn.Sequential()
self.stage3 = torch.nn.Sequential()
self.stage4 = torch.nn.Sequential()
self.stage5 = torch.nn.Sequential()
for x in range(0,4):
self.stage1.add_module(str(x), vgg_pretrained_features[x])
self.stage2.add_module(str(4), L2pooling(channels=64))
for x in range(5, 9):
self.stage2.add_module(str(x), vgg_pretrained_features[x])
self.stage3.add_module(str(9), L2pooling(channels=128))
for x in range(10, 16):
self.stage3.add_module(str(x), vgg_pretrained_features[x])
self.stage4.add_module(str(16), L2pooling(channels=256))
for x in range(17, 23):
self.stage4.add_module(str(x), vgg_pretrained_features[x])
self.stage5.add_module(str(23), L2pooling(channels=512))
for x in range(24, 30):
self.stage5.add_module(str(x), vgg_pretrained_features[x])
for param in self.parameters():
param.requires_grad = False
self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1,-1,1,1))
self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1,-1,1,1))
self.chns = [3,64,128,256,512,512]
self.register_parameter("alpha", nn.Parameter(torch.randn(1, sum(self.chns),1,1)))
self.register_parameter("beta", nn.Parameter(torch.randn(1, sum(self.chns),1,1)))
self.alpha.data.normal_(0.1,0.01)
self.beta.data.normal_(0.1,0.01)
if load_weights:
weights = torch.load(os.path.join(sys.prefix,'weights.pt'))
self.alpha.data = weights['alpha']
self.beta.data = weights['beta']
def forward_once(self, x):
h = (x-self.mean)/self.std
h = self.stage1(h)
h_relu1_2 = h
h = self.stage2(h)
h_relu2_2 = h
h = self.stage3(h)
h_relu3_3 = h
h = self.stage4(h)
h_relu4_3 = h
h = self.stage5(h)
h_relu5_3 = h
return [x,h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3]
def forward(self, x, y, require_grad=False, batch_average=False):
if require_grad:
feats0 = self.forward_once(x)
feats1 = self.forward_once(y)
else:
with torch.no_grad():
feats0 = self.forward_once(x)
feats1 = self.forward_once(y)
dist1 = 0
dist2 = 0
c1 = 1e-6
c2 = 1e-6
w_sum = self.alpha.sum() + self.beta.sum()
alpha = torch.split(self.alpha/w_sum, self.chns, dim=1)
beta = torch.split(self.beta/w_sum, self.chns, dim=1)
for k in range(len(self.chns)):
x_mean = feats0[k].mean([2,3], keepdim=True)
y_mean = feats1[k].mean([2,3], keepdim=True)
S1 = (2*x_mean*y_mean+c1)/(x_mean**2+y_mean**2+c1)
dist1 = dist1+(alpha[k]*S1).sum(1,keepdim=True)
x_var = ((feats0[k]-x_mean)**2).mean([2,3], keepdim=True)
y_var = ((feats1[k]-y_mean)**2).mean([2,3], keepdim=True)
xy_cov = (feats0[k]*feats1[k]).mean([2,3],keepdim=True) - x_mean*y_mean
S2 = (2*xy_cov+c2)/(x_var+y_var+c2)
dist2 = dist2+(beta[k]*S2).sum(1,keepdim=True)
score = 1 - (dist1+dist2).squeeze()
if batch_average:
return score.mean()
else:
return score
def prepare_image(image, resize=True):
if resize and min(image.size)>256:
image = transforms.functional.resize(image,256)
image = transforms.ToTensor()(image)
return image.unsqueeze(0)
if __name__ == '__main__':
from PIL import Image
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--ref', type=str, default='../images/r0.png')
parser.add_argument('--dist', type=str, default='../images/r1.png')
args = parser.parse_args()
ref = prepare_image(Image.open(args.ref).convert("RGB"))
dist = prepare_image(Image.open(args.dist).convert("RGB"))
assert ref.shape == dist.shape
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = DISTS().to(device)
ref = ref.to(device)
dist = dist.to(device)
score = model(ref, dist)
print(score.item())
# score: 0.3347