forked from marton78/pffft
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpf_cic.cpp
252 lines (222 loc) · 9.03 KB
/
pf_cic.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
This software is part of pffft/pfdsp, a set of simple DSP routines.
Copyright (c) 2014, Andras Retzler <[email protected]>
Copyright (c) 2020 Hayati Ayguen <[email protected]>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL ANDRAS RETZLER BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* include own header first, to see missing includes */
#include "pf_cic.h"
#include "fmv.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
/*
____ ___ ____ ____ ____ ____
/ ___|_ _/ ___| | _ \| _ \ / ___|
| | | | | | | | | | | | |
| |___ | | |___ | |_| | |_| | |___
\____|___\____| |____/|____/ \____|
*/
#define SINESHIFT 12
#define SINESIZE (1<<SINESHIFT)
typedef int64_t cic_dt; // data type used for integrators and combs
typedef struct {
int factor;
uint64_t phase;
float gain;
cic_dt ig0a, ig0b, ig1a, ig1b;
cic_dt comb0a, comb0b, comb1a, comb1b;
int16_t *sinetable;
} cicddc_t;
void *cicddc_init(int factor) {
int i;
int sinesize2 = SINESIZE * 5/4; // 25% extra to get cosine from the same table
cicddc_t *s;
s = (cicddc_t *)malloc(sizeof(cicddc_t));
memset(s, 0, sizeof(cicddc_t));
float sineamp = 32767.0f;
s->factor = factor;
s->gain = 1.0f / SHRT_MAX / sineamp / factor / factor / factor; // compensate for gain of 3 integrators
s->sinetable = (int16_t *)malloc(sinesize2 * sizeof(*s->sinetable));
double f = 2.0*M_PI / (double)SINESIZE;
for(i = 0; i < sinesize2; i++) {
s->sinetable[i] = sineamp * cos(f * i);
}
return s;
}
void cicddc_free(void *state) {
cicddc_t *s = (cicddc_t *)state;
free(s->sinetable);
free(s);
}
PF_TARGET_CLONES
void cicddc_s16_c(void *state, int16_t *input, complexf *output, int outsize, float rate) {
cicddc_t *s = (cicddc_t *)state;
int k;
int factor = s->factor;
cic_dt ig0a = s->ig0a, ig0b = s->ig0b, ig1a = s->ig1a, ig1b = s->ig1b;
cic_dt comb0a = s->comb0a, comb0b = s->comb0b, comb1a = s->comb1a, comb1b = s->comb1b;
uint64_t phase = s->phase, freq;
int16_t *sinetable = s->sinetable;
float gain = s->gain;
freq = rate * ((float)(1ULL << 63) * 2);
int16_t *inp = input;
for(k = 0; k < outsize; k++) {
int i;
cic_dt out0a, out0b, out1a, out1b;
cic_dt ig2a = 0, ig2b = 0; // last integrator and first comb replaced simply by sum
for(i = 0; i < factor; i++) {
cic_dt in_a, in_b;
int sinep = phase >> (64-SINESHIFT);
in_a = (int32_t)inp[i] * (int32_t)sinetable[sinep + (1<<(SINESHIFT-2))];
in_b = (int32_t)inp[i] * (int32_t)sinetable[sinep];
phase += freq;
/* integrators:
The calculations are ordered so that each integrator
takes a result from previous loop iteration
to make the code more "pipeline-friendly". */
ig2a += ig1a; ig2b += ig1b;
ig1a += ig0a; ig1b += ig0b;
ig0a += in_a; ig0b += in_b;
}
inp += factor;
// comb filters:
out0a = ig2a - comb0a; out0b = ig2b - comb0b;
comb0a = ig2a; comb0b = ig2b;
out1a = out0a - comb1a; out1b = out0b - comb1b;
comb1a = out0a; comb1b = out0b;
output[k].i = (float)out1a * gain;
output[k].q = (float)out1b * gain;
}
s->ig0a = ig0a; s->ig0b = ig0b;
s->ig1a = ig1a; s->ig1b = ig1b;
s->comb0a = comb0a; s->comb0b = comb0b;
s->comb1a = comb1a; s->comb1b = comb1b;
s->phase = phase;
}
PF_TARGET_CLONES
void cicddc_cs16_c(void *state, int16_t *input, complexf *output, int outsize, float rate) {
cicddc_t *s = (cicddc_t *)state;
int k;
int factor = s->factor;
cic_dt ig0a = s->ig0a, ig0b = s->ig0b, ig1a = s->ig1a, ig1b = s->ig1b;
cic_dt comb0a = s->comb0a, comb0b = s->comb0b, comb1a = s->comb1a, comb1b = s->comb1b;
uint64_t phase = s->phase, freq;
int16_t *sinetable = s->sinetable;
float gain = s->gain;
freq = rate * ((float)(1ULL << 63) * 2);
int16_t *inp = input;
for(k = 0; k < outsize; k++) {
int i;
cic_dt out0a, out0b, out1a, out1b;
cic_dt ig2a = 0, ig2b = 0; // last integrator and first comb replaced simply by sum
for(i = 0; i < factor; i++) {
cic_dt in_a, in_b;
int32_t m_a, m_b, m_c, m_d;
int sinep = phase >> (64-SINESHIFT);
m_a = inp[2*i];
m_b = inp[2*i+1];
m_c = (int32_t)sinetable[sinep + (1<<(SINESHIFT-2))];
m_d = (int32_t)sinetable[sinep];
// complex multiplication:
in_a = m_a*m_c - m_b*m_d;
in_b = m_a*m_d + m_b*m_c;
phase += freq;
/* integrators:
The calculations are ordered so that each integrator
takes a result from previous loop iteration
to make the code more "pipeline-friendly". */
ig2a += ig1a; ig2b += ig1b;
ig1a += ig0a; ig1b += ig0b;
ig0a += in_a; ig0b += in_b;
}
inp += 2*factor;
// comb filters:
out0a = ig2a - comb0a; out0b = ig2b - comb0b;
comb0a = ig2a; comb0b = ig2b;
out1a = out0a - comb1a; out1b = out0b - comb1b;
comb1a = out0a; comb1b = out0b;
output[k].i = (float)out1a * gain;
output[k].q = (float)out1b * gain;
}
s->ig0a = ig0a; s->ig0b = ig0b;
s->ig1a = ig1a; s->ig1b = ig1b;
s->comb0a = comb0a; s->comb0b = comb0b;
s->comb1a = comb1a; s->comb1b = comb1b;
s->phase = phase;
}
/* This is almost copy paste from cicddc_cs16_c.
I'm afraid this is going to be annoying to maintain... */
PF_TARGET_CLONES
void cicddc_cu8_c(void *state, uint8_t *input, complexf *output, int outsize, float rate) {
cicddc_t *s = (cicddc_t *)state;
int k;
int factor = s->factor;
cic_dt ig0a = s->ig0a, ig0b = s->ig0b, ig1a = s->ig1a, ig1b = s->ig1b;
cic_dt comb0a = s->comb0a, comb0b = s->comb0b, comb1a = s->comb1a, comb1b = s->comb1b;
uint64_t phase = s->phase, freq;
int16_t *sinetable = s->sinetable;
float gain = s->gain;
freq = rate * ((float)(1ULL << 63) * 2);
uint8_t *inp = input;
for(k = 0; k < outsize; k++) {
int i;
cic_dt out0a, out0b, out1a, out1b;
cic_dt ig2a = 0, ig2b = 0; // last integrator and first comb replaced simply by sum
for(i = 0; i < factor; i++) {
cic_dt in_a, in_b;
int32_t m_a, m_b, m_c, m_d;
int sinep = phase >> (64-SINESHIFT);
// subtract 127.4 (good for rtl-sdr)
m_a = (((int32_t)inp[2*i]) << 8) - 32614;
m_b = (((int32_t)inp[2*i+1]) << 8) - 32614;
m_c = (int32_t)sinetable[sinep + (1<<(SINESHIFT-2))];
m_d = (int32_t)sinetable[sinep];
// complex multiplication:
in_a = m_a*m_c - m_b*m_d;
in_b = m_a*m_d + m_b*m_c;
phase += freq;
/* integrators:
The calculations are ordered so that each integrator
takes a result from previous loop iteration
to make the code more "pipeline-friendly". */
ig2a += ig1a; ig2b += ig1b;
ig1a += ig0a; ig1b += ig0b;
ig0a += in_a; ig0b += in_b;
}
inp += 2*factor;
// comb filters:
out0a = ig2a - comb0a; out0b = ig2b - comb0b;
comb0a = ig2a; comb0b = ig2b;
out1a = out0a - comb1a; out1b = out0b - comb1b;
comb1a = out0a; comb1b = out0b;
output[k].i = (float)out1a * gain;
output[k].q = (float)out1b * gain;
}
s->ig0a = ig0a; s->ig0b = ig0b;
s->ig1a = ig1a; s->ig1b = ig1b;
s->comb0a = comb0a; s->comb0b = comb0b;
s->comb1a = comb1a; s->comb1b = comb1b;
s->phase = phase;
}