forked from robin-shaun/Multi-UAV-Task-Assignment-Benchmark
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_fcmaes.py
executable file
·36 lines (30 loc) · 1.4 KB
/
test_fcmaes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# do 'pip install fcmaes --upgrade' before executing this code
# Applies a standard continuous optimization algorithm using the same fitness function as GA.py.
# The fitness function uses numba for speed up.
# Executing this file you may monitor the progress of fcmaes continous optimization
# algorithms during optimization
# On an AMD 5950 16 core processor more than one million fitness executions per second
# can be performed.
from fcmaes.optimizer import wrapper
from evaluate import Env
import multiprocessing as mp
from fcmaesopt import Optimizer
from fcmaes.optimizer import Bite_cpp, cma_bite, crfmnes_bite
def get_optimizer(vehicle_num, target_num, map_size, seed = None):
env = Env(vehicle_num,target_num,map_size,visualized=True,seed=seed)
opt = cma_bite(env.evals, M=6, popsize=env.popsize)
#opt = crfmnes_bite(env.evals, M=6, popsize=env.popsize)
return Optimizer(env, vehicle_num,env.vehicles_speed,target_num,env.targets,env.time_lim, opt)
def optimize(vehicle_num, target_num, map_size):
optimizer = get_optimizer(vehicle_num, target_num, map_size, 65)
optimizer.fitness = wrapper(optimizer.fitness)
optimizer.workers = mp.cpu_count()
task_assignment, time = optimizer.run()
print(str(task_assignment), str(time))
if __name__=='__main__':
# small scale
optimize(5,30,5e3)
# medium scale
#optimize(10,60,1e4)
# large scale
#optimize(15,90,1.5e4)