forked from robin-shaun/Multi-UAV-Task-Assignment-Benchmark
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathga.py
executable file
·208 lines (194 loc) · 7.56 KB
/
ga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
import random
import time
import os
from numba import njit
from numba.typed import List
import numba
# Performance is largely improved by using https://numba.pydata.org/
# See https://github.com/dietmarwo/fast-cma-es/blob/master/tutorials/UAV.adoc
@njit(fastmath=True)
def fitness_(gene, vehicle_num, vehicles_speed, target_num, targets, time_lim, map):
ins = np.zeros(target_num+1, dtype=numba.int32)
seq = np.zeros(target_num, dtype=numba.int32)
ins[target_num] = 1
for i in range(vehicle_num-1):
ins[gene[i]] += 1
rest = np.zeros(target_num, dtype=numba.int32)
for i in range(0, target_num):
rest[i] = i+1
for i in range(target_num-1):
seq[i] = rest[gene[i+vehicle_num-1]]
rest = np.delete(rest, gene[i+vehicle_num-1])
seq[target_num-1] = rest[0]
i = 0 # index of vehicle
pre = 0 # index of last target
post = 0 # index of ins/seq
t = 0
reward = 0
while i < vehicle_num:
if ins[post] > 0:
i += 1
ins[post] -= 1
pre = 0
t = 0
else:
t += targets[pre, 3]
past = map[pre, seq[post]]/vehicles_speed[i]
t += past
if t < time_lim:
reward += targets[seq[post], 2]
pre = seq[post]
post += 1
return reward
@njit(fastmath=True)
def selection_(tmp_ff, ff, pop_size, tmp_size, pop, tmp_pop):
roll = np.zeros(tmp_size)
roll[0] = tmp_ff[0]
for i in range(1, tmp_size):
roll[i] = roll[i-1]+tmp_ff[i]
for i in range(pop_size):
xx = random.uniform(0, roll[tmp_size-1])
j = 0
while xx > roll[j]:
j += 1
pop[i, :] = tmp_pop[j, :]
ff[i] = tmp_ff[j]
@njit(fastmath=True)
def mutation_(tmp_ff, p_mutate, tmp_size, tmp_pop, pop, vehicle_num, vehicles_speed, target_num, targets, time_lim, map):
for i in range(tmp_size):
flag = False
for j in range(vehicle_num-1):
if random.random() < p_mutate:
tmp_pop[i, j] = random.randint(0, target_num)
flag = True
for j in range(target_num-1):
if random.random() < p_mutate:
tmp_pop[i, vehicle_num+j -
1] = random.randint(0, target_num-j-1)
flag = True
if flag:
tmp_ff[i] = fitness_(tmp_pop[i, :], vehicle_num, vehicles_speed, target_num, targets, time_lim, map)
@njit(fastmath=True)
def crossover_(ff, p_cross, pop_size, pop, vehicle_num, vehicles_speed, target_num, targets, time_lim, map):
new_pop = List()
new_ff = List()
new_size = 0
for i in range(0, pop_size, 2):
if random.random() < p_cross:
x1 = random.randint(0, vehicle_num-2)
x2 = random.randint(0, target_num-2)+vehicle_num
g1 = pop[i, :]
g2 = pop[i+1, :]
g1[x1:x2] = pop[i+1, x1:x2]
g2[x1:x2] = pop[i, x1:x2]
new_pop.append(g1)
new_pop.append(g2)
new_ff.append(fitness_(g1, vehicle_num, vehicles_speed, target_num, targets, time_lim, map))
new_ff.append(fitness_(g2, vehicle_num, vehicles_speed, target_num, targets, time_lim, map))
new_size += 2
tmp_size = pop_size+new_size
tmp_pop = np.zeros(
shape=(tmp_size, vehicle_num-1+target_num-1), dtype=numba.int32)
tmp_pop[0:pop_size, :] = pop
tmp_ff = np.zeros(tmp_size)
tmp_ff[0:pop_size] = ff
for i in range(pop_size, tmp_size):
tmp_pop[i,:] = new_pop[i-pop_size]
tmp_ff[i] = new_ff[i-pop_size]
return tmp_pop, tmp_ff, tmp_size
class GA():
def __init__(self, vehicle_num, vehicles_speed, target_num, targets, time_lim):
# vehicles_speed,targets in the type of narray
self.vehicle_num = vehicle_num
self.vehicles_speed = vehicles_speed
self.target_num = target_num
self.targets = targets
self.time_lim = time_lim
self.map = np.zeros(shape=(target_num+1, target_num+1), dtype=float)
self.pop_size = 300
self.p_cross = 0.6
self.p_mutate = 0.005
for i in range(target_num+1):
self.map[i, i] = 0
for j in range(i):
self.map[j, i] = self.map[i, j] = np.linalg.norm(
targets[i, :2]-targets[j, :2])
self.pop = np.zeros(
shape=(self.pop_size, vehicle_num-1+target_num-1), dtype=int)
self.ff = np.zeros(self.pop_size, dtype=float)
for i in range(self.pop_size):
for j in range(vehicle_num-1):
self.pop[i, j] = random.randint(0, target_num)
for j in range(target_num-1):
self.pop[i, vehicle_num+j -
1] = random.randint(0, target_num-j-1)
self.ff[i] = self.fitness(self.pop[i, :])
self.tmp_pop = None
self.tmp_ff = None
self.tmp_size = 0
def name(self):
return "GA"
def fitness(self, gene):
return fitness_(gene, self.vehicle_num, self.vehicles_speed,
self.target_num, self.targets, self.time_lim, self.map)
def selection(self):
selection_(self.tmp_ff, self.ff, self.pop_size, self.tmp_size, self.pop, self.tmp_pop)
def mutation(self):
mutation_(self.tmp_ff, self.p_mutate, self.tmp_size, self.tmp_pop, self.pop,
self.vehicle_num, self.vehicles_speed, self.target_num, self.targets, self.time_lim, self.map)
def crossover(self):
self.tmp_pop, self.tmp_ff, self.tmp_size = crossover_(
self.ff, self.p_cross, self.pop_size, self.pop,
self.vehicle_num, self.vehicles_speed, self.target_num, self.targets, self.time_lim, self.map)
def run(self):
print("GA start, pid: %s" % os.getpid())
start_time = time.time()
cut = 0
count = 0
while count < 6000:
self.crossover()
self.mutation()
self.selection()
new_cut = self.tmp_ff.max()
if cut < new_cut:
cut = new_cut
count = 0
gene = self.tmp_pop[np.argmax(self.tmp_ff)]
else:
count += 1
ins = np.zeros(self.target_num+1, dtype=np.int32)
seq = np.zeros(self.target_num, dtype=np.int32)
ins[self.target_num] = 1
for i in range(self.vehicle_num-1):
ins[gene[i]] += 1
rest = np.array(range(1, self.target_num+1))
for i in range(self.target_num-1):
seq[i] = rest[gene[i+self.vehicle_num-1]]
rest = np.delete(rest, gene[i+self.vehicle_num-1])
seq[self.target_num-1] = rest[0]
task_assignment = [[] for i in range(self.vehicle_num)]
i = 0 # index of vehicle
pre = 0 # index of last target
post = 0 # index of ins/seq
t = 0
reward = 0
while i < self.vehicle_num:
if ins[post] > 0:
i += 1
ins[post] -= 1
pre = 0
t = 0
else:
t += self.targets[pre, 3]
past = self.map[pre, seq[post]]/self.vehicles_speed[i]
t += past
if t < self.time_lim:
task_assignment[i].append(seq[post])
reward += self.targets[seq[post], 2]
pre = seq[post]
post += 1
print("GA result:", reward, task_assignment)
end_time = time.time()
print("GA time:", end_time - start_time)
return task_assignment, end_time - start_time