-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDemonstration_of_H_double_symbol_CDL.m
144 lines (92 loc) · 5.28 KB
/
Demonstration_of_H_double_symbol_CDL.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
SNR_Range = 0:5:30;
Num_of_frame_each_SNR = 5000;
MSE_LS_over_SNR = zeros(length(SNR_Range), 1);
MSE_MMSE_over_SNR = zeros(length(SNR_Range), 1);
MSE_DNN_over_SNR = zeros(length(SNR_Range), 1);
MSE_HA02_over_SNR = zeros(length(SNR_Range), 1);
% Import Deep Neuron Network
load('Interpolation_ResNet_alternative.mat'); % Residual_NN_Interpolation_Propogation
% Import HA02 Network
load('parameters_Alternative.mat');
for SNR = SNR_Range
M = 4; % QPSK
k = log2(M);
Parameter.parameters_DMRS
Num_of_QPSK_symbols = Num_of_FFT * Num_of_symbols * Num_of_frame_each_SNR;
Num_of_bits = Num_of_QPSK_symbols * k;
LS_MSE_in_frame = zeros(Num_of_frame_each_SNR, 1);
MMSE_MSE_in_frame = zeros(Num_of_frame_each_SNR, 1);
DNN_MSE_in_frame = zeros(Num_of_frame_each_SNR, 1);
HA02_MSE_in_frame = zeros(Num_of_frame_each_SNR, 1);
Frame_error_LS = 0;
Frame_error_MMSE = 0;
Frame_error_DNN = 0;
Frame_error_HA02 = 0;
for Frame = 1 : Num_of_frame_each_SNR
% Data generation
N = Num_of_FFT * Num_of_symbols;
data = randi([0 1], N, k);
Data = reshape(data, [], 1);
dataSym = bi2de(data);
% QPSK modulator
QPSK_symbol = OFDM.QPSK_Modualtor(dataSym);
QPSK_signal = reshape(QPSK_symbol, Num_of_FFT, Num_of_symbols);
% Pilot inserted
[data_in_IFFT, data_location] = OFDM.Pilot_Insert(Pilot_value_user, Pilot_location_symbols, Pilot_location, Frame_size, Num_of_FFT, QPSK_signal);
[data_for_channel, ~] = OFDM.Pilot_Insert(1, Pilot_location_symbols, kron((1 : Num_of_FFT)', ones(1, Num_of_pilot)), Frame_size, Num_of_FFT, (ones(Num_of_FFT, Num_of_symbols)));
% OFDM Transmitter
[Transmitted_signal, ~] = OFDM.OFDM_Transmitter(data_in_IFFT, Num_of_FFT, length_of_CP);
[Transmitted_signal_for_channel, ~] = OFDM.OFDM_Transmitter(data_for_channel, Num_of_FFT, length_of_CP);
% Channel
SNR_OFDM = SNR + 10 * log10((Num_of_subcarriers / Num_of_FFT));
Doppler_shift = randi([0, MaxDopplerShift]);
DelaySpread = 30e-9;
[Multitap_Channel_Signal, Multitap_Channel_Signal_user, Multitap_Channel_Signal_user_for_channel] = Channel.CDL_Channel(Transmitted_signal, Transmitted_signal_for_channel, SNR_OFDM, SampleRate, Carrier_Frequency, Doppler_shift, DelayProfile, DelaySpread, PathDelays, AveragePathGains);
% OFDM Receiver
[Unrecovered_signal, RS_User] = OFDM.OFDM_Receiver(Multitap_Channel_Signal, Num_of_FFT, length_of_CP, length_of_symbol, Multitap_Channel_Signal_user);
[~, RS] = OFDM.OFDM_Receiver(Multitap_Channel_Signal_user_for_channel, Num_of_FFT, length_of_CP, length_of_symbol, Multitap_Channel_Signal_user_for_channel);
[Received_pilot, ~] = OFDM.Pilot_extract(RS_User, Pilot_location, Num_of_pilot, Pilot_location_symbols, data_location);
H_Ref = Received_pilot ./ Pilot_value_user;
% Channel estimation
% LS
[Received_pilot_LS, ~] = OFDM.Pilot_extract(Unrecovered_signal, Pilot_location, Num_of_pilot, Pilot_location_symbols, data_location);
tStart_LS = tic;
H_LS = CSI.LS(Received_pilot_LS, Pilot_value_user);
H_LS_frame = imresize(H_LS, [Num_of_FFT, max(Pilot_location_symbols)]);
H_LS_frame(:, max(Pilot_location_symbols) + 1 : Frame_size) = kron(H_LS_frame(:, max(Pilot_location_symbols)), ones(1, Frame_size - max(Pilot_location_symbols)));
MSE_LS_frame = mean(abs(H_LS_frame - RS).^2, 'all');
% MMSE
% linear MMSE
H_MMSE = CSI.MMSE(H_Ref, RS, Pilot_location, Pilot_location_symbols, Num_of_FFT, SNR, Num_of_pilot, H_LS);
H_MMSE_frame = imresize(H_MMSE, [Num_of_FFT, max(Pilot_location_symbols)]);
H_MMSE_frame(:, max(Pilot_location_symbols) + 1 : Frame_size) = kron(H_MMSE_frame(:, max(Pilot_location_symbols)), ones(1, Frame_size - max(Pilot_location_symbols)));
%H_MMSE_frame = CSI.MMSE_Interpolation(Doppler_shift, SampleRate, length_of_symbol, Frame_size, H_Ref, RS, Pilot_location_symbols, Num_of_FFT, SNR, Num_of_pilot, H_LS);
MSE_MMSE_frame = mean(abs(H_MMSE_frame - RS).^2, 'all');
% Deep learning
Res_feature_signal(:, :, 1) = real(H_LS);
Res_feature_signal(:, :, 2) = imag(H_LS);
H_DNN_feature = predict(DNN_Trained, Res_feature_signal);
H_DNN_frame = H_DNN_feature(:, :, 1) + 1j * H_DNN_feature(:, :, 2);
MSE_DNN_frame = mean(abs(H_DNN_frame - RS).^2, 'all');
% HA02
Feature_signal(:, 1, 1) = reshape(real(H_LS), [], 1);
Feature_signal(:, 2, 1) = reshape(imag(H_LS), [], 1);
Feature_signal = dlarray(Feature_signal);
H_HA02_feature = transformer_HA02.model(Feature_signal, parameters);
H_HA02_frame = reshape(extractdata(H_HA02_feature(:, 1)), Num_of_FFT, Frame_size) + 1j * reshape(extractdata(H_HA02_feature(:, 2)), Num_of_FFT, Frame_size);
MSE_HA02_frame = mean(abs(H_HA02_frame - RS).^2, 'all');
% LS MSE calculation in each frame
LS_MSE_in_frame(Frame, 1) = MSE_LS_frame;
% MMSE MSE calculation in each frame
MMSE_MSE_in_frame(Frame, 1) = MSE_MMSE_frame;
% DNN MSE calculation in each frame
DNN_MSE_in_frame(Frame, 1) = MSE_DNN_frame;
% HA02 MSE calculation in each frame
HA02_MSE_in_frame(Frame, 1) = MSE_HA02_frame;
end
% MSE calculation
MSE_LS_over_SNR(SNR_Range == SNR, 1) = sum(LS_MSE_in_frame, 1) / Num_of_frame_each_SNR;
MSE_MMSE_over_SNR(SNR_Range == SNR, 1) = sum(MMSE_MSE_in_frame, 1) / Num_of_frame_each_SNR;
MSE_DNN_over_SNR(SNR_Range == SNR, 1) = sum(DNN_MSE_in_frame, 1) / Num_of_frame_each_SNR;
MSE_HA02_over_SNR(SNR_Range == SNR, 1) = sum(HA02_MSE_in_frame, 1) / Num_of_frame_each_SNR;
end