-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_voc.py
260 lines (224 loc) · 11.8 KB
/
train_voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import _add_project_path
import os
import pickle
import tqdm
import numpy as np
import tensorflow as tf
from absl import flags, app
from termcolor import colored
from calc4ap.voc import CalcVOCmAP
from libs.models import YOLO, get_xception_backbone
from libs.losses import train_step, get_losses
from libs.loggers import TrainLogHandler, ValLogHandler
from libs.loggers.console_logs import get_logger
from libs.loggers.tb_logs import tb_write_sampled_voc_gt_imgs, tb_write_imgs
from libs.utils import yolo_output2boxes, box_postp2use, viz_pred
from datasets.voc_tfds.voc import GetVoc
from datasets.voc_tfds.libs import prep_voc_data, VOC_CLS_MAP
from datasets.voc_tfds.eval.prepare_eval import get_labels
from configs import cfg, ProjectPath
FLAGS = flags.FLAGS
flags.DEFINE_integer('epochs', default=cfg.epochs, help='Number of training epochs')
flags.DEFINE_float('init_lr', default=cfg.init_lr, help='Initial learning rate')
flags.DEFINE_float('lr_decay_rate', default=cfg.lr_decay_rate, help='Learning rate decay rate')
flags.DEFINE_integer('lr_decay_steps', default=cfg.lr_decay_steps, help='Learning rate decay steps')
flags.DEFINE_integer('batch_size', default=cfg.batch_size, help='Batch size')
flags.DEFINE_integer('val_step', default=cfg.val_step, help='Validation interval during training')
flags.DEFINE_integer('tb_img_max_outputs', default=cfg.tb_img_max_outputs, help='Number of visualized prediction images in tensorboard')
flags.DEFINE_float('train_ds_sample_ratio', default=cfg.train_ds_sample_ratio, help='Training dataset sampling ratio')
flags.DEFINE_float('val_ds_sample_ratio', default=cfg.val_ds_sample_ratio, help='Validation dataset sampling ratio')
# flags.mark_flag_as_required('')
# Save some gpu errors
physical_devices = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(device=physical_devices[0], enable=True)
VOC_PB_DIR = os.path.join(ProjectPath.VOC_CKPTS_DIR.value, f'yolo_voc_{cfg.input_height}x{cfg.input_width}')
def main(_argv):
global voc, val_labels
global logger, tb_train_writer, tb_val_writer, train_viz_batch_data, val_viz_batch_data
global yolo, optimizer
global VOC_PB_DIR, ckpt, ckpt_manager
global val_metrics
# Dataset (PascalVOC)
voc = GetVoc(batch_size=FLAGS.batch_size)
val_labels_path = os.path.join(ProjectPath.DATASETS_DIR.value, 'voc_tfds', 'eval', 'val_labels_448_full.pickle')
if FLAGS.val_ds_sample_ratio == 1:
if os.path.exists(val_labels_path):
val_labels = pickle.load(open(val_labels_path, 'rb'))
else:
val_labels = get_labels(voc.get_val_ds(), cfg.input_height, cfg.input_width, VOC_CLS_MAP, full_save=True)
else:
val_labels = get_labels(voc.get_val_ds(sample_ratio=FLAGS.val_ds_sample_ratio), cfg.input_height, cfg.input_width, VOC_CLS_MAP)
# Logger
logger = get_logger()
logger.propagate = False
# Tensorboard
tb_train_writer = tf.summary.create_file_writer(ProjectPath.TB_LOGS_TRAIN_DIR.value)
tb_val_writer = tf.summary.create_file_writer(ProjectPath.TB_LOGS_VAL_DIR.value)
train_viz_batch_data = next(iter(voc.get_train_ds(shuffle=False, drop_remainder=False).take(1)))
val_viz_batch_data = next(iter(voc.get_val_ds().take(1)))
# Prediction Visualization (Tensorboard)
tb_write_sampled_voc_gt_imgs(
batch_data=train_viz_batch_data,
input_height=cfg.input_height,
input_width=cfg.input_width,
val=True,
tb_writer=tb_train_writer,
name='[Train] GT',
max_outputs=FLAGS.tb_img_max_outputs,
)
tb_write_sampled_voc_gt_imgs(
batch_data=val_viz_batch_data,
input_height=cfg.input_height,
input_width=cfg.input_width,
val=True,
tb_writer=tb_val_writer,
name='[Val] GT',
max_outputs=FLAGS.tb_img_max_outputs,
)
# Model
backbone_xception = get_xception_backbone(input_height=cfg.input_height, input_width=cfg.input_width, freeze=False)
yolo = YOLO(backbone=backbone_xception, cfg=cfg)
# Optimizer
# Paper Page 4. We continue training with 1e-2 for 75 epochs, then 1e-3 for 30 epochs, and finally 1e-4 for 30 epochs.
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=FLAGS.init_lr,
decay_steps=FLAGS.lr_decay_steps,
decay_rate=FLAGS.lr_decay_rate,
staircase=True,
)
optimizer = tf.optimizers.Adam(learning_rate=lr_schedule)
# Checkpoint
ckpt = tf.train.Checkpoint(step=tf.Variable(0), model=yolo)
ckpt_manager = tf.train.CheckpointManager(
ckpt,
directory=ProjectPath.VOC_CKPTS_DIR.value,
max_to_keep=5
)
latest_ckpt = tf.train.latest_checkpoint(checkpoint_dir=ProjectPath.VOC_CKPTS_DIR.value)
latest_ckpt_log = '\n' + '=' * 60 + '\n'
if latest_ckpt:
ckpt.restore(latest_ckpt)
latest_ckpt_log += f'* Load latest checkpoint file [{latest_ckpt}]'
else:
latest_ckpt_log += '* Training from scratch'
latest_ckpt_log += ('\n' + '=' * 60 + '\n')
logger.info(latest_ckpt_log)
print(colored(latest_ckpt_log, 'magenta'))
# Val Metrics
val_metrics = {'mAP_best': 0.}
# Training
train()
def train():
for epoch in range(1, FLAGS.epochs+1):
train_ds = voc.get_train_ds(shuffle=True, drop_remainder=True, sample_ratio=FLAGS.train_ds_sample_ratio)
steps_per_epoch = len(train_ds)
train_log_handler = TrainLogHandler(total_epochs=FLAGS.epochs, steps_per_epoch=steps_per_epoch, optimizer=optimizer, logger=logger)
for step, batch_data in enumerate(train_ds, 1):
batch_imgs, batch_labels = prep_voc_data(batch_data, input_height=cfg.input_height, input_width=cfg.input_width, val=False)
losses = train_step(yolo, optimizer, batch_imgs, batch_labels, cfg)
train_log_handler.logging(epoch=epoch, step=step, losses=losses, tb_writer=tb_train_writer)
if epoch % FLAGS.val_step == 0:
validation(epoch=epoch)
def validation(epoch):
val_ds = voc.get_val_ds(sample_ratio=FLAGS.val_ds_sample_ratio)
val_log_handler = ValLogHandler(total_epochs=FLAGS.epochs, logger=logger)
val_losses_raw = {
'total_loss': tf.keras.metrics.MeanTensor(),
'coord_loss': tf.keras.metrics.MeanTensor(),
'obj_loss': tf.keras.metrics.MeanTensor(),
'noobj_loss': tf.keras.metrics.MeanTensor(),
'class_loss': tf.keras.metrics.MeanTensor(),
}
img_id = 0
val_preds = list()
for step, batch_data in tqdm.tqdm(enumerate(val_ds, 1), total=len(val_ds), desc='Validation'):
batch_imgs, batch_labels = prep_voc_data(batch_data, input_height=cfg.input_height, input_width=cfg.input_width, val=True)
yolo_output_raw = yolo(batch_imgs, training=False)
# ====== ====== ====== Calc Losses ====== ====== ======
batch_losses = {
'total_loss': 0.,
'coord_loss': 0.,
'obj_loss': 0.,
'noobj_loss': 0.,
'class_loss': 0.,
}
for i in range(len(yolo_output_raw)):
one_loss = get_losses(one_pred=yolo_output_raw[i], one_label=batch_labels[i], cfg=cfg)
batch_losses['total_loss'] += one_loss['total_loss']
batch_losses['coord_loss'] += one_loss['coord_loss']
batch_losses['obj_loss'] += one_loss['obj_loss']
batch_losses['noobj_loss'] += one_loss['noobj_loss']
batch_losses['class_loss'] += one_loss['class_loss']
val_losses_raw['total_loss'].update_state(batch_losses['total_loss'] / len(batch_imgs))
val_losses_raw['coord_loss'].update_state(batch_losses['coord_loss'] / len(batch_imgs))
val_losses_raw['obj_loss'].update_state(batch_losses['obj_loss'] / len(batch_imgs))
val_losses_raw['noobj_loss'].update_state(batch_losses['noobj_loss'] / len(batch_imgs))
val_losses_raw['class_loss'].update_state(batch_losses['class_loss'] / len(batch_imgs))
# ====== ====== ====== mAP ====== ====== ======
yolo_boxes = yolo_output2boxes(yolo_output_raw, cfg.input_height, cfg.input_width, cfg.cell_size, cfg.boxes_per_cell)
for i in range(len(yolo_boxes)):
output_boxes = box_postp2use(yolo_boxes[i], cfg.nms_iou_thr, 0.)
if output_boxes.size == 0:
img_id += 1
continue
for output_box in output_boxes:
*pts, conf, cls_idx = output_box
cls_name = VOC_CLS_MAP[cls_idx]
val_preds.append([*map(round, pts), conf, cls_name, img_id])
img_id += 1
voc_ap = CalcVOCmAP(labels=val_labels, preds=val_preds, iou_thr=0.5, conf_thr=0.0)
ap_summary = voc_ap.get_summary()
val_losses = dict()
for loss_name in val_losses_raw:
val_losses[loss_name] = val_losses_raw[loss_name].result().numpy()
val_losses_raw[loss_name].reset_states()
val_log_handler.logging(epoch=epoch, losses=val_losses, APs=ap_summary, tb_writer=tb_val_writer)
# ========= Tensorboard Image: prediction output visualization =========
# Training data output visualization
sampled_voc_imgs, _ = prep_voc_data(train_viz_batch_data, input_height=cfg.input_height, input_width=cfg.input_width, val=True)
sampled_voc_preds = yolo(sampled_voc_imgs)
sampled_voc_output_boxes = yolo_output2boxes(sampled_voc_preds, cfg.input_height, cfg.input_width, cfg.cell_size, cfg.boxes_per_cell)
sampled_imgs_num = FLAGS.tb_img_max_outputs if len(sampled_voc_imgs) > FLAGS.tb_img_max_outputs else len(sampled_voc_imgs)
pred_viz_imgs = np.empty([sampled_imgs_num, cfg.input_height, cfg.input_width, 3], dtype=np.uint8)
for idx in range(sampled_imgs_num):
img = sampled_voc_imgs[idx].numpy()
labels = box_postp2use(pred_boxes=sampled_voc_output_boxes[idx], nms_iou_thr=cfg.nms_iou_thr, conf_thr=cfg.conf_thr)
pred_viz_imgs[idx] = viz_pred(img=img, labels=labels, cls_map=VOC_CLS_MAP)
tb_write_imgs(
tb_train_writer,
name=f'[Train] Prediction (confidence_thr: {cfg.conf_thr}, nms_iou_thr: {cfg.nms_iou_thr})',
imgs=pred_viz_imgs,
step=epoch,
max_outputs=FLAGS.tb_img_max_outputs,
)
# Validation data output visualization
sampled_voc_imgs, _ = prep_voc_data(val_viz_batch_data, input_height=cfg.input_height, input_width=cfg.input_width, val=True)
sampled_voc_preds = yolo(sampled_voc_imgs)
sampled_voc_output_boxes = yolo_output2boxes(sampled_voc_preds, cfg.input_height, cfg.input_width, cfg.cell_size, cfg.boxes_per_cell)
sampled_imgs_num = FLAGS.tb_img_max_outputs if len(sampled_voc_imgs) > FLAGS.tb_img_max_outputs else len(sampled_voc_imgs)
pred_viz_imgs = np.empty([sampled_imgs_num, cfg.input_height, cfg.input_width, 3], dtype=np.uint8)
for idx in range(sampled_imgs_num):
img = sampled_voc_imgs[idx].numpy()
labels = box_postp2use(pred_boxes=sampled_voc_output_boxes[idx], nms_iou_thr=cfg.nms_iou_thr, conf_thr=cfg.conf_thr)
pred_viz_imgs[idx] = viz_pred(img=img, labels=labels, cls_map=VOC_CLS_MAP)
tb_write_imgs(
tb_val_writer,
name=f'[Val] Prediction (confidence_thr: {cfg.conf_thr}, nms_iou_thr: {cfg.nms_iou_thr})',
imgs=pred_viz_imgs,
step=epoch,
max_outputs=FLAGS.tb_img_max_outputs,
)
# ========= ================================================ =========
# Save checkpoint and pb
if ap_summary['mAP'] >= val_metrics['mAP_best']:
ckpt_manager.save(checkpoint_number=ckpt.step)
yolo.save(filepath=VOC_PB_DIR, save_format='tf')
val_metrics['mAP_best'] = ap_summary['mAP']
ckpt_log = '\n' + '=' * 100 + '\n'
ckpt_log += f'* Save checkpoint file and pb file [{VOC_PB_DIR}]'
ckpt_log += '\n' + '=' * 100 + '\n'
logger.info(ckpt_log)
print(colored(ckpt_log, 'green'))
ckpt.step.assign_add(1)
if __name__ == '__main__':
app.run(main)