-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
213 lines (198 loc) · 9.82 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import numpy as np
import re
def na_catfiller(df):
"""
This function identifies categorical and Boolean features,
then replaces missing values with "missing_data" value.
:param df:
"""
objectCols = []
for i, j in zip(df.dtypes.index, df.dtypes.values):
if j == "object":
objectCols.append(i)
booleanCols = []
for i, j in zip(df.dtypes.index, df.nunique()):
if j == 2:
booleanCols.append(i)
df[objectCols] = df[objectCols].fillna("missing_data")
df[booleanCols] = df[booleanCols].fillna("missing_data")
return df
def na_numfiller(df, aggregation_func="mean"):
"""
This function identifies non-categorical features, then identifies
non-Boolean features within the resulting list of features, and
then identifies features with missing values within the
resulting list of features.
It then returns the list of features identified. Lastly,
it fills missing values identified within those features with
the method selected by the user.
:param df:
:param aggregation_func:
"""
non_objectCols = []
for i, j in zip(df.dtypes.index, df.dtypes.values):
if j != "object":
non_objectCols.append(i)
non_BooleanCols = []
for i, j in zip(df[non_objectCols].nunique().index, df[non_objectCols].nunique().values):
if j > 2:
non_BooleanCols.append(i)
null_cols = []
for i, j in zip(df[non_BooleanCols].isnull().sum().index, df[non_BooleanCols].isnull().sum().values):
if j > 0:
null_cols.append(i)
if aggregation_func == "mean":
df.fillna(df[null_cols].mean(), inplace=True)
elif aggregation_func == "median":
df.fillna(df[null_cols].median(), inplace=True)
else:
return False
return df
def str_one_hot_encoder(df, unique_threshold=10):
str_columns = df.select_dtypes(include=['object']).columns
df.columns = df.columns.str.replace(' ', '_')
df.columns = df.columns.str.replace(',', '_')
df = df.rename(columns = lambda x:re.sub('[^A-Za-z0-9_]+', '', x))
return_df = df
for column in str_columns:
if df[column].nunique() <= unique_threshold:
df_dummies = pd.get_dummies(df[column],prefix=column)
return_df = pd.concat([return_df, df_dummies], axis=1)
return_df.drop(column, axis=1, inplace=True)
return_df = return_df.rename(columns = lambda x:re.sub('[^A-Za-z0-9_]+', '', x))
return return_df
def aggr_dicts_json_to_dict(data_from_json):
custom_merge_aggr_funcs = {
"max_min_diff": lambda x: (x.max()-x.min(), "max_min_diff")
}
aggr_dicts = {}
for df, df_features in data_from_json.items():
aggr_dicts[df] = {}
for feature, aggr_funcs in df_features.items():
aggr_dicts[df][feature] = []
for func in aggr_funcs:
if func in custom_merge_aggr_funcs:
aggr_dicts[df][feature].append(custom_merge_aggr_funcs[func])
else:
aggr_dicts[df][feature].append(func)
return aggr_dicts
def str_catencoder(df, method_switch=10):
"""
This function applies one-hot encoding or label encoding on
categorical string colmns based on the number of unique values
in the given dataframe.
One-hot encoding is used if thenumber of unique values is smaller
or equal to the "method_switch" threshold, and label encoding is
used if bigger.
:param df:
:param method_switch:
"""
le = LabelEncoder()
str_columns = df.select_dtypes(include=['object']).columns
df.columns = df.columns.str.replace(' ', '_')
df.columns = df.columns.str.replace(',', '_')
df = df.rename(columns = lambda x:re.sub('[^A-Za-z0-9_]+', '', x))
return_df = df
for column in str_columns:
if df[column].nunique() <= method_switch:
df_dummies = pd.get_dummies(df[column],prefix=column)
return_df = pd.concat([return_df, df_dummies], axis=1)
return_df.drop(column, axis=1, inplace=True)
else:
return_df[column] = return_df[column].map(str)
return_df[column] = le.fit_transform(return_df[column])
return_df = return_df.rename(columns = lambda x:re.sub('[^A-Za-z0-9_]+', '', x))
return return_df
def merge_with_aggr(main_df, secondary_df, fk_column, aggr_dict, column_prefix):
if not aggr_dict:
return main_df
secondary_df = secondary_df.groupby(fk_column).agg(aggr_dict)
columns_list = []
aggr_df = pd.DataFrame()
for x in secondary_df.columns.tolist():
if x[1].startswith("<lambda") and secondary_df[x[0]][x[1]].dtypes == "object" and len(secondary_df[x[0]][x[1]].iloc[0]) > 1:
column_name = '{}_{}_{}'.format(column_prefix,x[0],secondary_df[x[0]][x[1]].iloc[0][1])
aggr_df[column_name] = secondary_df[x[0]][x[1]].apply(lambda x: x[0])
else:
column_name = '{}_{}_{}'.format(column_prefix,x[0],x[1])
aggr_df[column_name] = secondary_df[x[0]][x[1]]
aggr_df = aggr_df.rename_axis(secondary_df.index.name)
return main_df.merge(aggr_df,on=fk_column,how='left')
### OPTIMIZING DATA TYPES ###
# Create function to optimize integer data types
def optimize_inttypes(dataframe, specify="auto"):
# Construct dataframe for reference used below in the optimize_inttypes function.
np_types = [np.int8 ,np.int16 ,np.int32, np.int64,
np.uint8 ,np.uint16, np.uint32, np.uint64]
np_types = [np_type.__name__ for np_type in np_types]
type_df = pd.DataFrame(data=np_types, columns=['class_type'])
type_df['min_value'] = type_df['class_type'].apply(lambda row: np.iinfo(row).min)
type_df['max_value'] = type_df['class_type'].apply(lambda row: np.iinfo(row).max)
type_df['range'] = type_df['max_value'] - type_df['min_value']
type_df.sort_values(by='range', inplace=True)
# Print initial memory usage details
mem_sum = 0
print('Memory usage of dataframe is {:.6f} GB'.format(dataframe.memory_usage().sum()/1000000000))
mem_sum = mem_sum+dataframe.memory_usage().sum()/1000000000
print(f"Total initial memory used for selected dataframe is: {mem_sum:.2f}GB")
if specify=="auto":
for col in dataframe.loc[:, dataframe.dtypes <= np.int64]:
col_min = dataframe[col].min()
col_max = dataframe[col].max()
temp = type_df[(type_df['min_value'] <= col_min) & (type_df['max_value'] >= col_max)]
optimized_class = temp.loc[temp['range'].idxmin(), 'class_type']
print("Col name : {} Col min_value : {} Col max_value : {} Optimized Class : {}".format(col, col_min, col_max, optimized_class))
dataframe[col] = dataframe[col].astype(optimized_class)
elif specify=="int32":
for col in dataframe.loc[:, dataframe.dtypes == np.int64]:
dataframe[col] = dataframe[col].astype(np.int32)
# Print updated memory usage details
mem_sum = 0
print('Memory usage of dataframe is {:.6f} GB'.format(dataframe.memory_usage().sum()/1000000000))
mem_sum = mem_sum+dataframe.memory_usage().sum()/1000000000
print(f"Total memory currently used for selected dataframe is: {mem_sum:.2f}GB")
else:
return False
return
####################################################################################################
####################################################################################################
# Create float optimization function.
def optimize_floattypes(dataframe, specify="auto"):
# Create dataframe for reference, used in the float optimization function further below.
np_types = [np.float16 ,np.float32, np.float64]
np_types = [np_type.__name__ for np_type in np_types]
floattype_df = pd.DataFrame(data=np_types, columns=['class_type'])
floattype_df['min_value'] = floattype_df['class_type'].apply(lambda row: np.finfo(row).min)
floattype_df['max_value'] = floattype_df['class_type'].apply(lambda row: np.finfo(row).max)
floattype_df['range'] = floattype_df['max_value'] - floattype_df['min_value']
floattype_df.sort_values(by='range', inplace=True)# Print initial memory usage details
mem_sum = 0
print('Memory usage of dataframe is {:.6f} GB'.format(dataframe.memory_usage().sum()/1000000000))
mem_sum = mem_sum+dataframe.memory_usage().sum()/1000000000
print(f"Total initial memory used for selected dataframe is: {mem_sum:.2f}GB")
if specify == "auto":
for col in dataframe.loc[:, dataframe.dtypes == np.float64]:
col_min = dataframe[col].min()
col_max = dataframe[col].max()
temp = floattype_df[(floattype_df['min_value'] <= col_min) & (floattype_df['max_value'] >= col_max)]
optimized_class = temp.loc[temp['range'].idxmin(), 'class_type']
print("Col name : {} Col min_value : {} Col max_value : {} Optimized Class : {}".format(col, col_min, col_max, optimized_class))
dataframe[col] = dataframe[col].astype(optimized_class)
# Print updated memory usage details
mem_sum = 0
print('Memory usage of dataframe is {:.6f} GB'.format(dataframe.memory_usage().sum()/1000000000))
mem_sum = mem_sum+dataframe.memory_usage().sum()/1000000000
print(f"Total memory currently used for selected dataframe is: {mem_sum:.2f}GB")
elif specify == "float32":
for col in dataframe.loc[:, dataframe.dtypes == np.float64]:
dataframe[col] = dataframe[col].astype(np.float32)
# Print updated memory usage details
mem_sum = 0
print('Memory usage of dataframe is {:.6f} GB'.format(dataframe.memory_usage().sum()/1000000000))
mem_sum = mem_sum+dataframe.memory_usage().sum()/1000000000
print(f"Total memory currently used for selected dataframe is: {mem_sum:.2f}GB")
else:
return False
return