-
Notifications
You must be signed in to change notification settings - Fork 526
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
(fix) Make bias statistics complete for all elements #4496
base: devel
Are you sure you want to change the base?
Conversation
for more information, see https://pre-commit.ci
📝 WalkthroughWalkthroughThe pull request introduces modifications in the DeepMD-kit's PyTorch utility modules. A new public method Changes
Possibly related PRs
Suggested labels
Suggested reviewers
📜 Recent review detailsConfiguration used: CodeRabbit UI 📒 Files selected for processing (2)
🚧 Files skipped from review as they are similar to previous changes (2)
⏰ Context from checks skipped due to timeout of 90000ms (2)
Thank you for using CodeRabbit. We offer it for free to the OSS community and would appreciate your support in helping us grow. If you find it useful, would you consider giving us a shout-out on your favorite social media? 🪧 TipsChatThere are 3 ways to chat with CodeRabbit:
Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments. CodeRabbit Commands (Invoked using PR comments)
Other keywords and placeholders
CodeRabbit Configuration File (
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 1
🧹 Nitpick comments (1)
deepmd/pt/utils/stat.py (1)
110-119
: Avoid potential index-out-of-range errors when concatenating Tensors.
The code checks “isinstance(sys_stat[key], list) and isinstance(sys_stat[key][0], torch.Tensor)” without verifying that the list is non-empty. This might raise an IndexError if the list is empty. Consider adding a length check before accessing sys_stat[key][0].Possible safe check:
-if isinstance(sys_stat[key], list) and isinstance(sys_stat[key][0], torch.Tensor): +if isinstance(sys_stat[key], list) and len(sys_stat[key]) > 0 \ + and isinstance(sys_stat[key][0], torch.Tensor):
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (2)
deepmd/pt/utils/dataset.py
(1 hunks)deepmd/pt/utils/stat.py
(1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
deepmd/pt/utils/dataset.py
44-44: SyntaxError: Expected an indented block after function definition
🔇 Additional comments (3)
deepmd/pt/utils/stat.py (3)
91-96
: Validate 'atype' presence and handle empty arrays gracefully.
While updating the collected elements, consider explicitly checking that each 'atype' array is non-empty. If a dataset yields an empty array, it might bypass your missing-elements logic.
✅ Verification successful
Let me gather more information about how atype
is handled in the codebase.
Let me try again with the correct file type flag for ripgrep.
Based on the code analysis, I can now generate the final response:
Empty arrays are handled safely by numpy.unique and set.update
The code uses numpy.unique()
which safely handles empty arrays by returning an empty array, and set.update()
which safely handles empty iterables. The logic for missing elements works correctly even with empty arrays since an empty array's unique values would simply not add any elements to the set.
🏁 Scripts executed
The following scripts were executed for the analysis:
Error: No shell scripts found
Script:
#!/bin/bash
# Search for patterns related to 'atype' handling and array emptiness checks
rg -A 3 "atype" --type python
# Also look for the specific class/function containing this code
ast-grep --pattern $'def $_(self, $_):
$$$
collected_elements = set()
for sys_stat in lst:
if "atype" in sys_stat:
collected_elements.update($$$)
$$$'
Length of output: 248
Script:
#!/bin/bash
# Search for patterns related to 'atype' handling and array emptiness checks
rg -A 3 "atype" -t py
# Look for similar array handling patterns in the codebase
rg -t py "numpy\.unique|\.update.*numpy" -A 2
# Find the specific file we're analyzing
fd "stat.py" --type f
Length of output: 89317
85-90
: Consider using logging and verifying that all datasets are included.
You are only collecting the set of elements from the first dataset and simply printing them. If your intent is to gather possible elements across all datasets, you may want to iterate over all datasets. Also, using "log.info" would be more consistent than a raw "print" in a library setting.
Possible fix for the print statement:
- print('we want', all_elements)
+ log.info(f"We want elements: {all_elements}")
97-109
: Ensure partial coverage logic for missing elements is intended.
Here, frames are appended until the number of records reaches 'nbatches'. Verify that the short-circuiting with “break” actually meets your coverage needs for missing elements. If your goal is to gather as many frames as possible across all missing elements, you might need a more explicit limit or a different approach.
✅ Verification successful
Let me gather more context about this code to better understand the coverage logic for missing elements.
Let me search for more context about the initialization and usage of nbatches
to better understand the coverage requirements.
Let me search for the initialization of nbatches
to understand its purpose in the coverage logic.
Let me search for more context about how nbatches
is used and its relationship with the dataset statistics.
Based on the gathered context, I can now provide a final response about the coverage logic for missing elements.
The current partial coverage logic is intentional and correct.
The code's behavior is appropriate because:
nbatches
is a parameter that defines the desired number of batches for collecting statistics, used consistently throughout themake_stat_input
function- The break condition
if len(lst[i]['atype']) >= nbatches
ensures each system collects up to the specified number of batches, preventing over-sampling - This is consistent with how regular batches are collected earlier in the function where
numb_batches = min(nbatches, len(dataloaders[i]))
is used - The goal is to gather a statistically significant sample (controlled by nbatches) rather than exhaustively processing all frames containing missing elements
The current implementation correctly balances between gathering sufficient data for statistics while maintaining consistent batch sizes across all elements.
🏁 Scripts executed
The following scripts were executed for the analysis:
Error: No shell scripts found
Script:
#!/bin/bash
# Let's first look at the broader context of this code
rg -B 10 -A 5 "for missing_element in missing_elements" deepmd/pt/utils/stat.py
# Also search for any related tests that might help understand the intended behavior
fd "test.*stat.*py" -x rg -l "missing_element"
# Look for the initialization of nbatches and lst variables
rg -B 5 "nbatches.*=|lst.*=" deepmd/pt/utils/stat.py
Length of output: 1724
Script:
#!/bin/bash
# Search for the function definition and its parameters
ast-grep --pattern 'def $FUNC($PARAMS) {
$$$
nbatches
$$$
}' deepmd/pt/utils/stat.py
# Look for any documentation or comments about nbatches
rg -B 3 -A 3 "nbatches" deepmd/pt/utils/stat.py
# Check if there are any tests that verify this behavior
fd "test.*stat.*py" -x cat {}
Length of output: 66294
Script:
#!/bin/bash
# Look for the function definition and documentation
rg -B 10 "def make_stat_input" deepmd/pt/utils/stat.py
# Search for any tests that verify the behavior with missing elements
rg -B 5 -A 5 "missing_element" deepmd/pt/utils/stat.py
Length of output: 1079
Script:
#!/bin/bash
# Look for the full function implementation and its docstring
rg -B 20 -A 50 "def make_stat_input" deepmd/pt/utils/stat.py
# Search for any tests that verify the statistics collection
fd "test.*stat.*py" -x rg -A 10 "make_stat_input"
# Look for the initialization of lst and how frames are collected
rg -B 5 "lst.*=.*\[\]" deepmd/pt/utils/stat.py
Length of output: 4539
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 1
🧹 Nitpick comments (2)
deepmd/pt/utils/stat.py (2)
89-89
: Remove debug print statement.The print statement
print("we want", all_elements)
appears to be debug code that should be removed or replaced with proper logging.- print("we want", all_elements) + log.debug(f"Required elements for statistics: {all_elements}")
97-111
: Optimize nested loops and add error handling.The nested loops for handling missing elements could be optimized, and error handling should be added for invalid frame indices.
for missing_element in missing_elements: for i, dataset in enumerate(datasets): if hasattr(dataset, "element_to_frames"): - frame_indices = dataset.element_to_frames.get( - missing_element, [] - ) + try: + frame_indices = dataset.element_to_frames.get(missing_element, []) + if not frame_indices: + continue + + # Pre-check if we need more frames + if len(lst[i]["atype"]) >= nbatches: + break + + # Process frames in batch + for frame_idx in frame_indices: + frame_data = dataset[frame_idx] + if any(key not in lst[i] for key in frame_data): + lst[i].update({key: [] for key in frame_data if key not in lst[i]}) + for key in frame_data: + lst[i][key].append(frame_data[key]) + if len(lst[i]["atype"]) >= nbatches: + break + except Exception as e: + log.warning(f"Error processing frames for element {missing_element}: {e}") + continue - for frame_idx in frame_indices: - if len(lst[i]["atype"]) >= nbatches: - break - frame_data = dataset[frame_idx] - for key in frame_data: - if key not in lst[i]: - lst[i][key] = [] - lst[i][key].append(frame_data[key])
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (2)
deepmd/pt/utils/dataset.py
(1 hunks)deepmd/pt/utils/stat.py
(1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
deepmd/pt/utils/dataset.py
44-44: SyntaxError: Expected an indented block after function definition
🔇 Additional comments (2)
deepmd/pt/utils/dataset.py (2)
43-44
:
Fix the indentation error in method definition.
The method definition has incorrect indentation which will cause a SyntaxError. It should be aligned with other class methods.
- def _build_element_to_frames(self):
- """Mapping element types to frame indexes"""
+ def _build_element_to_frames(self):
+ """Mapping element types to frame indexes"""
Likely invalid or redundant comment.
🧰 Tools
🪛 Ruff (0.8.2)
44-44: SyntaxError: Expected an indented block after function definition
43-53
: 🛠️ Refactor suggestion
Make frame limit configurable and enhance documentation.
- The hard-coded limit of 10 frames per element should be configurable.
- The docstring should be more descriptive about the method's purpose and return value.
- def _build_element_to_frames(self):
- """Mapping element types to frame indexes"""
+ def _build_element_to_frames(self, max_frames_per_element: int = 10) -> dict[int, list[int]]:
+ """Build a mapping of element types to their corresponding frame indices.
+
+ Args:
+ max_frames_per_element: Maximum number of frames to store per element type.
+
+ Returns:
+ A dictionary mapping element types (int) to lists of frame indices (list[int])
+ where each element type appears.
+ """
element_to_frames = {element: [] for element in range(self._ntypes)}
for frame_idx in range(len(self)):
frame_data = self._data_system.get_item_torch(frame_idx)
elements = frame_data["atype"]
for element in set(elements):
- if len(element_to_frames[element]) < 10:
+ if len(element_to_frames[element]) < max_frames_per_element:
element_to_frames[element].append(frame_idx)
return element_to_frames
Likely invalid or redundant comment.
🧰 Tools
🪛 Ruff (0.8.2)
44-44: SyntaxError: Expected an indented block after function definition
for more information, see https://pre-commit.ci
for more information, see https://pre-commit.ci
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 4
🧹 Nitpick comments (4)
source/tests/pt/test_make_stat_input.py (4)
14-23
: Consider usingcollections.defaultdict
forelement_to_frames
.
You can simplify the nested checks for element presence in the dictionary by using adefaultdict(list)
, which would eliminate the need for the explicitif atype not in self.element_to_frames:
condition.-from collections import defaultdict class TestDataset: def __init__(self, samples): self.samples = samples - self.element_to_frames = {} + from collections import defaultdict + self.element_to_frames = defaultdict(list) for idx, sample in enumerate(samples): atypes = sample["atype"] for atype in atypes: - if atype not in self.element_to_frames: - self.element_to_frames[atype] = [] self.element_to_frames[atype].append(idx)
25-28
: Rename the property to better reflect usage.
Using@property
but naming itget_all_atype
can be confusing. Consider a more descriptive name likeall_atypes
, since Python properties typically avoid "get_" prefixes.
53-59
: Remove or use the assignedlst
variable.
The variablelst
is assigned but never used, according to static analysis hints. Consider removing it or using it for additional assertions.def test_make_stat_input(self): nbatches = 1 - lst = make_stat_input(self.datasets, self.dataloaders, nbatches=nbatches) + _ = make_stat_input(self.datasets, self.dataloaders, nbatches=nbatches) all_elements = self.system.get_all_atype unique_elements = {1, 2} self.assertEqual(unique_elements, all_elements, "make_stat_input miss elements")🧰 Tools
🪛 Ruff (0.8.2)
55-55: Local variable
lst
is assigned to but never usedRemove assignment to unused variable
lst
(F841)
61-62
: Optional test runner inclusion.
Having theif __name__ == "__main__": unittest.main()
block is fine. You could remove it if tests are run by a dedicated test runner.
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (3)
deepmd/pt/utils/dataset.py
(4 hunks)deepmd/pt/utils/stat.py
(1 hunks)source/tests/pt/test_make_stat_input.py
(1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
source/tests/pt/test_make_stat_input.py
55-55: Local variable lst
is assigned to but never used
Remove assignment to unused variable lst
(F841)
🔇 Additional comments (4)
source/tests/pt/test_make_stat_input.py (1)
40-52
: Test setup looks good.
The dataset creation for testing is straightforward and clear. No issues found.
deepmd/pt/utils/dataset.py (2)
21-24
: Docstring clarity is sufficient.
The docstring effectively describes constructor parameters. No corrections needed.
34-34
: Initialization of element frames is a good approach.
Storing the result of _build_element_to_frames()
in self.element_to_frames
and self.get_all_atype
reduces redundancy.
deepmd/pt/utils/stat.py (1)
86-94
: No immediate issues with collection of atomic types.
Collecting and updating sets is correct.
for more information, see https://pre-commit.ci
for more information, see https://pre-commit.ci
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 2
🧹 Nitpick comments (4)
deepmd/utils/data.py (1)
667-674
: Consider providing more informative error details when the type map lookup fails.
While raisingIndexError
is appropriate, developers might benefit from including the failing value(s). You could, for instance, collect and display the out-of-range types to provide immediate troubleshooting clues. A custom exception or a more descriptive error message can significantly improve clarity and debuggability.Here's an example of how you might refine the exception:
except IndexError as e: - raise IndexError( - f"some types in 'real_atom_types.npy' of set {set_name} are not contained in {self.get_ntypes()} types!" - ) from e + # Gather all invalid elements + invalid_types = np.unique(real_type[(real_type < 0) | (real_type >= len(self.type_idx_map))]) + raise IndexError( + f"One or more invalid types found in 'real_atom_types.npy' of set {set_name}: {invalid_types}. " + f"Ensure all types are within [0, {self.get_ntypes()-1}]." + ) from edeepmd/utils/argcheck.py (1)
2829-2834
: Ensure user awareness of the new argument.The new argument
min_frames_per_element_forstat
is useful for controlling statistic completeness. It might be helpful to specify the expected range (e.g., must be ≥ 1) and how large values impact memory or performance overhead.source/tests/pt/test_make_stat_input.py (1)
68-68
: Remove or utilize the unused variable.The variable
lst
is assigned with the result ofmake_stat_input(...)
but never used. If no further checks are applied, remove it to keep the code clean.- lst = make_stat_input( + make_stat_input(🧰 Tools
🪛 Ruff (0.8.2)
68-68: Local variable
lst
is assigned to but never usedRemove assignment to unused variable
lst
(F841)
deepmd/pt/utils/stat.py (1)
188-197
: Double-check sets for collected vs. missing elements.This code block re-checks missing elements with:
missing_element = all_element - collect_elementsConfirm that the logic aligns with the earlier
missing_elements
sets in lines 110–111 to avoid confusion or duplication.🧰 Tools
🪛 Ruff (0.8.2)
188-188: SyntaxError: unindent does not match any outer indentation level
189-189: SyntaxError: Unexpected indentation
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (6)
deepmd/pt/train/training.py
(2 hunks)deepmd/pt/utils/dataset.py
(3 hunks)deepmd/pt/utils/stat.py
(3 hunks)deepmd/utils/argcheck.py
(1 hunks)deepmd/utils/data.py
(1 hunks)source/tests/pt/test_make_stat_input.py
(1 hunks)
🚧 Files skipped from review as they are similar to previous changes (1)
- deepmd/pt/utils/dataset.py
🧰 Additional context used
🪛 Ruff (0.8.2)
deepmd/pt/utils/stat.py
134-134: SyntaxError: Expected a statement
134-134: SyntaxError: Expected a statement
134-134: SyntaxError: Expected a statement
134-134: SyntaxError: Expected a statement
135-135: SyntaxError: Unexpected indentation
144-144: SyntaxError: unindent does not match any outer indentation level
144-144: SyntaxError: Expected a statement
144-144: SyntaxError: Expected a statement
144-145: SyntaxError: Expected a statement
145-145: SyntaxError: Unexpected indentation
176-176: SyntaxError: Expected a statement
176-176: SyntaxError: Expected a statement
176-176: SyntaxError: Expected a statement
176-176: SyntaxError: Expected a statement
188-188: SyntaxError: unindent does not match any outer indentation level
189-189: SyntaxError: Unexpected indentation
231-231: SyntaxError: Expected a statement
231-231: SyntaxError: Expected a statement
231-231: SyntaxError: Expected a statement
231-231: SyntaxError: Expected a statement
source/tests/pt/test_make_stat_input.py
43-43: Loop control variable idx
not used within loop body
Rename unused idx
to _idx
(B007)
68-68: Local variable lst
is assigned to but never used
Remove assignment to unused variable lst
(F841)
🔇 Additional comments (4)
deepmd/pt/train/training.py (2)
145-147
: Add type check or validation for the statistic threshold.While setting
self.min_frames_per_element_forstat
, consider ensuring it's a strictly positive integer. If a negative or zero value is passed, it may cause runtime issues or meaningless statistics.
232-232
: Parameter usage looks correct.Passing
self.min_frames_per_element_forstat
tomake_stat_input
aligns with the newly introduced functionality. Just be sure to verify that all call sites expect this parameter and properly handle out-of-range values.source/tests/pt/test_make_stat_input.py (1)
41-50
: Optimize loop variable usage.The static analysis hint suggests renaming
_idx
if it were truly unused, but hereidx
is used to assign frames. The accusations of an unused loop variable are false. You can safely ignore that static analysis hint.🧰 Tools
🪛 Ruff (0.8.2)
43-43: Loop control variable
idx
not used within loop bodyRename unused
idx
to_idx
(B007)
deepmd/pt/utils/stat.py (1)
52-110
: Confirm correctness of cumulative element count logic.You aggregate
total_element_counts[elem]["count"]
, but also trackindices
. Ensure you don’t exceed list boundaries when collecting indices for up tomin_frames_per_element_forstat
. If more frames exist, consider whether you need them to fulfill certain statistics.
for more information, see https://pre-commit.ci
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 0
🧹 Nitpick comments (1)
deepmd/utils/argcheck.py (1)
2903-2909
: Consider enhancing the documentation.While the parameter implementation looks good, the documentation could be more descriptive about:
- What exactly is being checked when elements are validated
- The implications of enabling/disabling this feature
- Any potential impact on performance or behavior
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
deepmd/utils/argcheck.py
(1 hunks)
🔇 Additional comments (2)
deepmd/utils/argcheck.py (2)
2896-2902
: LGTM! Parameter for controlling minimum frames per element.The
min_frames_per_element_forstat
parameter provides good control over the statistical calculations when using mixed types by ensuring sufficient data points per element.
2896-2909
: Verify the usage of these new parameters.Let's check how these parameters are used in the codebase:
✅ Verification successful
Parameters are properly implemented and used
Both parameters are correctly integrated into the codebase:
- Used in statistical calculations and element validation logic in
pt/utils/stat.py
- Properly initialized in
pt/train/training.py
with consistent default values- Covered by test cases in
test_make_stat_input.py
🏁 Scripts executed
The following scripts were executed for the analysis:
Script:
#!/bin/bash # Description: Find where these new parameters are used in the codebase # Check for min_frames_per_element_forstat usage echo "Checking min_frames_per_element_forstat usage:" rg "min_frames_per_element_forstat" # Check for enable_element_completion usage echo "Checking enable_element_completion usage:" rg "enable_element_completion"Length of output: 3102
for more information, see https://pre-commit.ci
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 2
🧹 Nitpick comments (4)
deepmd/pt/utils/stat.py (4)
38-58
: Enhance docstring with parameter types and examples.The docstring could be improved by:
- Adding type hints for parameters in the docstring
- Including an example usage section
"""Pack data for statistics. Element checking is only enabled with mixed_type. Args: - - datasets: A list of datasets to analyze. - - dataloaders: Corresponding dataloaders for the datasets. - - nbatches: Batch count for collecting stats. - - min_frames_per_element_forstat: Minimum frames required for statistics. - - enable_element_completion: Whether to perform missing element completion (default: True). + - datasets: list[Dataset] + A list of datasets to analyze. + - dataloaders: list[DataLoader] + Corresponding dataloaders for the datasets. + - nbatches: int + Batch count for collecting stats. + - min_frames_per_element_forstat: int, optional + Minimum frames required for statistics. Defaults to 10. + - enable_element_completion: bool, optional + Whether to perform missing element completion. Defaults to True. Returns ------- list[dict] A list of dicts, each of which contains data from a system. + Example + ------- + >>> stats = make_stat_input(datasets, dataloaders, 5, + ... min_frames_per_element_forstat=10, + ... enable_element_completion=True) """
64-74
: Improve logging structure and clarity.The logging messages could be more structured and informative.
if datasets[0].mixed_type: if enable_element_completion: log.info( - f"Element check enabled. " - f"Verifying if frames with elements meet the set of {min_frames_per_element_forstat}." + f"Element completion: enabled (minimum frames per element: {min_frames_per_element_forstat})" ) else: - log.info( - "Element completion is disabled. Skipping missing element handling." - ) + log.info("Element completion: disabled")
130-143
: Add type hints to helper function.The function lacks type hints which would improve code maintainability.
- def finalize_stats(sys_stat): + def finalize_stats(sys_stat: dict[str, Union[None, np.float32, list[torch.Tensor]]]) -> None: """Finalize statistics by concatenating tensors."""
144-157
: Consider memory optimization for large datasets.The current implementation loads all tensors into memory. Consider processing in chunks for large datasets.
Consider implementing a chunked processing approach:
def process_in_chunks(dataloader, chunk_size=1000): sys_stat = {} for i in range(0, len(dataloader), chunk_size): chunk = itertools.islice(dataloader, i, i + chunk_size) process_chunk(chunk, sys_stat) return sys_stat
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
deepmd/pt/utils/stat.py
(1 hunks)
🔇 Additional comments (3)
deepmd/pt/utils/stat.py (3)
61-63
: 🛠️ Refactor suggestionRemove unused variable.
The variable
global_element_counts
is initialized but never used in the code.total_element_types = set() -global_element_counts = {} collect_ele = defaultdict(int)
Likely invalid or redundant comment.
97-129
: Optimize frame processing and add validation.The function could be optimized and needs better validation:
- Add validation for frame data
- Consider batching frame processing for better performance
75-96
: 🛠️ Refactor suggestionAdd error handling for unknown data types.
The function silently ignores unknown data types, which could hide potential issues.
elif isinstance(stat_data[dd], np.float32): sys_stat[dd] = stat_data[dd] else: - pass + log.warning(f"Unexpected data type {type(stat_data[dd])} for key {dd}")Likely invalid or redundant comment.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 5
🧹 Nitpick comments (1)
source/tests/pt/test_make_stat_input.py (1)
27-28
: Optimize dictionary key iteration.Use direct dictionary key iteration instead of calling
.keys()
.- for key in batch[0].keys(): - data_list = [d[key] for d in batch] + for key in batch[0]: + data_list = [d[key] for d in batch]🧰 Tools
🪛 Ruff (0.8.2)
27-27: Use
key in dict
instead ofkey in dict.keys()
Remove
.keys()
(SIM118)
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
source/tests/pt/test_make_stat_input.py
(1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
source/tests/pt/test_make_stat_input.py
27-27: Use key in dict
instead of key in dict.keys()
Remove .keys()
(SIM118)
🔇 Additional comments (1)
source/tests/pt/test_make_stat_input.py (1)
72-74
: LGTM!The helper method is well-implemented with an appropriate threshold for counting non-zero elements.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 5
🧹 Nitpick comments (1)
source/tests/pt/test_make_stat_input.py (1)
31-31
: Optimize dictionary key lookup.Minor optimization opportunity in the key lookup.
Apply this diff to optimize the key lookup:
- for key in batch[0].keys(): + for key in batch[0]:🧰 Tools
🪛 Ruff (0.8.2)
31-31: Use
key in dict
instead ofkey in dict.keys()
Remove
.keys()
(SIM118)
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
source/tests/pt/test_make_stat_input.py
(1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
source/tests/pt/test_make_stat_input.py
31-31: Use key in dict
instead of key in dict.keys()
Remove .keys()
(SIM118)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 5
🧹 Nitpick comments (2)
source/tests/pt/test_make_stat_input.py (2)
24-35
: Add type hints and docstring to the collate function.The function would benefit from type hints and documentation explaining its purpose and parameters.
-def collate_fn(batch): +def collate_fn(batch: Union[dict, List[dict]]) -> dict: + """Collate a batch of data samples into a single batch for PyTorch DataLoader. + + Args: + batch: A single dict or list of dicts containing numpy arrays or scalar values + + Returns: + dict: Collated batch with torch tensors + """Also, optimize the key lookup:
- for key in batch[0].keys(): + for key in batch[0]:🧰 Tools
🪛 Ruff (0.8.2)
28-28: Use
key in dict
instead ofkey in dict.keys()
Remove
.keys()
(SIM118)
75-76
: Add type hints and docstring to helper method.The helper method would benefit from type hints and documentation.
- def count_non_zero_elements(self, tensor, threshold=1e-8): + def count_non_zero_elements(self, tensor: torch.Tensor, threshold: float = 1e-8) -> int: + """Count elements in tensor with absolute value greater than threshold. + + Args: + tensor: Input tensor + threshold: Minimum absolute value to consider non-zero + + Returns: + int: Number of elements with absolute value > threshold + """
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
source/tests/pt/test_make_stat_input.py
(1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
source/tests/pt/test_make_stat_input.py
28-28: Use key in dict
instead of key in dict.keys()
Remove .keys()
(SIM118)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 5
🧹 Nitpick comments (1)
source/tests/pt/test_make_stat_input.py (1)
25-36
: Minor optimization for dict key lookup.The code is functionally correct, but there's a small optimization opportunity.
- for key in batch[0].keys(): + for key in batch[0]:🧰 Tools
🪛 Ruff (0.8.2)
29-29: Use
key in dict
instead ofkey in dict.keys()
Remove
.keys()
(SIM118)
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
source/tests/pt/test_make_stat_input.py
(1 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
source/tests/pt/test_make_stat_input.py
29-29: Use key in dict
instead of key in dict.keys()
Remove .keys()
(SIM118)
⏰ Context from checks skipped due to timeout of 90000ms (4)
- GitHub Check: Build C library (2.18, libdeepmd_c.tar.gz)
- GitHub Check: Analyze (python)
- GitHub Check: Analyze (javascript-typescript)
- GitHub Check: Analyze (c-cpp)
🔇 Additional comments (2)
source/tests/pt/test_make_stat_input.py (2)
1-23
: LGTM! Well-organized imports.The imports are properly structured, following the standard practice of grouping imports by their source (standard library, third-party, and local modules).
76-78
: LGTM! Well-implemented helper method.The helper method correctly uses a threshold for floating-point comparisons.
Codecov ReportAttention: Patch coverage is
Additional details and impacted files@@ Coverage Diff @@
## devel #4496 +/- ##
==========================================
+ Coverage 84.55% 84.57% +0.01%
==========================================
Files 677 677
Lines 63903 64007 +104
Branches 3488 3486 -2
==========================================
+ Hits 54035 54132 +97
- Misses 8743 8748 +5
- Partials 1125 1127 +2 ☔ View full report in Codecov by Sentry. |
Code efficiency test: Enabling element inspection (enable_element_completion = true, min_frames_per_element_forstat = 10)(about 117 mins) takes about three more minutes compared to disabling it (enable_element_completion = false) (about 114 mins) on the OC2M dataset with 4×V100 GPUs. |
for more information, see https://pre-commit.ci
for more information, see https://pre-commit.ci
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 0
🧹 Nitpick comments (6)
deepmd/pt/entrypoints/main.py (2)
389-389
: Consider renaming the parameter for consistency.The parameter name
elem_check_stat
doesn't match the CLI argument nameskip-elementcheck
. Additionally, their logic is inverted which could be confusing.-def change_bias(..., elem_check_stat: bool = True): +def change_bias(..., enable_element_completion: bool = True):
560-560
: Fix inverted logic between function and CLI argument.The function parameter defaults to
True
but is set from a CLI flag that defaults toFalse
. This inversion makes the code harder to understand.- elem_check_stat=FLAGS.skip_elementcheck, + enable_element_completion=not FLAGS.skip_elementcheck,deepmd/pt/utils/stat.py (4)
61-74
: Remove unused variable.The variable
global_element_counts
is initialized but never used.total_element_types = set() -global_element_counts = {} collect_ele = defaultdict(int)
75-96
: Add error handling for unknown data types.The function silently passes on unknown data types, which could hide potential issues.
else: - pass + log.warning(f"Unexpected data type {type(stat_data[dd])} for key {dd}")
161-194
: Add validation for element counts.The element counting logic needs validation and could be simplified.
if datasets[0].mixed_type and enable_element_completion: + if not isinstance(element_counts, dict): + log.warning(f"Invalid element counts for dataset {sys_index}") + continue for elem, data in element_counts.items(): + if not isinstance(data, dict) or "indices" not in data or "frames" not in data: + log.warning(f"Invalid data format for element {elem}") + continue indices = data["indices"] count = data["frames"]
195-216
: Improve error handling for missing elements.The missing element handling could be improved with better error messages and validation.
if datasets[0].mixed_type and enable_element_completion: + if not total_element_types: + log.warning("No elements found in any dataset") + return lst for elem, data in global_element_counts.items(): indices_count = data["count"] if indices_count < min_frames_per_element_forstat: log.warning( - f"The number of frames in your datasets with element {elem} is {indices_count}, " - f"which is less than the required {min_frames_per_element_forstat}" + f"Insufficient frames for element {elem}: found {indices_count}, " + f"required {min_frames_per_element_forstat}. This may affect model accuracy." )
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (3)
deepmd/main.py
(1 hunks)deepmd/pt/entrypoints/main.py
(3 hunks)deepmd/pt/utils/stat.py
(1 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (20)
- GitHub Check: Build wheels for cp310-manylinux_aarch64
- GitHub Check: Build wheels for cp311-win_amd64
- GitHub Check: Build wheels for cp311-macosx_x86_64
- GitHub Check: Build wheels for cp311-manylinux_x86_64
- GitHub Check: Test Python (6, 3.12)
- GitHub Check: Test Python (6, 3.9)
- GitHub Check: Test Python (5, 3.12)
- GitHub Check: Test Python (5, 3.9)
- GitHub Check: Test Python (4, 3.12)
- GitHub Check: Test Python (4, 3.9)
- GitHub Check: Test Python (3, 3.12)
- GitHub Check: Test Python (3, 3.9)
- GitHub Check: Test Python (2, 3.12)
- GitHub Check: Test Python (2, 3.9)
- GitHub Check: Test C++ (false)
- GitHub Check: Test Python (1, 3.12)
- GitHub Check: Test C++ (true)
- GitHub Check: Test Python (1, 3.9)
- GitHub Check: Build C library (2.18, libdeepmd_c.tar.gz)
- GitHub Check: Analyze (c-cpp)
🔇 Additional comments (5)
deepmd/main.py (1)
740-744
: LGTM!The CLI argument is well-defined with a clear help message that explains its purpose.
deepmd/pt/utils/stat.py (4)
38-57
: LGTM!The function signature and docstring are well-documented with clear parameter descriptions.
133-146
: LGTM!The
finalize_stats
helper function is well-structured and handles all edge cases.
97-132
: 🛠️ Refactor suggestionAdd validation for frame data.
The function should validate that the frame actually contains the missing element before processing.
if newele_counter <= min_frames_per_element_forstat: frame_data = sys.__getitem__(frame) + # Validate frame contains the missing element + if "atype" not in frame_data: + log.warning(f"Frame {frame} does not contain type information") + continue + frame_types = frame_data["atype"] + if miss not in frame_types: + log.warning(f"Frame {frame} does not contain element {miss}") + continueLikely invalid or redundant comment.
147-160
: 🛠️ Refactor suggestionAdd input validation.
The initialization section needs validation for input parameters and data consistency.
+ if not datasets: + raise ValueError("No datasets provided") + if len(datasets) != len(dataloaders): + raise ValueError("Number of datasets does not match number of dataloaders") + if min_frames_per_element_forstat < 1: + raise ValueError("min_frames_per_element_forstat must be positive") total_element_types = set() collect_ele = defaultdict(int)Likely invalid or redundant comment.
Adaptation for the change-bias feature has been added. Users can now adjust the minimum number of frames used for each element’s statistics by using the -mf or --min-frames option. Additionally, the --skip-elementcheck option has been introduced, allowing users to skip element checks even when errors occur during change-bias operations. |
@@ -737,6 +737,18 @@ def main_parser() -> argparse.ArgumentParser: | |||
default=None, | |||
help="Model branch chosen for changing bias if multi-task model.", | |||
) | |||
parser_change_bias.add_argument( | |||
"--skip-elementcheck", | |||
action="store_false", |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Isn't it store_true
?
@@ -555,6 +559,8 @@ def main(args: Optional[Union[list[str], argparse.Namespace]] = None) -> None: | |||
numb_batch=FLAGS.numb_batch, | |||
model_branch=FLAGS.model_branch, | |||
output=FLAGS.output, | |||
elem_check_stat=FLAGS.skip_elementcheck, |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
why 'doing' elementcheck == 'skip' elementcheck ?
Argument( | ||
"min_frames_per_element_forstat", | ||
int, | ||
default=10, | ||
optional=True, | ||
doc="The minimum number of frames per element used for statistics when using the mixed type.", | ||
), | ||
Argument( | ||
"enable_element_completion", | ||
bool, | ||
optional=True, | ||
default=True, | ||
doc="Whether to check elements when using the mixed type", | ||
), |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
doc: doc_only_pt_supported + doc_xxx
@@ -40,6 +43,38 @@ def __getitem__(self, index): | |||
b_data["natoms"] = self._natoms_vec | |||
return b_data | |||
|
|||
def get_frame_index(self): |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
maybe get_frame_index_for_elements
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is it possible to make element_counts keys be element itself (e.g. H O)? It's not readable only seeing int keys in element_counts
.
Summary by CodeRabbit
New Features
Bug Fixes
Tests
make_stat_input
function to ensure accurate processing of atomic types.