Skip to content

Latest commit

 

History

History
208 lines (142 loc) · 7.55 KB

README.rst

File metadata and controls

208 lines (142 loc) · 7.55 KB

MARS-Gym - Experiments

This repository includes all experiments of paper 'MARS-Gym: A Gym framework to model, train, and evaluate recommendation systems for marketplaces' and can be used for reproducibility or example of framework usage.

MARS-Gym Repo: https://github.com/deeplearningbrasil/mars-gym

Setup

Dependencies

  • python=3.6.7
  • mars-gym=0.1.1
  • spark=2.4.6
  • java-8-openjdk

Install

conda env create -f environment.yml
conda activate mars-gym-experiments

Dataset

Trivago organized the ACM RecSys Challenge in 2019. For this competition, it provided a dataset that consists of session logs with 910k samples. Each session contains a sequence of interactions between a user and the platform. They can represent different actions, such as rating, get item metadata (info, image, and deals), sort list, search for a destination or point of interest. In addition to the user session information, the dataset also provides different item metadata that characterize the hotels.

The dataset can be found in https://recsys.trivago.cloud/challenge/dataset/, it's importante that is in ./trivago/dataset/trivagoRecSysChallengeData2019_v2

Usage

A simple experiment can be run directly from Mars-Gym:

Training:

mars-gym run interaction \
--project trivago.config.trivago_experiment \
--recommender-module-class trivago.model.SimpleLinearModel \
--recommender-extra-params '{"n_factors": 50, "metadata_size": 147, "window_hist_size": 10, "vocab_size": 120}' \
--bandit-policy-class mars_gym.model.bandit.EpsilonGreedy \
--bandit-policy-params '{"epsilon": 0.1}' \
--data-frames-preparation-extra-params '{"filter_city": "Chicago, USA", "window_hist":10}' \
--learning-rate 0.001 \
--optimizer adam \
--batch-size 200 \
--epochs 250 \
--num-episodes 7 \
--val-split-type random \
--obs-batch-size 1000 \
--full-refit

Evaluation:

mars-gym evaluate interaction \
--model-task-id InteractionTraining____mars_gym_model_b___epsilon___0_1__905209eb80 \
--fairness-columns '["device_idx", "city_idx", "accessible parking", "accessible hotel", "hotel", "house / apartment", "childcare", "family friendly"]'

Bandit Simulation Results

There are many scripts separated by cities for original paper reproducibility results:

  • scripts/simulation/coma_italy_script.sh
  • scripts/simulation/chicago_usa_script.sh
  • scripts/simulation/rio_janeiro_brazil_script.sh
  • scripts/simulation/new_york_usa_script.sh
  • scripts/simulation/recsys_script.sh

Example to Run Simulations and result for 'Chicago, USA':

sh scripts/simulation/chicago_usa_script.sh

docs/simulation.png

Recommendation Metrics and Off-Policy Evaluation

There is one script for original paper reproducibility results with train and eval metrics: scripts/metrics/metrics_chicago_usa_script.sh

Recommendation Metrics for "Chicago, USA" task.
bandit_policy_class precision_at_1 ndcg_at_5 coverage_at_5 personalization_at_5 IPS SNIPS DirectEstimator DoublyRobust index
mars_gym.model.bandit.AdaptiveGreedy 0.318 0.404 0.391 0.768 0.299 0.308 0.201 0.267 0
mars_gym.model.bandit.CustomRewardModelLinUCB 0.328 0.443 0.363 0.729 0.306 0.316 0.2 0.266 0
mars_gym.model.bandit.EpsilonGreedy 0.302 0.443 0.343 0.734 0.297 0.295 0.187 0.255 0
mars_gym.model.bandit.ExploreThenExploit 0.308 0.419 0.333 0.732 0.297 0.294 0.191 0.256 0
mars_gym.model.bandit.FixedPolicy 0.074 0.171 0.374 0.76 0.076 0.077 0.085 0.078 0
mars_gym.model.bandit.LinThompsonSampling 0.04 0.137 0.424 0.771 0.037 0.035 0.042 0.039 0
mars_gym.model.bandit.LinUCB 0.076 0.207 0.271 0.696 0.053 0.056 0.055 0.051 0
mars_gym.model.bandit.PercentileAdaptiveGreedy 0.337 0.439 0.376 0.744 0.322 0.317 0.198 0.281 0
mars_gym.model.bandit.RandomPolicy 0.04 0.138 0.39 0.776 0.041 0.041 0.043 0.042 0
mars_gym.model.bandit.SoftmaxExplorer 0.302 0.453 0.331 0.726 0.287 0.288 0.189 0.253 0

Fairness Results

There is one script for original paper reproducibility results with train and eval metrics: scripts/metrics/fairness_recsys_script.sh

## Train Script
##

#InteractionTraining____mars_gym_model_b___logit_multipli_9dd8714dfd
mars-gym run interaction \
--project trivago.config.trivago_experiment \
--recommender-module-class trivago.model.SimpleLinearModel \
--recommender-extra-params '{"n_factors": 50, "metadata_size": 158, "window_hist_size": 10, "vocab_size": 340}' \
--bandit-policy-class mars_gym.model.bandit.SoftmaxExplorer \
--bandit-policy-params '{"logit_multiplier": 5.0}' \
--data-frames-preparation-extra-params '{"filter_city": "recsys", "window_hist":10}' \
--learning-rate $learning_rate \
--optimizer adam \
--batch-size 200 \
--epochs $epochs \
--num-episodes $num_episodes \
--val-split-type random \
--obs-batch-size $obs_batch_size \
--full-refit \
--observation "Fairness"
## Evalution Script
##

mars-gym evaluate interaction \
--model-task-id InteractionTraining____mars_gym_model_b___logit_multipli_9dd8714dfd \
--fairness-columns '["device_idx", "city_idx", "accessible parking", "accessible hotel",
"hotel", "house / apartment", "childcare", "family friendly"]'

These commands will train and evaluate some fairness in the columns, such it:

Visualize Results

We can use MARS-gym's Evaluation Platform for visualizing the results:

mars-gym viz

.. You can now view your Streamlit app in your browser.

.. Local URL: http://localhost:8501
.. Network URL: http://192.168.1.70:8501

All visualizations can be found in MARS-gym's Evaluation Platform:

docs/dataviz.png

or used a specific Notebook to export results for the original paper. (you must run all scripts before)

Cite

Please cite the associated paper for this work if you use this code:

@misc{santana2020marsgym,
      title={MARS-Gym: A Gym framework to model, train, and evaluate Recommender Systems for Marketplaces},
      author={Marlesson R. O. Santana and Luckeciano C. Melo and Fernando H. F. Camargo and Bruno Brandão and Anderson Soares and Renan M. Oliveira and Sandor Caetano},
      year={2020},
      eprint={2010.07035},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}