-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
154 lines (131 loc) · 5.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import argparse
import numpy as np
from torch.backends import cudnn
from utils.utils import *
from solver import Solver
import time
import warnings
import random
warnings.filterwarnings("ignore")
import sys
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
class Logger(object):
def __init__(self, filename="default.log", add_flag=True, stream=sys.stdout):
self.terminal = stream
self.filename = filename
self.add_flag = add_flag
def write(self, message):
if self.add_flag:
with open(self.filename, "a+") as log:
self.terminal.write(message)
log.write(message)
else:
with open(self.filename, "w") as log:
self.terminal.write(message)
log.write(message)
def flush(self):
pass
def str2bool(v):
return v.lower() in ("true")
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return int(array[idx - 1])
def main(config):
cudnn.benchmark = True
if not os.path.exists(config.model_save_path):
mkdir(config.model_save_path)
if not os.path.exists(config.model_save_path+f"/{config.dataset}"):
mkdir(config.model_save_path+f"/{config.dataset}")
config.model_save_path = f"{config.model_save_path}/{config.dataset}"
config.model_save_path = f"{config.model_save_path}/{config.dataset}"
solver = Solver(vars(config))
if config.mode == "train":
solver.train()
elif config.mode == "test":
solver.test()
return solver
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Alternative
parser.add_argument("--win_size", type=int, default=100)
parser.add_argument("--patch_size", type=list, default=[5])
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--loss_fuc", type=str, default="MSE")
parser.add_argument("--n_heads", type=int, default=1)
parser.add_argument("--e_layers", type=int, default=3)
parser.add_argument("--d_model", type=int, default=256)
parser.add_argument("--rec_timeseries", action="store_true", default=True)
parser.add_argument("--use_gpu", type=bool, default=True, help="use gpu")
parser.add_argument("--gpu", type=int, default=0, help="gpu")
parser.add_argument(
"--use_multi_gpu", action="store_true", help="use multiple gpus", default=False
)
parser.add_argument(
"--devices", type=str, default="1", help="device ids of multile gpus"
)
# Default
parser.add_argument("--index", type=int, default=137)
parser.add_argument("--num_epochs", type=int, default=10)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--input_c", type=int, default=9)
parser.add_argument("--output_c", type=int, default=9)
parser.add_argument("--k", type=int, default=3)
parser.add_argument("--dataset", type=str, default="credit")
parser.add_argument("--mode", type=str, default="train", choices=["train", "test"])
parser.add_argument("--data_path", type=str, default="./dataset/creditcard_ts.csv")
parser.add_argument("--model_save_path", type=str, default="checkpoints")
parser.add_argument("--anormly_ratio", type=float, default=4.00)
config = parser.parse_args()
args = vars(config)
config.patch_size = [int(patch_index) for patch_index in config.patch_size]
if config.dataset == "UCR":
batch_size_buffer = [2, 4, 8, 16, 32, 64, 128, 256]
data_len = np.load(
"dataset/" + config.data_path + "/UCR_" + str(config.index) + "_train.npy"
).shape[0]
config.batch_size = find_nearest(batch_size_buffer, data_len / config.win_size)
elif config.dataset == "UCR_AUG":
batch_size_buffer = [2, 4, 8, 16, 32, 64, 128, 256]
data_len = np.load(
"dataset/"
+ config.data_path
+ "/UCR_AUG_"
+ str(config.index)
+ "_train.npy"
).shape[0]
config.batch_size = find_nearest(batch_size_buffer, data_len / config.win_size)
elif config.dataset == "SMD_Ori":
batch_size_buffer = [2, 4, 8, 16, 32, 64, 128, 256, 512]
data_len = np.load(
"dataset/"
+ config.data_path
+ "/SMD_Ori_"
+ str(config.index)
+ "_train.npy"
).shape[0]
config.batch_size = find_nearest(batch_size_buffer, data_len / config.win_size)
config.use_gpu = True if torch.cuda.is_available() and config.use_gpu else False
# if config.use_gpu and config.use_multi_gpu:
# config.devices = config.devices.replace(" ", "")
# device_ids = config.devices.split(",")
# config.device_ids = [int(id_) for id_ in device_ids]
# config.gpu = config.device_ids[0]
# print(config.devices)
# config.gpu = config.devices
# os.environ['CUDA_VISIBLE_DEVICES']= config.devices #config.gpu
sys.stdout = Logger("result/" + config.data_path + ".log", sys.stdout)
if config.mode == "train":
print("\n\n")
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
print("================ Hyperparameters ===============")
for k, v in sorted(args.items()):
print("%s: %s" % (str(k), str(v)))
print("==================== Train ===================")
setup_seed(1)
main(config)