-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
43 lines (29 loc) · 1.23 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import torch as t
import torch.nn as nn
x = np.array([0.87, 0.23, 0.65, 0.99, 0.003, -0.12, 1.3])
y = np.array([1., 0., 1., 1., 0., 0., 1.])
x2 = np.array([0.12, 0.43, 0.789, 0.63, 0.213, -0.34, 1.4])
y2 = np.array([0., 1., 1., 1., 0., 0., 1.])
xt = t.from_numpy(x)
yt = t.from_numpy(y)
x2t = t.from_numpy(x2)
y2t = t.from_numpy(y2)
true_loss = nn.BCEWithLogitsLoss()
print("##########################################")
print(f"The value we want is: {true_loss(xt, yt) + true_loss(x2t, y2t)}")
print("##########################################")
def torch_loss(input, target):
max_val = input.clamp(min=0)
loss = input - input * target + max_val + ((-max_val).exp() + (-input - max_val).exp()).log()
return loss.mean()
print("\n##########################################")
print(f"TORCH Loss is: {torch_loss(xt, yt) + torch_loss(x2t, y2t)}")
print("##########################################")
def my_loss(x, y):
max_val = np.clip(x, 0, None)
loss = x - x * y + max_val + np.log(np.exp(-max_val) + np.exp((-x - max_val)))
return loss.mean()
print("\n##########################################")
print(f"MY Loss is: {my_loss(x, y) + my_loss(x2t, y2t)}")
print("##########################################")