forked from cubicle-model-checker/cubicle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathptree.ml
830 lines (710 loc) · 25.4 KB
/
ptree.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
(**************************************************************************)
(* *)
(* Cubicle *)
(* *)
(* Copyright (C) 2011-2015 *)
(* *)
(* Sylvain Conchon and Alain Mebsout *)
(* Universite Paris-Sud 11 *)
(* *)
(* *)
(* This file is distributed under the terms of the Apache Software *)
(* License version 2.0 *)
(* *)
(**************************************************************************)
open Types
open Util
open Ast
open Format
type term =
| TVar of Variable.t
| TTerm of Term.t
type atom =
| AVar of Variable.t
| AAtom of Atom.t
| AEq of term * term
| ANeq of term * term
| ALe of term * term
| ALt of term * term
type formula =
| PAtom of atom
| PNot of formula
| PAnd of formula list
| POr of formula list
| PImp of formula * formula
| PEquiv of formula * formula
| PIte of formula * formula * formula
| PForall of Variable.t list * formula
| PExists of Variable.t list * formula
| PForall_other of Variable.t list * formula
| PExists_other of Variable.t list * formula
type term_or_formula = PF of formula | PT of term
type cformula = formula
let function_defs = Hstring.H.create 17
(* type cformula = [ *)
(* | PAtom of Atom.t *)
(* | PNot of cformula *)
(* | PAnd of cformula list *)
(* | POr of cformula list *)
(* | PImp of cformula * cformula *)
(* | PEquiv of cformula * cformula *)
(* | PIte of cformula * cformula * cformula *)
(* | PForall of Variable.t list * cformula *)
(* | PExists of Variable.t list * cformula *)
(* | PForall_other of Variable.t list * cformula *)
(* | PExists_other of Variable.t list * cformula *)
(* ] *)
let print_term fmt = function
| TVar v -> fprintf fmt "'%a" Hstring.print v
| TTerm t -> Term.print fmt t
let print_atom fmt = function
| AVar v -> fprintf fmt "?%a" Hstring.print v
| AAtom a -> Atom.print fmt a
| AEq (t1, t2) -> fprintf fmt "(= %a %a)" print_term t1 print_term t2
| ANeq (t1, t2) -> fprintf fmt "(<> %a %a)" print_term t1 print_term t2
| ALe (t1, t2) -> fprintf fmt "(<= %a %a)" print_term t1 print_term t2
| ALt (t1, t2) -> fprintf fmt "(< %a %a)" print_term t1 print_term t2
let rec print fmt = function
| PAtom a -> print_atom fmt a
| PNot f -> fprintf fmt "~ %a" print f
| PAnd l ->
fprintf fmt "(and";
List.iter (fprintf fmt " %a" print) l;
fprintf fmt ")";
| POr l ->
fprintf fmt "(or";
List.iter (fprintf fmt " %a" print) l;
fprintf fmt ")";
| PImp (a, b) -> fprintf fmt "(%a => %a)" print a print b
| PEquiv (a, b) -> fprintf fmt "(%a <=> %a)" print a print b
| PIte (c, t, e) ->
fprintf fmt "(if %a then %a else %a)" print c print t print e
| PForall (vs, f) ->
fprintf fmt "(forall";
List.iter (fprintf fmt " %a" Variable.print) vs;
fprintf fmt ". %a)" print f
| PExists (vs, f) ->
fprintf fmt "(exists";
List.iter (fprintf fmt " %a" Variable.print) vs;
fprintf fmt ". %a)" print f
| PForall_other (vs, f) ->
fprintf fmt "(forall_other";
List.iter (fprintf fmt " %a" Variable.print) vs;
fprintf fmt ". %a)" print f
| PExists_other (vs, f) ->
fprintf fmt "(exists_other";
List.iter (fprintf fmt " %a" Variable.print) vs;
fprintf fmt ". %a)" print f
let print_tof fmt = function
| PF f -> fprintf fmt "F<%a>" print f
| PT t -> fprintf fmt "T<%a>" print_term t
let print_subst fmt =
List.iter (fun (v, tof) ->
fprintf fmt " %a -> %a, " Hstring.print v print_tof tof
)
(* type atom = [ PAtom of Atom.t ] *)
(* type clause = [atom | POr of atom list] *)
(* type conj = [atom | PAnd of atom list] *)
(* type cnf = [clause | PAnd of clause list] *)
(* type dnf = [conj | POr of conj list] *)
(* type uguard = [PForall_other of Variable.t list * dnf] *)
(* type guard = [dnf | uguard] *)
(* type prenex_forall_dnf = [dnf | PForall of Variable.t list * dnf] *)
(* type cube = [conj | PExists of Variable.t list * conj] *)
type pswts = (cformula * term) list
type pglob_update = PUTerm of term | PUCase of pswts
type pupdate = {
pup_loc : loc;
pup_arr : Hstring.t;
pup_arg : Variable.t list;
pup_swts : pswts;
}
type ptransition = {
ptr_lets : (Hstring.t * term) list;
ptr_name : Hstring.t;
ptr_args : Variable.t list;
ptr_reqs : cformula;
ptr_assigns : (Hstring.t * pglob_update) list;
ptr_upds : pupdate list;
ptr_nondets : Hstring.t list;
ptr_loc : loc;
}
type psystem = {
pglobals : (loc * Hstring.t * Smt.Type.t) list;
pconsts : (loc * Hstring.t * Smt.Type.t) list;
parrays : (loc * Hstring.t * (Smt.Type.t list * Smt.Type.t)) list;
ptype_defs : (loc * Ast.type_constructors) list;
pinit : loc * Variable.t list * cformula;
pinvs : (loc * Variable.t list * cformula) list;
punsafe : (loc * Variable.t list * cformula) list;
ptrans : ptransition list;
}
type pdecl =
| PInit of (loc * Variable.t list * cformula)
| PInv of (loc * Variable.t list * cformula)
| PUnsafe of (loc * Variable.t list * cformula)
| PTrans of ptransition
| PFun
let add_fun_def name args f =
(* eprintf "add fun %a (%a)@." Hstring.print name Variable.print_vars args; *)
Hstring.H.add function_defs name (args, f)
type subst = (Variable.t * term_or_formula) list
let restr_subst_to sigma vars =
List.fold_left (fun acc -> function
| v, PF (PAtom (AVar v'))
| v, PT (TVar v')
| v, PT (TTerm (Elem(v', Var))) ->
if Variable.Set.mem v vars then
(v, v') :: acc
else acc
| v, _ ->
if Variable.Set.mem v vars then
failwith "Can only apply substitutions of kind var -> var \
inside terms and atom."
else acc
) [] sigma
let subst_term sigma tt = match tt with
| TVar v ->
(match Hstring.list_assoc v sigma with
| PT t -> t
| PF _ -> failwith "Cannot apply formula substitution in term."
| exception Not_found -> tt)
| TTerm t ->
(* eprintf "susbst in term %a (%a)@." Term.print t *)
(* Variable.print_vars (Term.variables t |> Variable.Set.elements); *)
let sigma' = restr_subst_to sigma (Term.variables t) in
(* eprintf "subst in %a ::: %a@." print_term tt Variable.print_subst sigma'; *)
let t' = Term.subst sigma' t in
(* eprintf " result %a@." Term.print t'; *)
if t == t' then tt else TTerm t'
let subst_atom sigma aa = match aa with
| AVar v ->
(match Hstring.list_assoc v sigma with
| PF f -> f
| PT _ -> failwith "Cannot apply term substitution in atom."
| exception Not_found -> PAtom aa)
| AEq (t1, t2) | ANeq (t1, t2) | ALe (t1, t2) | ALt (t1, t2) ->
(* eprintf "susbst natom@."; *)
let t1' = subst_term sigma t1 in
let t2' = subst_term sigma t2 in
if t1 == t1' && t2 == t2' then PAtom aa
else
PAtom (match aa with
| AEq _ -> AEq (t1', t2')
| ANeq _ -> ANeq (t1', t2')
| ALe _ -> ALe (t1', t2')
| ALt _ -> ALt (t1', t2')
| _ -> assert false
)
| AAtom a ->
let sigma' = restr_subst_to sigma (Atom.variables a) in
let a' = Atom.subst sigma' a in
if a == a' then PAtom aa else PAtom (AAtom a')
let rec apply_subst sigma (f:formula) = match f with
| PAtom a ->
let f' = subst_atom sigma a in
if f == f' then f else f'
| PNot nf ->
let nf' = apply_subst sigma nf in
if nf == nf' then f else PNot nf'
| PAnd l ->
let l' = List.map (apply_subst sigma) l in
if List.for_all2 (fun c c' -> c == c') l l' then f else PAnd l'
| POr l ->
let l' = List.map (apply_subst sigma) l in
if List.for_all2 (fun c c' -> c == c') l l' then f else POr l'
| PImp (a, b) ->
let a', b' = apply_subst sigma a, apply_subst sigma b in
if a == a' && b == b' then f else PImp (a', b')
| PIte (c, t, e) ->
let c', t', e' =
apply_subst sigma c, apply_subst sigma t, apply_subst sigma e in
if c == c' && t == t' && e == e' then f else PIte (c', t', e')
| PEquiv (a, b) ->
let a', b' = apply_subst sigma a, apply_subst sigma b in
if a == a' && b == b' then f else PEquiv (a', b')
| PForall (vs, qf)
| PExists (vs, qf)
| PForall_other (vs, qf)
| PExists_other (vs, qf) ->
(* Removed shadowed variables *)
let sigma = List.filter (fun (v,_) -> not (Hstring.list_mem v vs)) sigma in
let qf' = apply_subst sigma qf in
if qf == qf' then f else match f with
| PForall _ -> PForall (vs, qf')
| PExists _ -> PExists (vs, qf')
| PForall_other _ -> PForall_other (vs, qf')
| PExists_other _ -> PExists_other (vs, qf')
| _ -> assert false
let app_fun name args =
try
let vars, f = Hstring.H.find function_defs name in
(* eprintf "app fun %a (%a)@." Hstring.print name Variable.print_vars vars; *)
let nvars, nargs = List.length vars, List.length args in
if nvars <> nargs then
failwith (asprintf
"Wrong arity: %a takes %d arguments but was given %d."
Hstring.print name nvars nargs);
let sigma = List.combine vars args in
(* eprintf "app fun subst : %a@." print_subst sigma; *)
(* eprintf "app fun in : %a@." print f; *)
let r = apply_subst sigma f in
(* eprintf "result : %a@." print r; *)
r
with Not_found ->
failwith (asprintf "Undefined function symbol %a." Hstring.print name)
let neg_atom aa = match aa with
| AVar v -> PNot (PAtom aa)
| AAtom a -> PAtom (AAtom (Atom.neg a))
| AEq (t1, t2) -> PAtom (ANeq (t1, t2))
| ANeq (t1, t2) -> PAtom (AEq (t1, t2))
| ALe (t1, t2) -> PAtom (ALt(t2, t1))
| ALt (t1, t2) -> PAtom (ALe(t2, t1))
let rec neg = function
| PAtom a -> neg_atom a
| PNot f -> f
| PAnd l -> POr (List.map neg l)
| POr l -> PAnd (List.map neg l)
| PImp (a, b) -> PAnd [a; neg b]
| PIte (c, t, e) -> POr [PAnd [c; neg t]; PAnd [neg c; e]]
| PEquiv (a, b) -> POr [PAnd [a; neg b]; PAnd [neg a; b]]
| PForall (vs, f) -> PExists (vs, neg f)
| PExists (vs, f) -> PForall (vs, neg f)
| PForall_other (vs, f) -> PExists_other (vs, neg f)
| PExists_other (vs, f) -> PForall_other (vs, neg f)
let rec nnf = function
| PAtom _ as a -> a
| PNot f -> nnf (neg f)
| PAnd l ->
let l' = List.fold_left (fun acc x -> match nnf x with
| PAnd xs -> List.rev_append xs acc
| nx -> nx :: acc) [] l |> List.rev in
PAnd l'
| POr l ->
let l' = List.fold_left (fun acc x -> match nnf x with
| POr xs -> List.rev_append xs acc
| nx -> nx :: acc) [] l |> List.rev in
POr l'
| PImp (a, b) -> nnf (POr [neg a; b])
| PIte (c, t, e) -> nnf (PAnd [POr [neg c; t]; POr [c; e]])
| PEquiv (a, b) -> nnf (PAnd [POr [neg a; b]; POr [a; neg b]])
| PForall (vs, f) -> PExists (vs, nnf f)
| PExists (vs, f) -> PForall (vs, nnf f)
| PForall_other (vs, f) -> PExists_other (vs, nnf f)
| PExists_other (vs, f) -> PForall_other (vs, nnf f)
let list_of_conj = function
| PAnd l -> l
| (* PAtom _ as *) a -> [a]
let list_of_disj = function
| POr l -> l
| (* PAtom _ as *) a -> [a]
let list_of_cnf = function
| PAnd l -> l
| (* (PAtom _ | POr _) as *) f -> [ f ]
let list_of_dnf = function
| POr l -> l
| (* (PAtom _ | PAnd _) as *) f -> [ f ]
let cross a b =
List.fold_left (fun acc la ->
List.fold_left (fun acc' lb ->
PAnd (list_of_conj lb @ list_of_conj la) :: acc'
) acc (list_of_dnf b)
|> List.rev
) [] (list_of_dnf a)
|> (fun l -> POr l)
let rec dnf_aux = function
| PAtom _ | PNot _ as lit -> lit
| PAnd (f :: l) ->
List.fold_left (fun acc g ->
cross (dnf_aux g) acc)
(dnf_aux f) l
| POr l ->
let l' = List.fold_left (fun acc x -> match dnf_aux x with
| POr xs -> List.rev_append xs acc
| (* (PAnd _ | PAtom _) as *) nx -> nx :: acc) [] l |> List.rev in
POr l'
| PAnd [] -> assert false
| PForall (vs, f) -> PExists (vs, dnf_aux f)
| PExists (vs, f) -> PForall (vs, dnf_aux f)
| PForall_other (vs, f) -> PExists_other (vs, dnf_aux f)
| PExists_other (vs, f) -> PForall_other (vs, dnf_aux f)
| _ -> assert false
let dnf f = dnf_aux (nnf f)
let fresh_var =
let cpt = ref 0 in
fun () ->
incr cpt;
Hstring.make ("_v"^string_of_int !cpt)
let rec foralls_above_and (vars, acc) = function
| PForall (vs, f) :: l ->
let sigma = List.map (fun v -> v, PT (TVar (fresh_var ()))) vs in
let acc = apply_subst sigma f :: acc in
let vars = List.rev_append vs vars in
foralls_above_and (vars, acc) l
| [] ->
let c = PAnd (List.rev acc) in
if vars = [] then c else PForall (List.rev vars, c)
| f :: l ->
(* | (PEquiv _ | PImp _ | PIte _ | PNot _ | PVar _ | PAtom _ | PAnd _ | POr _ | PExists _ *)
(* | PForall_other _ | PExists_other _ as f) :: l -> *)
foralls_above_and (vars, f :: acc) l
let rec exists_above_or (vars, acc) = function
| PExists (vs, f) :: l ->
let sigma = List.map (fun v -> v, PT (TVar (fresh_var ()))) vs in
let acc = apply_subst sigma f :: acc in
let vars = List.rev_append vs vars in
exists_above_or (vars, acc) l
| [] ->
let c = POr (List.rev acc) in
if vars = [] then c else PExists (List.rev vars, c)
(* | ( PEquiv _ | PImp _ | PIte _ | PNot _ | PVar _ | PAtom _ | PAnd _ | POr _ | PForall _ *)
(* | PForall_other _ | PExists_other _ as f) :: l -> *)
| f :: l ->
exists_above_or (vars, f :: acc) l
let rec up_quantifiers = function
| PAtom _ as a -> a
| PForall _ | PExists _ | PForall_other _ | PExists_other _ as f -> f
| PAnd l ->
let l' = List.map up_quantifiers l in
foralls_above_and ([],[]) l'
| POr l ->
let l' = List.map up_quantifiers l in
exists_above_or ([],[]) l'
| PEquiv _ | PImp _ | PIte _ | PNot _ -> assert false
let conv_term = function
| TVar v -> Elem (v, Var)
| TTerm t -> t
let conv_atom aa = match aa with
| AVar _ -> failwith "Remaining free variables in atom."
| AEq (t1, t2) | ANeq (t1, t2) | ALe (t1, t2) | ALt (t1, t2) ->
let t1 = conv_term t1 in
let t2 = conv_term t2 in
let op = match aa with
| AEq _ -> Eq
| ANeq _ -> Neq
| ALe _ -> Le
| ALt _ -> Lt
| _ -> assert false
in
Atom.Comp (t1, op, t2)
| AAtom a -> a
let satom_of_atom_list =
List.fold_left (fun acc -> function
| PAtom a -> SAtom.add (conv_atom a) acc
| x -> eprintf "%a@." print x; assert false
) SAtom.empty
let satom_of_cube = function
| PAtom a -> SAtom.singleton (conv_atom a)
| PAnd l -> satom_of_atom_list l
| _ -> assert false
let satoms_of_dnf = function
| PAtom _ | PAnd _ as c -> [satom_of_cube c]
| POr l -> List.map satom_of_cube l
| _ -> assert false
let unsafes_of_formula f =
match up_quantifiers (dnf f) with
| PExists (vs, f) -> vs, satoms_of_dnf f
| sf -> [], satoms_of_dnf sf
let inits_of_formula f =
match up_quantifiers (dnf f) with
| PForall (vs, f) -> vs, satoms_of_dnf f
| sf -> [], satoms_of_dnf sf
let rec forall_to_others tr_args f = match f with
| PAtom _ -> f
| PNot f1 ->
let f1' = forall_to_others tr_args f1 in
if f1 == f1' then f else PNot f1'
| PAnd l ->
let l' = List.map (forall_to_others tr_args) l in
if List.for_all2 (==) l l' then f else PAnd l'
| POr l ->
let l' = List.map (forall_to_others tr_args) l in
if List.for_all2 (==) l l' then f else POr l'
| PImp (a, b) ->
let a' = forall_to_others tr_args a in
let b' = forall_to_others tr_args b in
if a == a' && b == b' then f else PImp(a', b')
| PIte (c, t, e) ->
let c' = forall_to_others tr_args c in
let t' = forall_to_others tr_args t in
let e' = forall_to_others tr_args e in
if c == c' && t == t' && e == e' then f else PIte(c', t', e')
| PEquiv (a, b) ->
let a' = forall_to_others tr_args a in
let b' = forall_to_others tr_args b in
if a == a' && b == b' then f else PEquiv(a', b')
| PForall ([v], f) ->
PAnd (PForall_other ([v], f) ::
List.map (fun a -> apply_subst [v, PT (TVar a)] f) tr_args)
| PForall _ | PExists _ | PForall_other _ | PExists_other _ -> f
let uguard_of_formula = function
| PForall_other ([v], f) -> v, satoms_of_dnf f
| _ -> assert false
let rec classify_guards (req, ureq) = function
| [] -> PAnd req, ureq
| PForall_other _ as f :: l -> classify_guards (req, f :: ureq) l
| PAtom _ as f :: l -> classify_guards (f :: req, ureq) l
| _ -> assert false
let rec guard_of_formula_aux = function
| PAtom _ as f -> [satom_of_cube f, []]
| PAnd l ->
let req, ureq = classify_guards ([],[]) l in
[satom_of_cube req, List.map uguard_of_formula ureq]
| POr l -> List.map guard_of_formula_aux l |> List.flatten
| f ->
let req, ureq = classify_guards ([],[]) [f] in
[satom_of_cube req, List.map uguard_of_formula ureq]
(* | _ -> assert false *)
let guard_of_formula tr_args f =
match f |> forall_to_others tr_args |> dnf |> up_quantifiers with
| PForall _ | PExists _ | PExists_other _ -> assert false
| f -> guard_of_formula_aux f
(* Encodings of Ptree systems to AST systems *)
let encode_term = function
| TVar v -> Elem (v, Var)
| TTerm t -> t
let encode_pswts pswts =
List.fold_left (fun acc (f, t) ->
let d = satoms_of_dnf (dnf f) in
let t = encode_term t in
List.fold_left (fun acc sa -> (sa, t) :: acc) acc d
) [] pswts
|> List.rev
let encode_pglob_update = function
| PUTerm t -> UTerm (encode_term t)
| PUCase pswts -> UCase (encode_pswts pswts)
let encode_pupdate {pup_loc; pup_arr; pup_arg; pup_swts} =
{ up_loc = pup_loc;
up_arr = pup_arr;
up_arg = pup_arg;
up_swts = encode_pswts pup_swts;
}
let encode_ptransition
{ptr_lets; ptr_name; ptr_args; ptr_reqs; ptr_assigns;
ptr_upds; ptr_nondets; ptr_loc;} =
let dguards = guard_of_formula ptr_args ptr_reqs in
let tr_assigns = List.map (fun (i, pgu) ->
(i, encode_pglob_update pgu)) ptr_assigns in
let tr_upds = List.map encode_pupdate ptr_upds in
let tr_lets = List.map (fun (x, t) -> (x, encode_term t)) ptr_lets in
List.rev_map (fun (req, ureq) ->
{ tr_name = ptr_name;
tr_args = ptr_args;
tr_reqs = req;
tr_ureq = ureq;
tr_lets = tr_lets;
tr_assigns;
tr_upds;
tr_nondets = ptr_nondets;
tr_loc = ptr_loc }
) dguards
let encode_psystem
{pglobals; pconsts; parrays; ptype_defs;
pinit = init_loc, init_vars, init_f;
pinvs; punsafe; ptrans} =
let other_vars, init_dnf = inits_of_formula init_f in
let init = init_loc, init_vars @ other_vars, init_dnf in
let invs =
List.fold_left (fun acc (inv_loc, inv_vars, inv_f) ->
let other_vars, dnf = unsafes_of_formula inv_f in
let inv_vars = inv_vars @ other_vars in
List.fold_left (fun acc sa -> (inv_loc, inv_vars, sa) :: acc) acc dnf
) [] pinvs
|> List.rev
in
let unsafe =
List.fold_left (fun acc (unsafe_loc, unsafe_vars, unsafe_f) ->
let other_vars, dnf = unsafes_of_formula unsafe_f in
(* List.iter (fun sa -> eprintf "unsafe : %a@." SAtom.print sa) dnf; *)
let unsafe_vars = unsafe_vars @ other_vars in
List.fold_left
(fun acc sa -> (unsafe_loc, unsafe_vars, sa) :: acc) acc dnf
) [] punsafe
in
let trans =
List.fold_left (fun acc ptr ->
List.fold_left (fun acc tr -> tr :: acc) acc (encode_ptransition ptr)
) [] ptrans
|> List.sort (fun t1 t2 ->
let c = compare (List.length t1.tr_args) (List.length t2.tr_args) in
if c <> 0 then c else
let c = compare (List.length t1.tr_upds) (List.length t2.tr_upds) in
if c <> 0 then c else
let c = compare (List.length t1.tr_ureq) (List.length t2.tr_ureq) in
if c <> 0 then c else
compare (SAtom.cardinal t1.tr_reqs) (SAtom.cardinal t2.tr_reqs)
)
in
{
globals = pglobals;
consts = pconsts;
arrays = parrays;
type_defs = ptype_defs;
init;
invs;
unsafe;
trans;
}
let psystem_of_decls ~pglobals ~pconsts ~parrays ~ptype_defs pdecls =
let inits, pinvs, punsafe, ptrans =
List.fold_left (fun (inits, invs, unsafes, trans) -> function
| PInit i -> i :: inits, invs, unsafes, trans
| PInv i -> inits, i :: invs, unsafes, trans
| PUnsafe u -> inits, invs, u :: unsafes, trans
| PTrans t -> inits, invs, unsafes, t :: trans
| PFun -> inits, invs, unsafes, trans
) ([],[],[],[]) pdecls
in
let pinit = match inits with
| [i] -> i
| [] -> failwith "No inititial formula."
| _::_ -> failwith "Only one initital formula alowed."
in
{ pglobals;
pconsts;
parrays;
ptype_defs;
pinit;
pinvs;
punsafe;
ptrans }
let print_type_defs fmt =
List.iter (function
| _, (ty, []) ->
fprintf fmt "@{<fg_magenta>type@} @{<fg_green>%a@}" Hstring.print ty
| _, (ty, cstrs) ->
fprintf fmt "@{<fg_magenta>type@} @{<fg_green>%a@} = @[<hov>%a@]\n"
Hstring.print ty
(Pretty.print_list
(fun fmt -> fprintf fmt "@{<fg_blue>%a@}" Hstring.print)
"@ | ") cstrs
)
let print_globals fmt =
List.iter (fun (_, g, ty) ->
fprintf fmt "@{<fg_magenta>var@} @{<fg_red>%a@} : @{<fg_green>%a@}@."
Hstring.print g Hstring.print ty
)
let print_arrays fmt =
List.iter (fun (_, a, (args_ty, ty)) ->
fprintf fmt "@{<fg_magenta>array@} @{<fg_red>%a@}[%a] : \
@{<fg_green>%a@}@."
Hstring.print a
(Pretty.print_list
(fun fmt -> fprintf fmt "@{<fg_green>%a@}" Hstring.print)
",@ ") args_ty
Hstring.print ty
)
let print_consts fmt =
List.iter (fun (_, c, ty) ->
fprintf fmt "@{<fg_magenta>const@} @{<fg_blue>%a@} : @{<fg_green>%a@}@."
Hstring.print c Hstring.print ty
)
let print_dnf =
Pretty.print_list
(fun fmt -> fprintf fmt "@[<hov 4>%a@]" SAtom.print_inline)
"@ || "
let print_init fmt (_, vars, dnf) =
fprintf fmt "@{<fg_magenta>init@} (%a) {@ %a@ }@,"
Variable.print_vars vars
print_dnf dnf
let print_unsafe fmt =
List.iter (fun (_, vars, u) ->
fprintf fmt "@{<fg_magenta>unsafe@} (%a) {@ %a@ }@,"
Variable.print_vars vars
SAtom.print_inline u
)
let print_invs fmt =
List.iter (fun (_, vars, inv) ->
fprintf fmt "@{<fg_magenta>invariant@} (%a) {@ %a@ }@,"
Variable.print_vars vars
SAtom.print_inline inv
)
let print_reqs fmt (tr_reqs, tr_ureq) =
if SAtom.for_all Atom.(equal True) tr_reqs && tr_ureq = [] then ()
else
fprintf fmt "@{<fg_magenta>requires@} @[<hov 2>{@ %a%a@ }@]@,"
SAtom.print_inline tr_reqs
(fun fmt -> List.iter (fun (v, u) ->
fprintf fmt "@ &&@ @[<hov 1>(@{<fg_magenta>forall_other@} %a.@ %a)@]"
Variable.print v print_dnf u
)) tr_ureq
let print_lets fmt tr_lets =
List.iter (fun (v, t) ->
fprintf fmt "@[<hov>@{<fg_magenta>let@} %a@ =@ %a@ @{<fg_magenta>in@}@]@,"
Hstring.print v Term.print t
) tr_lets
let print_swts fmt swts =
match List.rev swts with
| (_, def) :: rsw ->
fprintf fmt "@[<v -2>@{<fg_magenta>case@}@,";
List.iter (fun (c, t) ->
fprintf fmt "@[<hov 2>| %a :@ %a@]@," SAtom.print_inline c Term.print t
) (List.rev rsw);
fprintf fmt "@[<hov 2>| _ :@ %a@]" Term.print def;
fprintf fmt "@]"
| _ -> assert false
let print_assigns fmt tr_assigns =
List.iter (fun (g, gu) ->
fprintf fmt "@[<hov>%a@ =@ " Hstring.print g;
match gu with
| UTerm t -> fprintf fmt "%a;@]@," Term.print t
| UCase swts -> fprintf fmt "%a;@]@," print_swts swts
) tr_assigns
let print_updates fmt tr_upds =
List.iter (fun { up_arr; up_arg; up_swts } ->
fprintf fmt "@[<hov>%a[%a]@ =@ %a;@]@,"
Hstring.print up_arr
Variable.print_vars up_arg
print_swts up_swts
) tr_upds
let print_nondets fmt =
List.iter (fprintf fmt "%a = ?;@," Hstring.print)
let print_trans fmt =
List.iter
(fun { tr_name; tr_args; tr_reqs; tr_ureq; tr_lets;
tr_assigns; tr_upds; tr_nondets } ->
fprintf fmt
"@[<v>@{<fg_magenta>transition@} @{<fg_cyan_b>%a@} (%a)@,\
%a\
{@[<v 2>@,\
%a\
%a\
%a\
%a\
@]}\
@,@,@]"
Hstring.print tr_name
Variable.print_vars tr_args
print_reqs (tr_reqs, tr_ureq)
print_lets tr_lets
print_assigns tr_assigns
print_updates tr_upds
print_nondets tr_nondets
)
let print_system fmt { type_defs;
globals;
arrays;
consts;
init;
invs;
unsafe;
trans } =
print_type_defs fmt type_defs;
pp_print_newline fmt ();
print_globals fmt globals;
(* pp_print_newline fmt (); *)
print_arrays fmt arrays;
(* pp_print_newline fmt (); *)
print_consts fmt consts;
pp_print_newline fmt ();
print_init fmt init;
pp_print_newline fmt ();
print_invs fmt invs;
pp_print_newline fmt ();
print_unsafe fmt unsafe;
pp_print_newline fmt ();
print_trans fmt (List.rev trans)
let encode_psystem psys =
let sys = encode_psystem psys in
if Options.debug then print_system std_formatter sys;
sys