forked from trevlovett/Python-Ant-Colony-TSP-Solver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathantcolony.py
116 lines (90 loc) · 3.36 KB
/
antcolony.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from ant import Ant
from threading import Lock, Condition
import random
import sys
class AntColony:
def __init__(self, graph, num_ants, num_iterations):
self.graph = graph
self.num_ants = num_ants
self.num_iterations = num_iterations
self.Alpha = 0.1
# condition var
self.cv = Condition()
self.reset()
def reset(self):
self.best_path_cost = sys.maxint
self.best_path_vec = None
self.best_path_mat = None
self.last_best_path_iteration = 0
def start(self):
self.ants = self.create_ants()
self.iter_counter = 0
while self.iter_counter < self.num_iterations:
self.iteration()
self.cv.acquire()
# wait until update calls notify()
self.cv.wait()
lock = self.graph.lock
lock.acquire()
self.global_updating_rule()
lock.release()
self.cv.release()
# one iteration involves spawning a number of ant threads
def iteration(self):
self.avg_path_cost = 0
self.ant_counter = 0
self.iter_counter += 1
print "iter_counter = %s" % (self.iter_counter,)
for ant in self.ants:
print "starting ant = %s" % (ant.ID)
ant.start()
def num_ants(self):
return len(self.ants)
def num_iterations(self):
return self.num_iterations
def iteration_counter(self):
return self.iter_counter
# called by individual ants
def update(self, ant):
lock = Lock()
lock.acquire()
#outfile = open("results.dat", "a")
print "Update called by %s" % (ant.ID,)
self.ant_counter += 1
self.avg_path_cost += ant.path_cost
# book-keeping
if ant.path_cost < self.best_path_cost:
self.best_path_cost = ant.path_cost
self.best_path_mat = ant.path_mat
self.best_path_vec = ant.path_vec
self.last_best_path_iteration = self.iter_counter
if self.ant_counter == len(self.ants):
self.avg_path_cost /= len(self.ants)
print "Best: %s, %s, %s, %s" % (self.best_path_vec, self.best_path_cost, self.iter_counter, self.avg_path_cost,)
#outfile.write("\n%s\t%s\t%s" % (self.iter_counter, self.avg_path_cost, self.best_path_cost,))
self.cv.acquire()
self.cv.notify()
self.cv.release()
#outfile.close()
lock.release()
def done(self):
return self.iter_counter == self.num_iterations
# assign each ant a random start-node
def create_ants(self):
self.reset()
ants = []
for i in range(0, self.num_ants):
ant = Ant(i, random.randint(0, self.graph.num_nodes - 1), self)
ants.append(ant)
return ants
# changes the tau matrix based on evaporation/deposition
def global_updating_rule(self):
evaporation = 0
deposition = 0
for r in range(0, self.graph.num_nodes):
for s in range(0, self.graph.num_nodes):
if r != s:
delt_tau = self.best_path_mat[r][s] / self.best_path_cost
evaporation = (1 - self.Alpha) * self.graph.tau(r, s)
deposition = self.Alpha * delt_tau
self.graph.update_tau(r, s, evaporation + deposition)