-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathbenchmark_model.py
78 lines (58 loc) · 2.18 KB
/
benchmark_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
''' This module evaluates the performance of a trained CPC encoder '''
from data_utils import MnistGenerator
from os.path import join, basename, dirname, exists
import keras
def build_model(encoder_path, image_shape, learning_rate):
# Read the encoder
encoder = keras.models.load_model(encoder_path)
# Freeze weights
encoder.trainable = False
for layer in encoder.layers:
layer.trainable = False
# Define the classifier
x_input = keras.layers.Input(image_shape)
x = encoder(x_input)
x = keras.layers.Dense(units=128, activation='linear')(x)
x = keras.layers.BatchNormalization()(x)
x = keras.layers.LeakyReLU()(x)
x = keras.layers.Dense(units=10, activation='softmax')(x)
# Model
model = keras.models.Model(inputs=x_input, outputs=x)
# Compile model
model.compile(
optimizer=keras.optimizers.Adam(lr=learning_rate),
loss='categorical_crossentropy',
metrics=['categorical_accuracy']
)
model.summary()
return model
def benchmark_model(encoder_path, epochs, batch_size, output_dir, lr=1e-4, image_size=28, color=False):
# Prepare data
train_data = MnistGenerator(batch_size, subset='train', image_size=image_size, color=color, rescale=True)
validation_data = MnistGenerator(batch_size, subset='valid', image_size=image_size, color=color, rescale=True)
# Prepares the model
model = build_model(encoder_path, image_shape=(image_size, image_size, 3), learning_rate=lr)
# Callbacks
callbacks = [keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=1/3, patience=2, min_lr=1e-4)]
# Trains the model
model.fit_generator(
generator=train_data,
steps_per_epoch=len(train_data),
validation_data=validation_data,
validation_steps=len(validation_data),
epochs=epochs,
verbose=1,
callbacks=callbacks
)
# Saves the model
model.save(join(output_dir, 'supervised.h5'))
if __name__ == "__main__":
benchmark_model(
encoder_path='models/64x64/encoder.h5',
epochs=15,
batch_size=64,
output_dir='models/64x64',
lr=1e-3,
image_size=64,
color=True
)