-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcaldgemm_cuda.cu
841 lines (746 loc) · 33.6 KB
/
caldgemm_cuda.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
/*
* CPU side of CALDGEMM implementation.
*
* Copyright 2015:
* - David Rohr ([email protected])
* - Matthias Bach ([email protected])
* - Matthias Kretz ([email protected])
*
* This file is part of CALDGEMM.
*
* CALDGEMM is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CALDGEMM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with CALDGEMM. If not, see <http://www.gnu.org/licenses/>.
*/
#include "caldgemm_cuda.h"
#define CUDAKernelName CUDAKernel
#include "cudakernel.cu"
#undef CUDAKernelName
#define CUDAKernelName CUDAKernelALPHA1
#define CALDGEMM_ALPHA1
#include "cudakernel.cu"
#undef CUDAKernelName
#define CUDAKernelName CUDAKernelLinpack
#define CALDGEMM_LINPACK_KERNEL
#include "cudakernel.cu"
#undef CALDGEMM_LINPACK_KERNEL
#undef CALDGEMM_ALPHA1
#undef CUDAKernelName
__global__ void CUDAConversionKernel(const double* __restrict__ iBuffer, double* __restrict__ oBuffer, size_t width, size_t height)
{
for (int j = blockIdx.y * blockDim.y + threadIdx.y;j < height;j += blockDim.y * gridDim.y)
{
for (int i = blockIdx.x * blockDim.x + threadIdx.x;i < width;i += blockDim.x * gridDim.x)
{
oBuffer[i * height + j] = iBuffer[j * width + i];
}
}
}
#define ERRRET(...) {fprintf(STD_OUT, __VA_ARGS__);fprintf(STD_OUT, "\n");return(1);}
#define CHKRET(result, ...) \
{ \
cudaError_t tmp_cuda_result = result; \
if (tmp_cuda_result != cudaSuccess) \
{ \
fprintf(STD_OUT, "CUDA Error %d: %s\n%s:%d\n", tmp_cuda_result, cudaGetErrorString(tmp_cuda_result), __FILE__, __LINE__); \
ERRRET(__VA_ARGS__); \
} \
}
caldgemm_cuda::caldgemm_cuda() : caldgemm()
{
}
caldgemm_cuda::~caldgemm_cuda()
{
}
int caldgemm_cuda::WaitForEventAndRelease(cudaEvent_t* pEvent)
{
CHKRET(cudaEventSynchronize(*pEvent), "Waiting for event");
return(0);
}
int caldgemm_cuda::WaitForEvent(int a, int b, int)
{
if (Config->SimpleGPUQueuing) return(0);
if (Config->Debug) fprintf(STD_OUT, "\tWaiting for event from device %d obuffer %d...\n", b, a);
return(WaitForEventAndRelease(&cuda_events[b][a]));
}
int caldgemm_cuda::Initialize(bool nocalinit)
{
int deviceNum = Config->DeviceNum;
if (!Config->Quiet) fprintf(STD_OUT, "Initializing CALDGEMM (CUDA Runtime)\n");
if (Config->Debug) fprintf(STD_OUT, "CUDA Initialice\n");
if (nDevices > (signed) max_devices) nDevices = max_devices;
int nGoodDevices = 0;
int* goodDevices = new int[nDevices];
for (int i = 0;i < nDevices;i++)
{
cudaDeviceProp deviceProp;
CHKRET(cudaGetDeviceProperties(&deviceProp, i), "Getting CUDA Device Properties");
int deviceOK = deviceProp.major < 9 && deviceProp.major >= 2;
if (Config->Debug) fprintf(STD_OUT, "Device %2d (%d): %30s %s\n", deviceOK ? nGoodDevices : -1, i, deviceProp.name, deviceOK ? "OK" : "--");
if (deviceOK) goodDevices[nGoodDevices++] = i;
}
nDevices = nGoodDevices;
if (nDevices > (signed) max_devices) nDevices = max_devices;
if (nDevices > Config->NumDevices) nDevices = Config->NumDevices;
if (deviceNum >= nDevices) ERRRET("CUDA Device %d not available\n", deviceNum);
if (deviceNum >= 0) nDevices = 1;
if (!Config->UseGPU) nDevices = 0;
gpu_available = (nDevices > 0);
if (nDevices > 1 && !Config->MultiThread)
{
fprintf(STD_OUT, "Cannot use multiple devices without multithreading\n");
nDevices = 1;
}
for (int i = 0;i < nDevices;i++)
{
if (deviceNum >= 0) cuda_devices[i] = goodDevices[deviceNum];
else cuda_devices[i] = goodDevices[Config->DeviceNums[i]];
}
delete[] goodDevices;
if (Config->DstMemory == 'c')
{
CHKRET(cudaSetDeviceFlags(cudaDeviceMapHost), "Setting CUDA Device flags");
}
for (int i = 0;i < nDevices;i++)
{
CHKRET(cudaSetDevice(cuda_devices[i]), "Settig CUDA Device");
for (int j = 0;j < (Config->AlternateSimpleQueuing ? (Config->AlternateSimpleQueuingMulti ? (2 + obuffercount) : 3) : obuffercount);j++)
{
CHKRET(cudaStreamCreate(&cuda_command_queues[i][j]), "Creating CUDA Stream");
}
#ifdef CALDGEMM_CUDA_CUBLAS
CHKRET((cudaError_t)cublasCreate(&cublas_handles[i]),"Initializing Cublas library");
#endif
}
AlternateLookaheadDoneMutexSQ.Lock();
if (Config->AlternateSimpleQueuing) for (int i = 0;i < 2;i++) CHKRET(cudaEventCreateWithFlags(&alternateSimpleQueueTmpEvents[i], cudaEventDisableTiming), "Creating Event");
return(0);
}
int caldgemm_cuda::ValidateRuntime()
{
if (Config->Debug) fprintf(STD_OUT, "CUDA ValidateRuntime\n");
Config->MultiThreadDivide = false;
if (Config->ThreadSaveDriver != -1) Config->ThreadSaveDriver = 1;
Config->GPU_C = true;
CHKRET(cudaGetDeviceCount(&nDevices), "Getting Device Count");
if (nDevices == 0) ERRRET("No CUDA device for this platform found\n");
if (Config->Debug) fprintf(STD_OUT, "%d CUDA devices found for this platform\n", nDevices);
SetDefaultKernelSettings();
#ifdef CALDGEMM_CUDA_CUBLAS
KernelSettings.transposeA = true;
KernelSettings.transposeB = false;
#else
KernelSettings.transposeA = false;
KernelSettings.transposeB = true;
#endif
KernelSettings.texture_buffers = false;
KernelSettings.tiling_x = 1;
KernelSettings.tiling_y = 1;
KernelSettings.group_size_x = GROUP_SIZE_X;
KernelSettings.group_size_y = GROUP_SIZE_Y;
KernelSettings.min_tile_size = 32;
KernelSettings.min_k = 4;
if (!(KernelSettings.transposeA ^ KernelSettings.transposeB))
{
fprintf(STD_OUT, "Must set either transposed A or transposed B\n");
return(1);
}
return(0);
}
int caldgemm_cuda::CheckDevices()
{
return(0);
}
int caldgemm_cuda::InitDevices()
{
if (Config->Debug) fprintf(STD_OUT, "CUDA InitDevices\n");
cudaError_t cuda_error;
int num_bbuffers;
if (Config->max_bbuffers) num_bbuffers = Config->max_bbuffers;
else if (Config->DstMemory == 'g') num_bbuffers = max_bbuffers_g;
else num_bbuffers = max_bbuffers;
if (num_bbuffers > max_bbuffers)
{
fprintf(STD_OUT, "Requested number of bbuffers (%d) larger than max_bbuffers constant (%d)!", num_bbuffers, max_bbuffers);
return(1);
}
SetupBufferSizes();
for (int i = 0;i < nDevices;i++)
{
CHKRET(cudaSetDevice(cuda_devices[i]), "Setting CUDA Device");
for (int j = 0;j < ibuffercount;j++)
{
CHKRET(cudaMalloc(&cuda_abuffers[i][j], BufferWidth * BufferHeight * sizeof(double)), "Error allocating device memory (A)");
}
for (int j = 0;j < obuffercount;j++)
{
if (Config->DstMemory == 'g')
{
CHKRET(cudaMalloc(&cuda_cbuffers[i][j], BufferHeight * BufferHeight * sizeof(double)), "Error allocating device memory (C)");
}
CHKRET(cudaMalloc(&cuda_tmp_abuffers[i][j], BufferWidth * BufferHeight * sizeof(double)), "Error allocating device memory (A) (tmp)");
CHKRET(cudaMalloc(&cuda_tmp_bbuffers[i][j], BufferWidth * BufferHeight * sizeof(double)), "Error allocating device memory (B) (tmp)");
}
for (int j = 0;j < num_bbuffers;j++)
{
cuda_error = cudaMalloc(&cuda_bbuffers[i][j], BufferWidth * BufferHeight * sizeof(double));
if (cuda_error != cudaSuccess)
{
if (j < obuffercount)
{
CHKRET(cuda_error, "Error allocating device memory (B)");
}
else break;
}
bbuffers[i] = j + 1;
}
if (Config->Debug) fprintf(STD_OUT, "Allocated %d BBuffers on Device %d\n", bbuffers[i], i);
for (int j = 0;j < obuffercount;j++)
{
CHKRET(cudaEventCreateWithFlags(&cuda_events[i][j], cudaEventDisableTiming), "Creating Event 0 %d %d\n", i, j);
}
for (int j = 0;j < 2;j++)
{
CHKRET(cudaEventCreateWithFlags(&cuda_conversion_events[i][j], cudaEventDisableTiming), "Creating Event 1 %d %d\n", i, j);
}
if (Config->SimpleGPUQueuing)
{
for (int j = 0;j < ibuffercount;j++) for (int k = 0;k < obuffercount;k++)
{
CHKRET(cudaEventCreateWithFlags(&simple_queue_event_kernels[i][j][k], cudaEventDisableTiming), "Creating Event 2 %d %d %d\n", i, j, k);
}
if (Config->AlternateSimpleQueuing && Config->DstMemory == 'g')
{
for (int j = 0;j < obuffercount;j++)
{
CHKRET(cudaEventCreateWithFlags(&alternateSimpleQueueCopyCEvent[i][j], cudaEventDisableTiming), "Creating Event 3 %d %d\n", i, j);
CHKRET(cudaEventCreateWithFlags(&alternateSimpleQueueCBuffferEvent[i][j].event, cudaEventDisableTiming), "Creating Event 4 %d %d\n", i, j);
}
}
if (Config->AlternateSimpleQueuing)
{
for (int j = 0;j < obuffercount;j++)
{
CHKRET(cudaEventCreateWithFlags(&alternateSimpleQueueEvent_tmp_abuffers[i][j], cudaEventDisableTiming), "Creating Event 5 %d %d\n", i, j);
CHKRET(cudaEventCreateWithFlags(&alternateSimpleQueueEvent_tmp_bbuffers[i][j], cudaEventDisableTiming), "Creating Event 6 %d %d\n", i, j);
}
}
}
}
return(0);
}
int caldgemm_cuda::ReinitDevices()
{
if (Config->Debug) fprintf(STD_OUT, "CUDA ReinitDevices\n");
fprintf(STD_OUT, "Reinit of CUDA devices not supported yet\n");
return(1);
}
int caldgemm_cuda::InitConstantData(double alpha)
{
return(0);
}
int caldgemm_cuda::ExecuteKernels(caldgemm::DGEMMPrepareAndExecuteTask& Task, int blockm, int blockn)
{
if (Config->Debug) fprintf(STD_OUT, "CUDA ExecuteKernels\n");
if (Config->Debug) fprintf(STD_OUT, "\tExecuting MM kernel (device %d obuffer %d, k=%lld m=%lld n=%lld)\n", Task.device, Task.j, (long long int) Task.k, (long long int) blockm, (long long int) blockn);
int use_queue = Config->AlternateSimpleQueuingMulti ? (2 + Task.j) : (Config->AlternateSimpleQueuing ? 2 : Task.j);
int use_queue_mod = (Config->AlternateSimpleQueuing && !Config->AlternateSimpleQueuingMulti) ? 2 : Task.j;
if (Config->SimpleGPUQueuing)
{
if (Config->AlternateSimpleQueuing && Config->DstMemory == 'g')
{
CHKRET(cudaStreamWaitEvent(cuda_command_queues[Task.device][use_queue], alternateSimpleQueueCopyCEvent[Task.device][Task.j], 0), "StreamWaitEvent");
}
else
{
if ((Config->AlternateSimpleQueuing || Task.j != simple_queue_events[Task.device][0][blockm].num_queue) && simple_queue_event_requested[Task.device][use_queue_mod][0][blockm] == 0)
{
CHKRET(cudaStreamWaitEvent(cuda_command_queues[Task.device][use_queue], simple_queue_events[Task.device][0][blockm].event, 0), "StreamWaitEvent");
simple_queue_event_requested[Task.device][use_queue_mod][0][blockm] = 1;
}
if ((Config->AlternateSimpleQueuing || Task.j != simple_queue_events[Task.device][1][blockn].num_queue) && simple_queue_event_requested[Task.device][use_queue_mod][1][blockn] == 0)
{
CHKRET(cudaStreamWaitEvent(cuda_command_queues[Task.device][use_queue], simple_queue_events[Task.device][1][blockn].event, 0), "StreamWaitEvent");
simple_queue_event_requested[Task.device][use_queue_mod][1][blockn] = 1;
}
}
}
double *abuffer, *bbuffer;
#ifdef REUSE_BBUFFERS
if (!DGEMM_favor_m && buffersSwitchable)
{
const int buffer_pos = buffer_pointers_A[Task.device][blockm] % (buffer_pointers_A[Task.device][blockm] < bbuffers[Task.device] ? bbuffers[Task.device] : ibuffercount);
abuffer = (double*) cuda_bbuffers[Task.device][buffer_pos];
bbuffer = (double*) cuda_abuffers[Task.device][buffer_pointers_B[Task.device][blockn] % ibuffercount];
}
else
#endif
{
#ifdef REUSE_BBUFFERS
const bool buffersSufficiant = buffer_pointers_B[Task.device][blockn] < bbuffers[Task.device];
#else
const bool buffersSufficiant = false;
#endif
abuffer = (double*) cuda_abuffers[Task.device][buffer_pointers_A[Task.device][blockm] % ibuffercount];
bbuffer = (double*) cuda_bbuffers[Task.device][!buffersSufficiant ? (buffer_pointers_B[Task.device][blockn] % ibuffercount) : (buffer_pointers_B[Task.device][blockn] % bbuffers[Task.device])];
}
double* cbuffer;
size_t height1 = (((size_t) blockn == gpu_n / Config->Height) ? (gpu_n % Config->Height) : Config->Height);
size_t height2 = (((size_t) blockm == gpu_m / Config->Height) ? (gpu_m % Config->Height) : Config->Height);
size_t width = Config->Width;
size_t pitch;
if (Config->DstMemory == 'g')
{
cbuffer = (double*) cuda_cbuffers[Task.device][Task.j];
pitch = height1;
}
else
{
cbuffer = C + blockn * Config->Height + blockm * Config->Height * C_pitch;
pitch = C_pitch;
}
CHKRET(cudaSetDevice(cuda_devices[Task.device]), "Setting CUDA Device");
if (Config->VerboseTiming)
{
CHKRET(cudaStreamSynchronize(cuda_command_queues[Task.device][use_queue]), "Synchronizing CUDA Stream");
Timers.Kernel.Start();
}
if (Config->Debug) fprintf(STD_OUT, "MM Kernel: height1 %d height2 %d width %d alpha %f beta %f pitch %d\n", (int) height1, (int) height2, (int) width, Alpha, Beta, (int) pitch);
dim3 threads(GROUP_SIZE_X, GROUP_SIZE_Y), blocks(GROUP_COUNT_X, GROUP_COUNT_Y);
#ifndef CALDGEMM_CUDA_CUBLAS
CUDAKernel <<<blocks, threads, 0, cuda_command_queues[Task.device][use_queue]>>> (cbuffer, abuffer, bbuffer, height1, height2, width, Alpha, Beta, pitch);
#else
cublasSetStream(cublas_handles[Task.device], cuda_command_queues[Task.device][use_queue]);
cublasDgemm(cublas_handles[Task.device], CUBLAS_OP_N, CUBLAS_OP_T, height1, height2, width, &Alpha, bbuffer, height1, abuffer, height2, &Beta, cbuffer, pitch);
#endif
CHKRET(cudaGetLastError(), "CUDA Kernel Execution");
if (Config->VerboseTiming)
{
CHKRET(cudaStreamSynchronize(cuda_command_queues[Task.device][use_queue]), "Synchronizing CUDA Stream");
Timers.Kernel.Stop();
Timers.CounterCopyFrom.Start();
}
cudaEvent_t* retrieveCEvent = NULL;
if (Config->SimpleGPUQueuing && NeedSimpleQueueKernelEvent(blockm, blockn, Task.k, Task.device))
{
const int buf = (DGEMM_favor_m ? buffer_pointers_A[Task.device][blockm] : buffer_pointers_B[Task.device][blockn]) % ibuffercount;
CHKRET(cudaEventRecord(simple_queue_event_kernels[Task.device][buf][use_queue_mod], cuda_command_queues[Task.device][use_queue]), "Recording simple queue kernel buffer event %d %d", Task.device, Task.j);
simple_queue_event_kernels_used[Task.device][buf][use_queue_mod] = true;
retrieveCEvent = &simple_queue_event_kernels[Task.device][buf][use_queue_mod];
}
else if (Config->AlternateSimpleQueuing && Config->DstMemory == 'g')
{
retrieveCEvent = &alternateSimpleQueueTmpEvents[0];
CHKRET(cudaEventRecord(alternateSimpleQueueTmpEvents[0], cuda_command_queues[Task.device][use_queue]), "Recording simple queue kernel buffer event %d %d", Task.device, Task.j);
}
if (Config->DstMemory == 'g')
{
if (Config->AlternateSimpleQueuing)
{
use_queue = 1;
CHKRET(cudaStreamWaitEvent(cuda_command_queues[Task.device][use_queue], *retrieveCEvent, 0), "StreamWaitEvent");
}
if (Config->Debug) fprintf(STD_OUT, "Transfer C from GPU: region %d x %d\n", (int) (height1 * sizeof(double)), (int) height2);
CHKRET(cudaMemcpy2DAsync(C + blockn * Config->Height + blockm * Config->Height * C_pitch, C_pitch * sizeof(double), cuda_cbuffers[Task.device][Task.j], height1 * sizeof(double), height1 * sizeof(double), height2, cudaMemcpyDeviceToHost, cuda_command_queues[Task.device][use_queue]), "Fetching result");
if (Config->AlternateSimpleQueuing)
{
CHKRET(cudaEventRecord(alternateSimpleQueueCBuffferEvent[Task.device][Task.j].event, cuda_command_queues[Task.device][use_queue]), "Recording alternateSimpleQueueCBuffferEvent %d %d", Task.device, Task.j);
alternateSimpleQueueCBuffferEvent[Task.device][Task.j].used = true;
}
}
if (Config->VerboseTiming)
{
CHKRET(cudaStreamSynchronize(cuda_command_queues[Task.device][Task.j]), "Synchronizing CUDA Stream");
Timers.CounterCopyFrom.Stop();
}
if (ExecLinpack >= 2 && Config->AlternateLookahead > matrix_n)
{
if (!Config->SimpleGPUQueuing)
{
CHKRET(cudaEventRecord(cuda_events[Task.device][Task.j], cuda_command_queues[Task.device][Task.j]), "Recording event %d %d", Task.device, Task.j); //This is only needed to check whether alternate lookahead has finished
}
else if(AlternateLookaheadTilesRemaining && blockm < AlternateLookaheadBlocksM)
{
CHKRET(cudaEventRecord(AlternateLookaheadTilesRemainingSQ_events[AlternateLookaheadTilesRemaining - 1], cuda_command_queues[Task.device][use_queue]), "Recording alternateLookeadSQevent %d", AlternateLookaheadTilesRemaining); //This is only needed to check whether alternate lookahead has finished
}
}
return(0);
}
int caldgemm_cuda::ExitRuntime()
{
if (Config->Debug) fprintf(STD_OUT, "CUDA ExitRuntime\n");
for (int i = 0;i < nDevices;i++)
{
CHKRET(cudaSetDevice(cuda_devices[i]), "Setting CUDA Device");
for (int j = 0;j < (Config->AlternateSimpleQueuing ? (Config->AlternateSimpleQueuingMulti ? (2 + obuffercount) : 3) : obuffercount);j++)
{
CHKRET(cudaStreamDestroy(cuda_command_queues[i][j]), "Destroying CUDA Stream");
}
}
AlternateLookaheadDoneMutexSQ.Unlock();
if (Config->AlternateSimpleQueuing) for (int i = 0;i < 2;i++) CHKRET(cudaEventDestroy(alternateSimpleQueueTmpEvents[i]), "Destroying Event");
return(0);
}
int caldgemm_cuda::FetchResult(int device, int j, int m, int n, int mustlock)
{
return(0);
}
int caldgemm_cuda::CheckDMAQueue(int device, int forcej)
{
return(0);
}
int caldgemm_cuda::RunMergeBuffers(double* dst, int device, int j, int width, int height, int gpu_width, int gpu_height, int pitch)
{
return(0);
}
int caldgemm_cuda::DGEMM_prepare_backend(size_t k, int j, unsigned int num_device, bool prepareM, bool prepareN, bool buffersSufficiant, bool buffersSufficiant0 CALDGEMM_DIVBUFA)
{
if (Config->Debug) fprintf(STD_OUT, "CUDA DGEMM_prepare k=%lld j=%d device=%d\n", (long long int) k, j, num_device);
CALDGEMM_PREPARE_BACKEND_VARS1;
size_t width, height;
CHKRET(cudaSetDevice(cuda_devices[num_device]), "Setting CUDA Device");
if (Config->VerboseTiming) Timers.CounterCopyTo.Start();
conversionKernelTaskStruct convTasks[2];
int nConvTasks = 0;
int use_queue = Config->AlternateSimpleQueuing ? 0 : j;
int event_queue[2];
for (int iMat = 0;iMat < 2;iMat++)
{
if (!Config->SimpleGPUQueuing && cuda_conversion_events_use[num_device][iMat])
{
WaitForEventAndRelease(&cuda_conversion_events[num_device][iMat]);
cuda_conversion_events_use[num_device][iMat] = 0;
}
if (iMat ? prepareN : prepareM)
{
CALDGEMM_PREPARE_BACKEND_VARS2;
cudaEvent_t* my_alternateSimpleQueueEvent_tmp_buffers = iMat ? alternateSimpleQueueEvent_tmp_bbuffers[num_device] : alternateSimpleQueueEvent_tmp_abuffers[num_device];
bool* my_alternateSimpleQueueEvent_tmp_buffers_used = iMat ? alternateSimpleQueueEvent_tmp_bbuffers_used[num_device] : alternateSimpleQueueEvent_tmp_abuffers_used[num_device];
if (Config->Debug) fprintf(STD_OUT, "\tCopying part of %c to GPU (k = %lld, m = %lld, n = %lld)\n", myMat, (long long int) k, (long long int) blockm, (long long int) blockn);
if (!access_bbuffers && Config->SimpleGPUQueuing)
{
for (int i = 0;i < obuffercount;i++)
{
if (Config->AlternateSimpleQueuing && !Config->AlternateSimpleQueuingMulti) i = 2;
if ((Config->AlternateSimpleQueuing || i != j) && simple_queue_event_kernels_used[num_device][destbuffer][i])
{
CHKRET(cudaStreamWaitEvent(cuda_command_queues[num_device][use_queue], simple_queue_event_kernels[num_device][destbuffer][i], 0), "StreamWaitEvent");
}
simple_queue_event_kernels_used[num_device][destbuffer][i] = false;
if (Config->AlternateSimpleQueuing && !Config->AlternateSimpleQueuingMulti) break;
}
}
width = (((bool) iMat ^ myTranspose) ? myHeight : Config->Width) * sizeof(double);
height = ((bool) iMat ^ myTranspose) ? Config->Width : myHeight;
int arg_transpose = myTranspose ^ myKernelTranspose;
void* dest_image = access_bbuffers ? cuda_bbuffers[num_device][destbuffer] : cuda_abuffers[num_device][destbuffer];
void*& dest_buffer_tmp = arg_transpose ? (iMat ? cuda_tmp_bbuffers[num_device][j] : cuda_tmp_abuffers[num_device][j]) : dest_image;
if (Config->AlternateSimpleQueuing && arg_transpose && my_alternateSimpleQueueEvent_tmp_buffers_used[j])
{
CHKRET(cudaStreamWaitEvent(cuda_command_queues[num_device][use_queue], my_alternateSimpleQueueEvent_tmp_buffers[j], 0), "StreamWaitEvent");
my_alternateSimpleQueueEvent_tmp_buffers_used[j] = false;
}
if (Config->Debug) fprintf(STD_OUT, "Transfer %c to GPU: region %d x %d\n", myMat, (int) width, (int) height);
CHKRET(cudaMemcpy2DAsync(dest_buffer_tmp, width, src_ptr, pitch * sizeof(double), width, height, cudaMemcpyHostToDevice, cuda_command_queues[num_device][use_queue]), "Copying %c to device", myMat);
if (Config->Debug && Config->VerboseTiming) cudaStreamSynchronize(cuda_command_queues[num_device][use_queue]);
if (arg_transpose)
{
if (Config->AlternateSimpleQueuing) CHKRET(cudaEventRecord(alternateSimpleQueueTmpEvents[iMat], cuda_command_queues[num_device][use_queue]), "Recording tmp event %d", iMat);
size_t arg_width = width / sizeof(double), arg_height = height;
convTasks[nConvTasks++] = conversionKernelTaskStruct(dest_buffer_tmp, dest_image, arg_width, arg_height, myMat);
if (Config->AlternateSimpleQueuing) my_alternateSimpleQueueEvent_tmp_buffers_used[j] = true;
}
else
{
event_queue[iMat] = use_queue;
}
}
}
if (Config->DstMemory == 'g')
{
width = HeightN * sizeof(double);
height = HeightM;
Timers.divideC++;
if (Config->Debug) fprintf(STD_OUT, "Transfer C to GPU: region %d x %d\n", (int) width, (int) height);
if (Config->AlternateSimpleQueuing && alternateSimpleQueueCBuffferEvent[num_device][j].used) CHKRET(cudaStreamWaitEvent(cuda_command_queues[num_device][use_queue], alternateSimpleQueueCBuffferEvent[num_device][j].event, 0), "StreamWaitEvent");
CHKRET(cudaMemcpy2DAsync(cuda_cbuffers[num_device][j], width, C + blockn * Config->Height + blockm * Config->Height * C_pitch, C_pitch * sizeof(double), width, height, cudaMemcpyHostToDevice, cuda_command_queues[num_device][use_queue]), "Copying C to device");
if (Config->AlternateSimpleQueuing) CHKRET(cudaEventRecord(alternateSimpleQueueCopyCEvent[num_device][j], cuda_command_queues[num_device][use_queue]), "Recording alternateSimpleQueueCopyCEvent event %d %d", num_device, j);
}
if (Config->AlternateSimpleQueuing) use_queue = Config->AlternateSimpleQueuingMulti ? (2 + j) : 2;
for (int i = 0;i < nConvTasks;i++)
{
const int iMat = convTasks[i].myMat - 'A';
cudaEvent_t* my_alternateSimpleQueueEvent_tmp_buffers = iMat ? alternateSimpleQueueEvent_tmp_bbuffers[num_device] : alternateSimpleQueueEvent_tmp_abuffers[num_device];
dim3 threads(GROUP_SIZE_X, GROUP_SIZE_Y), blocks(GROUP_COUNT_X, GROUP_COUNT_Y);
if (Config->Debug) fprintf(STD_OUT, "Conversion Kernel %c: x %d y %d\n", convTasks[i].myMat, (int) convTasks[i].arg_width, (int) convTasks[i].arg_height);
if (Config->AlternateSimpleQueuing) CHKRET(cudaStreamWaitEvent(cuda_command_queues[num_device][use_queue], alternateSimpleQueueTmpEvents[iMat], 0), "StreamWaitEvent");
CUDAConversionKernel <<<blocks, threads, 0, cuda_command_queues[num_device][use_queue]>>> ((double*) convTasks[i].dest_buffer_tmp, (double*) convTasks[i].dest_image, convTasks[i].arg_width, convTasks[i].arg_height);
CHKRET(cudaGetLastError(), "CUDA Conversion Kernel Execution");
if (Config->AlternateSimpleQueuing) CHKRET(cudaEventRecord(my_alternateSimpleQueueEvent_tmp_buffers[j], cuda_command_queues[num_device][use_queue]), "Recording my_alternateSimpleQueueEvent_tmp_buffers_used event %d %d", num_device, j);
if (Config->Debug && Config->VerboseTiming) cudaStreamSynchronize(cuda_command_queues[num_device][use_queue]);
event_queue[convTasks[i].myMat - 'A'] = use_queue;
}
for (int iMat = 0;iMat < 2;iMat++)
{
if (iMat ? prepareN : prepareM)
{
if (Config->SimpleGPUQueuing)
{
if (!(Config->AlternateSimpleQueuing && Config->DstMemory == 'g'))
{
size_t& myblock = iMat ? blockn : blockm;
simple_queue_events[num_device][iMat][myblock].num_queue = j;
CHKRET(cudaEventRecord(simple_queue_events[num_device][iMat][myblock].event, cuda_command_queues[num_device][event_queue[iMat]]), "Recording simpleQueueEvent event %d %d", num_device, iMat);
}
}
else
{
CHKRET(cudaEventRecord(cuda_conversion_events[num_device][iMat], cuda_command_queues[num_device][event_queue[iMat]]), "Recording conversion event %d %d", num_device, iMat);
cuda_conversion_events_use[num_device][iMat] = 1;
}
}
}
if (Config->VerboseTiming)
{
CHKRET(cudaStreamSynchronize(cuda_command_queues[num_device][use_queue]), "Synchronizing CUDA Stream");
if (Config->AlternateSimpleQueuing) CHKRET(cudaStreamSynchronize(cuda_command_queues[num_device][0]), "Synchronizing CUDA Stream");
Timers.CounterCopyTo.Stop();
}
return(0);
}
int caldgemm_cuda::ExitDevices()
{
if (Config->Debug) fprintf(STD_OUT, "CUDA ExitDevices\n");
for (int i = 0;i < nDevices;i++)
{
CHKRET(cudaSetDevice(cuda_devices[i]), "Setting CUDA Device");
for (int j = 0;j < ibuffercount;j++)
{
CHKRET(cudaFree(cuda_abuffers[i][j]), "Freeing memory A %d %d\n", i, j);
}
for (int j = 0;j < obuffercount;j++)
{
if (Config->DstMemory == 'g')
{
CHKRET(cudaFree(cuda_cbuffers[i][j]), "Freeing memory C %d %d\n", i, j);
}
CHKRET(cudaFree(cuda_tmp_abuffers[i][j]), "Freeing memory A tmp %d %d\n", i, j);
CHKRET(cudaFree(cuda_tmp_bbuffers[i][j]), "Freeing memory B tmp %d %d\n", i, j);
}
for (int j = 0;j < bbuffers[i];j++)
{
CHKRET(cudaFree(cuda_bbuffers[i][j]), "Freeing memory B %d %d\n", i, j);
}
for (int j = 0;j < obuffercount;j++)
{
CHKRET(cudaEventDestroy(cuda_events[i][j]), "Destroying Event 0 %d %d\n", i, j);
}
for (int j = 0;j < 2;j++)
{
CHKRET(cudaEventDestroy(cuda_conversion_events[i][j]), "Destroying Event 1 %d %d\n", i, j);
}
if (Config->SimpleGPUQueuing)
{
for (int j = 0;j < ibuffercount;j++) for (int k = 0;k < obuffercount;k++)
{
CHKRET(cudaEventDestroy(simple_queue_event_kernels[i][j][k]), "Destroying Event 2 %d %d %d\n", i, j, k);
}
if (Config->AlternateSimpleQueuing && Config->DstMemory == 'g')
{
for (int j = 0;j < obuffercount;j++)
{
CHKRET(cudaEventDestroy(alternateSimpleQueueCopyCEvent[i][j]), "Destroying Event 3 %d %d\n", i, j);
CHKRET(cudaEventDestroy(alternateSimpleQueueCBuffferEvent[i][j].event), "Destroying Event 4 %d %d\n", i, j);
}
}
if (Config->AlternateSimpleQueuing)
{
for (int j = 0;j < obuffercount;j++)
{
CHKRET(cudaEventDestroy(alternateSimpleQueueEvent_tmp_abuffers[i][j]), "Destroying Event 5 %d %d\n", i, j);
CHKRET(cudaEventDestroy(alternateSimpleQueueEvent_tmp_bbuffers[i][j]), "Destroying Event 6 %d %d\n", i, j);
}
}
}
}
return(0);
}
int caldgemm_cuda::UseOutputPthreads() {return(0);}
int caldgemm_cuda::UseInputPthreads() {return(0);}
int caldgemm_cuda::UseMutexPerDevice() {return(0);}
int caldgemm_cuda::Preallocate()
{
if (caldgemm::Preallocate()) return(1);
simple_queue_events[0][0] = new caldgemm_cuda_simple_queue_event[nDevices * (Config->PreallocData + Config->PreallocData)];
for (int i = 0;i < nDevices * (Config->PreallocData + Config->PreallocData);i++) CHKRET(cudaEventCreateWithFlags(&simple_queue_events[0][0][i].event, cudaEventDisableTiming), "Creating Prealocate Event 0 %d\n", i);
simple_queue_event_requested[0][0][0] = new bool[nDevices * obuffercount * (Config->PreallocData + Config->PreallocData)];
memset(simple_queue_event_requested[0][0][0], 0, nDevices * obuffercount * (Config->PreallocData + Config->PreallocData) * sizeof(bool));
AlternateLookaheadTilesRemainingSQ_events = new cudaEvent_t[Config->PreallocData * PREALLOC_ALTERNATE_LOOKAHEAD];
for (int i = 0;i < Config->PreallocData * PREALLOC_ALTERNATE_LOOKAHEAD;i++) CHKRET(cudaEventCreateWithFlags(&AlternateLookaheadTilesRemainingSQ_events[i], cudaEventDisableTiming), "Creating Prealocate Event 1 %d\n", i);
return(0);
}
int caldgemm_cuda::PreallocateFree()
{
if (caldgemm::PreallocateFree()) return(1);
for (int i = 0;i < nDevices * (Config->PreallocData + Config->PreallocData);i++) CHKRET(cudaEventDestroy(simple_queue_events[0][0][i].event), "Destroying Prealocate Event 0 %d\n", i);
delete[] simple_queue_events[0][0];
delete[] simple_queue_event_requested[0][0][0];
for (int i = 0;i < Config->PreallocData * PREALLOC_ALTERNATE_LOOKAHEAD;i++) CHKRET(cudaEventDestroy(AlternateLookaheadTilesRemainingSQ_events[i]), "Destroying Prealocate Event 1 %d\n", i);
delete[] AlternateLookaheadTilesRemainingSQ_events;
return(0);
}
int caldgemm_cuda::RunCALDGEMM_Init()
{
for (int i = 0;i < nDevices;i++)
{
for (int j = 0;j < 2;j++)
{
cuda_conversion_events_use[i][j] = 0;
}
}
if (Config->SimpleGPUQueuing)
{
const size_t mb = (gpu_m + Config->Height - 1) / Config->Height;
const size_t nb = (gpu_n + Config->Height - 1) / Config->Height;
if (((int) (DGEMM_favor_m ? nb : mb) + nDevices - 1) / nDevices > min_bbuffers)
{
fprintf(STD_OUT, "SimpleGPUQueuing can only work if [Number of BBuffers] * [Number of GPUs] > [Number of Blocks in one dimension] (bbuffers %d, devices %d, blocks %d)\n", min_bbuffers, nDevices, (int) (DGEMM_favor_m ? nb : mb));
return(1);
}
if (!Config->PreallocData)
{
simple_queue_events[0][0] = new caldgemm_cuda_simple_queue_event[nDevices * (mb + nb)];
for (unsigned int i = 0;i < nDevices * (mb + nb);i++) CHKRET(cudaEventCreateWithFlags(&simple_queue_events[0][0][i].event, cudaEventDisableTiming), "Creating Event 0 %d\n", i);
simple_queue_event_requested[0][0][0] = new bool[nDevices * obuffercount * (mb + nb)];
if (ExecLinpack >= 2 && Config->AlternateLookahead > matrix_n && AlternateLookaheadTilesFull)
{
AlternateLookaheadTilesRemainingSQ_events = new cudaEvent_t[AlternateLookaheadTilesFull];
for (int i = 0;i < AlternateLookaheadTilesFull;i++) CHKRET(cudaEventCreateWithFlags(&AlternateLookaheadTilesRemainingSQ_events[i], cudaEventDisableTiming), "Creating Event 1 %d\n", i);
}
}
else if (AlternateLookaheadTilesFull > Config->PreallocData * PREALLOC_ALTERNATE_LOOKAHEAD)
{
fprintf(STD_OUT, "Insufficient preallocation for alternate lookahead, increase PreallocData or increase constant!");
return(1);
}
SetupSimpleQueue(mb, nb);
if (Config->AlternateSimpleQueuing && Config->DstMemory == 'g')
{
for (int i = 0;i < nDevices;i++) for (int j = 0;j < obuffercount;j++) alternateSimpleQueueCBuffferEvent[i][j].used = false;
}
memset(simple_queue_event_requested[0][0][0], 0, nDevices * obuffercount * (mb + nb) * sizeof(bool));
if (Config->AlternateSimpleQueuing)
{
memset(alternateSimpleQueueEvent_tmp_abuffers_used, 0, nDevices * obuffercount * sizeof(bool));
memset(alternateSimpleQueueEvent_tmp_bbuffers_used, 0, nDevices * obuffercount * sizeof(bool));
}
memset(&simple_queue_event_kernels_used[0][0][0], 0, nDevices * ibuffercount * obuffercount * sizeof(bool));
}
return(0);
}
int caldgemm_cuda::RunCALDGEMM_Exit()
{
CHKRET(cudaThreadSynchronize(), "Synchronizing CUDA Thread");
if (Config->SimpleGPUQueuing && !Config->PreallocData)
{
const size_t mb = (gpu_m + Config->Height - 1) / Config->Height;
const size_t nb = (gpu_n + Config->Height - 1) / Config->Height;
for (unsigned int i = 0;i < nDevices * (mb + nb);i++) CHKRET(cudaEventDestroy(simple_queue_events[0][0][i].event), "Destroying Event 0 %d\n", i);
delete[] simple_queue_events[0][0];
delete[] simple_queue_event_requested[0][0][0];
if (ExecLinpack >= 2 && Config->AlternateLookahead > matrix_n && AlternateLookaheadTilesFull)
{
for (int i = 0;i < AlternateLookaheadTilesFull;i++) CHKRET(cudaEventDestroy(AlternateLookaheadTilesRemainingSQ_events[i]), "Destroying Event 1 %d\n", i);
delete[] AlternateLookaheadTilesRemainingSQ_events;
}
}
return(0);
}
#define MAX_GPU_MEM_COUNT 64
struct gpu_mem_struct_cuda
{
void* ptr;
};
static gpu_mem_struct_cuda gpu_mem[MAX_GPU_MEM_COUNT];
static int nGPUMEM = 0;
double* caldgemm_cuda::AllocMemory(size_t nDoubles, bool page_locked, bool huge_pages, bool gpuaccessible, bool interleave)
{
if (gpuaccessible)
{
void* ptr;
unsigned int flags = cudaHostAllocPortable;
if (Config->DstMemory == 'c') flags |= cudaHostAllocMapped;
cudaError_t cuda_error = cudaHostAlloc(&ptr, nDoubles * sizeof(double), flags);
if (cuda_error != cudaSuccess)
{
fprintf(STD_OUT, "cudaHostAlloc: CUDA Error %d: %s\n", cuda_error, cudaGetErrorString(cuda_error));
return(NULL);
}
gpu_mem[nGPUMEM++].ptr = ptr;
if (Config->DstMemory == 'c')
{
void* C_device;
cuda_error = cudaHostGetDevicePointer(&C_device, ptr, 0);
if (cuda_error != cudaSuccess || ptr != C_device)
{
if (cuda_error != cudaSuccess) fprintf(STD_OUT, "cudaHostGetDevicePtr: CUDA Error %d: %s\n", cuda_error, cudaGetErrorString(cuda_error));
else fprintf(STD_OUT, "Host pointer does not match device pointer\n");
cudaFreeHost(ptr);
return(NULL);
}
}
warn_wrong_memory_allocation = false;
return((double*) ptr);
}
double* ptr = caldgemm::AllocMemory(nDoubles, page_locked, huge_pages, gpuaccessible, interleave);
return(ptr);
}
int caldgemm_cuda::FreeMemory(double* ptr, bool gpuaccessible)
{
if (gpuaccessible)
{
for (int i = 0;i < nGPUMEM;i++)
{
if (gpu_mem[i].ptr == (void*) ptr)
{
cudaFreeHost(ptr);
gpu_mem[i] = gpu_mem[--nGPUMEM];
warn_wrong_memory_allocation = (nGPUMEM == 0);
return(0);
}
}
}
return(caldgemm::FreeMemory(ptr));
}
int caldgemm_cuda::CheckAlternateTilesRemainingSQ()
{
for (int i = 0;i < AlternateLookaheadTilesFull;i++)
{
CHKRET(cudaEventSynchronize(AlternateLookaheadTilesRemainingSQ_events[i]), "Error waiting for alternate lookahead tiles events %d", i);
}
AlternateLookaheadDoneMutexSQ.Unlock();
return(0);
}
void caldgemm_cuda::SetupSimpleQueue(size_t mb, size_t nb)
{
if (Config->AlternateSimpleQueuing && Config->DstMemory == 'g') return;
for (int i = 0;i < nDevices;i++) for (int j = 0;j < obuffercount;j++) for (int k = 0;k < 2;k++)
if (i || j || k)
{
simple_queue_event_requested[i][j][k] = &simple_queue_event_requested[0][0][0][(k ? mb : 0) + j * (mb + nb) + i * obuffercount * (mb + nb)];
if (j == 0)
{
simple_queue_events[i][k] = &simple_queue_events[0][0][(k ? mb : 0) + i * (mb + nb)];
}
}
}
int caldgemm_cuda::SimpleQueuingAvailable() {return(3);}