-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve.py
229 lines (189 loc) · 10.1 KB
/
solve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from typing import Callable
import scipy.optimize
def binary_solver(intermediate_fn, model_fn, target_output : float, initial_lower_bound : float, initial_upper_bound : float, tolerance : float):
"""
Solver which finds the input which produces the supplied target output, using a simple binary search-like algorithm.
:param intermediate_fn: Intermediate transformation function, which takes a single input float and returns an object of any type
:param model_fn: Model function, which takes the product of intermediate_fn as its input, and produces a double as output. This is
assumed to be a monotonic function of the input.
:param target_output: The target output from model_fn
:type target_output: float
:param initial_lower_bound: A lower bound on the allowable input values
:type initial_lower_bound: float
:param initial_upper_bound: An upper bound on the allowable input values
:type initial_upper_bound: float
:param tolerance: The allowable deviation from the target and final calculated output
:type tolerance: float
:return: A tuple of (solution input, intermediate_fn(solution input), was_solution_found : bool, message : str)
If no solution is found, the last calculated guess and intermediate product will be returned, with was_solution_found=false
"""
if initial_lower_bound == initial_upper_bound:
return (None, None, False, f"Lower bound ({initial_lower_bound}) and upper bound ({initial_upper_bound}) are identical.")
lower_bound_intermediate = intermediate_fn(initial_lower_bound)
upper_bound_intermediate = intermediate_fn(initial_upper_bound)
lower_bound_output = model_fn(lower_bound_intermediate)
upper_bound_output = model_fn(upper_bound_intermediate)
if lower_bound_output == upper_bound_output:
return (initial_lower_bound, lower_bound_intermediate, False, "Model outputs are equal for lower and upper input bounds. The model function should be a non-flat monotonic function. ")
lower_guess = 0
upper_guess = 0
if upper_bound_output > lower_bound_output:
lower_guess = initial_lower_bound
upper_guess = initial_upper_bound
else:
lower_guess = initial_upper_bound
upper_guess = initial_lower_bound
guess_output = float('-inf')
guess = 0
guess_intermediate = None
eps = tolerance * 1e-5
while abs(guess_output - target_output) > tolerance:
guess = (lower_guess + upper_guess) / 2
guess_intermediate = intermediate_fn(guess)
guess_output = model_fn(guess_intermediate)
if abs(lower_guess - upper_guess) < eps:
# No solution found, return the last thing we got
return (guess, guess_intermediate, False, "Exhausted value range and no solution found")
if guess_output > target_output:
upper_guess = guess
else:
lower_guess = guess
# We got a valid solution
return (guess, guess_intermediate, True, "Success")
class Optimizing_Solver:
"""
Wraps a simulation solver and allows any number of variables to be optimized (for minimum initial input).
"""
PENALTY_BASE = 1e30
def __init__(self, inner_solver, should_invert : bool):
self._inner_solver = inner_solver
self._should_invert = should_invert
self._variable_names = []
self._bounds = []
self._x0 = []
self._x = []
self._x_sol = []
self._optimize_values = 0
self._is_optimization_disabled = False
self._output = ()
def subscribe_optimized_scalar(self, variable_name : str, lower_bound : float = None, upper_bound : float = None, initial_guess : float = None) -> Callable[[], float]:
"""
Registers a variable to be optimized.
:param variable_name: An identifier for the variable to be optimized.
:type variable_name: str
:param lower_bound: An optional lower bound for the variable, defaults to None
:type lower_bound: float, optional
:param upper_bound: An optional upper bound for the variable, defaults to None
:type upper_bound: float, optional
:param initial_guess: An optional initial guess for the variable - if this is not supplied, the average of lower and upper bounds will be used, defaults to None
:type initial_guess: float, optional
:return: A function that returns the current guess for the variable.
:rtype: Callable[[], float]
"""
self._variable_names.append(variable_name)
self._bounds.append((lower_bound, upper_bound))
x0 = initial_guess if initial_guess is not None else (lower_bound + upper_bound) / 2.0
self._x0.append(x0)
i = self._optimize_values
self._optimize_values +=1
return lambda: self._x[i]
def get_optimized_value(self, variable_name : str):
"""
Gets the optimum value found for the named variable.
:param variable_name: Variable name
:type variable_name: str
:return: Optimized value
:rtype: [type]
"""
i = self._variable_names.index(variable_name)
return self._x_sol[i]
def get_all_optimized_values(self):
"""
Returns a sequence of (variable_name, optimized_value) pairs for all optimized variables
"""
return ((self._variable_names[i], self._x_sol[i]) for i in range(0, self._optimize_values))
def set_failed(self, msg : str):
"""
When called by an optimizable routine, indicates that the routine has reached an invalid state that shouldn't be counted as a solution.
"""
self._did_fail = True
if self._fail_message == "":
self._fail_message = msg
@property
def initial_output(self):
"""Returns output for the first valid solution found, for comparison with the final optimized solution."""
return self._output_initial
def get_all_initial_solution_values(self):
"""
Returns a sequence of (variable_name, optimized_value) pairs for all un-optimized variables corresponding to the first valid solution
"""
return ((self._variable_names[i], self._x_initial[i]) for i in range(0, self._optimize_values))
@property
def is_optimization_disabled(self):
"""If this is true, the optimizer won't optimize but will only call the inner solver once with initial guesses."""
return self._is_optimization_disabled
@is_optimization_disabled.setter
def is_optimization_disabled(self, value):
self._is_optimization_disabled = value
def solve(self, intermediate_fn, model_fn, target_output : float, initial_lower_bound : float, initial_upper_bound : float, tolerance : float):
if (self._optimize_values == 0):
# In the trivial case that no optimized values have been requested, just return the result of the inner solver
return self._inner_solver(intermediate_fn, model_fn, target_output, initial_lower_bound, initial_upper_bound, tolerance)
if self.is_optimization_disabled:
# Use initial guesses and return without optimizing
self._x = self._x0
return self._inner_solver(intermediate_fn, model_fn, target_output, initial_lower_bound, initial_upper_bound, tolerance)
self._has_initial_solution = False
def minimize_func(x):
self._x = x
self._did_fail = False
self._fail_message = ""
self._output = self._inner_solver(intermediate_fn, model_fn, target_output, initial_lower_bound, initial_upper_bound, tolerance)
f = self._output[0]
f = self._apply_soft_bounds(f, x)
if (not self._output[2] or self._did_fail):
# Penalize invalid solution, so that optimizer doesn't try to use it
penalty = -self.PENALTY_BASE if self._should_invert else self.PENALTY_BASE
f += penalty
elif not self._has_initial_solution:
#
self._has_initial_solution = True
self._output_initial = self._output
self._x_initial = x
return -f if self._should_invert else f
opt_result = scipy.optimize.minimize(minimize_func, self._x0, method='Nelder-Mead', tol = tolerance)
# Nelder-Mead is robust to non-smooth functions, which is important because the output of the inner solver tends to be 'staircase-like'
# unless the tolerance is very precise, resulting in the initial guess being returned as answer
# See eg https://stackoverflow.com/questions/36110998/why-does-scipy-optimize-minimize-default-report-success-without-moving-with-sk
self._x_sol = opt_result.x
output = self._output
msg = ""
if not output[2]:
msg = output[3] # Use inner solver's failure message
elif self._did_fail:
msg = self._fail_message # Use failure message from set_fail() call
elif not opt_result.success:
msg = opt_result.message # Use failure message from minimizer
else:
msg = output[3] # Use inner solver's success message
return (output[0], output[1], output[2] and opt_result.success and not self._did_fail, msg)
def _apply_soft_bounds(self, f : float, x):
"""
Apply 'soft' bounds to the objective function, since the Nelder-Mead method doesn't support true bounds.
"""
for i in range(0, len(x)):
bnds = self._bounds[i]
v = x[i]
lower_bound = bnds[0]
if (lower_bound is not None and v < lower_bound):
diff = lower_bound - v
abs_penalty = self.PENALTY_BASE + 100 * diff
penalty = -abs_penalty if self._should_invert else abs_penalty
f += penalty
upper_bound = bnds[1]
if (upper_bound is not None and v > upper_bound):
diff = v - upper_bound
abs_penalty = self.PENALTY_BASE + 100 * diff
penalty = -abs_penalty if self._should_invert else abs_penalty
f += penalty
return f