-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrulesets.py
333 lines (311 loc) · 13.6 KB
/
rulesets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
"""
Defined model rulesets.
"""
import ruleset
import salary_rules
import savings_rules
import spending_rules
import solve
def ampere(
salary_compound_rate : float,
salary_plateau : float,
base_spending : float,
spending_luxury_compound_rate : float,
initial_rrsp_allotment : float,
final_rrsp_allotment : float,
initial_year : int,
year_of_retirement : int,
year_of_death : int,
retirement_income : float,
rrsp_interest_rate : float,
tfsa_interest_rate : float
):
"""
A complete ruleset based on simple, plausible models for spending and income growth.
See the individual rules for an explanation of the input parameters.
"""
career_length_yrs = year_of_retirement - initial_year
return (
ruleset.get_career_rules(
salary_rules.get_compound_plateau(salary_compound_rate, salary_plateau),
spending_rules.get_luxury_over_basic(base_spending, spending_luxury_compound_rate),
savings_rules.get_simple_linear(initial_rrsp_allotment, final_rrsp_allotment, initial_year, career_length_yrs),
rrsp_interest_rate,
tfsa_interest_rate
),
ruleset.get_retirement_rules(
retirement_income,
savings_rules.get_simple_retirement_deduction(year_of_retirement, year_of_death),
rrsp_interest_rate,
tfsa_interest_rate
)
)
def bose(
salary_compound_rate : float,
salary_plateau : float,
base_spending : float,
spending_luxury_compound_rate : float,
cap_fractional : float,
initial_rrsp_allotment : float,
final_rrsp_allotment : float,
initial_year : int,
year_of_retirement : int,
year_of_death : int,
retirement_income : float,
rrsp_interest_rate : float,
tfsa_interest_rate : float
):
"""
A complete ruleset based on simple, plausible models for spending and income growth. Spending is capped to some fraction of disposable income.
See the individual rules for an explanation of the input parameters.
"""
career_length_yrs = year_of_retirement - initial_year
return (
ruleset.get_career_rules(
salary_rules.get_compound_plateau(salary_compound_rate, salary_plateau),
spending_rules.get_luxury_over_basic_capped(base_spending, spending_luxury_compound_rate, cap_fractional),
savings_rules.get_simple_linear(initial_rrsp_allotment, final_rrsp_allotment, initial_year, career_length_yrs),
rrsp_interest_rate,
tfsa_interest_rate
),
ruleset.get_retirement_rules(
retirement_income,
savings_rules.get_simple_retirement_deduction(year_of_retirement, year_of_death),
rrsp_interest_rate,
tfsa_interest_rate
)
)
def curie(
salary_compound_rate : float,
salary_plateau : float,
base_spending : float,
spending_luxury_compound_rate : float,
cap_fractional : float,
initial_year : int,
year_of_retirement : int,
year_of_death : int,
retirement_income : float,
rrsp_interest_rate : float,
tfsa_interest_rate : float,
optimize : solve.Optimizing_Solver
):
"""
A ruleset with similar rules to B, but attempting to optimize the RRSP/TFSA split, both for savings during career and also for
deductions during retirement.
Remarks: Optimizing with the `luxury_over_basic_capped` spending rule proved unsatisfying because it's too easy to use spending
parameters for which no solution can be found.
"""
career_length_yrs = year_of_retirement - initial_year
retirement_length_yrs = year_of_death - year_of_retirement
initial_rrsp_func = optimize.subscribe_optimized_scalar("initial_rrsp", lower_bound=0, upper_bound=1, initial_guess=0.5)
final_rrsp_func = optimize.subscribe_optimized_scalar("final_rrsp", lower_bound=0, upper_bound=1, initial_guess=0.5)
initial_rrsp_retirement_func = optimize.subscribe_optimized_scalar("initial_rrsp_retirement", lower_bound=0, upper_bound=1, initial_guess=0.5)
final_rrsp_retirement_func = optimize.subscribe_optimized_scalar("final_rrsp_retirement", lower_bound=0, upper_bound=1, initial_guess=0.5)
return (
ruleset.get_career_rules(
salary_rules.get_compound_plateau(salary_compound_rate, salary_plateau),
spending_rules.get_luxury_over_basic_capped(base_spending, spending_luxury_compound_rate, cap_fractional),
savings_rules.get_simple_linear_func(initial_rrsp_func, final_rrsp_func, initial_year, career_length_yrs, optimize.set_failed),
rrsp_interest_rate,
tfsa_interest_rate
),
ruleset.get_retirement_rules(
retirement_income,
savings_rules.get__linear_retirement_deduction_func(
initial_rrsp_retirement_func,
final_rrsp_retirement_func,
year_of_retirement,
retirement_length_yrs,
optimize.set_failed
),
rrsp_interest_rate,
tfsa_interest_rate
)
)
def dirac(
salary_compound_rate : float,
salary_plateau : float,
base_spending : float,
spending_luxury_compound_rate : float,
cap_fractional : float,
initial_year : int,
year_of_retirement : int,
year_of_death : int,
retirement_income : float,
rrsp_interest_rate : float,
tfsa_interest_rate : float,
optimize : solve.Optimizing_Solver
):
"""
A ruleset with similar rules to B, but attempting to optimize the RRSP/TFSA split, only for savings during career.
Remarks: Created mainly to try to understand the problems with C. Optimizing with the `luxury_over_basic_capped` spending rule proved unsatisfying because it's too easy to use spending
parameters for which no solution can be found.
"""
career_length_yrs = year_of_retirement - initial_year
initial_rrsp_func = optimize.subscribe_optimized_scalar("initial_rrsp", lower_bound=0, upper_bound=1, initial_guess=0.5)
final_rrsp_func = optimize.subscribe_optimized_scalar("final_rrsp", lower_bound=0, upper_bound=1, initial_guess=0.5)
return (
ruleset.get_career_rules(
salary_rules.get_compound_plateau(salary_compound_rate, salary_plateau),
spending_rules.get_luxury_over_basic_capped(base_spending, spending_luxury_compound_rate, cap_fractional),
savings_rules.get_simple_linear_func(initial_rrsp_func, final_rrsp_func, initial_year, career_length_yrs, optimize.set_failed),
rrsp_interest_rate,
tfsa_interest_rate
),
ruleset.get_retirement_rules(
retirement_income,
savings_rules.get_simple_retirement_deduction(year_of_retirement, year_of_death),
rrsp_interest_rate,
tfsa_interest_rate
)
)
def einstein(
salary_compound_rate : float,
salary_plateau : float,
base_spending : float,
increase_savings_weight : float,
initial_rrsp_allotment : float,
final_rrsp_allotment : float,
initial_year : int,
year_of_retirement : int,
year_of_death : int,
retirement_income : float,
rrsp_interest_rate : float,
tfsa_interest_rate : float
):
"""
Non-optimizing ruleset which uses the increasing_savings_increasing_spending rule for spending.
"""
career_length_yrs = year_of_retirement - initial_year
return (
ruleset.get_career_rules(
salary_rules.get_compound_plateau(salary_compound_rate, salary_plateau),
spending_rules.get_increasing_savings_increasing_spending(initial_year, increase_savings_weight, False),
savings_rules.get_simple_linear(initial_rrsp_allotment, final_rrsp_allotment, initial_year, career_length_yrs),
rrsp_interest_rate,
tfsa_interest_rate
),
ruleset.get_retirement_rules(
retirement_income,
savings_rules.get_simple_retirement_deduction(year_of_retirement, year_of_death),
rrsp_interest_rate,
tfsa_interest_rate
)
)
def franklin(
salary_compound_rate : float,
salary_plateau : float,
base_spending : float,
increase_savings_weight : float,
initial_rrsp_allotment : float,
final_rrsp_allotment : float,
initial_year : int,
year_of_retirement : int,
year_of_death : int,
retirement_income : float,
rrsp_interest_rate : float,
tfsa_interest_rate : float,
optimize : solve.Optimizing_Solver
):
"""
Ruleset which uses the increasing_savings_increasing_spending rule for spending, and optimizes RRSP/TFSA split for career savings.
"""
career_length_yrs = year_of_retirement - initial_year
initial_rrsp_func = optimize.subscribe_optimized_scalar("initial_rrsp", lower_bound=0, upper_bound=1, initial_guess=0.5)
final_rrsp_func = optimize.subscribe_optimized_scalar("final_rrsp", lower_bound=0, upper_bound=1, initial_guess=0.5)
return (
ruleset.get_career_rules(
salary_rules.get_compound_plateau(salary_compound_rate, salary_plateau),
spending_rules.get_increasing_savings_increasing_spending(initial_year, increase_savings_weight, False),
savings_rules.get_simple_linear_func(initial_rrsp_func, final_rrsp_func, initial_year, career_length_yrs, optimize.set_failed),
rrsp_interest_rate,
tfsa_interest_rate
),
ruleset.get_retirement_rules(
retirement_income,
savings_rules.get_simple_retirement_deduction(year_of_retirement, year_of_death),
rrsp_interest_rate,
tfsa_interest_rate
)
)
def galileo(
salary_compound_rate : float,
salary_plateau : float,
base_spending : float,
increase_savings_weight : float,
initial_year : int,
year_of_retirement : int,
year_of_death : int,
retirement_income : float,
rrsp_interest_rate : float,
tfsa_interest_rate : float,
optimize : solve.Optimizing_Solver
):
"""
Ruleset which uses the increasing_savings_increasing_spending rule for spending, and optimizes RRSP/TFSA split for both career savings and post-retirement deductions.
"""
career_length_yrs = year_of_retirement - initial_year
retirement_length_yrs = year_of_death - year_of_retirement
initial_rrsp_func = optimize.subscribe_optimized_scalar("initial_rrsp", lower_bound=0, upper_bound=1, initial_guess=0.5)
final_rrsp_func = optimize.subscribe_optimized_scalar("final_rrsp", lower_bound=0, upper_bound=1, initial_guess=0.5)
initial_rrsp_retirement_func = optimize.subscribe_optimized_scalar("initial_rrsp_retirement", lower_bound=0, upper_bound=1, initial_guess=0.05)
final_rrsp_retirement_func = optimize.subscribe_optimized_scalar("final_rrsp_retirement", lower_bound=0, upper_bound=1, initial_guess=0.05)
return (
ruleset.get_career_rules(
salary_rules.get_compound_plateau(salary_compound_rate, salary_plateau),
spending_rules.get_increasing_savings_increasing_spending(initial_year, increase_savings_weight, True),
savings_rules.get_simple_linear_func(initial_rrsp_func, final_rrsp_func, initial_year, career_length_yrs, optimize.set_failed),
rrsp_interest_rate,
tfsa_interest_rate
),
ruleset.get_retirement_rules(
retirement_income,
savings_rules.get__linear_retirement_deduction_func(
initial_rrsp_retirement_func,
final_rrsp_retirement_func,
year_of_retirement,
retirement_length_yrs,
optimize.set_failed
),
rrsp_interest_rate,
tfsa_interest_rate
)
)
def hawking(
salary_compound_rate : float,
salary_plateau : float,
increase_savings_weight : float,
initial_rrsp_allotment_guess : float,
final_rrsp_allotment_guess : float,
initial_year : int,
year_of_retirement : int,
year_of_death : int,
retirement_income : float,
rrsp_interest_rate : float,
tfsa_interest_rate : float,
rrsp_retirement_adjustment_guess : float,
optimize : solve.Optimizing_Solver
):
"""
Ruleset which uses the increasing_savings_increasing_spending rule for spending, and optimizes RRSP/TFSA split for both career savings
and post-retirement deductions, using a simplified adjusted heuristic for retirement deductions.
"""
career_length_yrs = year_of_retirement - initial_year
initial_rrsp_func = optimize.subscribe_optimized_scalar("initial_rrsp", lower_bound=0, upper_bound=1, initial_guess=initial_rrsp_allotment_guess)
final_rrsp_func = optimize.subscribe_optimized_scalar("final_rrsp", lower_bound=0, upper_bound=1, initial_guess=final_rrsp_allotment_guess)
rrsp_retirement_func = optimize.subscribe_optimized_scalar("rrsp_retirement_adjustment", lower_bound=-1, upper_bound=1, initial_guess=rrsp_retirement_adjustment_guess)
return (
ruleset.get_career_rules(
salary_rules.get_compound_plateau(salary_compound_rate, salary_plateau),
spending_rules.get_increasing_savings_increasing_spending(initial_year, increase_savings_weight, True),
savings_rules.get_simple_linear_func(initial_rrsp_func, final_rrsp_func, initial_year, career_length_yrs, optimize.set_failed),
rrsp_interest_rate,
tfsa_interest_rate
),
ruleset.get_retirement_rules(
retirement_income,
savings_rules.get_adjusted_heuristic_retirement_deduction(year_of_retirement, year_of_death,rrsp_retirement_func),
rrsp_interest_rate,
tfsa_interest_rate
)
)