-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrussell.v
41 lines (33 loc) · 1.15 KB
/
russell.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
Require Export ssreflect ssrbool ssrfun sets.
(* Short proof of Russell's paradox. *)
Section Russell's_paradox.
Hypothesis Universal_comprehension : ∀ P, ∃ x, ∀ y, y ∈ x ↔ P y.
Hypothesis Universal_set : ∃ x, ∀ y, y ∈ x.
(* Proof of False from Frege's universal comprehension axiom. *)
Theorem UC_False : False.
Proof.
elim (Universal_comprehension (λ x, x ∉ x)) => [x /(_ x)].
tauto.
Qed.
(* Proof of False from universal set axiom. *)
Theorem US_False : False.
Proof.
move: Universal_set => [X H].
have: {x in X | x ∉ x} ∉ {x in X | x ∉ x} =>
/[dup] H0 /Specify_classification [] //.
Qed.
(* Proof that universal comprehension implies universal set. *)
Theorem UC_implies_US : ∃ x, ∀ y, y ∈ x.
Proof.
move: (Universal_comprehension (λ x, ∀ y : set, y = y)) => [x H].
firstorder.
Qed.
(* Proof that universal set implies universal comprehension. *)
Theorem US_implies_UC : ∀ P, ∃ x, ∀ y, y ∈ x ↔ P y.
Proof.
move: Universal_set => [X H] P.
exists {x in X | P x} => y.
rewrite Specify_classification.
firstorder.
Qed.
End Russell's_paradox.