-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMobileNetv2.py
171 lines (122 loc) · 4.83 KB
/
MobileNetv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import LayerMAC as L
class MobileNetV2:
def __init__(self, model_name, num_classes=1000):
self.model_name = model_name
self.num_classes = num_classes
input_size = (224, 224, 3) # Height, Width, Channels
self.num_layers = 10
self.layers = []
#layer 1
num_filters = 32
stride = 2
self.conv1 = L.Conv2DLayer("Conv2D_1", input_size, num_filters, 3, stride, 1)
self.layers.append(self.conv1)
#layer 2
input_size = self.conv1.calculate_output_size()
num_filters = 16
expansion_factor = 1
n_repeat = 1
stride = 1
self.bottleneck1 = L.InvertedResisualBlock("BottleNeck_1", input_size, num_filters, stride, expansion_factor, n_repeat)
self.layers.append(self.bottleneck1)
#layer 3
input_size = self.bottleneck1.calculate_output_size()
num_filters = 24
expansion_factor = 6
n_repeat = 2
stride = 2
self.bottleneck2 = L.InvertedResisualBlock("BottleNeck_2", input_size, num_filters, stride, expansion_factor, n_repeat)
self.layers.append(self.bottleneck2)
#layer 4
input_size = self.bottleneck2.calculate_output_size()
num_filters = 32
expansion_factor = 6
n_repeat = 3
stride = 2
self.bottleneck3 = L.InvertedResisualBlock("BottleNeck_3", input_size, num_filters, stride, expansion_factor, n_repeat)
self.layers.append(self.bottleneck3)
#layer 4
input_size = self.bottleneck3.calculate_output_size()
num_filters = 64
expansion_factor = 6
n_repeat = 4
stride = 2
self.bottleneck4 = L.InvertedResisualBlock("BottleNeck_4", input_size, num_filters, stride, expansion_factor, n_repeat)
self.layers.append(self.bottleneck4)
#layer 5
input_size = self.bottleneck4.calculate_output_size()
num_filters = 96
expansion_factor = 6
n_repeat = 3
stride = 1
self.bottleneck5 = L.InvertedResisualBlock("BottleNeck_5", input_size, num_filters, stride, expansion_factor, n_repeat)
self.layers.append(self.bottleneck5)
#layer 5
input_size = self.bottleneck5.calculate_output_size()
num_filters = 160
expansion_factor = 6
n_repeat = 3
stride = 2
self.bottleneck6 = L.InvertedResisualBlock("BottleNeck_6", input_size, num_filters, stride, expansion_factor, n_repeat)
self.layers.append(self.bottleneck6)
#layer 7
input_size = self.bottleneck6.calculate_output_size()
num_filters = 320
expansion_factor = 6
n_repeat = 1
stride = 1
self.bottleneck7 = L.InvertedResisualBlock("BottleNeck_7", input_size, num_filters, stride, expansion_factor, n_repeat)
self.layers.append(self.bottleneck7)
#layer 8
input_size = self.bottleneck7.calculate_output_size()
num_filters = 1280
stride = 1
self.conv2 = L.Conv2DLayer("Conv2D_2", input_size, num_filters, 1, stride, 0)
self.layers.append(self.conv2)
#layer 9
input_size = self.conv2.calculate_output_size()
stride = 1
kernel_size = 7
self.avgpool = L.AvgPooling("AvgPooling", input_size, kernel_size, stride)
self.layers.append(self.avgpool)
#layer 10
input_size = self.avgpool.calculate_output_size()
num_filters = self.num_classes
stride = 1
self.conv3 = L.Conv2DLayer("Conv2D_3", input_size, num_filters, 1, stride, 0)
self.layers.append(self.conv3)
def __str__(self):
return self.model_name + " with " + str(self.num_classes) + " classes"
def calculate_macs(self):
macs = 0
for layer in self.layers:
macs += layer.calculate_macs()
return macs
def layer_size(self):
layer_size = 0
for layer in self.layers:
layer_size += layer.layer_size()
return layer_size
def print_model(self):
for layer in self.layers:
print(layer)
print("\n")
def print_stat(self):
total_macs = self.calculate_macs()
layer_size = self.layer_size()
for layer in self.layers:
percentage_mac = layer.calculate_macs()/total_macs * 100
percentage_size = layer.layer_size()/layer_size * 100
print(f"{layer.layer_name}: MAC {percentage_mac:.2f}% SIZE {percentage_size:.2f}%")
print("\n")
model = MobileNetV2("MobileNetV2", num_classes=4)
print(model)
print(f"Number of MMACs: {model.calculate_macs()/1e6:.2f}M")
model.print_stat()
model.print_model()
Freq = 400*1e6 # 450 MHz
MAC = model.calculate_macs()
FPS = 21 #inferenced per second
MACs = MAC*FPS
MAC_cycles = MACs/Freq
print(f"MAC_cycles: {MAC_cycles:.2f}")