-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLayerMAC.py
269 lines (208 loc) · 11 KB
/
LayerMAC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import math
def calculate_same_padding(kernel_size):
padding_top = math.ceil(kernel_size / 2)
padding_bottom = math.floor(kernel_size / 2)
return padding_top, padding_bottom
class Layer:
def __init__(self, layer_name, input_size):
self.layer_name = layer_name
self.input_height, self.input_width, self.input_channels = input_size
self.output_height, self.output_width, self.output_channels = self.calculate_output_size()
self.num_macs = self.calculate_macs()
def calculate_output_size(self):
output_height = self.input_height
output_width = self.input_width
output_channels = self.input_channels
return output_height, output_width, output_channels
def calculate_macs(self):
return 0
def __str__(self):
return (f"Layer: {self.layer_name}\n"
f"Input Size: {self.input_height}x{self.input_width}x{self.input_channels} ({self.input_height * self.input_width * self.input_channels})\n"
f"Output Size: {self.output_height}x{self.output_width}x{self.output_channels}\n"
f"Number of KMACs: {self.num_macs/1e3:.2f}K")
class Conv2DLayer(Layer):
def __init__(self, layer_name, input_size, num_filters, kernel_size, stride, padding):
self.num_filters = num_filters
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
super().__init__(layer_name, input_size)
self.output_height, self.output_width, self.output_channels = self.calculate_output_size()
self.num_macs = self.calculate_macs()
def calculate_output_size(self):
output_height = ((self.input_height - self.kernel_size + 2 * self.padding) // self.stride) + 1
output_width = ((self.input_width - self.kernel_size + 2 * self.padding) // self.stride) + 1
output_channels = self.num_filters
return output_height, output_width, output_channels
def calculate_filter_size(self):
filter_height = self.kernel_size
filter_width = self.kernel_size
filter_channels = self.input_channels
filter_number = self.num_filters
return filter_height*filter_width*filter_channels*filter_number
def layer_size(self):
filter_size = self.calculate_filter_size()
layer_size = filter_size
layer_size += self.output_height*self.output_width*self.output_channels
layer_size += self.input_height*self.input_width*self.input_channels
return layer_size
def calculate_macs(self):
output_height, output_width = self.output_height, self.output_width
macs_per_filter = self.kernel_size * self.kernel_size * self.input_channels
total_macs = output_height * output_width * macs_per_filter * self.num_filters
return total_macs
def __str__(self):
filter_size = self.calculate_filter_size()
return (f"Layer: {self.layer_name}\n"
f"Input Size: {self.input_height}x{self.input_width}x{self.input_channels} ({self.input_height * self.input_width * self.input_channels})\n"
f"Output Size: {self.output_height}x{self.output_width}x{self.output_channels} ({self.output_height * self.output_width * self.output_channels})\n"
f"Filter Size: {filter_size}\n"
f"Layer Size: {self.layer_size()}\n"
f"Number of KMACs: {self.num_macs/1e3:.2f}K")
class AvgPooling(Layer):
def __init__(self, layer_name, input_size, kernel_size, stride):
self.kernel_size = kernel_size
self.stride = stride
super().__init__(layer_name, input_size)
self.output_height, self.output_width, self.output_channels = self.calculate_output_size()
self.num_macs = self.calculate_macs()
def calculate_output_size(self):
output_height = ((self.input_height - self.kernel_size) // self.stride) + 1
output_width = ((self.input_width - self.kernel_size) // self.stride) + 1
output_channels = self.input_channels
return output_height, output_width, output_channels
def layer_size(self):
return 0
def calculate_macs(self):
return 0
def __str__(self):
return (f"Layer: {self.layer_name}\n"
f"Input Size: {self.input_height}x{self.input_width}x{self.input_channels}\n"
f"Output Size: {self.output_height}x{self.output_width}x{self.output_channels}\n"
f"Number of KMACs: {self.num_macs/1e3:.2f}K")
class SeparableConv2DLayer(Conv2DLayer):
def __init__(self, layer_name, input_size, num_filters, kernel_size, stride, padding):
super().__init__(layer_name, input_size, num_filters, kernel_size, stride, padding)
def calculate_macs(self):
output_height, output_width = self.output_height, self.output_width
macs_per_separable_filter = self.kernel_size * self.kernel_size * 1
total_separable_macs = output_height * output_width * macs_per_separable_filter * self.num_filters
total_macs = total_separable_macs
return total_macs
def calculate_filter_size(self):
filter_height = self.kernel_size
filter_width = self.kernel_size
filter_channels = 1
filter_number = self.num_filters
return filter_height*filter_width*filter_channels*filter_number
class BottleNeck(Layer):
def __init__(self, layer_name, input_size, num_filters, stride, expansion_factor):
self.conv1_macs = 0
self.separablewise_conv_macs = 0
self.conv2_macs = 0
self.conv1 = None
self.separablewise_conv = None
self.conv2 = None
self.output_height, self.output_width, self.output_channels = (0, 0, 0)
super().__init__(layer_name, input_size)
self.expansion_factor = expansion_factor
padding_depthwise_top, padding_depthwise_bottom = calculate_same_padding(stride)
self.padding = padding_depthwise_top
self.conv1 = Conv2DLayer(f"{layer_name}/Conv2D_1_1x1", input_size, self.input_channels * expansion_factor, 1, 1, 0)
self.conv1_macs = self.conv1.calculate_macs()
self.separablewise_conv = SeparableConv2DLayer(
f"{layer_name}/DepthWiseConv2D",
self.conv1.calculate_output_size(),
self.input_channels * expansion_factor,
3,
stride,
self.padding
)
self.separablewise_conv_macs = self.separablewise_conv.calculate_macs()
self.conv2 = Conv2DLayer(f"{layer_name}/Conv2D_2_1x1", self.separablewise_conv.calculate_output_size(), num_filters, 1, 1, 0)
self.conv2_macs = self.conv2.calculate_macs()
self.output_height, self.output_width, self.output_channels = self.conv2.calculate_output_size()
self.num_macs = self.calculate_macs()
def calculate_macs(self):
return self.conv1_macs + self.separablewise_conv_macs + self.conv2_macs
def calculate_output_size(self):
return self.output_height, self.output_width, self.output_channels
def layer_size(self):
filter_size = self.calculate_filter_size()
layer_size = filter_size
layer_size += self.output_height*self.output_width*self.output_channels
layer_size += self.input_height*self.input_width*self.input_channels
if self.conv1 != None and self.separablewise_conv != None and self.conv2 != None:
return self.conv1.layer_size() + self.separablewise_conv.layer_size() + self.conv2.layer_size()
else:
return 0
def calculate_filter_size(self):
filter_size = 0
if self.conv1 != None:
filter_size += self.conv1.calculate_filter_size()
else:
return -1
if self.separablewise_conv != None:
filter_size += self.separablewise_conv.calculate_filter_size()
else:
return -1
if self.conv2 != None:
filter_size += self.conv2.calculate_filter_size()
else:
return -1
return filter_size
def __str__(self):
return (f"Layer: {self.layer_name}\n"
f"Input Size: {self.input_height}x{self.input_width}x{self.input_channels} ({self.input_height * self.input_width * self.input_channels})\n"
f"Output Size: {self.output_height}x{self.output_width}x{self.output_channels} ({self.output_height * self.output_width * self.output_channels})\n"
f"Filter Size: {self.calculate_filter_size()}\n"
f"Layer Size: {self.layer_size()}\n"
f"Number of KMACs: {self.num_macs/1e3:.2f}K")
class InvertedResisualBlock(Layer):
def __init__(self, layer_name, input_size, num_filters, stride, expansion_factor, n_repeat):
self.layer_name = layer_name
self.n_repeat = n_repeat
self.expansion_factor = expansion_factor
# Initialize the array with None
self.bottleneck_array = [None] * self.n_repeat
next_input_size = input_size
for i in range(self.n_repeat):
if i == 0:
self.bottleneck_array[i] = BottleNeck(f"{layer_name}/BottleNeck_" + str(i), next_input_size, num_filters, stride, expansion_factor)
else:
self.bottleneck_array[i] = BottleNeck(f"{layer_name}/BottleNeck_" + str(i), next_input_size, num_filters, 1, expansion_factor)
next_input_size = self.bottleneck_array[i].calculate_output_size()
self.num_macs = self.calculate_macs()
self.output_height, self.output_width, self.output_channels = self.bottleneck_array[-1].calculate_output_size()
super().__init__(layer_name, input_size)
def get_layers(self):
return self.bottleneck_array
def calculate_macs(self):
self.num_macs = 0
for i in range(self.n_repeat):
self.num_macs += self.bottleneck_array[i].calculate_macs()
return self.num_macs
def calculate_output_size(self):
return self.output_height, self.output_width, self.output_channels
def layer_size(self):
if self.bottleneck_array != None:
layer_size = 0
for i in range(self.n_repeat):
layer_size += self.bottleneck_array[i].layer_size()
return layer_size
def calculate_filter_size(self):
filter_size = 0
if self.bottleneck_array != None:
for i in range(self.n_repeat):
filter_size += self.bottleneck_array[i].calculate_filter_size()
return filter_size
else:
return -1
def __str__(self):
return (f"Layer: {self.layer_name}\n"
f"Input Size: {self.input_height}x{self.input_width}x{self.input_channels} ({self.input_height * self.input_width * self.input_channels})\n"
f"Output Size: {self.output_height}x{self.output_width}x{self.output_channels} ({self.output_height * self.output_width * self.output_channels})\n"
f"Filter Size: {self.calculate_filter_size()}\n"
f"Layer Size: {self.layer_size()}\n"
f"Number of KMACs: {self.calculate_macs()/1e3:.2f}K")