-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknearest.py
56 lines (46 loc) · 1.98 KB
/
knearest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright (C) 2018 David Arroyo Menéndez
# Author: David Arroyo Menéndez <[email protected]>
# Maintainer: David Arroyo Menéndez <[email protected]>
# This file is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
# This file is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with GNU Emacs; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
# Boston, MA 02110-1301 USA,
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
import warnings
from math import sqrt
from collections import Counter
style.use('fivethirtyeight')
def k_nearest_neighbors(data, predict, k=3):
if len(data) >= k:
warnings.warn('K is set to a value less than total voting groups!')
distances = []
for group in data:
for features in data[group]:
euclidean_distance = np.linalg.norm(np.array(features)-np.array(predict))
distances.append([euclidean_distance,group])
votes = [i[1] for i in sorted(distances)[:k]]
vote_result = Counter(votes).most_common(1)[0][0]
return vote_result
dataset = {'k':[[1,2],[2,3],[3,1]], 'r':[[6,5],[7,7],[8,6]]}
new_features = [5,7]
[[plt.scatter(ii[0],ii[1],s=100,color=i) for ii in dataset[i]] for i in dataset]
# same as:
##for i in dataset:
## for ii in dataset[i]:
## plt.scatter(ii[0],ii[1],s=100,color=i)
plt.scatter(new_features[0], new_features[1], s=100)
result = k_nearest_neighbors(dataset, new_features)
plt.scatter(new_features[0], new_features[1], s=100, color = result)
plt.show()