-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path8puzzle.py
269 lines (221 loc) · 8.32 KB
/
8puzzle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright (C) 2018 David Arroyo Menéndez
# Author: David Arroyo Menéndez <[email protected]>
# Maintainer: David Arroyo Menéndez <[email protected]>
# This file is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
# This file is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with GNU Emacs; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
# Boston, MA 02110-1301 USA,
# Solves a randomized 8-puzzle using A* algorithm with plug-in heuristics
import random
import math
_goal_state = [[1,2,3],
[4,5,6],
[7,8,0]]
def index(item, seq):
"""Helper function that returns -1 for non-found index value of a seq"""
if item in seq:
return seq.index(item)
else:
return -1
class EightPuzzle:
def __init__(self):
# heuristic value
self._hval = 0
# search depth of current instance
self._depth = 0
# parent node in search path
self._parent = None
self.adj_matrix = []
for i in range(3):
self.adj_matrix.append(_goal_state[i][:])
def __eq__(self, other):
if self.__class__ != other.__class__:
return False
else:
return self.adj_matrix == other.adj_matrix
def __str__(self):
res = ''
for row in range(3):
res += ' '.join(map(str, self.adj_matrix[row]))
res += '\r\n'
return res
def _clone(self):
p = EightPuzzle()
for i in range(3):
p.adj_matrix[i] = self.adj_matrix[i][:]
return p
def _get_legal_moves(self):
"""Returns list of tuples with which the free space may
be swapped"""
# get row and column of the empty piece
row, col = self.find(0)
free = []
# find which pieces can move there
if row > 0:
free.append((row - 1, col))
if col > 0:
free.append((row, col - 1))
if row < 2:
free.append((row + 1, col))
if col < 2:
free.append((row, col + 1))
return free
def _generate_moves(self):
free = self._get_legal_moves()
zero = self.find(0)
def swap_and_clone(a, b):
p = self._clone()
p.swap(a,b)
p._depth = self._depth + 1
p._parent = self
return p
return map(lambda pair: swap_and_clone(zero, pair), free)
def _generate_solution_path(self, path):
if self._parent == None:
return path
else:
path.append(self)
return self._parent._generate_solution_path(path)
def solve(self, h):
"""Performs A* search for goal state.
h(puzzle) - heuristic function, returns an integer
"""
def is_solved(puzzle):
return puzzle.adj_matrix == _goal_state
openl = [self]
closedl = []
move_count = 0
while len(openl) > 0:
x = openl.pop(0)
move_count += 1
if (is_solved(x)):
if len(closedl) > 0:
return x._generate_solution_path([]), move_count
else:
return [x]
succ = x._generate_moves()
idx_open = idx_closed = -1
for move in succ:
# have we already seen this node?
idx_open = index(move, openl)
idx_closed = index(move, closedl)
hval = h(move)
fval = hval + move._depth
if idx_closed == -1 and idx_open == -1:
move._hval = hval
openl.append(move)
elif idx_open > -1:
copy = openl[idx_open]
if fval < copy._hval + copy._depth:
# copy move's values over existing
copy._hval = hval
copy._parent = move._parent
copy._depth = move._depth
elif idx_closed > -1:
copy = closedl[idx_closed]
if fval < copy._hval + copy._depth:
move._hval = hval
closedl.remove(copy)
openl.append(move)
closedl.append(x)
openl = sorted(openl, key=lambda p: p._hval + p._depth)
# if finished state not found, return failure
return [], 0
def shuffle(self, step_count):
for i in range(step_count):
row, col = self.find(0)
free = self._get_legal_moves()
target = random.choice(free)
self.swap((row, col), target)
row, col = target
def find(self, value):
"""returns the row, col coordinates of the specified value
in the graph"""
if value < 0 or value > 8:
raise Exception("value out of range")
for row in range(3):
for col in range(3):
if self.adj_matrix[row][col] == value:
return row, col
def peek(self, row, col):
"""returns the value at the specified row and column"""
return self.adj_matrix[row][col]
def poke(self, row, col, value):
"""sets the value at the specified row and column"""
self.adj_matrix[row][col] = value
def swap(self, pos_a, pos_b):
"""swaps values at the specified coordinates"""
temp = self.peek(*pos_a)
self.poke(pos_a[0], pos_a[1], self.peek(*pos_b))
self.poke(pos_b[0], pos_b[1], temp)
def heur(puzzle, item_total_calc, total_calc):
"""
Heuristic template that provides the current and target position for each number and the
total function.
Parameters:
puzzle - the puzzle
item_total_calc - takes 4 parameters: current row, target row, current col, target col.
Returns int.
total_calc - takes 1 parameter, the sum of item_total_calc over all entries, and returns int.
This is the value of the heuristic function
"""
t = 0
for row in range(3):
for col in range(3):
val = puzzle.peek(row, col) - 1
target_col = val % 3
target_row = val / 3
# account for 0 as blank
if target_row < 0:
target_row = 2
t += item_total_calc(row, target_row, col, target_col)
return total_calc(t)
#some heuristic functions, the best being the standard manhattan distance in this case, as it comes
#closest to maximizing the estimated distance while still being admissible.
def h_manhattan(puzzle):
return heur(puzzle,
lambda r, tr, c, tc: abs(tr - r) + abs(tc - c),
lambda t : t)
def h_manhattan_lsq(puzzle):
return heur(puzzle,
lambda r, tr, c, tc: (abs(tr - r) + abs(tc - c))**2,
lambda t: math.sqrt(t))
def h_linear(puzzle):
return heur(puzzle,
lambda r, tr, c, tc: math.sqrt(math.sqrt((tr - r)**2 + (tc - c)**2)),
lambda t: t)
def h_linear_lsq(puzzle):
return heur(puzzle,
lambda r, tr, c, tc: (tr - r)**2 + (tc - c)**2,
lambda t: math.sqrt(t))
def h_default(puzzle):
return 0
def main():
p = EightPuzzle()
p.shuffle(20)
print(p)
path, count = p.solve(h_manhattan)
path.reverse()
for i in path:
print(i)
print("Solved with Manhattan distance exploring", count, "states")
path, count = p.solve(h_manhattan_lsq)
print("Solved with Manhattan least squares exploring", count, "states")
path, count = p.solve(h_linear)
print("Solved with linear distance exploring", count, "states")
path, count = p.solve(h_linear_lsq)
print("Solved with linear least squares exploring", count, "states")
# path, count = p.solve(heur_default)
# print "Solved with BFS-equivalent in", count, "moves"
if __name__ == "__main__":
main()