-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_autoencoder.py
378 lines (340 loc) · 18 KB
/
train_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os
import warnings
from argparse import ArgumentParser
warnings.simplefilter(action='ignore', category=(FutureWarning, UserWarning))
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms.v2 as transforms
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data.distributed import DistributedSampler
from monai.losses import PerceptualLoss
import torch._dynamo
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from training.epoch_cycles import train_autoencoder_cycle, evaluate_autoencoder_cycle
from training.dataset import CamusVAEDataset
from torch_utils import distributed as dist
from autoencoder.Autoencoderkl import GammaAutoencoderKL
from torch_utils.misc import import_module_from_path
torch._dynamo.config.suppress_errors = True
torchvision.disable_beta_transforms_warning()
warnings.filterwarnings('ignore',
'Grad strides do not match bucket view strides') # False warning printed by PyTorch 1.12.
def parse_all_arguments():
if dist.get_rank() == 0:
config_parser = ArgumentParser(description="Load config file", add_help=False)
config_parser.add_argument('--config',
type=str,
help="Path to the config file")
args, remaining_argv = config_parser.parse_known_args()
if args.config:
cfg = import_module_from_path('cfg', args.config).cfg
else:
cfg = {}
torch.distributed.barrier()
parser = ArgumentParser(
parents=[config_parser],
description="Script with configurable defaults"
)
############################################ Dataset Parameters ############################################
parser.add_argument('--data-dir',
dest='data_dir',
help='path to data directory',
default=cfg.DATASET.DATA_DIR,
type=str)
parser.add_argument('--data-type',
dest='data_type',
help='image file format e.g. .png',
default=cfg.DATASET.DATA_TYPE,
type=str)
parser.add_argument('--results-dir',
dest='results_dir',
help='path to save directory',
default=cfg.DATASET.RESULTS_DIR,
type=str)
parser.add_argument('--image-size',
dest='image_size',
help='size of input images',
default=cfg.DATASET.IMAGE_SIZE,
type=int)
############################################ Network Parameters ############################################
parser.add_argument('--alpha-param',
dest='alpha_param',
help='alpha parameter for gamma distribution',
default=cfg.NETWORK.ALPHA_PARAM,
type=float)
parser.add_argument('--beta-param',
dest='beta_param',
help='beta parameter for gamma distribution',
default=cfg.NETWORK.BETA_PARAM,
type=float)
parser.add_argument('--num-layers',
dest='num_layers',
help='number of layers in autoencoder',
default=cfg.NETWORK.NUM_LAYERS,
type=int)
parser.add_argument('--in-channels',
dest='in_channels',
help='Number of input image channels',
default=cfg.NETWORK.IN_CHANNELS,
type=int)
parser.add_argument('--out-channels',
dest='out_channels',
help='Number of output image channels',
default=cfg.NETWORK.OUT_CHANNELS,
type=int)
parser.add_argument('--latent-channels',
dest='latent_channels',
help='Number of latent image channels',
default=cfg.NETWORK.LATENT_CHANNELS,
type=int)
parser.add_argument('--num-res-blocks',
dest='num_res_blocks',
help='Number of residual blocks in autoencoder',
default=cfg.NETWORK.NUM_RES_BLOCKS,
type=int)
parser.add_argument('--num-norm-groups',
dest='num_norm_groups',
help='Number of normalization groups in layernorm',
default=cfg.NETWORK.NUM_NORM_GROUPS,
type=int)
parser.add_argument('--use-flash-attention',
dest='use_flash_attention',
help='Whether to use flash attention',
default=cfg.NETWORK.USE_FLASH_ATTENTION,
type=bool)
parser.add_argument('--compile',
dest='compile',
help='Whether to perform pytorch 2.X automatic model compilation',
default=cfg.NETWORK.COMPILE,
type=bool)
parser.add_argument('--load-path',
dest='load_path',
help='path to pretrained model',
default=cfg.NETWORK.LOAD_PATH)
############################################ Const Parameters ############################################
parser.add_argument('--batch-size',
dest='batch_size',
default=cfg.CONST.BATCH_SIZE,
type=int)
parser.add_argument('--num-workers',
dest='num_workers',
help='number of cpu cores to use',
default=cfg.CONST.NUM_WORKERS,
type=int)
parser.add_argument('--pin-memory',
dest='pin_memory',
help='Whether to pin memory of dataloaders',
default=cfg.CONST.PIN_MEMORY,
type=bool)
parser.add_argument('--amp',
help='Whether to use torch automatic mixed precision',
default=cfg.CONST.AMP,
type=bool)
parser.add_argument('--gpu-id',
dest='gpu_id',
help='GPU device id to use [cuda:0]',
default=cfg.CONST.GPU_ID,
type=str)
############################################ Train Parameters ############################################
parser.add_argument('--num-epochs',
dest='num_epochs',
help='number of epochs to run training for',
default=cfg.TRAIN.NUM_EPOCHS,
type=int)
parser.add_argument('--validation-interval',
dest='validation_interval',
help='number of epochs to run training for',
default=cfg.TRAIN.NUM_EPOCHS,
type=int)
parser.add_argument('--lr',
dest='lr',
help='learning rate',
default=cfg.TRAIN.LR,
type=float)
parser.add_argument('--min-lr',
dest='min_lr',
help='lr will decay to this value over training cycle using cosine annealing lr schedule',
default=cfg.TRAIN.MIN_LR,
type=float)
parser.add_argument('--momentum',
help='momentum value for SGD optimiser',
default=cfg.TRAIN.MOMENTUM,
type=float)
parser.add_argument('--nesterov',
help='Whether to use nesterov momentum in SGD optimiser',
default=cfg.TRAIN.NESTEROV,
type=bool)
parser.add_argument('--shuffle',
help='Whether to shuffle training data',
default=cfg.TRAIN.SHUFFLE,
type=bool)
parser.add_argument('--seed',
help='random seed for initialisation',
default=cfg.TRAIN.SEED)
############################################ Loss Parameters ############################################
parser.add_argument('--perceptual-weight',
dest='perceptual_weight',
help='Weight for perceptual loss',
default=cfg.LOSS.PERCEPTUAL_WEIGHT,
type=float)
parser.add_argument('--kl-weight',
dest='kl_weight',
help='Weight for Kullback–Leibler divergence loss',
default=cfg.LOSS.KL_WEIGHT,
type=float)
parser.add_argument('--mse-weight',
dest='mse_weight',
help='Weight for Mean Squared Error reconstruction loss',
default=cfg.LOSS.MSE_WEIGHT,
type=float)
parser.add_argument('--mse-latent-weight',
dest='mse_latent_weight',
help='Weight for Mean Squared Error reconstruction loss on latent image',
default=cfg.LOSS.MSE_LATENT_WEIGHT,
type=float)
return parser.parse_args(remaining_argv)
def main(args):
rank = dist.get_rank()
world_size = dist.get_world_size()
logs_path = os.path.join(args.results_dir, 'logs')
if rank == 0:
os.makedirs(logs_path, exist_ok=True)
train_writer = SummaryWriter(os.path.join(logs_path, 'train'))
val_writer = SummaryWriter(os.path.join(logs_path, 'val'))
latent_res = args.image_size // args.num_layers
trained_g_path = os.path.join(args.results_dir, "autoencoder_" + str(latent_res) + ".pth")
dist.print0(
f'Input image of size of: [{args.image_size}] and number of layers: [{args.num_layers}] \n'
f'Results in a latent size of: [{latent_res}]')
torch.autograd.set_detect_anomaly(True)
torch.backends.cudnn.benchmark = True
torch.autograd.profiler.profile(False)
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
train_transforms = transforms.Compose(
[transforms.Resize((args.image_size, args.image_size)),
transforms.RandomVerticalFlip(),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(degrees=10,
interpolation=transforms.InterpolationMode.NEAREST,
fill=0),
transforms.RandomAffine(degrees=0,
translate=(0.1, 0.1),
scale=(1, 1),
interpolation=transforms.InterpolationMode.NEAREST,
fill=0),
transforms.RandomAffine(degrees=0,
translate=(0, 0),
scale=(0.8, 1.2),
interpolation=transforms.InterpolationMode.NEAREST, fill=0), ])
val_transforms = transforms.Compose([transforms.Resize((args.image_size, args.image_size))])
autoencoder_channels = [ii * 2 ** 6 for ii in range(1, args.num_layers + 1)]
attention_levels = [False for _ in range(args.num_layers - 1)] + [True]
model = GammaAutoencoderKL(
alpha_param=args.alpha_param,
beta_param=args.beta_param,
spatial_dims=2,
in_channels=args.in_channels,
out_channels=args.out_channels,
num_channels=autoencoder_channels,
latent_channels=args.latent_channels,
num_res_blocks=args.num_res_blocks,
norm_num_groups=args.num_norm_groups,
attention_levels=attention_levels,
use_flash_attention=args.use_flash_attention,
).to(rank)
torch.cuda.set_device(rank)
torch.cuda.empty_cache()
torch.distributed.barrier()
if rank == 0:
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True
perceptual_loss = PerceptualLoss(spatial_dims=2,
network_type="radimagenet_resnet50",
is_fake_3d=False).to(rank)
if args.compile:
try:
model = torch.compile(model, dynamic=False)
except Exception as e:
print('Failed to compile mode, continuing without compiled model')
torch.distributed.barrier()
if rank != 0:
perceptual_loss = PerceptualLoss(spatial_dims=2,
network_type="radimagenet_resnet50",
is_fake_3d=False).to(rank)
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[rank],
find_unused_parameters=True)
train_dataset = CamusVAEDataset(args.data_dir, 'training', data_type=args.data_type)
train_sampler = DistributedSampler(train_dataset, rank=rank)
val_dataset = CamusVAEDataset(args.data_dir, 'validation', data_type=args.data_type)
val_sampler = DistributedSampler(val_dataset, rank=rank, shuffle=False)
train_loader = DataLoader(train_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_memory,
persistent_workers=True,
sampler=train_sampler)
val_loader = DataLoader(val_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_memory,
persistent_workers=True,
sampler=val_sampler)
optimizer = torch.optim.SGD(params=model.parameters(),
lr=args.lr * world_size,
momentum=args.momentum,
nesterov=args.nesterov)
lr_scheduler = CosineAnnealingLR(optimizer, T_max=args.num_epochs, eta_min=args.min_lr)
best_val_loss = np.inf
scaler_g = torch.amp.GradScaler('cuda')
def loss_func(recon_img, target_img):
return torch.squeeze(F.mse_loss(recon_img.float(), target_img.float()))
torch.distributed.barrier()
for epoch in range(args.num_epochs):
train_sampler.set_epoch(epoch)
val_sampler.set_epoch(epoch)
total_loss_train, recons_loss_train, kl_loss_train, recons_loss_latent_train = train_autoencoder_cycle(args,
epoch,
model,
perceptual_loss,
train_loader,
train_transforms,
loss_func,
optimizer,
lr_scheduler,
scaler_g,
rank,
train_writer)
if epoch % args.validation_interval == 0:
total_loss_val, recons_loss_val, kl_loss_val = evaluate_autoencoder_cycle(args,
epoch,
model,
perceptual_loss,
val_loader,
val_transforms,
loss_func,
rank,
val_writer)
dist.print0(f"Epoch {epoch} val_loss: {total_loss_val}")
if rank == 0:
val_writer.add_scalar('loss', total_loss_val, epoch)
if total_loss_val < best_val_loss and rank == 0:
best_val_loss = total_loss_val
torch.save(model.module.state_dict(), trained_g_path)
dist.print0("===== saved best model ======")
val_writer.add_scalar('best_val_loss', best_val_loss, epoch)
if rank == 0:
train_writer.add_scalar('loss', total_loss_train, epoch)
train_writer.add_scalar('recons_loss', recons_loss_train, epoch)
train_writer.add_scalar('kl_loss', kl_loss_train, epoch)
train_writer.add_scalar('recons_latent_loss', recons_loss_latent_train, epoch)
torch.distributed.destroy_process_group()
return
if __name__ == "__main__":
torch.multiprocessing.set_start_method('spawn')
dist.init()
main_args = parse_all_arguments()
main(main_args)