-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
162 lines (139 loc) · 4.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import logging
import argparse
from pathlib import Path
import tensorflow as tf
from tensorflow.keras.callbacks import ModelCheckpoint,ReduceLROnPlateau
from unet import UNet
from utils.utils import load_image_from_path, load_dataset_path
img_dir = Path("./data/images/")
masks_dir = Path("./data/masks/")
checkpoint_dir = Path("./checkpoints/")
#configuration can be overrided using using args
EPOCHS = 10
BUFFER_SIZE = 256
BATCH_SIZE = 8
IMG_HEIGHT = 128
IMG_WIDTH = 128
LR = 1e-3
OUTPUT_CLASSES = 23
def train_unet(
unet=UNet,
epochs=EPOCHS,
batch_size=BATCH_SIZE,
buffer_size=BUFFER_SIZE,
learning_rate=LR,
val_size=0.1,
save_checkpoint: bool = True,
):
imgs_path, masks_path = load_dataset_path(img_dir, masks_dir=masks_dir)
dataset = tf.data.Dataset.from_tensor_slices((imgs_path, masks_path))
dataset = dataset.map(lambda img, mask: load_image_from_path(
img, mask, img_size=(IMG_HEIGHT, IMG_WIDTH)),
num_parallel_calls=tf.data.AUTOTUNE).batch(BATCH_SIZE).shuffle(BUFFER_SIZE).cache()
dataset_size = len(imgs_path)
val_batches = (dataset
.take(round(val_size*dataset_size))
.prefetch(buffer_size=tf.data.AUTOTUNE)
)
train_batches= (dataset
.skip(round(val_size*dataset_size))
.prefetch(buffer_size=tf.data.AUTOTUNE)
)
callbacks = [
ReduceLROnPlateau(patience=3, verbose=1),
ModelCheckpoint(checkpoint_dir, verbose=1, save_best_only=True)
]
unet.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate),
run_eagerly=True,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
logging.info(f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {learning_rate}
Checkpoints: {save_checkpoint}
''')
# fiting the model
history = unet.fit(
train_batches,
epochs=epochs,
validation_data=val_batches,
validation_steps = 8,
callbacks=callbacks,
)
if save_checkpoint:
path = os.path.join(checkpoint_dir)
unet.save(path)
def get_args():
parser = argparse.ArgumentParser(
description='Trains the UNet model on images and mask')
parser.add_argument('-e',
'--epochs',
dest='epochs',
default=EPOCHS,
type=int,
help='Number of Epochs')
parser.add_argument('-b',
'--batch-size',
dest='batch_size',
default=BATCH_SIZE,
type=int,
help='Number of batches')
parser.add_argument('-lr',
'--learning-rate',
dest='lr',
default=LR,
type=float,
help='Learning rate')
parser.add_argument('-c',
'--classes',
dest='classes',
default=OUTPUT_CLASSES,
type=int,
help='Number of classes')
parser.add_argument('-bfs',
'--buffer_size',
dest='buffer',
default=BUFFER_SIZE,
type=int,
help='Size of buffer')
parser.add_argument(
'-val',
'--validation',
dest='val',
default=0.1,
type=float,
help='Percent of the data that is used as validation(0-1)')
parser.add_argument('-f',
'--load',
dest='load',
type=str,
default=False,
help='Load a model weight from file')
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
logging.basicConfig(level=logging.INFO,
format='%(levelname)s :%(message)s')
unet = UNet(num_classes=args.classes)
if (args.load):
try:
unet.load_weights(args.load)
logging.info(f"Model loaded from {args.load}")
except:
logging.info(f"Unable to load weights from {args.load}")
try:
train_unet(
unet=unet,
epochs=args.epochs,
batch_size=args.batch_size,
learning_rate=args.lr,
buffer_size=args.buffer,
val_size=args.val,
)
except KeyboardInterrupt:
unet.save('./.checkpoint-interrupted')
logging.info("Saved Weight")
raise