forked from SUDO-AI-3D/zero123plus
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgradio_app.py
204 lines (178 loc) · 11.6 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import torch
import fire
import gradio as gr
from PIL import Image
from functools import partial
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
import cv2
import time
import numpy as np
from rembg import remove
from segment_anything import sam_model_registry, SamPredictor
_TITLE = '''Zero123++: a Single Image to Consistent Multi-view Diffusion Base Model'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2310.15110"><img src="https://img.shields.io/badge/2310.15110-f9f7f7?logo="></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/SUDO-AI-3D/zero123plus'><img src='https://img.shields.io/github/stars/SUDO-AI-3D/zero123plus?style=social' /></a>
</div>
'''
_GPU_ID = 0
if not hasattr(Image, 'Resampling'):
Image.Resampling = Image
def sam_init():
sam_checkpoint = os.path.join(os.path.dirname(__file__), "tmp", "sam_vit_h_4b8939.pth")
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}")
predictor = SamPredictor(sam)
return predictor
def sam_segment(predictor, input_image, *bbox_coords):
bbox = np.array(bbox_coords)
image = np.asarray(input_image)
start_time = time.time()
predictor.set_image(image)
masks_bbox, scores_bbox, logits_bbox = predictor.predict(
box=bbox,
multimask_output=True
)
print(f"SAM Time: {time.time() - start_time:.3f}s")
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
out_image[:, :, :3] = image
out_image_bbox = out_image.copy()
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
torch.cuda.empty_cache()
return Image.fromarray(out_image_bbox, mode='RGBA')
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False):
RES = 1024
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
if chk_group is not None:
segment = "Background Removal" in chk_group
rescale = "Rescale" in chk_group
if segment:
image_rem = input_image.convert('RGBA')
image_nobg = remove(image_rem, alpha_matting=True)
arr = np.asarray(image_nobg)[:,:,-1]
x_nonzero = np.nonzero(arr.sum(axis=0))
y_nonzero = np.nonzero(arr.sum(axis=1))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max)
# Rescale and recenter
if rescale:
image_arr = np.array(input_image)
in_w, in_h = image_arr.shape[:2]
out_res = min(RES, max(in_w, in_h))
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY)
x, y, w, h = cv2.boundingRect(mask)
max_size = max(w, h)
ratio = 0.75
side_len = int(max_size / ratio)
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
center = side_len//2
padded_image[center-h//2:center-h//2+h, center-w//2:center-w//2+w] = image_arr[y:y+h, x:x+w]
rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS)
rgba_arr = np.array(rgba) / 255.0
rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:])
input_image = Image.fromarray((rgb * 255).astype(np.uint8))
else:
input_image = expand2square(input_image, (127, 127, 127, 0))
return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS)
def gen_multiview(pipeline, predictor, input_image, scale_slider, steps_slider, seed, output_processing=False):
seed = int(seed)
torch.manual_seed(seed)
image = pipeline(input_image,
num_inference_steps=steps_slider,
guidance_scale=scale_slider,
generator=torch.Generator(pipeline.device).manual_seed(seed)).images[0]
side_len = image.width//2
subimages = [image.crop((x, y, x + side_len, y+side_len)) for y in range(0, image.height, side_len) for x in range(0, image.width, side_len)]
if "Background Removal" in output_processing:
out_images = []
for sub_image in subimages:
sub_image, _ = preprocess(predictor, sub_image.convert('RGB'), segment=True, rescale=False)
out_images.append(sub_image)
return out_images
return subimages
def run_demo():
# Load the pipeline
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.1", custom_pipeline="sudo-ai/zero123plus-pipeline",
torch_dtype=torch.float16
)
# Feel free to tune the scheduler
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
pipeline.to(f'cuda:{_GPU_ID}')
predictor = sam_init()
custom_theme = gr.themes.Soft(primary_hue="blue").set(
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_200")
custom_css = '''#disp_image {
text-align: center; /* Horizontally center the content */
}'''
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image', tool=None)
example_folder = os.path.join(os.path.dirname(__file__), "./resources/examples")
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)]
gr.Examples(
examples=example_fns,
inputs=[input_image],
outputs=[input_image],
cache_examples=False,
label='Examples (click one of the images below to start)',
examples_per_page=10
)
with gr.Accordion('Advanced options', open=False):
with gr.Row():
with gr.Column():
input_processing = gr.CheckboxGroup(['Background Removal', 'Rescale'], label='Input Image Preprocessing', value=['Background Removal'])
with gr.Column():
output_processing = gr.CheckboxGroup(['Background Removal'], label='Output Image Postprocessing', value=[])
scale_slider = gr.Slider(1, 10, value=4, step=1,
label='Classifier Free Guidance Scale')
steps_slider = gr.Slider(15, 100, value=75, step=1,
label='Number of Diffusion Inference Steps',
info="For general real or synthetic objects, around 28 is enough. For objects with delicate details such as faces (either realistic or illustration), you may need 75 or more steps.")
seed = gr.Number(42, label='Seed')
run_btn = gr.Button('Generate', variant='primary', interactive=True)
with gr.Column(scale=1):
processed_image = gr.Image(type='pil', label="Processed Image", interactive=False, height=320, tool=None, image_mode='RGBA', elem_id="disp_image")
processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False, tool=None)
with gr.Row():
view_1 = gr.Image(interactive=False, height=240, show_label=False)
view_2 = gr.Image(interactive=False, height=240, show_label=False)
view_3 = gr.Image(interactive=False, height=240, show_label=False)
with gr.Row():
view_4 = gr.Image(interactive=False, height=240, show_label=False)
view_5 = gr.Image(interactive=False, height=240, show_label=False)
view_6 = gr.Image(interactive=False, height=240, show_label=False)
run_btn.click(fn=partial(preprocess, predictor),
inputs=[input_image, input_processing],
outputs=[processed_image_highres, processed_image], queue=True
).success(fn=partial(gen_multiview, pipeline, predictor),
inputs=[processed_image_highres, scale_slider, steps_slider, seed, output_processing],
outputs=[view_1, view_2, view_3, view_4, view_5, view_6])
demo.queue().launch(share=True, max_threads=80)
if __name__ == '__main__':
fire.Fire(run_demo)