-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
145 lines (119 loc) · 5.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import sys
import argparse
import logging
from datetime import datetime
from pathlib import Path
import copy
from omegaconf import OmegaConf
import torch
# Add paths
sys.path.extend([os.path.abspath('./assetto_corsa_gym'), './algorithm/discor'])
# Custom module imports
import AssettoCorsaEnv.assettoCorsa as assettoCorsa
import AssettoCorsaEnv.data_loader as data_loader
from discor.algorithm import SAC, DisCor
from discor.agent import Agent
import common.misc as misc
import common.logging_config as logging_config
from common.logger import Logger
logger = logging.getLogger(__name__)
def parse_args(hardcode=None):
parser = argparse.ArgumentParser(description="Description of your program.")
parser.add_argument("--config", default="config.yml", type=str, help="Path to configuration file")
parser.add_argument("--load_path", type=str, default=None, help="Path to load the model from (default: None)")
parser.add_argument("--algo", type=str, default="sac", help="Algorithm type (default: sac)")
parser.add_argument("--test", action="store_true")
parser.add_argument("overrides", nargs=argparse.REMAINDER, help="Any key=value arguments to override config values")
if hardcode is not None:
args = parser.parse_args(hardcode.split())
else:
args = parser.parse_args()
args.load_path = os.path.abspath(args.load_path) + os.sep if args.load_path is not None else None
return args
def main():
args = parse_args()
# Load base configuration
config = OmegaConf.load(args.config)
# Apply command line overrides
cli_conf = OmegaConf.from_dotlist(args.overrides)
config = OmegaConf.merge(config, cli_conf)
if config.work_dir is not None:
work_dir = os.path.abspath(args.work_dir) + os.sep + config.track + os.sep + config.car + os.sep
os.makedirs(work_dir, exist_ok=True)
else:
work_dir = "outputs" + os.sep + datetime.now().strftime('%Y%m%d_%H%M%S.%f')[:-3]
work_dir = os.path.abspath(work_dir) + os.sep
os.makedirs(work_dir, exist_ok=True)
config.work_dir = work_dir
logging_config.create_logging(level=logging.DEBUG, file_name=work_dir + "log.log")
logging.getLogger().setLevel(logging.INFO)
# log system and git info
misc.get_system_info()
misc.get_git_commit_info()
logger.info("Configuration:")
logger.info(OmegaConf.to_yaml(config))
logger.info("work_dir: " + work_dir)
env = assettoCorsa.make_ac_env(cfg=config, work_dir=work_dir)
# Device to use
device = torch.device("cuda")
assert device.type == "cuda", "Only cuda is supported"
if args.algo == 'discor':
algo = DisCor(
state_dim=env.observation_space.shape[0],
action_dim=env.action_space.shape[0],
device=device, seed=config.seed,
**OmegaConf.to_container(config.SAC), **OmegaConf.to_container(config.DisCor))
elif args.algo == 'sac':
algo = SAC(
state_dim=env.observation_space.shape[0],
action_dim=env.action_space.shape[0],
device=device, seed=config.seed,
**OmegaConf.to_container(config.SAC))
else:
raise Exception('You need to set algo sac or discor')
# Update the logger configuration with dynamic values
config.exp_name = f'{config.AssettoCorsa.car}-{config.AssettoCorsa.track}'
config.action_dim = env.action_dim
config.steps = config.Agent.num_steps
# Initialize wandb logger
if not config.disable_wandb:
wandb_logger = Logger(config.copy())
else:
wandb_logger = None
agent = Agent(env=env, test_env=env, algo=algo, log_dir=config.work_dir,
device=device, seed=config.seed, **config.Agent, wandb_logger=wandb_logger)
if not args.test and config.load_offline_data:
data_config_file = os.path.abspath(r"./ac_offline_train_paths.yml")
logger.info("Loading offline dataset...")
assert config.dataset_path, "dataset_path not set in config"
dataset_path = Path(config.dataset_path + os.sep)
# load data set
data = data_loader.read_yml(data_config_file)
for track in data:
for car in data[track]:
paths = data[track][car]
paths = [dataset_path / Path(f"{track}/{car}") / p["id"] / "laps" for p in paths]
env_load_config = copy.deepcopy(config)
env_load_config.AssettoCorsa.track = track
env_load_config.AssettoCorsa.car = car
env_load = assettoCorsa.make_ac_env(cfg=env_load_config, work_dir=work_dir)
for laps_path in paths:
assert laps_path.exists(), f"{laps_path} not found"
agent.load_pre_train_data(laps_path.as_posix(), env_load)
if config.Agent.use_offline_buffer:
agent._replay_buffer.online(True)
if config.pre_train:
agent.pre_train()
if args.load_path is not None:
load_buffer = False if args.test else True
agent.load(args.load_path, load_buffer=load_buffer)
if args.test:
agent._env.set_eval_mode()
agent.evaluate()
logger.info("done evaluation")
else:
agent.run()
logger.info("done training")
if __name__ == "__main__":
main()