forked from xitorch/xitorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymeig.py
461 lines (400 loc) · 18.9 KB
/
symeig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import warnings
import torch
from typing import Union, Mapping, Any, Optional, Tuple, Callable
from xitorch import LinearOperator
from xitorch._core.linop import MatrixLinearOperator
from xitorch.linalg.solve import solve
from xitorch.debug.modes import is_debug_enabled
from xitorch._utils.assertfuncs import assert_runtime
from xitorch._utils.misc import set_default_option, \
dummy_context_manager, get_method, get_and_pop_keys
from xitorch._docstr.api_docstr import get_methods_docstr
from xitorch._impls.linalg.symeig import exacteig, davidson
from xitorch._utils.exceptions import MathWarning
__all__ = ["lsymeig", "usymeig", "symeig", "svd"]
def lsymeig(A: LinearOperator, neig: Optional[int] = None,
M: Optional[LinearOperator] = None,
bck_options: Mapping[str, Any] = {},
method: Union[str, Callable, None] = None,
**fwd_options) -> Tuple[torch.Tensor, torch.Tensor]:
return symeig(A, neig, "lowest", M, method=method, bck_options=bck_options, **fwd_options)
def usymeig(A: LinearOperator, neig: Optional[int] = None,
M: Optional[LinearOperator] = None,
bck_options: Mapping[str, Any] = {},
method: Union[str, Callable, None] = None,
**fwd_options) -> Tuple[torch.Tensor, torch.Tensor]:
return symeig(A, neig, "uppest", M, method=method, bck_options=bck_options, **fwd_options)
def symeig(A: LinearOperator, neig: Optional[int] = None,
mode: str = "lowest", M: Optional[LinearOperator] = None,
bck_options: Mapping[str, Any] = {},
method: Union[str, Callable, None] = None,
**fwd_options) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Obtain ``neig`` lowest eigenvalues and eigenvectors of a linear operator,
.. math::
\mathbf{AX = MXE}
where :math:`\mathbf{A}, \mathbf{M}` are linear operators,
:math:`\mathbf{E}` is a diagonal matrix containing the eigenvalues, and
:math:`\mathbf{X}` is a matrix containing the eigenvectors.
This function can handle derivatives for degenerate cases by setting non-zero
``degen_atol`` and ``degen_rtol`` in the backward option using the expressions
in [1]_.
Arguments
---------
A: xitorch.LinearOperator
The linear operator object on which the eigenpairs are constructed.
It must be a Hermitian linear operator with shape ``(*BA, q, q)``
neig: int or None
The number of eigenpairs to be retrieved. If ``None``, all eigenpairs are
retrieved
mode: str
``"lowest"`` or ``"uppermost"``/``"uppest"``. If ``"lowest"``,
it will take the lowest ``neig`` eigenpairs.
If ``"uppest"``, it will take the uppermost ``neig``.
M: xitorch.LinearOperator
The transformation on the right hand side. If ``None``, then ``M=I``.
If specified, it must be a Hermitian with shape ``(*BM, q, q)``.
bck_options: dict
Method-specific options for :func:`solve` which used in backpropagation
calculation with some additional arguments for computing the backward
derivatives:
* ``degen_atol`` (``float`` or None): Minimum absolute difference between
two eigenvalues to be treated as degenerate. If None, it is
``torch.finfo(dtype).eps**0.6``. If 0.0, no special treatment on
degeneracy is applied. (default: None)
* ``degen_rtol`` (``float`` or None): Minimum relative difference between
two eigenvalues to be treated as degenerate. If None, it is
``torch.finfo(dtype).eps**0.4``. If 0.0, no special treatment on
degeneracy is applied. (default: None)
Note: the default values of ``degen_atol`` and ``degen_rtol`` are going
to change in the future. So, for future compatibility, please specify
the specific values.
method: str or callable or None
Method for the eigendecomposition. If ``None``, it will choose
``"exacteig"``.
**fwd_options
Method-specific options (see method section below).
Returns
-------
tuple of tensors (eigenvalues, eigenvectors)
It will return eigenvalues and eigenvectors with shapes respectively
``(*BAM, neig)`` and ``(*BAM, na, neig)``, where ``*BAM`` is the
broadcasted shape of ``*BA`` and ``*BM``.
References
----------
.. [1] Muhammad F. Kasim,
"Derivatives of partial eigendecomposition of a real symmetric matrix for degenerate cases".
arXiv:2011.04366 (2020)
`https://arxiv.org/abs/2011.04366 <https://arxiv.org/abs/2011.04366>`_
"""
assert_runtime(A.is_hermitian, "The linear operator A must be Hermitian")
assert_runtime(
not torch.is_grad_enabled() or A.is_getparamnames_implemented,
"The _getparamnames(self, prefix) of linear operator A must be "
"implemented if using symeig with grad enabled")
if M is not None:
assert_runtime(M.is_hermitian, "The linear operator M must be Hermitian")
assert_runtime(M.shape[-1] == A.shape[-1], "The shape of A & M must match (A: %s, M: %s)" % (A.shape, M.shape))
assert_runtime(
not torch.is_grad_enabled() or M.is_getparamnames_implemented,
"The _getparamnames(self, prefix) of linear operator M must be "
"implemented if using symeig with grad enabled")
mode = mode.lower()
if mode == "uppermost":
mode = "uppest"
if method is None:
if isinstance(A, MatrixLinearOperator) and \
(M is None or isinstance(M, MatrixLinearOperator)):
method = "exacteig"
else:
# TODO: implement robust LOBPCG and put it here
method = "exacteig"
if neig is None:
neig = A.shape[-1]
# perform expensive check if debug mode is enabled
if is_debug_enabled():
A.check()
if M is not None:
M.check()
if method == "exacteig":
return exacteig(A, neig, mode, M)
else:
fwd_options["method"] = method
# get the unique parameters of A & M
params = A.getlinopparams()
mparams = M.getlinopparams() if M is not None else []
na = len(params)
return symeig_torchfcn.apply(A, neig, mode, M,
fwd_options, bck_options,
na, *params, *mparams)
def svd(A: LinearOperator, k: Optional[int] = None,
mode: str = "uppest", bck_options: Mapping[str, Any] = {},
method: Union[str, Callable, None] = None,
**fwd_options) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
r"""
Perform the singular value decomposition (SVD):
.. math::
\mathbf{A} = \mathbf{U\Sigma V}^H
where :math:`\mathbf{U}` and :math:`\mathbf{V}` are semi-unitary matrix and
:math:`\mathbf{\Sigma}` is a diagonal matrix containing real non-negative
numbers.
This function can handle derivatives for degenerate singular values by setting non-zero
``degen_atol`` and ``degen_rtol`` in the backward option using the expressions
in [1]_.
Arguments
---------
A: xitorch.LinearOperator
The linear operator to be decomposed. It has a shape of ``(*BA, m, n)``
where ``(*BA)`` is the batched dimension of ``A``.
k: int or None
The number of decomposition obtained. If ``None``, it will be
``min(*A.shape[-2:])``
mode: str
``"lowest"`` or ``"uppermost"``/``"uppest"``. If ``"lowest"``,
it will take the lowest ``k`` decomposition.
If ``"uppest"``, it will take the uppermost ``k``.
bck_options: dict
Method-specific options for :func:`solve` which used in backpropagation
calculation with some additional arguments for computing the backward
derivatives:
* ``degen_atol`` (``float`` or None): Minimum absolute difference between
two singular values to be treated as degenerate. If None, it is
``torch.finfo(dtype).eps**0.6``. If 0.0, no special treatment on
degeneracy is applied. (default: None)
* ``degen_rtol`` (``float`` or None): Minimum relative difference between
two singular values to be treated as degenerate. If None, it is
``torch.finfo(dtype).eps**0.4``. If 0.0, no special treatment on
degeneracy is applied. (default: None)
Note: the default values of ``degen_atol`` and ``degen_rtol`` are going
to change in the future. So, for future compatibility, please specify
the specific values.
method: str or callable or None
Method for the svd (same options for :func:`symeig`). If ``None``,
it will choose ``"exacteig"``.
**fwd_options
Method-specific options (see method section below).
Returns
-------
tuple of tensors (u, s, vh)
It will return ``u, s, vh`` with shapes respectively
``(*BA, m, k)``, ``(*BA, k)``, and ``(*BA, k, n)``.
Note
----
It is a naive implementation of symmetric eigendecomposition of ``A.H @ A``
or ``A @ A.H`` (depending which one is cheaper)
References
----------
.. [1] Muhammad F. Kasim,
"Derivatives of partial eigendecomposition of a real symmetric matrix for degenerate cases".
arXiv:2011.04366 (2020)
`https://arxiv.org/abs/2011.04366 <https://arxiv.org/abs/2011.04366>`_
"""
# A: (*BA, m, n)
# adapted from scipy.sparse.linalg.svds
if is_debug_enabled():
A.check()
BA = A.shape[:-2]
m = A.shape[-2]
n = A.shape[-1]
if m < n:
AAsym = A.matmul(A.H, is_hermitian=True)
min_nm = m
else:
AAsym = A.H.matmul(A, is_hermitian=True)
min_nm = n
eivals, eivecs = symeig(AAsym, k, mode,
bck_options=bck_options, method=method,
**fwd_options) # (*BA, k) and (*BA, min(mn), k)
# clamp the eigenvalues to a small positive values to avoid numerical
# instability
eivals = torch.clamp(eivals, min=0.0)
s = torch.sqrt(eivals) # (*BA, k)
sdiv = torch.clamp(s, min=1e-12).unsqueeze(-2) # (*BA, 1, k)
if m < n:
u = eivecs # (*BA, m, k)
v = A.rmm(u) / sdiv # (*BA, n, k)
else:
v = eivecs # (*BA, n, k)
u = A.mm(v) / sdiv # (*BA, m, k)
vh = v.transpose(-2, -1).conj()
return u, s, vh
class symeig_torchfcn(torch.autograd.Function):
@staticmethod
def forward(ctx, A, neig, mode, M, fwd_options, bck_options, na, *amparams):
# A: LinearOperator (*BA, q, q)
# M: LinearOperator (*BM, q, q) or None
# separate the sets of parameters
params = amparams[:na]
mparams = amparams[na:]
config = set_default_option({
}, fwd_options)
ctx.bck_config = set_default_option({
"degen_atol": None,
"degen_rtol": None,
}, bck_options)
# options for calculating the backward (not for `solve`)
alg_keys = ["degen_atol", "degen_rtol"]
ctx.bck_alg_config = get_and_pop_keys(ctx.bck_config, alg_keys)
method = config.pop("method")
with A.uselinopparams(*params), M.uselinopparams(*mparams) if M is not None else dummy_context_manager():
methods = {
"davidson": davidson,
"custom_exacteig": custom_exacteig,
}
method_fcn = get_method("symeig", methods, method)
evals, evecs = method_fcn(A, neig, mode, M, **config)
# save for the backward
# evals: (*BAM, neig)
# evecs: (*BAM, na, neig)
ctx.save_for_backward(evals, evecs, *amparams)
ctx.na = na
ctx.A = A
ctx.M = M
return evals, evecs
@staticmethod
def backward(ctx, grad_evals, grad_evecs):
# grad_evals: (*BAM, neig)
# grad_evecs: (*BAM, na, neig)
# get the variables from ctx
evals, evecs = ctx.saved_tensors[:2]
na = ctx.na
amparams = ctx.saved_tensors[2:]
params = amparams[:na]
mparams = amparams[na:]
M = ctx.M
A = ctx.A
degen_atol: Optional[float] = ctx.bck_alg_config["degen_atol"]
degen_rtol: Optional[float] = ctx.bck_alg_config["degen_rtol"]
# set the default values of degen_*tol
dtype = evals.dtype
if degen_atol is None:
degen_atol = torch.finfo(dtype).eps**0.6
if degen_rtol is None:
degen_rtol = torch.finfo(dtype).eps**0.4
# check the degeneracy
if degen_atol > 0 or degen_rtol > 0:
# idx_degen: (*BAM, neig, neig)
idx_degen, isdegenerate = _check_degen(evals, degen_atol, degen_rtol)
else:
isdegenerate = False
if not isdegenerate:
idx_degen = None
# the loss function where the gradient will be retrieved
# warnings: if not all params have the connection to the output of A,
# it could cause an infinite loop because pytorch will keep looking
# for the *params node and propagate further backward via the `evecs`
# path. So make sure all the *params are all connected in the graph.
with torch.enable_grad():
params = [p.clone().requires_grad_() for p in params]
with A.uselinopparams(*params):
loss = A.mm(evecs) # (*BAM, na, neig)
# if degenerate, check the conditions for finite derivative
if is_debug_enabled() and isdegenerate:
xtg = torch.matmul(evecs.transpose(-2, -1).conj(), grad_evecs)
req1 = idx_degen * (xtg - xtg.transpose(-2, -1).conj())
reqtol = xtg.abs().max() * grad_evecs.shape[-2] * torch.finfo(grad_evecs.dtype).eps
if not torch.all(torch.abs(req1) <= reqtol):
# if the requirements are not satisfied, raises a warning
msg = ("Degeneracy appears but the loss function seem to depend "
"strongly on the eigenvector. The gradient might be incorrect.\n")
msg += "Eigenvalues:\n%s\n" % str(evals)
msg += "Degenerate map:\n%s\n" % str(idx_degen)
msg += "Requirements (should be all 0s):\n%s" % str(req1)
warnings.warn(MathWarning(msg))
# calculate the contributions from the eigenvalues
gevalsA = grad_evals.unsqueeze(-2) * evecs # (*BAM, na, neig)
# calculate the contributions from the eigenvectors
with M.uselinopparams(*mparams) if M is not None else dummy_context_manager():
# orthogonalize the grad_evecs with evecs
B = _ortho(grad_evecs, evecs, D=idx_degen, M=M, mright=False)
# Based on test cases, complex datatype is more likely to suffer from
# singularity error when doing the inverse. Therefore, I add a small
# offset here to prevent that from happening
if torch.is_complex(B):
evals_offset = evals + 1e-14
else:
evals_offset = evals
with A.uselinopparams(*params):
gevecs = solve(A, -B, evals_offset, M, bck_options=ctx.bck_config,
**ctx.bck_config) # (*BAM, na, neig)
# orthogonalize gevecs w.r.t. evecs
gevecsA = _ortho(gevecs, evecs, D=None, M=M, mright=True)
# accummulate the gradient contributions
gaccumA = gevalsA + gevecsA
grad_params = torch.autograd.grad(
outputs=(loss,),
inputs=params,
grad_outputs=(gaccumA,),
create_graph=torch.is_grad_enabled(),
)
grad_mparams = []
if ctx.M is not None:
with torch.enable_grad():
mparams = [p.clone().requires_grad_() for p in mparams]
with M.uselinopparams(*mparams):
mloss = M.mm(evecs) # (*BAM, na, neig)
gevalsM = -gevalsA * evals.unsqueeze(-2)
gevecsM = -gevecsA * evals.unsqueeze(-2)
# the contribution from the parallel elements
gevecsM_par = (-0.5 * torch.einsum("...ae,...ae->...e", grad_evecs, evecs.conj())
).unsqueeze(-2) * evecs # (*BAM, na, neig)
gaccumM = gevalsM + gevecsM + gevecsM_par
grad_mparams = torch.autograd.grad(
outputs=(mloss,),
inputs=mparams,
grad_outputs=(gaccumM,),
create_graph=torch.is_grad_enabled(),
)
return (None, None, None, None, None, None, None, *grad_params, *grad_mparams)
def _check_degen(evals: torch.Tensor, degen_atol: float, degen_rtol: float) -> \
Tuple[torch.Tensor, bool]:
# evals: (*BAM, neig)
# get the index of degeneracies
neig = evals.shape[-1]
evals_diff = torch.abs(evals.unsqueeze(-2) - evals.unsqueeze(-1)) # (*BAM, neig, neig)
degen_thrsh = degen_atol + degen_rtol * torch.abs(evals).unsqueeze(-1)
idx_degen = (evals_diff < degen_thrsh).to(evals.dtype)
isdegenerate = bool(torch.sum(idx_degen) > torch.numel(evals))
return idx_degen, isdegenerate
def _ortho(A: torch.Tensor, B: torch.Tensor, *,
D: Optional[torch.Tensor] = None,
M: Optional[LinearOperator] = None,
mright: bool = False) -> torch.Tensor:
# orthogonalize every column in A w.r.t. columns in B
# D is the degeneracy map, if None, it is identity matrix
# M is the overlap matrix (in LinearOperator)
# mright indicates whether to operate M at the right or at the left
# shapes:
# A: (*BAM, na, neig)
# B: (*BAM, na, neig)
if D is None:
# contracted using opt_einsum
str1 = "...rc,...rc->...c"
Bconj = B.conj()
if M is None:
return A - torch.einsum(str1, A, Bconj).unsqueeze(-2) * B
elif mright:
return A - torch.einsum(str1, M.mm(A), Bconj).unsqueeze(-2) * B
else:
return A - M.mm(torch.einsum(str1, A, Bconj).unsqueeze(-2) * B)
else:
BH = B.transpose(-2, -1).conj()
if M is None:
DBHA = D * torch.matmul(BH, A)
return A - torch.matmul(B, DBHA)
elif mright:
DBHA = D * torch.matmul(BH, M.mm(A))
return A - torch.matmul(B, DBHA)
else:
DBHA = D * torch.matmul(BH, A)
return A - M.mm(torch.matmul(B, DBHA))
def custom_exacteig(A, neig, mode, M=None, **options):
return exacteig(A, neig, mode, M)
# docstring completion
_symeig_methods = {
"exacteig": exacteig,
"davidson": davidson,
}
ignore_kwargs = ["M", "mparams"]
symeig.__doc__ = get_methods_docstr(symeig, _symeig_methods, ignore_kwargs)
svd.__doc__ = get_methods_docstr(svd, _symeig_methods)