From a4edb759ee43f4b36bc054af85415fc0e1f56052 Mon Sep 17 00:00:00 2001 From: damian0604 Date: Thu, 23 Apr 2020 08:28:06 +0200 Subject: [PATCH] get csv directly online --- ipynb/basic_statistics.ipynb | 118 +++++++++-------------------------- 1 file changed, 30 insertions(+), 88 deletions(-) diff --git a/ipynb/basic_statistics.ipynb b/ipynb/basic_statistics.ipynb index bab4067..3c20c3c 100644 --- a/ipynb/basic_statistics.ipynb +++ b/ipynb/basic_statistics.ipynb @@ -36,9 +36,7 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", @@ -63,20 +61,16 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "df = pd.read_csv('mediause.csv')" + "df = pd.read_csv('https://raw.githubusercontent.com/damian0604/bdaca/master/ipynb/mediause.csv')" ] }, { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -97,7 +91,6 @@ "cell_type": "code", "execution_count": 4, "metadata": { - "collapsed": false, "scrolled": true }, "outputs": [ @@ -834,9 +827,7 @@ { "cell_type": "code", "execution_count": 5, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -987,9 +978,7 @@ { "cell_type": "code", "execution_count": 6, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -1012,7 +1001,6 @@ "cell_type": "code", "execution_count": 7, "metadata": { - "collapsed": false, "scrolled": false }, "outputs": [ @@ -1048,9 +1036,7 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1124,9 +1110,7 @@ { "cell_type": "code", "execution_count": 9, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -1296,9 +1280,7 @@ { "cell_type": "code", "execution_count": 10, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1526,7 +1508,6 @@ "cell_type": "code", "execution_count": 11, "metadata": { - "collapsed": false, "scrolled": false }, "outputs": [ @@ -1558,9 +1539,7 @@ { "cell_type": "code", "execution_count": 12, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -1599,9 +1578,7 @@ { "cell_type": "code", "execution_count": 13, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -1657,9 +1634,7 @@ { "cell_type": "code", "execution_count": 15, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -1687,9 +1662,7 @@ { "cell_type": "code", "execution_count": 16, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -1717,9 +1690,7 @@ { "cell_type": "code", "execution_count": 17, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -1746,9 +1717,7 @@ { "cell_type": "code", "execution_count": 18, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1773,9 +1742,7 @@ { "cell_type": "code", "execution_count": 19, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "df['meanmedia'] = df[['radio','internet','newspaper','tv']].mean(axis=1)" @@ -1784,9 +1751,7 @@ { "cell_type": "code", "execution_count": 20, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -1834,9 +1799,7 @@ { "cell_type": "code", "execution_count": 22, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "combined = df.join(intpol)" @@ -1846,7 +1809,6 @@ "cell_type": "code", "execution_count": 23, "metadata": { - "collapsed": false, "scrolled": true }, "outputs": [ @@ -2771,9 +2733,7 @@ { "cell_type": "code", "execution_count": 24, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "m1 = smf.ols(formula='internet ~ age + gender + education', data=combined).fit()" @@ -2782,9 +2742,7 @@ { "cell_type": "code", "execution_count": 25, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -2896,9 +2854,7 @@ { "cell_type": "code", "execution_count": 26, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -3023,9 +2979,7 @@ { "cell_type": "code", "execution_count": 27, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -3064,9 +3018,7 @@ { "cell_type": "code", "execution_count": 29, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -3135,9 +3087,7 @@ { "cell_type": "code", "execution_count": 30, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stderr", @@ -3175,9 +3125,7 @@ { "cell_type": "code", "execution_count": 31, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "name": "stderr", @@ -3219,9 +3167,7 @@ { "cell_type": "code", "execution_count": 32, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -3252,9 +3198,7 @@ { "cell_type": "code", "execution_count": 33, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [], "source": [ "from scipy.stats import pearsonr, mannwhitneyu" @@ -3263,9 +3207,7 @@ { "cell_type": "code", "execution_count": 34, - "metadata": { - "collapsed": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -3322,9 +3264,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.4.3" + "version": "3.7.5" } }, "nbformat": 4, - "nbformat_minor": 0 + "nbformat_minor": 1 }